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Abstract
Advances in AI techniques have fueled research on using EEG data for psychiatric disorder diagnosis. Despite EEG’s cost-
effectiveness and high temporal resolution, low Signal-to-Noise Ratio (SNR) hampers critical marker extraction and model
improvement, while denoising techniques will lead to a loss of effective information in EEG. The aim of this study is to
employ AI methods for the processing of raw EEG data. The primary objectives of the processing are twofold: first, to acquire
more reliable markers for schizophrenia, and second, to construct a superior automatic classification for schizophrenia.
To remove the noises and retain task-related (classification tasks) effective information mostly, we introduce an Effective
Information Estimation Framework (EIEF) based on three key principles: the task-centered approach, leveraging 1D-CNNs’
test metrics to gauge effective information proportion, and feedback. We address a theoretical foundation by integrating
these principles into mathematical derivations to propose the mathematical model of EIEF. In experiments, we established a
paradigm pool of 66 denoising paradigms, with EIEF successfully identifying the optimal paradigms (on two datasets) for
restoring effective information. Utilizing the processed dataset, we trained a 3D-CNN for automatic schizophrenia diagnosis,
achieving outstanding test accuracies of 99.94% on dataset 1 and 98.02% on dataset 2 in subject-dependent evaluations, and
accuracies of 89.85% on dataset 1 and 98.02% on dataset 2 in subject-independent evaluations. Additionally, we extracted
38 features from each channel of both processed and raw datasets, revealing that 20.86% (dataset 1) of feature distribution
differences between the patients and the healthy exhibited significant changes after implementing the optimal paradigm. We
enhance model performance and extract more reliable electrobiological markers. These findings have promising implications
for advancing the field of the clinical diagnosis and pathological analysis of Schizophrenia.
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1 Introduction

Schizophrenia (SZ) is a chronic and intricate neuropsychi-
atric disorder characterized by symptoms such as blunted
affect, hallucinations, and delusions. These debilitating
symptoms lead to significant cognitive and, ultimately, social
deficits [1], often resulting in individuals spending a substan-
tial portion of their lives in psychiatric care facilities. The
precise etiology of schizophrenia remains unclear, but it is
believed to be influenced by a complex interplay of genetic,
environmental, and psychosocial factors [2].

Fengbin Ma, Xindong Xu and Longyue Fu contributed equally to this
work.

Extended author information available on the last page of the article

Electroencephalogram(EEG) is a biological signal charac-
terized by high temporal resolution and low acquisition cost,
allowing for the detection of changes in brain states [3]. Con-
sequently, EEG has been widely utilized in the field AI for
identifying various humanmental states, such as drunkenness
[4, 5], depression [6], and various emotions [7], etc. Clearly,
the diagnosis of schizophrenia using EEG, the primary focus
of this paper, is an ongoing area of research pursued by many
researchers [8–10].

In the above context, when developing an automatic
system for the diagnosis of SZ, we have several primary
objectives. Firstly, ourmain goal is to create a system that can
assist clinicians in diagnosing SZ effectively. Secondly, we
aim to identify and validate interpretable features that have
the potential to classify SZ patients accurately. Lastly, we
endeavor to establish electrobiological markers, which are
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essentially features, for SZ using AI techniques. This paper
will address all three of these objectives, striving to provide
solutions and insights into the diagnosis of SZ.

Regrettably, EEG data’s inherently low SNR [11] poses a
challenge to achieving the aforementionedobjectives. Firstly,
the presence of noise in EEG data dilutes the relevant infor-
mation, consequently affecting the performance of trained
classifiers. Besides, due to the limitation of the acquisition
equipment, the scale of EEG datasets is generally not large.
Thus, the situation easily happens that the noise components
and the redundant components have different distributions
in the two sub-datasets belonging to the healthy and the
patients. For example, Fig. 1 shows the boxplots of the bub-
ble entropies [12] of all the disjoint segments with 4 seconds
in the dataset 1 mentioned below (the SZ segments and the
healthy(HC) segments have their boxplot, respectively). It
becomes evident that, in the raw data, the average andmedian
entropy values for SZ patients are higher than those for
healthy individuals. However, after the noise removal, these
metrics for SZ patients drop below those for healthy individ-
uals. Such a problem definitely hinders the achievement of
identifying potential qualified features.

Moreover, training a automatic classification systemusing
such datasets may mislead the system, causing it to extract
noise as hidden layer features, ultimately leading to a
decrease in the generalization ability of the system.

Because the EEG redundant signal has yet to be defined
clearly, removing them is impossible at current. As for the
noise, although more and more denoising approaches for
EEG signals have been proposed in recent years [11, 13–15],
these aforementioned issues still persist without complete
resolution. Even worse, sometimes signal preprocessing
operations significantly influence the outcomes of some spe-
cific classification taskswhenapplied to task-relateddatasets,
potentially causing the loss of essential task-related informa-
tion [16, 17].

To overcome the limitations of the aforementioned resear-
ches, this paper introduces anEEGeffective information esti-
mation framework(EIEF). EIEF is designed to be directly
aligned with the classification task at hand and is tailored to
a specific EEG dataset. The core mechanism of the frame-
work is using the testing metrics of a trained end-to-end
DNN to feed the stock and proportion of the effective infor-
mation back to denoising approach selection. Let us take a
testing metric as the objective function. Finding the opti-
mal denoising paradigm for a specific EEG dataset and the
corresponding optimal estimation of the SZ-related effec-
tive information of this dataset will become an optimization
problem. Ideally, the optimal paradigm can remove a lot of
noise components with the effective information retained,
and enhance the reliability of the SZ electrobiologicalmarker
discovery and the generalization capacity of SZ classification
systems based on the optimal dataset.

In this paper, the framework utilizes a 1D-CNN as the
core component of the DNN, as introduced in [18]. But when
applying the framework’s result to construct an automatic SZ
diagnosis system, we opt for the 3D-CNN proposed by [19]
with a more substantial scale and increased depth to enhance
system performance.

To sumup, this paper focuses on the establishment andval-
idation of EIEF, the assessment of changes in EEG feature
disparities between patients and healthy individuals before
and after implementing the optimal denoising paradigm, and
the construction of an automated SZ diagnosis system by
EIEF. The paper is structured into three main parts: theory
and methodology, experiments, and verifications. In the part
of the theory and methodology, starting with discussing the
properties of the EEG effective information of classification
tasks, then relying on the estimation for that information,
we propose EIEF, comprising the objective function, con-
straints and solution methods. As for the method, according
to the conditions and solution of EIEF, after specifying the

Fig. 1 The boxplots of the bubble entropies based on the dataset after removing line noise (left). The boxplots of the bubble entropies based on the
original dataset(right). SZ schizophrenia patients. HC healthy control
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two EEG datasets used, the research will create a paradigm
pool consisting of 66 denoising paradigms,which is followed
by the description of the two used CNNs. In the part of the
experiments, for each dataset processed by each paradigm,
we input segments of the processed dataset into the 1D-CNN
for training and testing, using subject-independent cross-
validation. We aim to find the two optimal paradigm for
the two datasets within the pool, with test accuracy as the
optimization objective. Subsequently, using the datasets pro-
cessed by the optimal paradigms, we develop an automatic
SZ diagnostic system based on the 3D-CNN and compare
it with S.O.T.A. In the part of the verifications. Making the
3D-CNN replace the 1D-CNN, we will implement another
search to verify the stability of the optimal paradigm and the
strength of putting the 1D-CNN into the framework. Fur-
thermore, the change in the features disparities between the
two groups of individuals before and after the implementa-
tion is evaluated to elucidate the significance of the denoising
paradigm.

2 RelatedWork

2.1 EEG noise removal techniques

EEG has a high resolution and the signals are prone to
unwanted noise pollution, resulting in various artifacts [20].
Eye movement, blinking, heart activity, and muscle activ-
ity in EEG signals are the main physiological artifact types.
Besides, there are many extrinsic artifacts existing, like the
line noise and volume conduct artifact [11]. TTraditional
artifact removal techniques encompass regression methods,
wavelet transformations, blind signal separation (BSS)meth-
ods, filtering methods, among others. In recent years, several
new approaches, such as AI-basedmethods and hybridmeth-
ods, have emerged, demonstrating improved performance
and reduced computational demands. Sweeney, Ward, and
McLoone assumed that each channel was the accumula-
tion of pure EEG data and a certain proportion of artifacts.
The estimated artifacts were then subtracted from the EEG
[21]. Gianluca Di Flumeri proposed the regression-based eye
correction algorithm(REBLINCA) with a higher ability to
retain the EEG signal in the no-eye movement part. Besides,
the method does not require an EOG channel compared to
other regression-based methods. Compared to ICA-based
algorithms, this requires fewer channels and facilitates the
calculation [14]. Bigdely-Shamlo et al. Introduced a robust
referrals algorithm that attempted to estimate the actual
average of EEG channels after removing bad channel con-
tamination. Their efforts were to develop a standardized
early-stage preprocessing pipeline (the PREP pipeline) that

detects and removes certain experimentally generated arti-
facts, such as eye blinks or muscle activations [13]. Banghua
Yang proposed a novel blind source separationmethod called
CCA-EEMD to remove EOG artifacts automatically as well
as reserve more valuable information from raw EEG. A dis-
tinctive aspect of this method is that the identified EOG
component is not removed directly but used to extract neu-
ral EEG data, which would keep more effective information
[15]. Sadiq et al. used multiscale principal component anal-
ysis to decompose EEG signals, and employed Kaiser rule
to select principal components to remove the noises [22].
Morteza Zangeneh Soroush introduced a novel method to
detect artifactual components estimated by second-order
blind identification (SOBI). Artifacts are detected using a
mixture of well-established conventional classifiers andwere
removed employing stationary wavelet transform (SWT)
to reserve neural information. This method combines sig-
nal processing techniques and machine learning algorithms,
yielding significant results across various scenarios [23].
However, all the above methods are general and aren’t task-
centered. In otherwords, they are open-loopmethodswithout
feedback.

2.2 EEG-based SZ classification

From the raw EEG data to the final classification results,
researchers’ processing can be broadly categorized into the
following steps. Firstly, data extraction is conducted, where
commonly encountered EEG signals for disease classifica-
tion include resting-state signals and task-related signals.
Subsequently, data denoising is performed, as mentioned in
the preceding section. Then, signal analysis, such as feature
extraction, nonlinear signal decomposition, spectral analysis,
and so forth. Finally, based on the analyzed data, classifiers
are trained. Therefore, in this subsection, we will emphasize
how researchers conduct signal analysis and classifier design
in those prominent achievements.

More than a decade ago, Sabeti et al. [24] extracted Shan-
non entropy, spectral entropy, approximate entropy, Lempel-
Ziv complexity and Higuchi fractal dimension from an EEG
dataset (recorded data in resting-state with eyes opened), and
achieved a classification accuracy of 86% and 90% obtained
by LDA and Adaboost respectively. Parvinnia et al. [25] also
used resting-state EEG signals with eyes opened to conduct
research. After extracting fractal dimension, band power and
autoregressive (AR) model, they applied weighted distance
nearest neighbor (WDNN) for classification. And the accu-
racy was 95.3%. Murphy et al. [26] collected a task-related
dataset from duration deviant MMN tasks, and found ado-
lescents with psychotic symptoms were characterised by a
reduction inMMN amplitude at frontal and temporal regions
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compared to the controls through statistical analysis. During
that period, researchers were directly extracting a few fea-
tures from raw data and then using them to perform simply
statistical analysis or train classical machine learning classi-
fiers.

As research progresses, researchers are increasingly incor-
porating new technologies into the feature extraction process.
For example, researchers can simultaneously extract features
of several dozen different types at once and then use feature
selection techniques to to select a suitable subset, and use
this subset to train a classifier. Jahmunah et al. [27] total
mined 157 features from the dataset, and select 14 features
using Student’s t-test. Based on these feature, they imple-
mented classification practice with various ML classifiers,
DT, LD, KNN, PNN, and SVM with various kernels. And
the average performance value is 92.91%. Prabhakar et al.
[28] first extracted 9 nonlinear features and then optimized
the selection of the features byArtificial Flora (AF) optimiza-
tion, Glowworm Search (GS) optimization, Black Hole (BH)
optimization, and Monkey Search (MS) optimization. They
also trained several classifiers by the optimized features and
found SVM-RBF can reach the best performance of 97.54%
(for normal cases) and 92.17% (for schizophrenia cases).

In recent years, various signal decomposition techniques
have been widely employed for state recognition based on
EEG. Sadiq et al. achieved a sensitivity, specificity and
classification accuracy of 93%, 92.1% and 91.4%, respec-
tively, on a motor imagery dataset by utilizing a robust
and simple automated multivariate empirical wavelet trans-
form (MEWT) to obtain joint instantaneous amplitude and
frequency components [29]. And achieved an average clas-
sification accuracy of 99.8% by employing a multivariate
variational mode decomposition (MVMD) method to obtain
joint modes in frequency scale across all channels [30]. In
the realm of schizophrenia recognition, researchers have also
begun innovating feature engineering from the perspective
of signal decomposition. Krishnan et al. [31] usedMultivari-
ate Empirical Mode Decomposition (MEMD) to decompose
the EEG data into Intrinsic Mode Functions (IMF) signal.
Then five entropy measures were measured from the IMF
signals. And the subset of features was selected by Recursive
Feature Elimination. Based on Radial Basis Function (SVM-
RBF), they achieved the highest accuracy and F1-score of
93% with 95 features and obtained an AUC of 0.9831. Bay-
gin [32] conducted feature extraction from 19-channel EEG
signals with healthy and schizophrenia classes, using Tun-
able Q-Factor Wavelet Transform (TQWT) and statistical
moment methods, and selected feature subset by the ReliefF
method. He chose KNN to be the classifier and achieved an
accuracy of 99.12%. Khare et al. [33] used the Fisher score
method to select the most discriminant channel, then used

flexible tunable Q wavelet transform (F-TQWT) to decom-
pose the EEG signal. After the decomposition, similar to
the aforementioned researches, they extracted five features
and employed the Kruskal-Wallis test to select a subset of
features. Subsequently, this subset was fed into an flexible
least square support vector machine (F-LSSVM) classifier.
In their paper, a more innovative approach involved utilizing
the grey wolf optimization algorithm to incorporate feed-
back from SVM results into the selection of Q-wavelets. An
accuracy of 91.39%, sensitivity, specificity, precision, F-1
measure, false positive rate and error of 92.65%, 93.22%,
95.57%, 0.9306, 6.78% and 8.61% was achieved.

In addition to intensive research in feature engineering,
with the continuous breakthroughs in deep learning tech-
nology, researchers have also begun to utilize various types
of DNNs for schizophrenia recognition. One category of
research involves directly feeding continuous or segmented
EEG signals into the network, for example: Oh et al. [18]
introduced a 1D-CNN model designed to analyze signals,
automatically extract salient features, and perform classi-
fication. This model achieved a classification accuracy of
98.07% for subject-dependent (SD) evaluation and 81.26%
for subject-independent(SI) evaluation. Sharma et al. [34]
proposed a schizophrenia hybrid neural network (SzHNN),
which is a combination of convolutional neural networks
(CNNs) and long short-term memory (LSTM). They divided
the original data of two EEG datasets into non-overlapping
segments and used these segments to train the SzHNN. The
performance is an accuracy of 99.9% on dataset 1 and an
accuracy of 99.5% on dataset 2. Another category of research
involves the fusion of feature engineeringwithDNNs. Lever-
aging the scale of DNNs, such papers often yield large-sized
feature sets in their feature engineering, such as the visual-
ized image of EEG signals. Shen et al. [35] developed an
image feature, functional brain network, using a multivariate
autoregressive model and coherence connectivity algorithm.
And they used 3D-CNN to classify the SZ patients. The
proposed 3D-CNN method achieved the performance of
a 98.47 ± 1.47% in accuracy, 99.26 ± 1.07% in sensi-
tivity, and 97.23 ± 3.76% in specificity. Similarly, Khare
et al. [36] captured the instantaneous information of EEG
signals in the time-frequency domain using MH-TFD, con-
verted the information to two-dimensional plots, and fed the
plots to the developed CNN model. The developed CNN
is SchizoNET model. And the proposed model achieved
an accuracy of 97.4%, 99.74%, and 96.35% on the three
datasets, respectively. Zülfikar et al. [37] integratedEmpirical
Mode Decomposition (EMD) with the VGG16 pre-trained
CNN. HS (Hilbert Spectrum) images of the first four Intrin-
sicMode Functions (IMF) components obtained by applying
EMD to EEG signals were fed into several famous CNN.
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They obtained the classification performance of 98.2% for
Dataset I and 96.02% for Dataset II, using VGG16 network.

The innovation in the aforementioned articles includes
the introduction of new features and new methods of feature
acquisition (such as signal decomposition), the introduction
of new feature subset selection methods, the introduction of
new classifiers, etc. However, none of these articles focus on
improving the reliability of existing features, which is the
focal point of our research.

3 Theory andmethod

The primary objective of this chapter is to leverage math-
ematics to introduce an effective information estimation
framework that can get the optimum among a given series
of denoising paradigms, based on any end-to-end classifi-
cation model and a certain dataset. Then according to the
conditions of EIEF, after specifying the EEG dataset used,
the research will create a paradigm pool consisting of 60
denoising paradigms for the following grid search for the
optimum. And, the two classifiers inside EIEF and outside
EIEF will be detailed, plus the classifier inside serves as the
foundation for assessing the metrics used in the paradigm
search, and the classifier outside is responsible for construct-
ing the automated SZ diagnosis system.

Here, the flow chart from EIEF’s work to the construction
and the use of the diagnosis system is illustrated in Fig. 2.
And Table 1 is the list of symbols used in the thory part.

3.1 Hypotheses on property of effective information

Let Z ∈ R
c×t denote the c× t-dimensional matrix variable,

and X ∈ � ⊂ R
c×t denote the observed EEG signal sample,

where c is the number of recorded channels, t is the sample
size and � is the sample space. The purpose of this sub-
section is to describe a common property of EEG effective
information for any classification task with mathematic. So
first, in order to denote the effective information, we shall
explain and denote EEG signal objective components.

Here, we denote an EEG signal objective component as
an i ∈ Is which must satisfy the condition: ∀X, ∃Si ∈ �i

⊂ R
c×t , where Si can be called the sample of component i

(or sample of i), Is is the tag set, �i is the component space
generated by �. For now, the elements that are objective
components inside Is are not all clear, but it is clear that Is
is a finite set. Then denote a sample of the real signal under
any reference λ as Sr ∈ �r , and a sample of the real noise is
Srn ∈ �rn, plus ∀X, ∃Sr, Srn : X = Sr + Srn. When the
classification task is T ∈ � (� is EEG classification task
set), a sample of the effective information of T is Si

T
, the

redundant information Si
Tm, plus ∀Sr, ∃SiT , Si

Tm : Sr =
Si

T + Si
Tm.

Fig. 2 The flow chart from EIEF to the diagnosis system
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Table 1 List of Symbols

Type Symbol Explanation Type Symbol Explanation

Variable c Recorded channel number Set � Sample space

t EEG sample size �i Component space of an i

Z c× t-dimensional matrix � Classification task set

X Observed EEG signal sample Gi Set of all gi based on an i

i Tag of a objective component G Set of all g

Si Sample of an i �̄gi Complete observed sample space based on a
gi

λ Signal reference �̄ Family of all �̄gi

T Classification task �
i Set of all fgi based on an i

i T Tag of the effective Information of a T � Set of all f

Si
T

Sample of the effective information of a T H Classifier hypothesis space

Si
T m Sample of the redundant information Hre Set of all realizable hypotheses

C Parameter matrix of the prior information B j Set of all b of a j

t̄ Sample size of a Z̄ inputted to classifiers B Set of all b

Z̄ Block of a corresponding Z Hj Set of all h corresponding to a B j

cl Number of the classes decided by the T Ib Tag set containing all j

ŷ Output of classifiers Is Tag set containing all i

b Classification model YT Classification label space of a T

j Tag of a classification model category Ir Tag set containing all i of real signals

θ j Parameters of models in a B j Irn Tag set containing all i of real noises

ω j Number of the parameters of a B j Iel se Tag set containing all i :
i ∈ Is ∧ i /∈ Ir ∧ i /∈ Irn

y Real label vector of a sample P Function space of p

k Index of a block inputted to classifiers A Set of all a

ν Index of a classification label vector Ai Set of all a qualified to estimating the fi based
on an i

a EEG processing algorithm Pi Set of all p corresponding to an Ai

n Tag of a processing method category Ai
n Set of all a belonging to an n

θn Parameters of algorithms in an Ai
n I ia Tag set of all n qualified to estimating an i

ωn Number of the parameters of an Ai
n P i

n Set of all p corresponding to an Ai
n

r Real signal under a λ, type of objective com-
ponents

�∗ Sample set of a research

rn Real noise under a λ, type of objective compo-
nents

YT∗ Classification label set of a research

δ Traning termination condition E∗ Example set of a research

θ∗
j∗ Optimal parameters of the h j∗ inside EIEF �i T ∗ Research’s component set of an i

θ f̂iT
Optimal parameters of the p inside EIEF E∗

ν Example subset of a research

Map gi Constructed function based on an i E∗
test Example train set of a research

fgi gi -based restoration function for an i E∗
t rain Example test set of a research

h Classifier Distribution Dg Distribution of an example space �̄giT
× YT

P Probability density function of a Dg DT
i Distribution of an example space of an i and a

T

p Processing method of EEG Dg(| y = yν) Distribution of an example subspace

L Loss function

M Metric function, such as loss function

f̂i T Optimal estimation of an fiT

fiT Restoration function for an i T
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Note that ∀i, ∃X which has different corresponding Si ,
but in one real sampling, there is only one Si for any possible
sampled X . That’s because the prior information during the
sampling, outside the �, decides the unique Si . Conversely,
if having enough prior information, we can construct a X
using ∀Si . In here, a mathematical model will be proposed
to demonstrate the prior information and to achieve the con-
struction.

Definition 1 ∀i , define a mapping and matrix function

gi (∈ Gi ⊂ G) : R
c×t → R

c×t,C → Cgi = gi (C) (1)

as a constructed function based on i if ∀X, ∃Si ,C : X = Si

+gi (C) and ∀Si , ∃X,C : X = Si + gi (C), where C is
called the parameter matrix of the prior information of X
expect Si , Gi is the function set containing all qualified
constructed functions based on i , and G is the function set
containing all g. Typically, ∀i , a identical mapping must be
a constructed function . And in this case, since ∀X, ∃Si , C
shall be X − Si . It is easy to use any constructed function to
define a new sample space.

Definition 2 ∀i,∀gi , the space �̄gi ⊂ (Rc×t, R
c×t) is the

complete observed sample space based on gi if ∀(Z1, Z2) ∈
�̄gi : Z1 ∈ � and ∀(X,C) ∈ �̄gi , ∃!Si : Si= X− gi (C).
Note that �̄gi ∈ �̄, where �̄ is the family of all �̄gi .

Through complete observed sample spaces, getting the
effective information of ∀T will be implemented by a map-
ping.

Definition 3 ∀i,∀gi , define the mapping

fgi (∈ �
i ⊂ �) : �̄gi → R

c×t, (X,C) → Si

= fgi (X,C) = X − gi (C) (2)

as the gi -based restoration function for i , where �
i is the

function set containing all fgi for component i based on all
possible gi , and � is the set of all f for all components.
Obviously, ∀T , fgiT shall be the restoration function for i T .

So far, ∀T , through fgiT , any Si
T
can be gotten from�. But

the property we propose to describe is related to classifiers,
which requires the definition of classifiers.

Definition 4 In this paper, a classifier for EEG is

h(∈ Hre ⊂ H) : R
c× t̄ → R

cl, Z̄ → ŷ = h(Z̄), (3)

where H is the hypothesis space, Z̄ ∈ R
c× t̄ is a block of the

corresponding Z, or a subsample of the corresponding X , t̄
is the sample size of the subsample ( t̄ ≤ t), cl is the number
of the classes decided by task T , and ŷ is the output vec-
tor describing the probabilities that Z̄ belongs to each class.

There is a fact that h demands the segmented EEG epochs
to be the input, which tells us the classifiers here are not the
traditional classification models but actually cover the EEG
signal process, feature extraction and selection, and feature
dimensionality transformation. Thus, Hre is the hypothesis
set containing all realizable hypotheses, and these hypothe-
ses must come from models where the above procedures are
all learnable (end-to-end models). For instances, an SVM
classifier based on manual feature extraction doesn’t belong
to Hre, and a CNN classifier belongs to Hre if taking the
segmented data as the input and the probability vector as the
output. Such a definition could avoid setting priori hypothe-
ses in classifier construction as much as possible, since the
priori hypotheses will definitely influence classifiers’ sensi-
tivity to the component change of an EEG trainset.

Before the proposal of the hypothesis, there are some
final explanations. Assume a classifier which can be repre-
sented by any ofmodel b ∈ B j ⊂ B is h j (; θ j ) ∈ Hj ⊂ Hre

( j ∈ Ib and ∀ j ∈ Ib : ((∃!B j ⊂ B)∧ (∃!Hj ⊂ Hre))),
where B j is the set containing all the models of a spe-
cific model category (like 3D-CNN with definite hyper-
parameters), B is the set containing all the end-to-endmodels
for classification, and Hj is the set of classifier corresponding
to B j , θ j ∈ R

1×ω j is the parameter vector of models belong
to B j where ω j represent the number of the parameters.

∀T ∈ �, ∀giT ∈ GiT , Let �̄giT
× YT represents the

complete observed example space based on giT , where
YT ⊂ R

cl is the label space of T , and ∀((X,C), y) ∈ �̄giT

×YT represents a observed example and a random variable
from the space, where y is the real label of the sample. Thus,
we can use ∀((X,C), y) : ((X,C), y) ∼ Dg to demon-
strate that �̄giT

× YT follows a unknown prior distribution.
Besides, ∀i ∈ Is, there is a component i example space
�i × YT , and ∀(Si , y) : (Si , y) ∼ DT

i .
Then, let {Ir, Irn, Iel se} denotes a partition of Is, which

∀i ∈ Ir must represents a objective component of real signal
and ∀i ∈ Irn must represents a objective component of real
noise. Now, it’s time to present the hypothesis.

Hypothesis 1 ∀T ,the i T named effective information for T
has a property that ∀ j ∈ Ib,

i T ∈ argmin
i∈Ir

min
h j∈Hj

∫

�̄gi ×YT

(
1
n

n∑
j=1

L(h([ fgi (X,C)]k), y))P((X,C), y) d(X,C) d y,

(4)

where �̄gi is a complete observed example space based
on ∀gi ∈ Gi , [ fgi (X,C)]k is the k-th block of fgi (X,C)

(from left to right, if not belonging to R
c× t̄ , the last will

not be involved), n is the number of the blocks belonging to
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fgi (X,C), L is the loss function,P((X,C), y) is the prob-
ability of sampling ((X,C), y) from Dg . Equation (4) is
essentially a variant of the formula used to calculate the gen-
eralization error of a classification model [38]. This hypothe-
sis means, among the classifiers with the best generalization
abilities that are found based on all EEG components belong-
ing to Ir , the best classifier based on the effective information
for T must be the best of the best, no matter which kind of
model Hj with definite hyper-parameters is chosen for clas-
sification.

To extend Hypothesis 1 to ∀i ∈ Is, there are still some
works requiring to be done. Another hypothesis is the next.

Hypothesis 2 There is an intuitive and important view that
∀i ∈ Iel se shall be composed by an i1 ∈ Ir and an i2 ∈ Irn
at least.

Keep going, ∀T ∈ �, ∀giT ∈ GiT , when the label of
�̄giT

× YT is controlled to a specific label, the com-
plete observed example space degenerates to the complete
observed example subspacewhich is denoted as �̄giT

× { yν}
(ν ∈{1, 2, . . . , cl}), and ∀ν :∀((X,C), yν)∈�̄giT

×{ yν}.
Similarly, use ((X,C), yν) ∼ Dg(| y = yν) to demonstrate
that �̄giT

× { yν} follows a unknown prior distribution, and

use ∀(Si , yν) : (Si , yν) ∼ DT
i (| y = yν) for the same rea-

son.
Finally, based on the two Hypotheses, a corollary is pro-

posed to show that, in some conditions, The restriction in
Hypothesis 1 that i T is the best only among Ir could be
removed.

Corollary 1 ∀T ∈ �, i ∈ Irn, α, β ∈ {1, 2, .., cl}, if the fol-
lowing condition holds:

DT
i (| y = yα) = DT

i (| y = yβ), (5)

then for ∀ j ∈ Ib, the following formula holds:

�
i T ⊂ argmin

f∈�

min
h j∈Hj

∫

�̄g×YT

(
1
n

n∑
j=1

L(h([ f (X,C)]k), y))P((X,C), y) d(X,C) d y,

(6)

where �̄g is the complete observed example space based
on the unique g corresponding to the f . Since the paper is
mainly focused on the application, here we just give the idea
of the proof of the corollary.

Idea of proof: First, it is obvious that the generalization
error of f ∈ �

i won’t be the minimum if i ∈ Irn, because,
for classifiers, there is no way to effectively distinguish

the classification of the data which has the same distribu-
tion between the different example subspaces. Second, if
i ∈ Iel se, assuming ∃i which lets f ∈ �

i reach the mini-
mum, then the fī ∈ �

ī (ī represents the component that satis-
fies f or ī, ∃i rn ∈ Irn,∀X ∈ � : fi (X)= fī (X)+ fi rn(X)

and ī belongs to Ir . Hypothesis 2 ensures the exist of ī) will
definitely reach thatminimumor a lower generalization error,
which means that i must reach the minimum together with
its ī . Thus, it is clear that the generalization error of fī won’t
less than that of fiT . Then finally, according to hypothesis 1,
the minimum will be obtained when f ∈ �

i T ( f = fiT ) if
i ∈ Ir .

3.2 EEG effective information estimation framework

From the above deduction, it is assumed that, ∀T , i T shall be
the component that could make every end-to-end classifier
trained to get the strongest generalization ability. Therefore,
for a specific task and a specific dataset, if finding a way to
seek out an EEG processing method that leads an end-to-
end classifier to get the optimal test result, we shall consider
that method as the optimal estimation of fiT , and the corre-
sponding processed dataset as the optimal estimation of the
effective information for that task. Based on the above, we
propose the effective information estimation framework .

Making some necessary preparations is still the first.

Definition 5 Define a mapping and matrix function

p(∈ P) : R
c×t → R

c×t, Z → Zp = p(Z) (7)

as a processing method of EEG data, where Zp is the image
of Z under p and P is the function space. obviously, dif-
ferent processing methods can be composed, and denoted as
p∗ = p1 ◦ p2.

Assuming an algorithm that can be applied to estimating
the restoration function for ∀i (∀ f ) is a ∈ Ai , there is a true
proposition denoted as ∀i ∈ Is : ((∃!�i ) ∧ (∃!�i ⊂ �)∧
(∃!Ai ⊂ A) ∧ (∃!Pi ⊂ P)), where A is the set composed of
all the algorithms which can be applied to processing EEG
signal, Ai is the set composed of all the algorithms which
can be applied to estimating fi , and Pi is the function set
corresponding to Ai . Next, for ∀i , let pin(; θn) ∈ Pi

n, n ∈ I ia
denote a processing method that can be represented by any
a ∈ Ai

n, where Ai
n is the set containing all the algorithms

of a certain algorithm category (like re-reference), I ia is
the index set that ∀n ∈ I ia : ((∃!Ai

n ⊂ Ai )∧ (∃!Pi
n ⊂ Pi )),

θn ∈ R
1×ωn is the parameter vector of the algorithms belong-

ing to Ai
n where ωn represent the number of the parameters,

Pi
n is the set of processing methods corresponding to Ai

n (per
a ∈ Ai

n has its paired θn).
For a EEG based research, if the following conditions

hold:
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1. The research contains a classification task T ∈ �

2. The research has a specific and finite observed sample
set �∗ ⊂ � and a label multiset YT∗ corresponding to
�∗ (∀ y ∈ YT∗ : y ∈ YT )which compose an example set
E∗ ⊂ � × YT . The data process of this research aims to
draw Si

T ∈ �i T∗ for ∀X ∈ �∗.
3. The number of the kinds of the selected algorithms (AiT

n ),
and the composition order of the processing methods cor-
responding to selected algorithms are clear, which means
the composite processing methods is denoted as

p(; θ p)= pi
T

nq (; θnq )◦ pi
T

nq−1
(; θnq−1)◦ . . . ◦ pi

T

n1 (; θn1),

(8)

where pi
T

nm (; θnm ) is a processing methods that is repre-
sented by an awith specific θnm uniquely, θ p = (θn1, θn2

, . . . , θnq ) ∈ R

1×
q∑

m=1
ωnm

where q is the total number of
the kinds of the selected algorithms.

4. The selected model category B j ⊂ B (and its paired
h j (; θ j )) for classification is clear, and denoted by B j∗
(h j∗(; θ j∗)).

5. Asmuch as possible, all kinds of noises (i ∈ Irn) have the
same distribution between the different example subsets.
If not, the distribution difference of any noise must not
cause the classifier trained by the dataset consisting of
that noise to perform better than the classifier trained
by the dataset consisting of Si

T
. An example subsets is

denoted by E∗
ν (ν ∈ {1, 2, . . . , cl} and (∀ν,∀(X1, y1),

(X2, y2) ∈ E∗
ν ) : y1 = y2).

6. The testset E∗
test and the trainset E∗

t r i an are split based
on SI strategy.

Then an objective function could be proposed to estimate
fiT :

(θ f̂iT
, θ∗

j∗) = argmin
(θ p,θ j∗ )

M (E∗
test, h j∗(; θ j∗), p(; θ p));

s.t.
∑

(X, y)∈E∗
t rain

(
1
n

n∑
j=1

L(h j∗([ p(X)]k), y)) < δ. (9)

Note that M is the metric function which is determined
by what metric we emphasize, and the selected metric must
relate to the loss (like accuracy, recall, etc). For example,
the function value will be calculated through the formula
in the above s.t. (but calculated on testset),if the selected
metric function is loss function. Besides, the constraint is
designed to simulate the training process. δ is the reflection
of the training termination condition. θ∗

j∗ denotes the optimal
parameter vector of h j∗(; θ j∗), and θ f̂iT

is the optimum of

p(; θ p). Let f̂i T represent the optimal estimation of fiT , then
through (9), it is obvious that f̂i T = p(; θ f̂iT

).

So, (9) is the objective function of EIEF, and its precon-
ditions is the preconditions of EIEF. It shall be especially
reminded that the first 5 conditions are obvious or based on
the statement of the last subsection, but only condition 6 is
not mentioned before and will be explained below.

In our paper, the solution method of EIEF (the solution
method of (9)) is the following: At a resolution ratio, we
perform grid processing on the domain of p(; θ p), and in
each grid, the problem degenerates into a classifier training
problem which could be solved by the standard model train-
ing process and provide a best metric function value. By the
comparison of the best metric function values among differ-
ent grids, finding the best grid corresponding to the f̂i T will
be easy. Note that, from Corollary 1we can demonstrate that
under ideal conditions, the optimal processing method found
through all DNNs will remain consistent. However, in real
experiments, achieving ideal conditions is often challenging
due to various constraints, which will be discussed in the
analysis of the experimental results.

Reasonably, the following part of this chapter is going
to describe the research preconditions demanded by EIEF,
like the dataset, the denoising approaches considered, the
approaches’ composition order to form the paradigms, and
the classification model.

3.3 Datasets

3.3.1 Dataset 1

The raw dataset [39] used in this experiment collected 14
paranoid SZ, 7 males and 7 females respectively, who were
collected from the Institute of Psychiatry and Neurology in
Warsaw, Poland. At the same time, healthy subjects of the
same age and sex ratiowere recruited from the same institute.
Each participant provided informed consent to participate in
the study upon receiving the study protocol. The participants
remained relaxedwith their eyes closedwhen collectingEEG
signals, and the sampling rate was 250Hz for 15 minutes.
Datawas collected via the typical International 10-20 System
to obtain 19 channels. The electrodes used were Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, O2.

3.3.2 Dataset 2

Todemonstrate that the proposedmethod has good generality
on both ample and small datasets, it is insufficient to validate
using only one dataset. So, the second dataset selected should
ideally encompass a larger number of individuals [40].
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The dataset comprising 45 SZ individuals and 39 healthy
individuals was collected and established by Moscow Uni-
versity [41]. The Mental Health Research Center (MHRC)
confirmed the diagnoses of all patients, which involved 45
boys with schizophrenic disorders (infant schizophrenia and
schizotypical and schizoaffective disorders (F20, F21, and
F25 according to the ICD-10)) with similar symptoms. Dur-
ing the examination at the MHRC, none of the enrolled
patients received chemotherapy. The patients’ ages varied
from 10 years and 8 months to 14 years. The control group
consisted of 39 healthy schoolboys aged from 11 years to
13 years and 9 months, with a mean age of 12 years and 3
months in both groups.

EEG recordings were obtained from 16 electrodes placed
according to the international 10-20 system at O1, O2, P3,
P4, Pz, T5, T6, C3, C4, Cz, T3, T4, F3, F4, F7, and F8, and
monopolarly referenced to coupled ear electrodes, inwakeful
relaxed adolescents with closed eyes. The sampling rate is
128 Hz, and the time of one trial is 1 minute.

3.4 Denoising paradigms

A total of 66 paradigms, categorized into five denoising
approach categories, which can be considered as 66 grids
to deal with the training problem, are implemented on the
raw data. This section will provide a detailed specification of
these paradigms.

The first category which is also the initial step in the
EEG processing pipeline is the bad channels process. In this
step, three approaches are available: bad channel retention,
bad channel interpolation, and bad channel removal. This
approach category is founded on a bad channel detection
algorithm, specifically, an iterative detection method pro-
posed by [13]. The removal involves replacing the columns
of observed samples identified as bad channels with zero vec-
tors, while the interpolation refers to spherical interpolation.
Note that the three choices reflect considerations regarding
the resolution ratio mentioned in the previous chapter.

The second procedure is the re-reference process, which
is still based on the methodology outlined in [13]. Two
options are presented here: performing robust re-referencing
or retaining the original reference. Note that performing
robust re-reference is available only when bad channel reten-
tion hasn’t been carried out, because the re-reference is
dependent on the preceding bad channel interpolation step.

Next, we move on to the third procedure–the filtering
process. By default, line noise removal (LNR) is carried
out using the EEGLAB plugin CleanLine in MATLAB [42,
Chapter 7.3.4]. This choice is made because CleanLine is
a robust plugin that minimizes the risk of losing genuine
EEG signals. Moreover, there are two options left in this

procedure-LNR+ 1 HZ high pass filter, and LNR+1-50 HZ
band pass filter. Those filters are FIR filters constructed by
EEGLAB tool-basic FIR filter, with the default paraments
inputted (but unchecked removal bad channels).

The following step is the bad epoch process. Depending
on the choice made, certain blocks of observed samples may
be replaced by zero blocks (if bad epoch removal is selected),
or these blockswill remain unchanged (if bad epoch retention
is selected). The bad epoch (block) detection is implemented
using the EEGLAB plugin-clean raw data, which is based on
Artifact Subspace Reconstruction [43]. The plugin is used
with its default settings.

In the final category, we address the decomposition pro-
cess, presenting three distinct options. If ICAwith artifactual
components removal is selected, fast ICA will be performed
on the dataset which has previously undergone process-
ing through the four procedures [44, 45]. Then, with the
assistance of the EEGLAB plugin-classify components, the
components identified as non-brain will be systematically
removed. Then, if MSPCA with Kaiser-rule-based principal
components removal (level 5, wavelet “sym4”) is selected,
the dataset will undergo Discrete Wavelet Transform (DWT)
and principal components analysis(PCA) for decomposition,
and the principal components with eigenvalues lower than
the average eigenvalue will be removed [22]. Note that in
order to reduce the computational complexity, this option is
only available when the reference retention and the bad chan-
nel retention are selected in advance. Finally, if retention is
selected, no data will be changed in this procedure.

After the specification, let’s provide a straightforward
rationale for the selection and arrangement of the prepro-
cessing steps.

Generally, the preprocess of raw EEG can be broken
down into several essential procedures, including filtering,
re-referencing, resampling, processing bad channels, remov-
ing bad data epochs, performing ICA with bad artifactual
components removal, segmentation, baseline correction, etc.
The order of these procedures can vary depending on the
specific analysis.

Because used to analyze the event related potential(ERP)
especially, the baseline correction is not involved in our study.
Meanwhile, our segmentation is unrelated to ERPs; instead,
it serves as a means to prepare EEG signals for input into the
neural network. Besides, to avoid sample size reduction, the
resampling is not concerned.

Concerning the remaining five procedures, our choices are
well-grounded and have been recommended or introduced by
theEEGLABdocumentation.Our re-reference and bad chan-
nel process are both cited from [13] which emphasizes that
their pipeline represents an early-stage operation, and where
the bad channel interpolation is demanded to be performed
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initially to ensure the robustness of the average re-reference.
Then the filter we implement is a standard FIR filter (the
LNR has been introduced clearly).Here, the high-pass filter
is configured with a cut-off frequency of 1Hz to effectively
remove linear trends, while the 50Hz cut-off frequency is set
to eliminate high-frequency noise, such as Muscle Artifacts,
while retaining the primary EEG frequency bands (α, β, θ ,
and δ waves). The choice to place the filtering operation third
in the sequence is intended to reduce computational demands
for subsequent steps. Next, it is desirable to perform the bad
epoch process if there are considerable data that suffer from
high amplitude noises, and theASR is used since it is amature
plugin. At last, just costing a little calculation power, the fast
ICA is a quite common and outstanding method to address
various types of EEG noise. Regarding MSPCA, compared
to fast ICA, it offers faster signal processing, and denoising
based on MSPCA does not require the signal source clas-
sification performed by the neural network. However, this
method’s operational process may be less straightforward
compared to the method based on ICA. The two methods’
generality makes us place them as the final step so that we
can leave the special noises to the corresponding professional
tools.

3.5 Model inside EIEF–1D-CNN

Although Corollary 1 indicates that every end-to-end classi-
fier is qualified to seek out the optimal denoising paradigm.
There are still many classifiers that aren’t reliable. Some
classifiers may lack sensitivity to noise variations, making
the task of distinguishing the optimal paradigm challeng-
ing. Others might require excessive training time, potentially
compromising the practicality of the EIEF. To avoid these
obstructions, The 1D-CNN proposed by [18] is selected to be
the classifier inside EIEF. This selection is based on several

key advantages, including the network’s compact size and
minimal trainable parameters. These characteristics endow
the 1D-CNNwith heightened sensitivity while keeping train-
ing times relatively short, ensuring both the reliability and
practicality of the EIEF. Table 2 details the layers of the Net.
For dataset 1, single trials recorded EEG signals for 15 min-
utes at a rate of 250 Hz, while for dataset 2, single trials
recorded EEG signals for 1 minute at a rate of 128 Hz. To
balance the sample sizes, all 67 datasets corresponding to
dataset 1 will be divided into irrelevant epochs with the size
of 19 × 6250 each. Conversely, datasets corresponding to
dataset 2 will be divided into irrelevant epochs with the size
of 19 × 512 each. Since dataset 2 has three fewer channels
than dataset 1, the data of 3 × 512 in each dataset 2 epoch
are padded with zeros. Consequently, the processed datasets
for dataset 1 roughly comprise 1131 samples each, while
those for dataset 2 roughly comprise 1260 samples each (the
quantity may fluctuate due to the bad epochs removal). This
approach ensures that dataset 2’s segmented samples are not
disproportionately fewer.

3.6 Model for diagnosis system–3D-CNN

The properties of the 1D-CNNmake it reasonable that being
selected by EIEF, but will cause low stability and general-
ization. So when pursuing the first objective outlined in the
introduction–constructing an automaticSZdiagnosis system,
if intending to apply the framework’s result to the construc-
tion, we shall select a DNN with a bigger scale to make the
system perform better. Meanwhile, Corollary 1 tells us that
the optimal dataset determined using the 1D-CNN also holds
true for other end-to-end classifiers.

Here, that end-to-end classifier is the 3D-CNN proposed
by [19], which operates on three-dimensional input data.
The input data of that is in the form of the combination of

Table 2 Parameter details of
each layer of 1D-CNN used

Layers Type of Layer (DP) Activation Output Size(Dataset 1/2) Kernel Size Stride

1 Convolution Relu 5 @ 6248 / 5 @ 510 3 1

2 Max pooling − 5 @ 3124 / 5 @ 255 2 2

3 Convolution(0.5) Relu 5 @ 3122 / 5 @ 253 3 1

4 Max pooling − 5 @ 1561 / 5 @ 126 2 2

5 Convolution(0.5) Relu 5 @ 1559 / 5 @ 124 3 1

6 Average pooling − 5 @ 779 / 5 @ 62 2 2

7 Convolution Relu 5 @ 777 / 5 @ 60 3 1

8 Average pooling − 5 @ 388 / 5 @ 30 2 2

9 Convolution Relu 5 @ 386 / 5 @ 28 3 1

10 Global Average pooling − 5 / 5 − −
11 Fully connected Relu 2 / 2 − −
12 Softmax − 2 / 2 − −
DP Dropout rate if exists.
The numbers before all @ are channel numbers for convolution layers
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Table 3 Parameter details of
each layer of 3D-CNN used

Layers Type of Layer (DP) Activation Output Size Kernel Size Stride

1 3D convolution Relu 20@6 × 4 × 503 2 × 2 × 10 1 × 1 × 1

2 3D convolution(0.5) Relu 30@3 × 2 × 494 2 × 2 × 10 2 × 2 × 1

3 3D convolution Relu 40@1 × 494 3 × 2 × 1 1 × 1 × 1

4 2D convolution(0.5) Relu 50@1 × 485 1 × 10 1 × 1

5 2D convolution(0.5) Relu 60@1 × 475 1 × 10 1 × 1

6 Max pooling − 1@60 × 238 1 × 2 1 × 2

7 2D convolution Relu 2@1 × 238 60 × 1 1 × 1

8 Average pooling − 2 1 × 238 1 × 238

9 Softmax − 2 − −
DP Dropout rate if exists.
Each convolution layer in the Net is followed by a batch normalization layer which isn’t mentioned in the
table.
The numbers before all @ are channel numbers for convolution layers

two-dimensional spatial topological structure and temporal
dimension. In the initial few layers, three-dimensional con-
volution is used to simultaneously extract Spatio-temporal
features. Subsequent layers involve spatial fusion to amalga-
mate high-level spatial features, with only temporal features
being output. The following convolutional layers primarily
focus on central time feature extraction, followedby intensive
prediction embedding. Finally, a softmax layer is employed
to produce classification results.

Table 3 details the layers of the Net. Notably, slight adjust-
ments to the Net structure is necessary due to differences in
channel numbers between our dataset and the dataset ref-
erenced in [19], as well as disparities in the classification
tasks. The changed input format of the Net is illustrated in
Fig. 3. Besides, we alter the channel numbers of the Net
to (20,30,40,50,60), as a hyper-parameters adjustment, and
keep the time segmentation unchanged, which indicates the
data in the 2 (origin datasets) × 67 datasets will be seg-
mented into irrelevant epochs with the size of 7 × 5 × 512
before inputting. Note that the raw EEG of any subject corre-
sponds to a X , and any data segment after the segmentation
corresponds to a Z̄. Besides, especially for dataset 2, the
non-existent channels in Fig. 3 will be padded with zeros.

Fig. 3 Input Format of 3D-CNN

4 Experiment and verification

4.1 Details of experiments and hyper-parameters
adjustment

To begin this chapter, it is essential to provide clarity on the
implementation procedures and the specifics of the upcoming
experiments.

First, a unit experiment is defined as follows: Based on
K-fold Cross-validation, a series of Nets are trained by K
trainsets from a dataset processed by a particular paradigm,
then tested by K testsets from the same dataset. If a unit
experiment is based on a subject-independent dataset split,
it’s referred to as a SI unit experiment (SIUE) otherwise
a subject-dependent unit experiment (SDUE). For datasets
originating from dataset 1 which comprises 14 HCs and 14
SZs, each SIUE implements 14-fold cross-validation, among
which the k-th fold takes the samples from the k-th healthy
control and the k-th schizophrenia as the testset, and the
samples from the rest of the subjects as the trainset. For
datasets originating from dataset 2, each SIUE implements
10-fold cross-validation, and the split groups are described
by Table 4. Or else in one SDUE, nomatter which dataset it is
based on, 10-fold random Cross-validation will be adopted.

Next, it is crucial to select the hyperparameters for the
CNN structures and training strategies for the two CNNs.
Notably, the selection of hyper parameters in this paper dif-
fers from usual papers where the goal is to achieve the best
classification performance. The purpose of the selection is
to highlight the influences of denoising approaches on the
classification results. So that if the hyper parameters lead
to low fitting capability, low stabilities in each training or
a slow learning speed, on any of the datasets, it will signifi-
cantly constrain the aforementioned influences, indicating an
incorrect selection. There are three hyper parameters requir-
ing adjusting in the adjustment- the CNN’s channel number,
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Table 4 Split groups for
datasets originating from dataset
2

Group SZs Included HCs Included

1 022W, 32W, 33W, 088W, 103W S10W, S12W, S18W, S20W

2 113W, 155W, 156W, 192W, 219W S26W, S27W, S31W, S42W

3 221W, 249W, 276W, 307W, 312W S43W, S47W, S50W, S53W

4 314W, 342MW, 382W, 387-2W, 387-3W S55W, S59W, S60W, S72W

5 401W, 423W, 429W, 454-1W, 485W S78W, S85W, S94W, S152W

6 508W, 509W, 510-1W, 515W S153W, S154W, S155W, S157W

7 517W, 540W, 548W, 573W S158W, S163W, S164W, S165W

8 575W, 585W, 576W, 642W S167W, S169W, S170W, S173W

9 683W, 719W, R229W, R416W S174W, S176W, S177W, S178W

10 S083W, S084-1W, S351W, S435W S179W, S182W, S196W

the learning rate, and the learning rate scheduler (others are
specified directly). We only roughly describe the strategy
for the adjustment which isn’t the key point of the paper,
that is: In order to carry on a grid search, some alternative
values of the three parameters were listed first. Then, utiliz-
ing these values, a series of SIUEs are executed. Following
an assessment of the CNNs trained in the SIUEs based on
the aforementioned three aspects, the optimal values for the
parameters can be determined.

Here the result of adjustment will be listed. The hyper
parameters for the 1D-CNN are the same among all unit
experiments. The LR is 0.001, the batch size 128, the max
training epoch 150, the loss cross-entropy, adam optimizer
is applied, the LR scheduler is ReduceLROnPlateau for all
epochs, plus the channel numbers of the Net stay original.

The hyper parameters for the 3D-CNN are also the same,
and are listed as follows: the LR is 0.006, the batch size 128,
the max training epoch 150, the loss cross-entropy, adam
optimizer is applied, the LR scheduler is warm-up in the first
20 epochs, and ReduceLROnPlateau in the rest epochs, plus
the channel numbers of the Net is (20,30,40,50,60).

4.2 Platforms and softwares

The following Table 5 lists all the software packages used,
along with their versions and purposes (excluding common
ones like NumPy). Note that fast ICA can be directly exe-
cuted by EEGLAB, and MSPCA with signal denoising can
be executed by MATLAB function “wmspca”.

About the hardwares, all codes written with MATLAB
are run on the PC with i7-6800k (3.4GHz), and 16GB
(3000MHz) Ram. And all codes written with Python are run
on the serverwith E5-2698 (2.2GHz), 503GBRam, andTesla
V100-SXM2-32GB × 8.

4.3 Implementation of EIEF

This section focus on SIUEs taking the 1D-CNN as the
classifier. To ensure consistency and minimize unforeseen
variations, each dataset is subjected to 8 parallel SIUEs,
resulting in a total of 2×67×8 SIUEs within this section.

To effectively visualize the impact of different denoising
paradigms, it is necessary to represent the 66 paradigms with

Table 5 Software list Environment (Version) Packages and Plugins
(Version)

Purpose

Python (3.7.9) PyTorch (1.13.1) Training and testing of the net-
works

Neurokit2 (0.2.1) Feature extraction

Scipy (1.12.0) T-test

Pandas(1.4.0) Data packing

MATLAB (2020a) cleanline-master (v2.00) Line noise removal

andEEGLAB (v2021.1) clean-rawdata (v2.4) Bad epoch removal

PrepPipeline (v0.56.0) Bad channel removal, interpola-
tion. Robust re-reference

ICLabel (v1.3) ICA component classification
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unique integer codes ranging from 1 to 66. The rules for
encoding are as follows. The code 1 signifies the paradigm
that sequentially employs robust re-referencing, bad chan-
nels removal, line noise removal, bad epochs retention, and
decomposition retention, and then per time the code changes
upward by 1, an approach belonging to a certain denois-
ing approach categories will change. The change priority of
approach categories is ranked as the filter first, the bad epoch
second, and then the decomposition, the re-reference, the bad
channel. The change direction of the bad channel is from
removal to interpolation to retention. The re-reference’s is
from using the robust reference to retention. The filter’s is
from line noise removal (LNR) to LNR+1 HZ high pass
filter to LNR+1-50 HZ band pass filter. The bad epoch’s
and the decomposition’s shift from retention to ICA to
MSPCA. Following this encoding scheme, the impacts of dif-
ferent paradigms are visually represented using line graphs.
Unless otherwise specified, in the following sections, all
mentioned metrics for evaluating each paradigm are calcu-
lated on the respective testsets and averaged across relevant
parallel SIUEs.

As illustrated in Fig. 4, the influence of denoising
approaches on diagnostic mean-accuracies (mean accuracy
across parallel SIUEs, cross-validation and across 101-150
epochs.) is shown by the two linesmarked “Para”. For dataset
1, the maximum accuracy difference of paradigms is up to
24.83% and the STDof 66 accuracies is 5.99%. For dataset 2,
the two metrics are 13.63% and 3.55%. This clearly demon-
strates that denoising approaches exert a substantial influence
on classification outcomes, affirming the experimental feasi-
bility of EIEF.

Compared with the processed datasets, the two baselines
(marked “origin”) shows a relatively high level of perfor-
mance. Only 17 paradigms (dataset 1) and 18 paradigms
(dataset 2) yield higher accuracies than the baselines, with
the highest achieving 6.39% (dataset 1) and 3.95% (dataset
2) increases, while the lowest record an 18.44% (dataset 1)
and 9.67% (dataset 2) decreases. Admittedly, such a result
has been influenced by the selection of the paradigm pool.
Yet, suppose the selection has a generality to some extent. In
that case, we can infer that an inadequate denoising paradigm
will sorely harm the EEG effective information of SZ clas-
sification, which easily happens. Besides, the harm exerts a
more pronounced negative influence on the diagnosis per-
formance than the positive influence caused by an excellent
paradigm.

Beside mean-accuracy, the influences of denoising appro-
aches on classification’s mean-loss, mean-recall, mean-
precision, and mean-specificity are illustrated in Fig. 5.
Similar inferences like the above can be delivered if you
check the 8 figures thoroughly. Except for the mean-recalls

(a) Dataset 1

(b) Dataset 2.

Fig. 4 Max accuracy versus denoising paradigm. Para LNR The result
of the SIUE with the line noise removal performed only; origin The
result of the SIUE without denoising

of dataset 1 and the mean-specificities of dataset 2, the harms
from poor paradigms aremore significant than the gains from
excellent paradigms. Utilizing the Pearson correlation coef-
ficient (CC) calculation between the two mean-loss lines and
any of the other metric lines separately, we can assert that
the paradigms’ influences on these five metrics are funda-
mentally similar, as evidenced by CC values of -0.89, -0.87,
-0.40, and -0.85 (dataset 1) and of -0.73, -0.86, -0.65, -0.29
(dataset 2), respectively.

After the discussion, let’s return to the core of EIEF’s
functionality. According to (9), the optimal estimation is up
to the selection of metric function. Although five function
candidates are plausible, loss is not the most intuitive, and
recall, precision, and specificity are not unequivocally guided
by loss. Therefore, we have opted for accuracy as the metric
function. Consequently, for dataset 1 the paradigm that yields
the highest accuracy is considered the optimal estimation for
the restoration function of effective information, denoted as
paradigm 65. And for dataset 1, the optimal estimation is
paradigm 13. The following Table 6 details the denoising
approaches inside the two optimal paradigms.
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Fig. 5 Mean-loss versus
denoising paradigm 1;
mean-recall versus denoising
paradigm 2; mean-precision
versus denoising paradigm 3;
mean-specificity versus
denoising paradigm 4; (The
meaning of the legend is the
same as that in Fig. 4)

4.4 Construction of SZ diagnosis system

This section primarily focuses on the development of an SZ
diagnosis system characterized by high stability and gener-
alization. The key objectives here involve inputting the two
datasets processed by the two optimal paradigms into the
3D-CNN for training, resulting in the establishment of an
SZ Diagnosis system based on these training iterations. Fur-
thermore, a comparative analysis is conducted between this
system and the system trained using the original datasets.
Additionally, our results on two datasets are compared with
state-of-the-art (SOTA) results obtained by other methods

that also utilized the same raw datasets. Both SIUEs and
SDUEs will be implemented.

Table 7 lists the best performances obtained through mul-
tiple training runs of the network on two original datasets
and their respective optimal datasets, categorized into SIUE
and SDUE. First, let us delineate the two primary applica-
tions of the diagnostic system. Suppose clinicians aim to
classify individuals visiting the hospital for the first time,
who are potential patients. In this scenario, they should
input pre-collected EEG data from both patients and healthy
subjects into the optimal paradigm determined by EIEF.
Subsequently, this processed and segmented data should be

Table 6 Approach details of the
optimal paradigms

Dataset Paradigm Code Bad channels Re-reference Filter Bad epoch Decomposition

1 65 Retention Retention LNR+ 1 removal MSPCA

2 13 removal Retention LNR Retention Retention
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Table 7 Performance of four
classifiers

Dataset Training path Accuracy (%) Recall (%) Precision (%) Specificity (%)

1 Or + SIUE 88.91 95.49 88.39 77.65

Op + SIUE 89.85 92.29 92.32 84.26

Or + SDUE 97.96 98.86 97.44 96.86

Op + SDUE 99.94 99.92 99.97 99.97

2 Or + SIUE 82.33 70.03 94.22 96.17

Op + SIUE 87.40 83.63 91.41 91.67

Or + SDUE 92.86 87.30 99.57 99.45

Op + SDUE 98.02 97.30 98.98 98.79

Or The classifier is trained on the original dataset. Op The classifier is trained on the optimal dataset

employed to pre-train a 3D-CNN. After collecting EEG data
from a new potential patient and applying the same denois-
ing paradigm, the pre-trained CNN can provide clinicians
with an estimate of the likelihood that the individual has
SZ, as long as they divide the segment number with posi-
tive outputs by the total number. According to the 2 lines
of “Op + SIUE”, the diagnosis system based on dataset 1
recognizes an SZ patient with the possibility of 92.29%, and
a healthy man with the possibility of 86.37%. And for the
system based on dataset 2, the 2 indicators are 83.63% and
91.67%.Otherwise, Suppose clinicians expect tomonitor one
patient’s or potential patient’s progress, they simply need to
ensure that the pre-collected EEG data of that person exists
in the dataset inputted into the EIEF. And the subsequent
procedures remain consistent with the prior usage. With the
99.94% accuracy on dataset 1 and the 98.02% accuracy on
dataset 2, patient’s progress could be traced precisely. Note
that since the dataset accumulates EEG data from more sub-
jects over time, all subjects’ EEG data must be collected
under the same conditions, which avoids the situation where
the optimal paradigmmay not be suitable for certain subjects.

After that, let’s focus on the performance changes before
and after implementing the optimal paradigm. Whether
trained in SIUEs or SDUEs, the classifiers trained on the
optimal datasets both achieve better accuracies. Let’s focus
on dataset 1 first. In the SIUEs, it can be observed that
the optimal denoising paradigm led to an overall accuracy
improvement of 0.94%. Additionally, precision and speci-
ficity increase by 3.93% and 6.61%, respectively, while
recall decrease by 3.20%. This indicates that the system,
while slightly sacrificing the possibility of correctly identify-
ing patients, better reduces the likelihood of misclassifying
healthy individuals as patients. In the SDUEs, the diagnostic
system’s capability is significantly enhanced to a level that is
almost impossible to surpass. Now turning to Dataset 2, it is
noteworthy that the gains achieved by EIEF on Dataset 2 are
more remarkable, as reflected in the 5.07% (SI) and 5.16%
(SD) accuracy improvements. Regardless of the Split way,
the gains obtained by the system are mainly manifested in a

significant increase in correctly identifying patients (recall),
albeit at the cost of slightly increasing the probability of mis-
classifying healthy individuals. These findings collectively
underscore the positive impact of EIEF on classifier perfor-
mance.

Last, the comparison between our work and the other pop-
ular methods comes. The methods and results are in Tables 8
and 9. In the comparison with works conducted on dataset
1, our results are competitive in all SD researches. In SI
researches, since the experimental results of Lillo et al. were
obtained by excluding the subject HC-12, our results still
stand out compared to all other works. In the comparison to
works conducted on dataset 2, our results can be considered
excellent in all SD researches, as we are only slightly behind
the best-performing research by 1%. In SI researches, the
work of Shen et al. stands out as exceptionally outstanding,
but our results are not too far behind.

4.5 Verification for EIEFmechanism

Two distinct approaches will be undertaken to validate the
mechanismofEIEF.They are both basedon replacing the 1D-
CNN with 3D-CNN to implement another grid search. The
first approach involves SI dataset splitting before training,
confirming that the optimal denoising paradigms identi-
fied through different DNNs exhibit similarity. The second
approach entails SD splitting, aimed at rationalizing the con-
dition associated with SI splitting within EIEF (Condition 6).

To avoid accidents in the same light, for one dataset and
one split method, 4 relevant unit experiments need to be
implemented, indicating there are 67 × 4 × 2 SIUEs and 67
× 4 × 2 SDUEs involved in this section. Besides, note that
the 5 following metrics are both measured on testsets, and
averaged across parallel unit experiments, cross-validation
and epochs 101-150, akin to Section 4.3.

As illustrated in Fig. 6, the influence of denoising
approaches on diagnostic performances is shown by the
lines marked “SI”. From them, the denoising’s tremendous
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Table 8 Comparison with S.O.T.A works used the same dataset 1

Split
way

Related work Analysis technique Classification Result (%)

SD Oh et al. [18] Multi-channel EEG epochs are
applied as input

1D-CNN •ACC: 98.07 •REC: 97.32
•SPE: 98.17

Jahmunah et al.
[27]

•2nd order Butterworth filter
•157 nonlinear features

SVM-RBF •ACC: 92.91 •REC: 93.45
• SPE: 92.25

Aslan et al. [49] 2D- Spectrograms 2D-CNN •ACC: 97.00 •REC: 96.22
•SPE: 98.31

Krishnan et al.
[31]

•Multivariate Empirical Mode Decom-
position (MEMD)

SVM •ACC: 93.00 •F-1: 93.00

•Recursive Feature Elimination

Prabhakar et al.
[28]

Black Hole (BH) optimization SVM-RBF •ACC: 92.17

Baygin [32] •Tunable Q-Factor Wavelet Transform Ensemble Subspace kNN •ACC: 99.12
•25 Statistical Moments

•ReliefF
Aslan et al. [50] 2D-Scalo-grams by Continuous Wavelet

Transform(CWT)
CNN-VGG16 •ACC: 99.50 •REC: 99.79

•SPE: 99.79
Ilakiyaselvan
et al. [51]

Reconstructed phase space images CNN + Voting Class-
fier +Inception-v4

•ACC: 99.37 •REC: 99.68
•SPE: 99.06 •F-1: 99.37
•AUC: 99.92

Bagherzadeh
et al. [52]

2D transfer entropy connectivity matrix
images from EEG

pretrained CNN-LSTM •ACC: 99.90 •REC: 99.54
•SPE: 100.00

Sharma et al. [34] 1-D EEG time series data with ICA
denoising

SzHNN hybrid CNN + LSTM •ACC: 99.90 •REC: 100.00
•SPE: 99.80 •PRE: 99.80

Zülfikar et al. [37] •Decomposition of EEG signals using
the EMD method

CNN-VGG16 •ACC: 98.2 •F-1: 98.00

•HS images for the first four IMF com-
ponents

•AUC: 98.80

Khare et al. [36] Margenau-Hill time-frequency distribu-
tion

CNN-SchizoNET •ACC: 99.95 •REC: 99.96
•SPE: 99.96 •PRE: 99.96
•F-1: 99.96 •Kappa: 99.90

Our work EIEF for denoising paradigm selection 3D-CNN •ACC: 99.94 •REC: 99.92
•SPE: 99.97 •PRE: 99.97

SI Buettner et al. [47] 99-point spectrum from 99 frequency
bands

Random Forest •ACC: 71.43 •REC: 100.00
•SPE: 60.00 •PRE: 50.00

Oh et al. [18] Multi-channel EEG epochs are applied as
input

1D-CNN •ACC: 81.26 •REC: 75.42
•SPE: 87.59

Wu et al. [53] 1-D EEG time series data Recurrent AutoEncoder •ACC: 81.81 •REC: 80.30
•SPE: 83.37

Lillo et al. [54] •Processing of brain micro-states 1D-CNN •ACC: 93 •REC: 86
•Random walk built •SPE: 100 •PRE: 100

Sharma et al. [34] 1-D EEG time series data with ICA
denoising

SzHNN hybrid CNN + LSTM •ACC: 90.11 •REC: 88.46
•SPE: 91.66 •PRE: 92.03

Our work EIEF for denoising paradigm selection 3D-CNN •ACC: 89.85 •REC: 92.29
•SPE: 92.32 •PRE: 84.26

ACC: Accuracy. REC: Recall. SPE: Specificity. PRE: Precision. F-1: F1-score. AUC: Area under Curve
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Table 9 Comparison with S.O.T.A works used the same dataset 2

Split way Related work Analysis technique Classification Result (%)

SD Naira et al. [55] Convert EEG intoCorrelationCoefficient
heat map

2D-CNN •ACC: 90 •REC: 90
•SPE: 90

Phang et al. [56] •vector-autoregressionbased directed
connectivity

DNN-DBN •ACC: 95

•graph-theoretical complex network
(CN) measures

Aslan et al. [49] 2D- Spectrograms 2D-CNN •ACC: 95.00 •REC: 95.35
•SPE: 94.72

Calhas et al. [57] FFT and STFT Siamese neural network(SNN) •ACC: 95.00 •REC: 98.00
•SPE: 92.00

Supakar et al. [58] 1-D EEG time series data RNN- LSTM •ACC: 98.00 •REC: 98.00
•SPE: 98.00

Sharma et al. [34] 1-D EEG time series data with ICA
denoising

SzHNN hybrid CNN + LSTM •ACC: 99.50 •REC: 99.40
•SPE: 99.59 •PRE: 99.60

Aslan et al. [50] 2D-Scalo-grams by Continuous Wavelet
Transform(CWT)

CNN-VGG16 •ACC: 98.00 •REC: 98.00
•SPE: 98.00

Zülfikar et al. [37] •Decomposition of EEG signals using
the EMD method

CNN-VGG16 •ACC: 96.02 •F-1: 96.00

•HS images for the first four IMF com-
ponents

•AUC: 96.00

Khare et al. [36] Margenau-Hill time-frequency distribu-
tion

CNN-SchizoNET •ACC: 98.14 •REC: 97.93
•SPE: 98.39 •PRE: 98.61
•F-1: 98.27

Our work EIEF for denoising paradigm selection 3D-CNN •ACC: 98.02 •REC: 97.30
•SPE: 98.98 •PRE: 98.79

SI Phang et al. [59] connectivity feature extraction for classi-
fication

Multi-domain Connectome CNN •ACC: 91.69 •REC: 97.78
•SPE: 92.5

Sharma et al. [34] 1-D EEG time series data with ICA
denoising

SzHNN hybrid CNN + LSTM •ACC: 89.60 •REC: 88.43
•SPE: 91.27 •PRE: 91.80

Shen et al. [60] •continuous wavelet transform Customized 3D-CNN •ACC: 97.74 •REC: 96.91
•cross mutual information •SPE: 98.53

Shen et al. [35] •multivariate auto-regressive mode Customized 3D-CNN •ACC: 98.47 •REC: 99.26
•coherence functional brain network •SPE: 97.23

Our work EIEF for denoising paradigm selection 3D-CNN •ACC: 87.40 •REC: 83.63
•SPE: 91.41 •PRE: 91.67

ACC: Accuracy. REC: Recall. SPE: Specificity. PRE: Precision. F-1: F1-score. AUC: Area under Curve

influence still holds. As a matter of fact, the optimums
searched by the two Nets are actually different, because they
are just the optimal estimations of the effective information
rather than the information itself. Whereupon, the differ-
ence is caused by the classifiers’ difference and shouldn’t
be blamed on hypothesis 1. Analyzing Table 10, we observe
that both 1D-CNN and 3D-CNN, when subjected to grid
search, yielded optimal denoising paradigms that improved
classifier performance. Except for Dataset 2, where the opti-
mal paradigm obtained using 3D-CNN did not enhance the

performance of the 1D-CNN classifier, but it did not lead to
performance degradation. This suggests that EIEF demon-
strates good robustness, consistently identifying denoising
paradigms that enhance the proportion of effective informa-
tion, and this enhancement is not dependent on changes in
the network used by the diagnostic system.

As for the second verification way, a statistical analysis of
the disparity between the “SD” and “SI” lines yieldsTable 11,
which demonstrates that the SD partitioning method results
in higher average performance with minimal performance
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(a) Dataset 1

(b) Dataset 2.

Fig. 6 Mean-accuracy versus denoising paradigm: 1; Mean-loss ver-
sus denoising paradigm: 2; mean-recall versus denoising paradigm: 3;
mean-precision versus denoising paradigm: 4; mean-specificity versus

denoising paradigm: 5 SI performance change line based on SIUEs;
SD performance change line based on SDUEs; The rest legends are the
same as those in Fig. 4

fluctuations. All the indicators push us conclude that one
advanced CNN (like our 3D-CNN) can remember every sub-
ject’s EEG pattern and reach a high test performance in the
SD evaluation no matter what denoising approach is applied,
and such a characteristic runs counter to the core objective
of EIEF, which is to identify the optimal metric value. In
that case, the dataset partitioning approach required for EIEF
should ideally be the SI split.

So far, the grid searches based on 1D-CNN with SI split,
3D-CNN with SD, and 3D-CNN with SI have all been com-
pleted. Next, a more detailed robustness analysis will be

conducted. We will utilize T-tests to analyze the impact
of changes in approach selection within each denoising
approach category on network performance, for the three grid
searches. Additionally, we will compare the analysis results
between 1D-CNN and 3D-CNN, as well as between 3D-
CNN with SI and SD, to assess whether changes in network
and data split way alter the impact of denoising approaches
on performance. For the two SI-based grid searches, the
data split is determined and non-random, thus paired T-
tests are used. For the SD-based grid search, since the data
are randomly shuffled and grouped, two-sample T-tests are
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Table 10 Comparison of the effects of optimal paradigms generated from different networks on the performances of the classifiers

Dataset Net for Diagnosis Net inside EIEF Code of Optimum ACC (%) REC (%) SPE (%) PRE (%)

Dataset 1 1D-CNN 1D-CNN 65 72.34 85.31 54.93 70.86

3D-CNN 55 69.09 80.54 54.48 73.80

− Raw Data 65.95 81.00 45.44 67.70

3D-CNN 1D-CNN 65 81.09 90.09 68.54 77.88

3D-CNN 55 81.47 79.19 81.88 84.22

− Raw Data 80.52 90.69 67.76 80.43

Dataset 2 1D-CNN 1D-CNN 13 72.75 86.32 57.23 73.99

3D-CNN 57 68.77 86.42 48.00 69.43

− Raw Data 68.80 89.39 44.79 70.87

3D-CNN 1D-CNN 13 76.53 65.09 90.02 89.47

3D-CNN 57 83.46 79.31 88.03 88.50

− Raw Data 75.39 57.14 96.32 92.95

ACC: Accuracy. REC: Recall. SPE: Specificity. PRE: Precision.
All included indicators represent averages rather than the optimal values

employed. In tests, one metric value (such as the accuracy
corresponding to paradigm 43) is averaged across multiple
parallel unit experiments.

Looking at Table 12. For Dataset 1, there are 9 pairs of
means (20.45%) showing differences in sign. Considering
only the 13 pairs of means with p-values below 5% for both
networks, only 1 pair of means (7%) exhibits differences in
sign. When considering only accuracies, no pairs of means
exhibit differences in sign. For Dataset 2, there are 16 pairs
of means (36.36%) showing differences in sign. Consider-
ing p-values, 5 out of 15 pairs (33.33%) exhibit differences,
while considering only accuracies, 3 out of 11 pairs (27.27%)
exhibit differences. These data suggest that out of the 44 total
effects resulting from 11 types of change of the denoising

approaches, the direction of most effects remains consistent
regardless of the internal network used by EIEF. Turning to
Table 13. For dataset 1, there are 15 pairs of mean values
(34%) that differ in sign. When considering the p-values, 4
out of 21 pairs (19.04%) show differences. Looking solely at
accuracies, there are 3 out of 11 pairs (27.27%) with differ-
ences. For dataset 2, 5 pairs of mean values (11.36%) differ
in sign. When considering the p-values, 2 out of 23 pairs
of mean values (8.70%) show differences. Considering only
accuracies, 2 out of 11 pairs of mean values (18.18%) exhibit
differences. The analysis suggests that the direction of most
effects does not change with the variation in data split strat-
egy during network training.

Table 11 Statistical indicators
of performance metrics

Dataset Statistical indicator Split way Acc. (%) Rec. (%) Pre. (%) Spe. (%) Loss

Dataset 1 MMD SI 37.29 59.87 46.57 54.93 11.81

SD 17.74 22.15 21.59 34.83 1.51

STD SI 10.49 15.89 12.39 13.01 2.95

SD 3.49 5.70 3.35 5.03 0.24

Mean SI 64.86 65.48 67.66 61.55 6.06

SD 95.43 94.82 97.11 96.17 0.24

Dataset 2 MMD SI 25.33 49.58 28.13 49.87 2.94

SD 18.82 29.94 27.93 46.42 1.85

STD SI 6.78 12.19 8.73 12.84 0.66

SD 3.70 7.91 4.85 7.60 0.28

Mean SI 73.15 69.17 81.21 77.78 2.06

SD 91.67 88.71 96.39 95.06 0.40

Each indicator is calculated across the 66 metric values corresponding to the 66 paradigms.
MMD Maximum minimum difference

123



Better electrobiological markers and a improved automated diagnostic classifier... 9125

Table 12 Filter’s, decomposition’s and bad epochs’ influences via T-test

Dataset Factor Value1 Value2 Accuracy Precision Recall Specificity
1D(%)/3D(%) 1D(%)/3D(%) 1D(%)/3D(%) 1D(%)/3D(%)

dataset 1 Filter LNR LNR+1 Mean diff 0.72/0.38 1.09/0.90 −0.99/2.47 2.81/ − 1.61

P-value 26.96/63.40 15.44/38.21 29.47/2.72 2.56/18.59

LNR LNR+1-50 Mean diff 0.52/0.12 1.54/0.64 −1.59/0.46 4.18/0.72

P-value 44.13/87.85 5.78/54.79 9.10/66.21 0.20/62.94

LNR+1 LNR+1-50 Mean diff −0.21/ − 0.26 0.46/-0.26 −0.59/ − 2.00 1.37/2.33

P-value 73.58/67.48 56.11/75.17 52.26/1.59 25.96/4.76

Bad epoch Removal Retention Mean diff 2.13/2.40 −0.62/1.21 1.67/5.58 1.23/-1.08

P-value 0.18/0.77 49.02/22.91 8.04/0.00 27.97/39.71

Decompose ICA Retention Mean diff 0.92/3.45 1.13/2.18 −2.07/7.04 5.21/0.08

P-value 17.90/0.01 18.01/4.99 4.49/0 0/95.79

ICA MSPCA Mean diff 2.75/8.96 4.01/12.05 4.22/14.35 2.40/4.05

P-value 12.14/0.39 8.37/0.19 9.84/0.09 43.45/28.13

Retention MSPCA Mean diff 1.24/7.74 0.51/15.09 5.35/7.55 −2.97/7.63

P-value 40.68/0.24 79.14/0 1.14/3.79 35.67/0.92

Bad channel Removal interpolation Mean diff −7.58/ − 10.86 −8.23/ − 13.42 −9.63/ − 7.30 −1.41/ − 12.43

P-value 0/0 0/0 0/0.04 29.13/0

Removal Retention Mean diff −6.63/ − 16.64 −9.19/ − 20.31 −8.92/ − 2.82 −4.82/ − 32.16

P-value 0/0 0/0 0/16.14 1.29/0

interpolation Retention Mean diff −1.59/ − 9.79 −3.09/ − 11.04 −0.98/ − 14.46 −4.22/ − 6.67

P-value 8.07/0 0.82/0 44.71/0 2.44/0.03

Ref Robust Retention Mean diff −5.86/ − 9.31 −5.08/ − 11.55 −1.15/ − 17.93 −11.19/3.16

P-value 0/0 0/0 39.01/0 0/20.63

Filter LNR LNR+1 Mean diff −0.73/ − 1.44 −0.20/0.30 −1.00/ − 2.47 −0.58/ − 0.37

P-value 11.85/0.46 71.24/65.60 10.81/1.02 66.89/70.99

LNR LNR+1-50 Mean diff −0.17/ − 1.23 0.13/1.79 −0.11/ − 5.54 −0.25/3.84

P-value 71.83/1.40 81.56/0.81 85.38/0 85.11/0.15

LNR+1 LNR+1-50 Mean diff 0.56/0.22 0.33/1.50 0.89/-3.07 0.33/4.21

P-value 20.81/69.21 51.96/2.27 17.61/0.10 79.66/0

Bad epoch Removal Retention Mean diff −0.64/ − 0.23 −0.59/ − 1.40 −1.20/2.07 0.18/-2.88

P-value 9.53/60.51 17.34/0.71 2.00/1.33 86.74/0.09

Decompose ICA Retention Mean diff −1.31/0.57 −1.61/ − 6.58 −2.36/12.11 −0.03/ − 12.61

P-value 0.21/35.66 0.10/0 0/0 97.61/0

ICA MSPCA Mean diff −2.43/3.24 −4.27/ − 4.99 0.99/14.04 −6.11/ − 8.73

P-value 1.01/7.59 0.05/0.82 40.98/0 1.94/0.27

Retention MSPCA Mean diff −1.40/ − 0.68 −2.58/2.71 3.45/-7.24 −7.12/6.90

P-value 13.72/61.35 2.19/5.88 0.43/0.29 1.03/0.07

Bad channel Removal interpolation Mean diff −2.91/ − 3.69 −2.62/ − 4.88 −2.38/ − 2.10 −3.29/ − 5.57

P-value 0/0 0/0 0.02/13.90 1.14/0

Removal Retention Mean diff −0.14/ − 1.05 −0.55/ − 4.91 −0.70/7.19 0.46/-10.68

P-value 86.22/24.56 55.38/0 38.94/0 83.51/0
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Table 12 continued

Dataset Factor Value1 Value2 Accuracy Precision Recall Specificity
1D(%)/3D(%) 1D(%)/3D(%) 1D(%)/3D(%) 1D(%)/3D(%)

interpolation Retention Mean diff 1.50/-2.84 1.39/-0.13 −0.29/ − 3.52 3.50/-2.11

P-value 2.22/0.12 7.91/89.77 71.26/1.79 6.32/20.36

Ref Robust Retention Mean diff −5.72/ − 11.04 −4.91/ − 12.12 −6.39/ − 11.21 −4.71/ − 10.93

P-value 0/0 0/0 0/0 0.03/0

Mean diff: Metrics’ marginal mean of value 1 subtracts metrics’ marginal mean of value 2.
A black bold entry indicates that the effect of the denoising approach varies in direction between the two networks.
A red entry indicates that the variation in the denoising approach leads to a significant change in the corresponding metric (at the 95% significance
level).
A red bold entry indicates that the variation in the denoising approach leads to a significant change in the corresponding metric for both networks
(at the 95% significance level)

Table 13 Filter’s, decomposition’s and bad epochs’ influences via T-test

Dataset Factor Value1 Value2 Accuracy Precision Recall Specificity
SD(%)/SI(%) SD(%)/SI(%) SD(%)/SI(%) SD(%)/SI(%)

dataset 1 Filter LNR LNR+1 Mean diff −0.28/0.38 −0.67/0.90 0.41/2.47 −1.08/ − 1.61

P-value 46.48/63.40 7.82/38.21 49.01/2.72 6.19/18.59

LNR LNR+1-50 Mean diff −0.24/0.12 −0.72/0.64 0.60/0.46 −1.18/0.72

P-value 53.51/87.85 5.35/54.79 32.1/66.21 3.85/62.94

LNR+1 LNR+1-50 Mean diff 0.04/-0.26 −0.05/ − 0.26 0.20/-2.01 −0.10/2.33

P-value 90.27/67.48 86.24/75.17 75.27/1.59 80.31/4.76

Bad epoch Removal Retention Mean diff 4.62/2.40 2.03/1.21 5.97/5.58 2.95/-1.08

P-value 0/0.77 0/22.91 0/0 0/39.71

Decompose ICA Retention Mean diff 0.68/3.45 −1.71/2.18 3.43/7.04 −2.63/0.08

P-value 3.46/0.01 0/4.99 0/0 0/95.79

ICA MSPCA Mean diff 1.01/8.96 −0.60/12.05 2.29/14.35 −0.64/4.05

P-value 4.49/0.39 21.11/0.19 0.35/0.09 34.57/28.13

Retention MSPCA Mean diff 0.66/7.74 1.56/15.09 −0.80/7.55 2.33/7.63

P-value 23.94/0.24 0/0 41.64/3.79 0/0.92

Bad channel Removal interpolation Mean diff −2.11/ − 10.86 −1.34/ − 13.42 −2.25/ − 7.30 −2.01/ − 12.43

P-value 0/0 0.03/0 0.03/0.04 0.03/0

Removal Retention Mean diff −1.46/ − 16.64 −3.81/ − 20.31 1.99/-2.82 −5.54/ − 32.16

P-value 0.27/0 0/0 0/16.14 0/0

interpolation Retention Mean diff −0.84/ − 9.79 0.89/-11.04 −2.55/ − 14.46 1.21/-6.67

P-value 6.12/0 0.06/0 0.03/0 0.06/0.03

Ref Robust Retention Mean diff −0.28/ − 9.31 2.07/-11.55 −2.99/ − 17.93 2.84/3.16

P-value 46.40/0 0/0 0/0 0/20.63

dataset 2 Filter LNR LNR+1 Mean diff −0.95/ − 1.44 −0.46/0.30 −1.04/ − 2.47 −0.79/ − 0.37

P-value 5.33/0.46 23.52/65.60 31.36/1.02 15.54/70.99

LNR LNR+1-50 Mean diff −0.47/ − 1.23 1.59/1.79 −3.23/ − 5.54 2.65/3.84

P-value 36.89/1.40 0.65/0.81 0.08/0 0.44/0.15

LNR+1 LNR+1-50 Mean diff 0.48/0.22 2.05/1.50 −2.20/ − 3.07 3.44/4.21

P-value 32.97/69.21 0.02/2.27 1.47/0.10 0.01/0.01
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Table 13 continued

Dataset Factor Value1 Value2 Accuracy Precision Recall Specificity
SD(%)/SI(%) SD(%)/SI(%) SD(%)/SI(%) SD(%)/SI(%)

Bad epoch Removal Retention Mean diff −1.29/ − 0.23 −1.92/ − 1.40 0.09/2.07 −2.96/ − 2.88

P-value 0.16/60.51 0/0.71 91.00/1.33 0/0.09

Decompose ICA Retention Mean diff 1.28/0.57 −4.42/ − 6.58 8.04/12.11 −6.46/ − 12.61

P-value 0.32/35.66 0/0 0/0 0/0

ICA MSPCA Mean diff 0.05/3.24 −3.10/ − 4.99 4.07/14.04 −4.48/ − 8.73

P-value 92.89/7.59 0/0.82 0/0 0/0.27

Retention MSPCA Mean diff −6.69/ − 0.68 0.93/2.71 −13.32/ − 7.24 1.00/6.90

P-value 0/61.35 0.01/5.88 0/0.29 0.20/0.07

Bad channel Removal interpolation Mean diff −0.47/ − 3.69 −0.41/ − 4.88 −0.61/ − 2.10 −0.41/ − 5.57

P-value 32.34/0 46.06/0 51.55/13.90 63.43/0

Removal Retention Mean diff 0.90/ − 1.05 −4.14/ − 4.91 6.78/7.19 −5.93/ − 10.68

P-value 14.61/24.56 0/0 0/0 0/0

interpolation Retention Mean diff −2.45/ − 2.84 −1.87/ − 0.13 −1.83/ − 3.52 −3.11/ − 2.11

P-value 0.25/0.12 2.70/89.77 22.94/1.79 2.33/20.36

Ref Robust Retention Mean diff 0.61/ − 11.04 2.74/ − 12.12 −2.70/ − 11.21 4.36/ − 10.93

P-value 20.66/0 0/0 0.37/0 0/0

Mean diff: Metrics’ marginal mean of value 1 subtracts metrics’ marginal mean of value 2.
A black bold entry indicates that the effect of the denoising approach varies in direction between the two split ways.
A red entry indicates that the variation in the denoising approach leads to a significant change in the corresponding metric (at the 95% significance
level).
A red bold entry indicates that the variation in the denoising approach leads to a significant change in the corresponding metric for both split ways
(at the 95% significance level)

In summary, while variations in the networks used by
EIEF, the data split way, and other unmentioned hyperpa-
rameters may somewhat hinder our ability to assess the
proportion of effective information in the dataset using
network performance metrics, overall, EIEF demonstrates
sufficient robustness to remain practically meaningful.

4.6 Comparison between two classifiers

From Figs. 4, 5, 6, it seems like, whether the 1D-CNN or the
3D-CNN is selected to perform a grid search, both models
consistently yield a reasonable optimal paradigm. To clarify
why the 1D-CNN is includedwithin EIEFwhile the 3D-CNN
is not, let’s delve into a comparative analysis of the searches

conducted by these two classifiers. The 60 × 4 × 2 SIUEs
performed by the 3D-CNN and the 60 × 8 × 2 SIUEs per-
formed by 1D-CNNwill be analyzed again (unit experiments
corresponding to the original dataset aren’t involved), from
the aspects of the mean and the max accuracy, the transverse
accuracy STD, and the training time.

As listed in Table 14, 3D-CNN-based classifiers exhibit
higher mean accuracies but lower extreme accuracies com-
pared to 1D-CNN-based classifiers. This suggests that the
1D-CNN might be more suitable for constructing the diag-
nosis system. However, in the case that the system requires
re-training frequently because of an increasing number
of patient visits, the higher STD of multi-training makes
the scalability of a 1D-CNN-based system questionable.

Table 14 Classifiers’ average
search performances

Dataset 1 Dataset 2
Classifiers Acc.(max/mean%) STD(%) Cons.(s) Acc.(max/mean%) STD(%) Cons.(s)

1D-CNN 83.78/61.31 15.89 250 83.96/66.29 11.54 290

3D-CNN 77.14/64.86 6.87 1150 80.91/73.18 6.56 335

All the performances are averaged across the cross-validation first and the 60 paradigms second.
For one paradigm and one fold, theMax Acc. is found among the 101-150 epochs among the parallel SIUEs,
the Mean Acc. is averaged across the same epochs and SIUEs, the STD is the STD of the mean accuracies
for the parallel SIUEs (STD of the 4 mean accuracies for the 3D-CNN-based, 8 for the 1D-CNN-based), the
Cons. is the average time consumption across all the trainings with 150 epochs in the parallel SIUEs)

123



9128 T. Jing et al.

Moreover, the 3D-CNN, with its larger size and deeper
convolutional depth, holds the potential for improved gen-
eralization capabilities in deep learning. Collectively, this
evidence indicates that the 3D-CNN offers greater stability
and suggests it as the preferred choice for system construc-
tion. Conversely, EIEF assesses paradigms with the metric
averaged across several epoch-fixed SIUEs,which dilutes the
influence caused by the instability of the 1D-CNN.Moreover,
1D-CNN’s training time is significantly less than 3D-CNN.
And it can have EIEF implemented faster. Thus, we incorpo-
rate it into EIEF.

4.7 Confirmation of improved electrobiological
markers

In this section, We will focus on experimentally elucidating
that the dataset processed through our framework is more
suitable for the pathological analysis of schizophrenia, mak-
ing the analysis on this dataset more reliable.

As an overview, the data STDs of all the channels of the
original and optimal datasets are shown in Fig. 7. Figure. 7(a)
shows, for dataset 1, the STD of each channel in the origin is
higher than the optimum, and indicates the optimal paradigm

(a) Dataset 1

(b) Dataset 2.

Fig. 7 STDs of every channel of the original and optimal datasets (All
subjects’ EEGs are considered)

found by EIEF does subtract a lot of EEG components from
the original data. Considering that the performance metrics
prove that such a subtraction hasn’t caused a loss of the SZ
classification effective Information, so obviously, it becomes
evident that EIEF enhances the proportion of that information
within theEEGdataset. This, in turn, reinforces the extraction
of SZ electrobiological markers, making it more compelling.
However, for dataset 2, the STDs of the origin and the opti-
mum are very close in value. This is because the optimum
for dataset 2 consists of linear noise removal and bad chan-
nel removal. Actually, dataset 2 does not exhibit significant
power-line interference. And channel removal only leads to
the loss of several channels in the EEG data of some subjects
within the 84 subjects, without removing any components of
these channels as a whole. Therefore, even if the proportion
of effective Information actually increases, this improvement
will not be reflected in the standard deviations. So, the next
job is to determine what kind of influence EIEF has on elec-
trobiological markers.

4.7.1 Features extraction and analysis method

Here, we take the difference between the two time-domain
feature distributions in the 14 SZ patients and the 14 healthy
subjects as an electrobiological marker. And the following
Table 15 lists the 38 features selected.

Due to the complexity of EEG signal composition and its
difficulty in discerning periodicity, extracting structural fea-
tures and normal dynamic characteristics of EEG is almost
meaningless. But the complex nature of the brain’s electrical
activity and its non-linear dynamic characteristics result in
diverse EEG patterns. Breaking down the signal into smaller
subsystems can potentially modify the irregular patterns and
dynamic attributes of the signal [61]. The complexity anal-
ysis of EEG signals mainly involves the following aspects
of feature analysis: 1. Nonlinear features, which examine
whether signals exhibit nonlinear dynamical characteristics,
such as chaotic behavior, phase transitions, and fractal struc-
tures, etc. Nonlinear features reflect the complex dynamics
and nonlinear interactions of signals. 2. Information features,
which evaluate the amount of information and the informa-
tion structure carried by signals, including measures such as
information entropy, sample entropy, permutation entropy,
SVD entropy etc. Information features can reveal the infor-
mation organization and encoding methods of signals. 3.
Stability features, which Investigate the stability and pre-
dictability of signals under different conditions, including
stability analysis, long-term dependence, and self-similarity,
etc. Stability features reflect the stability and predictability
of signals.Most of the features we extracted can quantify one
or more of the aforementioned aspects of complexity.
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Table 15 Selected features

Feature name Feature name Feature name Feature name

Sample En Wiener En Fisher Inf SVD En

Differential En Hjorth Exp Kolmogorov En Maximum En

Multiscale En Fuzzy En Permutation En Attention En [63]

CWPermutation En [64] Line Length [65] Dispersion En [66] Distribution En [67]

Increment En [68] En of En [69] Shannon En-Power [70] Range En [71]

Slope EN [72] Symbolic Dynamic En [73] Tsallis En [74] Fisher-Shannon Inf [75]

Bubble En [12] Mean Inf Gain MDFA-Width [76] MDFA-Peak

MDFA-Mean MDFA-Max MDFA-Delta MDFA-Asymmetry

MDFA-Fluctuation MDFA-Increment Poincaré-STD [62] Poincaré-STA

Poincaré-SSHD Poincaré-SDTC

En Entropy; Inf Information; Exp Exponent

In addition to classical complexity analysis, we have also
used a new set of features for analyzing potential patterns in
EEG-graph features. These features are essentially geometric
characteristics on the visualization graph, and their extrac-
tion primarily relies on the two-dimensional visualization
of EEG signals. Based on Poincaré pattern of DWT coeffi-
cients ofEEGsignals,Akbari et al. proposednewgeometrical
features–standard descriptors of 2-D projection (STD), sum-
mation of triangle area using consecutive points (STA), as
well as summation of shortest distance from each point rela-
tive to the 45-degree line (SSHD), and summation of distance
fromeachpoint relative to the coordinate center (SDTC) [62].
And these features are used in our following analysis.

Specifically, For each dataset and each subject, the corre-
spondingmulti-channel data are split into irrelevant segments
of 4 seconds and of the size of 19×1000 (dataset 1) and
16×512 (dataset 2) (the last segment that is less than 4 sec-
onds will be thrown away). Then for each segment and each
feature, we extract 19 (16) feature values for all 19 (16) chan-
nels (Note that any feature’s parameters are the default set
by a python package–“NeuroKit2”.). And for each feature
from Poincaré plot, since the signals are decomposed to 5
components with the DWT level 4, we extract 5 feature val-
ues for one channel. So the dimension number of a feature
vector will be 1026 (19×34 + 19×5×4) for dataset 1 or 864
(16×34 + 16×5×4) for dataset 2. Denote the original SZ fea-
ture matrix that consists of all feature vectors extracted from
the SZ subjects from the original dataset as Msz ∈ R

nsz×Ld ,
where nsz is the segment number from the SZ subjects, and
Ld is a variable with optional values of 1027 for dataset 1
and 864 for dataset 2. And denote the i-th column of Msz as
msz

i which represents a feature’s values of a channel. Then,
let Mhc ∈ R

nhc×Ld denote the original HC feature matrix
and let mhc

i denote the i-th column of it. Similar, for the

optimal dataset, we get M∗sz,m∗sz
i , M∗hc and m∗hc

i . After
defining the symbols, we deliver the analysis method with
Algorithm 1.

Algorithm1Discrimination of change of difference between
two distributions.
Input: Msz , Mhc,M∗sz , M∗hc
Output: For each feature of each channel, figure out whether the

difference between the two average feature values from the SZs and
HCs is changed before and after EIEF.
1: C(Confidence level) ← 0.05
2: T P (P’s change threshold) ← 0.5
3: De(diff enhanced) ← zero vector with the size of 1 × Ld .
4: Dw(diff weakened) ← the same zero vector as the above.
5: HL (higher to lower) ← the same zero vector.
6: LH (lower to higher) ← the same zero vector.
7: for all i ∈ {1, 2, ..., Ld } do
8: Por

Le ← P value of the levene-test of msz
i and mhc

i .
9: Pop

Le ← P value of the levene-test of m∗sz
i and m∗hc

i .
10: if Por

Le > C then
11: Por ← P value of the standard t-test of msz

i and mhc
i .

12: else
13: Por ← P value of the Welch’s t-test of msz

i and mhc
i .

14: end if
15: Pop ← P value got by the same method as 10 ∼ 13 but by m∗sz

i
and m∗hc

i .
16: Dor ← Mean of mhc

i − Mean of msz
i

17: Dop ← Mean of m∗hc
i − Mean of m∗sz

i
18: if Por − Pop > T P then
19: De(i) ← 1
20: else if Pop − Por > T P then
21: Dw(i) ← 1
22: else if (Pop, Por < C)&(Dor > 0&Dop < 0) then
23: HL (i) ← 1
24: else if (Pop, Por < C)&(Dor < 0&Dop > 0) then
25: LH (i) ← 1
26: end if
27: end forreturn De, Dw, HL , LH
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Table 16 Numbers of features that have mean difference changes after
implementing the optimal denoising paradigm

Dataset De Dw HL LH Total

Dataset 1 33 59 47 75 214

Dataset 2 7 26 0 0 33

Four types of changes are listed respectively

4.7.2 Analysis result

As has been detailed in Table 16, on dataset 1, for any of
the 214/1026(20.86%) features, the difference between the
two means calculated on SZ subjects and HC subjects show
significant changes before and after the application of the
optimal denoising paradigm to the raw dataset, which indi-
cates at least 20.86%of SZmarker extractions lack reliability
without the incorporation of EIEF. Besides, the numbers of
features in the four categories of changes remains consistent
in magnitude, indicating the widespread impact of the opti-
mal paradigm. Next, considering dataset 2, even though from

Fig. 7 it appears that the standard deviation of data from each
channel remains almost the same before and after denoising,
there are still 33/864 (3.82%) features where the mean dif-
ferences show significant changes. Additionally, given that
each channel has been extracted with 38 types of features,
for each dataset, we plot the changes’ frequency of the paired
means’ differences for every channel in the 5 heatmaps in
Fig. 8, to show the EIEF’s effects on different brain regions
visually. Intuitively, data from those channels with the high
change frequencies shall contain more noises or more EEG
components that are irrelevant to SZ recognition.

With all the evidence above, it is definite that, applying
EIEF has discernible effects on EEG data’s time-domain fea-
ture distributions, and then could help to make extracted SZ
electrobiological markers more reliable since EIEF improves
the proportion of the SZ classification effective Informa-
tion information in the EEG dataset. However, as seen in
the analysis results of dataset 2, EIEF may not necessar-
ily induce substantial changes in the feature distribution; its
effectiveness is constrained by the proportion of noise in
the raw data and the selection of the denoising paradigm

Fig. 8 Brain heatmaps of
changes in feature distribution
differences before and after
implementing

(a) Dataset 1

(b) Dataset 2.
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pool. Nonetheless, if the effect of EIEF is not significant, it
suggests that the raw data itself has a high signal-to-noise
ratio. In this case, we can consider that EIEF validates the
reliability of extracting electrobiological markers from the
raw data. As a practical recommendation for researchers, if
expecting to uncover discriminable features qualified to be
the valid biomarkers of SZ based on EIEF, they should put
their dataset into EIEF to get the optimal denoising paradigm,
use this paradigm to process their dataset, and do theirmarker
extraction and analysis on the processed dataset. Two key
considerations should be highlighted when employing EIEF.
One is that the EEG data for all selected subjects must be
collected in the same circumstance, which makes sure the
noises in every subject’s data are similar or completely iden-
tical. This helps avoid situations where the optimal paradigm
is unsuitable for certain subjects. The other is the paradigm
pool shall be selected carefully so that a pretty good paradigm
for the dataset exists in the pool.

5 Discussion of advantages and limitations

5.1 Advantages

1. In general, research on EEG-based schizophrenia iden-
tification often innovates on one or two nodes in the
open-loop technical chain, such as proposing newdenois-
ing methods, novel classification features, new feature
selection methods, or specialized classification network
architectures, etc. In contrast, our study centered around
EIEF focuses on closing the loop of the entire technical
chain. We use classification metrics to provide feedback
for the denoising method selection, thereby improving
the performance of the diagnosis system and the relia-
bility of biomarker analysis. This represents a structured
innovation across the entire technical chain. Following
our direction, future researchers can continuously opti-
mize the details of each node on this structure to achieve
better results.

2. In recent years, most researchers in the field have often
conducted experiments that are either SI or SD, with-
out clearly specifying the type of experiment they are
conducting. Furthermore, they compare SI experimental
indicators with SD ones. Our study conducted two types
of experiments separately, and in the comparison section,
we summarized and clarified the types of experiments
conducted by other researchers.

3. The structured innovation inherently possess robustness.
In other words, as long as there is a denoising paradigm
in the pool suitable for the dataset, the selection of
paradigms by EIEF can definitely improve the perfor-

mance of the diagnosis system and the reliability of
biomarker analysis. Our experiments on two datasets
have also demonstrated this point.

4. We have incorporated dynamic performancemetrics dur-
ing the training process of the classifier into the criteria
for selecting the classificationmodel for the SZ diagnosis
system, rather than solely relying on the highest accu-
racy of the model. This is because the optimal accuracy
is always achieved on a certain dataset, and overly focus-
ing on accuracy will make the system lack practicality.
After all, we hope that the system can be continuously
retrained as the hospital database grows, to improve its
diagnostic capabilities.

5. In terms of our experiments themselves, the effective-
ness of a large number of denoising approaches on the
two public datasets has been tested and described. This
can provide a basis for selecting denoising approaches
for researchers who wish to conduct research on the two
datasets.

5.2 Limitations and future solutions

To be frank, our work is significant but not perfect. And here
are the limitations, and the possible solutions we adopt in the
future.

1. In EIEF, our grid search strategy that requires training a
1D-CNN for each dataset processed by each paradigm in
the pool makes the computation for the search very time-
consuming, which brings about a restriction that the pool
couldn’t contain too many denoising paradigms. Hence,
applying advanced search algorithms to reduce time con-
sumption has been in our future blueprint.
A feasible approach is: for the five categories of denois-
ing approaches, each category is described by a vector
θi , where small variations in the values of θi represent
changes in the parameters of a method within that cate-
gory, while large variations can represent changes of the
methods within the category. Combining the 5 θi , along
with anotherφ vector to control the execution order of the
5 categories, we form a θ . Clearly, a determined θ value
can produce a corresponding processed dataset, and then
obtain a corresponding test accuracy through training.
In this way, the discrete denoising paradigm pool in this
study becomes a continuous pool containing an infinite
paradigms. Therefore, as long as we define the domain
of θ , we can use intelligent optimization algorithms to
more efficiently and accurately find the best estimate of
the restoration function fiT .
As for the selection of the optimization algorithm, since
our optimization objective lacks a function analytical
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expression, heuristic algorithms have become the best
solutions to tackle this problem. For examples: Firefly
Algorithm (FA), Grey Wolf Optimizer (GWO), Cuckoo
Search Algorithm (CSA), and etc are all within our con-
sideration.

2. In theSection3.2,wedemonstrate that, under ideal condi-
tions, the optimal denoising paradigm found through all
DNNs will remain consistent. However, the ideal con-
ditions can never be fully satisfied under experimental
environment. It has been confirmed that the 1D-CNN
has a different optimum from the 3D-CNN. So, Several
questions remain unanswered in the current research.We
have found that, with changes of the network structure
inside EIEF, paradigms that were originally thought to
damage effective information, lead to an improvement
in the test accuracy of the network on denoised datasets
compared to the original datasets. What is the underly-
ing mechanism behind this phenomenon? Besides, is it
merely a coincidental result that the 3D-CNN exhibits
better test accuracy on the optimal dataset obtained using
1D-CNN? If another type of DNN is selected, could the
so-called optimal dataset potentially lead to a decrease
in test accuracy? Furthermore, what conditions must be
met by two classifiers to ensure that the two optimal
paradigms obtained are completely consistent or simi-
lar?
To answer these questions, it is necessary to conduct
two types of experiments. Firstly, ablation experiments
should be conducted by making subtle changes to the
structure of 1D-CNN, and thenEIEFwill be performed to
observe whether the obtained optimal paradigm exhibits
robustness. Secondly, the type of network within EIEF
should be changed, such as using different CNNs or
vision transformers (VITs) like Convit, Convnext, Dark-
net, EfficientNet, etc. One intuitive speculation is that the
more complex the network used in EIEF, the stronger its
generalization ability. Therefore, the network itself can
perform denoising to some extent, weakening the impact
of denoising paradigms on test accuracy. Our main focus
will be to examine whether changes in the network alter
the direction of this impact (positive impact turning into
negative impact). Additionally,we need to carefully com-
pare the various results produced by different networks
and analyze how the commonalities and differences in
the networks manifest in their static and dynamic perfor-
mance indicators. The aforementioned experiments are
extremely resource-intensive, but we will make every
effort to obtain better hardware conditions to acquire
greater computational power for further optimization of
EIEF.

6 Conclusion

Allowme to reiterate the three objectives that drive researchers
to develop an automated SZ diagnosis system: Get the sys-
tem itself; Identify and validate interpretable, discriminative
features that qualify as SZ markers; construct the SZ elec-
trobiological markers. As previously discussed, researchers
working on creating this system face significant challenges
due to the inherent characteristics of EEG data, character-
ized by its low SNR. This presents two primary issues. One
is that the noises dilute the information in EEG, leading to a
decline in the diagnosis system’s performance and frustrat-
ing the first objective. The other is the lack of enormous EEG
datasets, causing the noise components exhibit varying dis-
tributions within the two sub-datasets representing distinct
groups, ultimately making the extracted SZ markers from a
dataset unreliable (frustrate the second objective) and some
neurons in a trained DNN contributed from noises (frustrate
the third objective). To address these challenges, denoising is
necessary. However, while denoising is effective in reducing
noise, it may also result in the unintended loss of valuable
information required for specific classification tasks.

In such a condition, to eliminate various noises from EEG
data with requisite information reserved, we have proposed
our EIEF based on three key ideas. The first key is task-
centric, emphasizing that our framework must selectively
retain EEG components containing the effective informa-
tion relevant to a specified classification task. It’s important
to note that this task is defined with respect to a specific
dataset. To ensure the preservation of effective information, it
becomes imperative to quantify it. So, the second key ismade
that the test metrics of an end-to-end DNN could become the
measurement. Given that the DNN is purposefully trained
to address the defined task, these metrics provide a practical
approach to measure the proportion of task-related effective
information present in the EEG dataset. The ultimate objec-
tive is to devise a denoising paradigm that maximizes this
proportion, which forms the primary focus of our third key
principle. The third key is rooted in the concept of feedback.
We have established a paradigm pool that generates a dataset
pool. For every dataset in the pool, we have used DNN’s test
accuracy to measure the proportion, and fed the proportion
back to the pool so as to find the dataset containing the most
effective information and the optimal denoising paradigm.
This approach capitalizes on the composability and flexibil-
ity of open-loop denoising paradigms while mitigating the
risk of these paradigms unintentionally compromising EEG
information by establishing a closed-loop system. All the
mathematical derivations in Sections 3.1 and 3.2 align seam-
lessly with the three key ideas.
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As mentioned above, EIEF is our first contribution in
the paper. Next, the remaining two contributions will be
concluded, along with their effects on the three objectives.
One contribution is having constructed an SZ diagnosis sys-
tem with outstanding performance. By preprocessing the
dataset with the optimal paradigm identified by EIEF and
subsequently training a 3D-CNN on it, we have success-
fully crafted an automatic SZ diagnosis system. This system
exhibits commendable performance in the SD and SI eval-
uation when compared to S.O.T.A systems. Obviously, this
contribution represents a significant stride toward fulfilling
the first objective. As for the last contribution–assessing
the changes of the EEG features’ differences between the
patients and the healthy before and after implementing the
optimal denoising paradigm on raw dataset—we recognize
its multifaceted significance. On one level, it directly bolsters
our pursuit of the second objective since we have declared
that the optimal paradigm makes extracting the SZ electro-
biological markers more convincing in Section 4.7.1. Yet,
delving deeper, the optimal paradigm is found based on a
DNN (1D-CNN), or we can say it is found based on those
uninterpretable automatically constructed features (also SZ
markers), which actually sheds light on a new thought for
the third objective, of leveraging the uninterpretable mark-
ers to enhance the reliability of the interpretable markers.
Without these markers (without the DNN), the second key
of EIEF shall be impracticable because, in that case, it can’t
be discriminated whether the low proportion of the effec-
tive information or the wrong feature selection causes the
low performance of a traditional machine learning model. In
contrast, the DNN’s automated feature selection effectively
eliminates the possibility of incorrect selection. Besides,
amalgamating the uninterpretable markers with the feedback
mechanism, the paper transforms the conventional end-to-
end DNN into a raw-to-processed-to-end model. At this
point, the extraction of SZ markers is carried out on the
processed dataset, which mitigates the interpretability chal-
lenges of DNNs while preserving their inherent advantage in
automatic feature extraction.
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