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Abstract
Traffic flow prediction, which provides dynamic data support for intelligent transportation systems, has always been a topic of
great interest. Accurate prediction of traffic flow is vital for optimizing traffic management and planning and improving traffic
efficiency. Existing traffic flow prediction models usually consider only a single influencing factor when modeling spatial-
temporal correlation and fail to comprehensively consider the multiscale factors corresponding to each module, resulting in
incomplete spatial-temporal modeling and thus affecting prediction accuracy. For this reason, this paper proposes a spatial-
temporal multifactor fusion graph neural network (STMFGNN), which aims to characterize spatial-temporal features more
comprehensively. First, in the spatial feature extraction module, we parallelly utilize dynamic similarity graphs and static
adjacency graphs to perform graph convolution and introduce the gated fusion module to self-learn the dynamic influence
weight so that our model can integrate the information of global hidden knowledge and local prior knowledge and capture the
multiscale spatial dependencies between nodes. Second, themodel combines gated tanh unit convolution with amultireceptive
field and gated recurrent units in the temporal feature extraction module. Similarly, it utilizes the gated fusion module to
adaptively and dynamically adjust the importance weights of the two components. This enables the acquisition of multiscale
temporal dependency information at both short-term and long-term levels. In addition, we employ an improved generative
adversarial imputation network for incomplete traffic flow data. The experimental results on four real-world datasets show
that our proposed method consistently outperforms other baseline models, achieving state-of-the-art performance. The key
source code and data are available at https://github.com/Keaiii3/STMFGNN.

Keywords Traffic flow prediction · Spatial-temporal features · Graph convolution · Gated tanh unit · Gated recurrent units ·
Generative adversarial imputation network

1 Introduction

With the continuous expansion of urban transportation net-
works, increasing traffic flow, and diversifying travel modes,
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accurately predicting traffic flow has become crucial for opti-
mizing traffic management and planning. As an effective
tool for alleviating traffic congestion, intelligent transporta-
tion systems (ITSs) are drawing global attention [1]. Traffic
flow prediction is an important part of ITSs [2]. Given the
sequence of traffic flow and roadway topology networks [3],
the purpose of traffic flow prediction is to use historical data
to predict future traffic flow [4, 5]. However, the road sensor
nodes in road networks are spatially connected and interact
with each other; traffic flow data from individual nodes form
a long time series with dynamically changing time patterns.
Therefore, traffic prediction has always been a challenging
task due to its complex spatial-temporal features [6]. In recent
years, with the continuous advancement of deep learning
technologies, deep learning has been increasingly applied
in emerging industrial fields, such as intelligent transporta-
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tion [7, 8], intelligent manufacturing [9–11], and medical
diagnosis [12, 13].These applications showcase the robust
capabilities and broad prospects of deep learning in indus-
trial domains.

With the continuous development of graph neural net-
works [14–16], determining how to effectively model graph
modeling on spatial-temporal data has become a focus of
attention. We believe that, as Fig. 1 shows, nodes on a road
network mainly exhibit two types of spatial dependencies:
one is the propagation of traffic flow due to the physical prox-
imity between nodes; the other is the similarity of changes
due to nodes with similar functions, even though they are
not directly physically connected, orare even far apart. For
the traffic flow on each node as time series data, there is a
specific time dependence between the time slices, whether at
a similar moment or at a long time interval.

First, an obvious drawback of many previous methods
is that is that they fix spatial relationships, such as the
DCRNN [17] and ASTGCN [18], usually use static adja-
cent matrices (either predefined or self-learned) to represent
spatial dependencies between nodes. However, there are
similarities between nodes from a global perspective, and
the spatial dependencies may be dynamically change over
time. The fixed adjacencies cannot model the global similar-
ities between nodes that are dynamically change over time.
Recently, methods such as STFGCN [19] and DSTAGNN
[20] have learned dynamic graphs through a data-driven
approach to better reflect the dynamically changing spatial
dependencies between nodes. However, these methods also
have some drawbacks. They may overemphasize the influ-
ence of globally similar nodes on a node and ignore the traffic
fluctuations caused by the changes in the traffic of actual
adjacent nodes at a single time step. These methods often

use a static adjacent matrix or dynamic similarity matrix
alone to model the spatial dependency between nodes but
do not fully consider the impact of the joint effect of mul-
tiple factors on traffic flow prediction. Due to the mutual
mapping between sensor nodes, traffic flows are complex
and cyclical in the long term but sudden and volatile in the
short term [21]. Based on the long-term and global scales,
there are similarities between nodes, and the data-driven
dynamic adjacency matrix may select the most similar node
in the time unit of a day as the neighbor; in the short-term
and local scales, for a single time step of a single node,
the flow change of adjacent nodes in the real world at the
previous time still plays a vital role in its flow fluctuation,
which cannot be ignored. Neglecting the influence of any
of these factors will lead to incomplete modeling of spatial
dependence between nodes. Comprehensive consideration is
essential to concurrently address the impact of both actual
adjacent nodes and globally similar nodes on traffic flow
prediction.

Second, for the data of each node in the road network, due
to its nature as time-series data, we need to pay attention
to its temporal dependence on both short-term and long-
term scales. However, current spatial-temporal prediction
studies have certain shortcomings in temporal dependence
learning. STGCN [22] uses convolutional neural networks
(CNNs) to capture short-term temporal dependencies, while
DCRNN [17] uses recurrent neural networks (RNNs), and
GraphWaveNet [23] uses diffusion convolution to attempt
to capture long-term temporal dependencies. However, these
methods often struggle to comprehensively consider short-
term and long-term temporal correlations, which may lead to
the omission of critical temporal features in temporal depen-
dency capture.
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Fig. 1 Complex spatial-temporal correlations. The red points dis-
tributed in the road network on the map in (a) represent individual
sensors, and the connectivity relationship between sensors represents
the connectivity relationship between roads. The nodes in (b) represent
individual sensors, and the solid line represents the real spatial neighbor
relationship. Among them, node No. 1 is the primary node, and the fill

colors of the other nodes indicate their spatial correlation with node
No. 1. Not only do the nodes that are adjacent to node 1 have a spa-
tial correlation with it, but the nodes that are not directly adjacent to it
may also have spatial correlation with it. The dashed line represents the
temporal correlation between individual moments due to the nonlinear
relationship of traffic flow data
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In addition, due to sensor failure, communication errors,
storage loss, and other reasons, data collected by sensors
inevitably contain missing data [24]. However, complete and
correct data are crucial for subsequent data analysis tasks.

In summary, existing methods often only consider the
influence of a single factor when modeling spatio-temporal
correlations, resulting in incomplete capture of the spatial
dependence between nodes and the temporal dependence of
node data. Moreover, the existing methods use only sim-
ple statistics-based methods to impute missing data in traffic
datasets. The prediction accuracy of the traffic flow predic-
tion model is not accurate enough due to the influence of
these factors.

Complete traffic flow data are obtained to indirectly
improve the model prediction accuracy. Moreover, to com-
prehensively consider the static local and dynamic global
multifactor influences on spatial dependencies and capture
multiscale temporal dependencies, we propose a new neu-
ral network framework based on graph convolution: the
spatial-temporal multifactor fusion graph neural network
(STMFGNN). In the data preprocessing stage, we improved
the masking mechanism and training process of the genera-
tive adversarial imputation network (GAIN) [25] and applied
it to traffic data to impute the missing traffic data. In the
process of graph convolution, we used the predefined static
reachability matrix and the dynamic similarity matrix gener-
ated based on theWasserstein distance [26] to perform graph
convolution and then used the dynamic gated fusion module
to self-learn to fuse the two results to better capture the spa-
tial dependence of static and dynamic interwoven traffic flow
data. Similarly, to overcome the trade-off between the tem-
poral dependence of the short-term scale and the long-term
scale in time series prediction, we synergistically employed
the multifield gated tanh unit (GTU) and gated recurrent
units (GRUs), adjusting the influence weights of the two
with a dynamic gate fusion module adaptively, aiming to
comprehensively capture the short- and long-term temporal
dependencies of traffic flow data. The main contributions of
our work are as follows:

• In the data preprocessing stage, a modified GAIN with
an improved masking mechanism and training process
is proposed and applied to traffic data. The imputation
of commonly missing traffic data indirectly enhances the
model performance.

• A graph convolution method incorporating multiple fac-
tors is designed. The dynamic similarity graph is used
while the static adjacency graph is retained, and the real
prior knowledge and self-learning hidden knowledge are
combined through the dynamic gated fusion module to
jointly model the complex spatial dependence.

• A method combining multiscale GTU convolution and
GRU is proposed. One-dimensional convolutions with

multiple fields capture varying degrees of short-term tem-
poral dependencies, while the GRU captures long-term
temporal dependencies. A dynamic gate fusion module
is used to autonomously learn integrated multiscale tem-
poral features.

• Extensive experiments on real-world traffic datasets
demonstrate that our method outperforms numerous
baseline models, including state-of-the-art methods, and
achieves superior performance.

The rest of the paper is organized as follows: Section 2
reviews and summarizes previous works. The traffic flow
prediction problem is described in Section 3, and our pro-
posed model is introduced in detail. Section 4 describes our
overall experiment, compares it with other models, and ana-
lyzes the results. An ablation study, result visualization, and
parameter study follow this approach. Finally, we conclude
the entire paper in Section 5.

2 Related work

2.1 Data imputation

In data completion, the imputation of time series is a criti-
cal component of solving the problem of missing traffic flow
data, and there are a variety of methods, including statistical,
machine learning, and deep learning methods. Statistics-
based imputation methods typically use mean values, with
the simplest method using historical averages, which impute
missing values based on the average of the same time interval
in the past. Many previous studies have shown that machine
learning-based methods are very effective for data imputa-
tion. For example, a Bayesian network learns probability
distributions from observed data and imputes missing data
using the best fit method [27]. K-nearest neighbors (KNNs)
[28] use the average of the K nearest neighbors to themissing
values to repair the data. Other methods include the proba-
bilistic principal component analysis (PPCA) [29] technique,
which utilizes the daily periodicity and interval variability of
traffic data. With the development of deep learning, many
neural network models have also been used to solve the data
imputation problem. The missing data imputation method
of such models usually starts from the data distribution and
fills the missing data by fitting the proper distribution. For
example, literature [30] used a bidirectional RNN as a gener-
ative model to fill in missing data. A convolutional recursive
autoencoder was proposed in the literature [31]. Generative
adversarial networks (GANs) [32] are generative models in
which two networks are trained against each other to generate
new sample datasets that follow the training distribution. The
GAIN [25] is a GAN-based method that uses parallel data
and a GAN to enhance traffic data and uses a hint matrix
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based on real observations for unsupervised data generation
to fill in missing data.

2.2 Graph convolution

In graph convolution, graph convolutional networks gener-
alize convolutional neural networks from standard grid-like
to graph-structured data to efficiently extract local patterns
in the data. Graph convolutional networks fall into two main
categories: spatial-based and spectral-based [33]. Spectral-
based graph convolution mainly utilizes the graph fourier
transform (GFT) to achieve convolution. [34] extended con-
volution to graphs in the spectral domain. ChebNet [35]
uses Chebyshev polynomials instead of original polynomi-
als, which avoids eigenvalue decomposition and arithmetic,
reduces computational complexity and cost, and takes advan-
tage of the fact that polynomial fitting can optionally use
lower order numbers, which transforms computations from
global to local. The graph convolution network (GCN) [36]
reduces Chebyshev networks to a more straightforward form
by invoking a first-order Chebyshev polynomial approxima-
tion. Spatial-based graph convolution is applied similarly
to convolution in deep learning and centers on updating
information by designing different strategies to aggregate
neighboring features. Typical works include graph attention
networks (GATs) [37], which are the first use of the atten-
tion mechanism in the graph domain to learn the weights
between two nodes, and graph SAGE [38], which generates
node embeddings by sampling a fixed number of neighbors
and aggregating their features.

2.3 Traffic prediction

In traffic prediction, researchers have been developing vari-
ous models and methods to predict traffic flow, congestion,
travel time, and other relevant factors to improve traffic man-
agement and planning efficiency. After years of research
and development, researchers have made many achieve-
ments. Classical statistical models such as ARIMA [39]
and SVM [40] usually consider only temporal information
and require the data to satisfy certain assumptions. How-
ever, due to the complexity of the traffic flow data, these
methods do not perform well in practical applications. The
ConvLSTM [41] model combines CNNs and RNNs to cap-
ture spatial and temporal correlations. To better capture the
spatial correlation of data, recent works have used graph con-
volution to learn the spatial correlation of data. DCRNN
[17] proposes diffusion graph convolution to describe the
information diffusion process in spatial networks and uses
an RNN to model the temporal correlation. In [42], GCN
and long short-term memory (LSTM) were combined to
improve the prediction accuracy. ASTGCN [18] introduces

the attention mechanism [43] before spatiotemporal convo-
lution; it uses two attention layers to capture the dynamic
spatiotemporal dependencies of neighboring nodes. Graph
WaveNet [23] discovers hidden spatial dependencies through
learnable node embeddings, which focus spatial depen-
dencies on potential dynamic dependencies of information
collocation. Its temporal convolutional layer captures the
temporal trend of nodes through dilated causal convolu-
tion [44]. Although the transformer algorithm [45] uses a
self-attention mechanism to model spatial-temporal corre-
lations, it is prone to the problem of error accumulation.
Several studies have focused on designing new graph struc-
tures. STFGCN[19] constructs a new spatial-temporal fusion
graph through a data-driven approach that can provide cor-
relations that may not be present in predefined spatial graphs
and introduces a dilated convolution with a dilatation rate
in temporal convolutional layers intending to capture long-
range temporal dependencies. DSTAGNN [20] also uses the
data-driven construction of a dynamic correlation matrix to
generate a new graph structure and a temporal convolu-
tional layer using a multi-scale GTU to capture temporal
correlations.

The existing traffic predictionmodels usually use statistics-
based methods to fill in missing data, but these methods
need to be more accurate. Moreover, the existing missing
data imputation networks cannot be directly applied to traf-
fic datasets. Therefore, in this paper, we will improve the
masking mechanism and training process of GAIN in the
data preprocessing stage so that it can be applied to traffic
datasets and fill in missing data more accurately. Second, the
research mentioned above must be more comprehensive for
modeling spatial and temporal correlations by considering
only single-factor effects. Unlike classical methods that use
only a single adjacent matrix, dynamically fusing graph con-
volution results of static and dynamic adjacencymatrices can
effectively enhance the model’s ability to fully utilize spa-
tial features. In capturing temporal dependence, a time series
prediction method that combines two different methods of
working can focus on both short-term and long-term scales
and grasp the nonlinear change pattern of time-series data in
greater depth.

3 Methodology

In this section, we first present a mathematical formulation
of the problem addressed in this paper. We then detail the
three critical components of our proposed framework: the
data imputation layer, the graph convolution layer, and the
time series prediction layer. Collaboratively, these compo-
nents aim to enhance the model’s performance and improve
its prediction accuracy.
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3.1 Problem definition

We represent the road network as a graph G = (V , E, A),
where V denotes the set of sensors within the road net-
work |V | = N , corresponding to the observations of N
sensors; E denotes the set of edges connected by sen-
sors; and A ∈ R

N×N denotes the adjacency or similarity
matrix representing between nodes. The observed graph sig-
nal X(t) ∈ R

N×r represents an arbitrary time step of the
traffic state, whose elements are the r features observed by
each sensor, such as flow and speed. We aim to predict only
the traffic volume. Given the history of the S time step data,
a model F can be trained to predict the future T time step
graph signals at a time step on the road network as follows:

X(t+1):(t+T ) = F
[
X(t−S,t); G

]
(1)

3.2 Model architecture

This paper proposes a spatial-temporal multifactor fusion
graph neural network model that considers multiple fac-
tors when modeling spatial and temporal dependencies and
dynamically self-learns parallel data for fusion to capture
spatial and temporal dependencies more comprehensively
and predict traffic flow more accurately. We illustrate the
overall architecture of our proposed STMFGNN model in
Fig. 2, which is composed of a data-completion layer, as
shown in Fig. 3; stacked spatial-temporal multifactor fusion
(STMF) blocks, as shown in Fig. 4; and a prediction layer.
The outputs of each STMF block are concatenated and
fed into the prediction layer via a residual connection. We
provide specific details of the model in the following subsec-
tions.

3.2.1 Data imputation layer

Traffic flow data are usually collected by sensors. In practical
applications, the data collected by sensors are often subject to
damage or loss of content due to equipment changes. Many
traffic flow prediction models rely on complete datasets and
often require accurate imputation of missing data before sta-
tistical analysis. This paper uses the GAIN with an improved
maskingmechanism and training process to impute the miss-
ing data.

Take the traffic data of N recording points in a day as
an example,X = (x1, . . . ,xN ) ∈ R

d , where d is the num-
ber of recording points in a day (if it is recorded every
five minutes, then d = 288). For any data vector xi in X,
there is a corresponding binary mask vector mi = {0, 1}d
corresponding to it, where if mi j = 1, xi j is observable;
if mi j = 0, then the data point xi j is missing. Since the

Fig. 2 Framework of the STMFGNN. The architecture consists of three
main components: a data imputation layer, several STMF blocks, and a
prediction block

traffic dataset used in this paper is already missing to vary-
ing degrees, we mark the location of each naturally missing
point in the dataset to form a predefined vector of naturally
missing masks Mnatural . In addition, to train the model, we
also need to introduce an artificial missingmask Mart i f i ci al ,
M = Mnatural + Mart i f i ci al , and train the model through
the imputation loss of artificial missing data and the recon-
struction loss of the original observable data.

As shown in Fig. 3, generator G takes the incomplete
data vector x ∈ R

d , mask vector m ∈ R
d , and noise vari-

able vector z ∈ R
d as inputs. The output interpolation vector

x̃ ∈ R
d and hint vector h = {0, 0.5, 1}d are used as inputs

to the discriminator D, which then tries to distinguish which
components of the whole vector are observed or estimated,
equivalent to predicting the mask vector. The hint vector h
is introduced to provide D with additional information about
the missing data, and by defining h in different ways, it is
possible to control the amount of information about the mask
vector m contained in the hint vector h.
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Fig. 3 Diagram of the data imputation part of the framework. GAIN with an improved masking mechanism and training process was used. The
network consists of a generator and a discriminator

The output of generator G is the estimation vector xG ,
which is defined as follows:

xG = G (x,m, (1 − m) � z) (2)

where � denotes the Hadamard product operation. Note that
G generates not only the values of the missing components
but also the values of the entire data vector, which includes
the values that can be observed. Thus, the imputation vector
x̃ and the reconstruction vector x̄ are defined as:

x̃ = m � x + (1 − m � xG) (3)

x̄ = m � xG + (1 − m � x) (4)

Given a random vector r = {0, 1}d , the hint vector is gen-
erated as follows:

h = m � r + 0.5 (1 − r) (5)

Subsequently, the discriminator D takes the hint vector h
and interpolation vector x̃ as inputs, and the output mD is
the prediction of the mask vector m, which is denoted as:

mD = D
(
x̃, h

)
(6)

The cross-entropy between the output of the discriminator
mD and the artificial missing matrix ma in the generator is
used as the loss function of the discriminator, and is calcu-
lated as follows:

LD (ma,mD, r) = ma logmD + (1 − ma) log (1 − mD)

(7)

The generator uses the reconstruction loss of the original
observable data and the imputation loss of artificial missing
data. At the same time, for the iterative optimization of the
discriminator, the cross-entropy between the discriminator’s
output and the generator’s needs to be calculated. These three
parts are added together as the generator’s loss function:

LG1 (x̄, x) = ‖x̄ − x‖2 (8)

LG2 (x̄, x,ma) = ‖x̄ − x‖2 � ma (9)

LG3 (ma,mD, r) = − [(1 − ma) logmD + ma log (1 − mD)]

(10)

LG = LG1 + α
(
LG2 + LG3

)
(11)
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Fig. 4 An STMF block. This
figure shows the details of the
STMF block. The STMF block
includes a static-dynamic spatial
fusion module and a
long-short-term temporal fusion
module. The spatial fusion
module is composed of a static
graph convolution module and a
dynamic graph convolution
module processed by a
spatial-temporal attention block
working in parallel, followed by
a dynamic gated fusion module.
The temporal fusion module
consists of a multireceptive field
GTU responsible for short-range
scale feature capture, a GRU
responsible for long-range scale
feature capture, and a dynamic
gated fusion module
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where α is a hyperparameter. The training objectives of D
and G are shown below:

min
1
N

N∑
k=1

LD (ma,mD, r)

min
G

1
N

N∑
k=1

LG1 (x̄, x) + α
(
LG2 (x̄, x,ma) + LG3 (ma,mD, r)

)

(12)

3.2.2 Spatial fusion block

Adjacency matrix generation Given the graph structure,
convolution operations are needed to extract node features,

while the adjacency matrix is crucial because it determines
how nodes aggregate information about themselves and their
neighbors. To fully utilize the topology of the network aswell
as the information of the data itself, this paper uses ChebNet-
based graph convolution combined with a spatial-temporal
attention mechanism to learn the network structure and node
information.Unlike previous studies that only used static pre-
defined graphs or dynamic graphs in the graph convolution
part, the graphs used in graph convolution in this paper are
based on two aspects. On the one hand, the predefined static
adjacent matrix ASCG based on the actual sensor connectiv-
ity network is used. On the other hand, the dynamic similarity
matrix ADSG is generated by data-driven generation, a bina-

123



Spatial-temporal multi-factor fusion graph... 9471

rization of the dynamic correlation matrix ADRG based on
theWasserstein distance. Through parallel graph convolution
from the static localized graph and the dynamic similarity
graph, the missing partial spatial dependencies caused by
relying only on a single factor are avoided to mine the com-
plex spatial dependencies between nodes more effectively
and comprehensively.

There is a specific correlation between the traffic flows
of different road nodes, which changes with time, so it is
essential to effectively extract the dynamic correlation fea-
tures between nodes. We regard the traffic data collected at
each node as discrete data and split the historical data into a
single vector at a specific time step, such as one day; then,
the historical traffic data at each node are represented as a
sequence of vectors. Then, we transform the data from these
nodes into probability distributions and use the Wasserstein
distance to calculate the probability distribution similarity
between nodes to capture the spatial correlation between
nodes. TheWasserstein distance is a method used to measure
the difference between two probability distributions. Given
two distributions p and q, the minimum cost required to con-
vert from distribution p to q distribution is evaluated. Taking
the traffic data of N recording points on D days as an exam-
ple, X f ∈ R

D×dt×N , where dt is the number of recording
points in a day (if it is recorded every five minutes, then dt
= 288). The sequence of vectors at the n (n ∈ N) node is
denoted as X f

n = (
wn1,wn2, . . . , wnD

)
, wnd ∈ R

dt , where
d ∈ [1, D]. Using the cosine distance as the cost function,
the conversion cost of the traffic flow vector wn1 i at point n1
on day i to the traffic flow wn2 j at point n2 on day j is as
follows:

cost
(
wn1 i ,wn2 j

) = 1 − w�
n1 i

· wn2 j∥∥wn1 i
∥∥
2 × ∥∥wn2 j

∥∥
2

(13)

where � represents the transpose of the matrix, so the
dynamic correlation distance can be expressed as:

dDRD (n1, n2) � DRD
(
Xn1 , Xn2

) =

inf
γ∈∏[

Pn1 ,Pn2
]
∫
x

∫
y
γ (x, y)

⎛
⎜⎝1 − w�

n1x · wn2 y√
w�
n1xwn1x ×

√
w�
n2 ywn2 y

⎞
⎟⎠ dxd y

s.t.
∫

γ (x, y) d y =
∥∥wn1x

∥∥
2∑D

x=1

∥∥wn1x
∥∥
2

,

∫
γ (x, y) dx =

∥∥wn2 y
∥∥
2∑D

y=1

∥∥wn2 y
∥∥
2
(14)

We obtain a matrix ADRD ∈ R
N×N representing the

degree of relevance between the recorded points, where
ADRD [i, j]=1−dDRD (i, j)∈ [0, 1]. Under the premise of
maintaining a certain sparsity level Psp(Psp as a hyperparam-
eter), for each node of the road network, the Nr = N × Psp
elements with the largest value in row i are retained (the
remaining elements are set to 0). As a result, the dynamic

relevance graph ADRG ∈ R
N×N is obtained. The dynamic

similarity graph ADSG ∈ R
N×N is obtained as a graph struc-

ture by binarizing the ADRG . That is, if the value of these
elements is nonzero, these elements are set to 1. This means
that the most similar Nr nodes of each given node will be
aggregated in the graph convolution. A dynamic similarity
matrix ADSG is availabel for each time step according to the
particular time step of the segmented historical data.

Short-term local traffic flow changes are sudden, fluctuat-
ing, and transitive. Thematrix based on the real road network
in the dataset is used as the static predefined adjacencymatrix
ASCG ∈ R

N×N . For the static adjacencymatrix , in the actual
road network, if two nodes are connected, the value is set
to 1; otherwise, it is set to 0. This matrix is represented as
follows:

ASCGi j =
{
1, i f vi ad j ecent v j

0, otherwi se
(15)

Graph convolution layer After obtaining the graph structure
based on different factors, a convolution operation is needed
to aggregate and update the node features. To fully utilize the
topology of the network and the information of the data itself,
this paper uses a parallel static-dynamic graph convolution
based on ChebNet to learn the network structure and node
information. The scaled Laplacian matrices used in the static
and dynamic graph convolution parts are defined separately
in the graph convolution. The scaled Laplacianmatrices used
in the static and dynamic graph convolution parts are defined
separately in the graph convolution. The scaled Laplacian
matrix for the static Chebyshev polynomial is defined as
L̃s = 2

λs
max

(Ds − As) − IN , where As = ASCG , IN is the

unit matrix, Ds ∈ R
N×N is the degree matrix, and the ele-

ments Ds
i i = ∑

j A
s
i j and λs

max are the largest eigenvalues
in the Laplace matrix Ls = (Ds − As). The scaled Laplace
matrix of the dynamic Chebyshev polynomial is defined
as Ld = 2

λd
max

(
Dd − Ad) − IN , where Ad = ADSG , IN is

the unit matrix, Dd ∈ R
N×N is the degree matrix, and the

elements Dd
i i = ∑

j A
d
i j and λd

max are the the largest eigen-

values in the Laplace matrix Ld = (
Dd − Ad).

Both the static and dynamic graph convolution parts use
K th-order Chebyshev polynomials to aggregate the graph
signals; that is, they perform graph convolution. The differ-
ence is that the static part directly processes the graph signals
as follows:

gθ ∗ Gx = gθ (L) x = ∑K−1
k=0 θkTk

(
L̃s

)
x (16)

In the dynamic part, to fully use the dynamics between
nodes and the nodes themselves, the graph signal is pro-
cessed by the widely used spatial-temporal attention module
to obtain the attention matrix. The attention matrix adjusts
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each item of the Chebyshev polynomial and thenmultiplies it
with the original graph signal, which is expressed as follows:

gθ ∗ Gx = gθ (L) x = ∑K−1
k=0 θk

(
Tk

(
L̃s

)
� P (k)

)
x

(17)

where gθ denotes the approximate convolution kernel, which
extracts the information of the 0 to K − 1-order surrounding
neighbors centered at each node; ∗G represents the graph
convolution operation; θ ∈ R

k is a learnable vector of poly-
nomial coefficients;� represents the Hadamard product; and
P (k) ∈ R

N×N is the attention matrix. This definition can be
extended to graph signals with multichannel inputs, such
as inputs Xr = (X1, X2, . . . , XM) ∈ R

N×Cr−1×M . Each
input feature of each node has Cr−1 feature channels, and the
convolution kernel parameter is gθ ∈ R

K×Cr−1×Cr . Eventu-
ally, eachnode can aggregate0 ∼ K − 1order neighbor node
information to update its node information.

Therefore, the static graph convolution part aggregates
information about local neighboring nodes by employing a
predefined static adjacent matrix based on the actual sensor
connectivity network. The dynamic graph convolution part
aggregates information about themost globally similar nodes
using a dynamic similarity matrix. The result of static graph
convolution is Zs ∈ R

N×M×Cr , and the dynamic graph
convolution result is Zd ∈ R

N×M×Cr . Static and dynamic
two-part graph convolutions consider interactions between
nodes from local and global perspectives. As a result, they
should exert distinct influences on the final prediction. The
specific influence should be learned from historical data. To
realize this, we introduce a dynamic gating fusion module
to rationally assign the respective importance weights and
adaptively fuse the static and dynamic convolution results:

Zr = δ · Z(r)
s + (1 − δ) · Z(r)

d (18)

where δ ∈ [0, 1] is the self-learning fusion parameter, which
reflects the contribution degree of the static graph convo-
lution and dynamic graph convolution parts to the result.
Z(r) ∈ R

N×M×Cr is the final output of the graph convolu-
tion module, which is used as input to the temporal fusion
layer of the next module. It is worth noting that as mentioned
above, the dynamic graphs are calculated by dividing the data
according to a specific time step. Each specific time step has
a different dynamic graph, so the fusion parameters are also
different at each time step according to this time step.

3.2.3 Temporal fusion layer

Traffic flow data are typical spatial-temporal data. After the
extraction and processing of spatial dependencies between
road network nodes via graph convolution, the temporal

dependencies of data on each node must be further cap-
tured. Most traffic prediction models use convolution alone
to extract temporal features, which results in the loss of
dynamic long-term data features. With the development of
deep learning methods, a large number of researchers have
found that RNNs can learn time series features better than
back propagation (BP) neural networks [46]. As a variant
of RNN, GRU [47] is more capable of extracting dynamic
long-term features in the time dimension, has fewer param-
eters and is easier to train than LSTM [48],compensating
for the deficiency of convolutional methods. Therefore, to
utilize multi-scale temporal features, this paper introduces
GRU while using M-GTU, so as to capture the temporal
dependencies more comprehensively with two time-series
data prediction methods that work in different ways. M-GTU
uses gated convolution with three different receptive fields to
enhance the model’s ability to perceive different degrees of
short-term temporal dependencies. GRU uses a gating mech-
anism to control the flow of information in the sequence,
which can better handle the flow of information between
each stage in a long-term sequence and provide more robust
long-term time-dependent modeling capabilities. By fusing
multiscale temporal features, the patterns of data changes can
be better understood, further enhancing the model’s ability
to perceive time dependence.

In the GTU section, we use a convolutional kernel
� ∈ R

1×S×Cr×2Cr to double the number of channels for
the input Z(r) ∈ R

N×M×Cr , where 1 × S represents the ker-
nel size, and the input becomes Z

′(r) ∈ R
N×(M−(S−1))×2Cr

after the convolution. The GTU of traditional convolution is
defined as follows:

�∗τ Z
(r) = φ (E) � σ (F) ∈ R

N×(M−(S−1))×2Cr (19)

where, ∗τ is the gated convolution operation, φ (·) and σ (·)
are the tanh function and sigmoid function, respectively, and
E and F correspond to the pre-r and post-r parts of the
channel of input Z

′
, respectively. To enhance the ability of the

GTU part to perceive different degrees of time dimensions,
gated convolutional modules with different receptive fields
are used respectively, and then their outputs are fused and
introduced into the residual structure as the output of the
M-GTU part, which is defined as follows:

Z(r)
mout = M − GTU

(
Z(r)

)
=

Relu
(
FC

(
Concat

(
�1∗τ Z

(r), �2∗τ Z
(r), �3∗τ Z

(r)
))

+ Zr
)

(20)

where�1,�2 and�3 ls of 1 × S1, 1 × S2, and 1 × S3, respec-
tively. FC (·) denotes the fully connected operation to adjust
the different sizes of the same feature dimension caused by
the operation Concat (·) to ensure that it matches the orig-
inal input size of the M-GTU, and the residual structure is
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realized by skip connection. Finally, the M-GTU partial out-
put Z(r)

mout ∈ R
N×M×Cr is obtained by the ReLU activation

function.
The input of the GRU part is the same as that of the M-

GTU part, but since the GRU-Cell is a single-step prediction,
the input for each step is . The GRU part is defined as:

zt = σ (Wz · [ht−1, xt ]) (21)

rt = σ (Wr · [ht−1, xt ]) (22)

h̃t = tanh (W · [rt ∗ ht−1, xt ]) (23)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (24)

Z(r)
gout = GRU

(
Z(r)

)
= Stack

(
ht1, ht2, . . . , htM

)
(25)

The input of eachmoment t includes the hidden state of the
previous moment ht−1 and the input of the current moment
xt , and the output of the update gate zt is used to control the
updated degree of the current state. The output of the reset
gate rt is used to control the influence of the past state on
the current state to filter unnecessary information; the can-
didate hidden state h̃t is formed by the superposition of the
current input and the past state. The hidden state at the cur-
rent moment ht is updated by the update gate, the weighted
average of the past state, and the weighted average of the
candidate’s hidden state. After accumulating predictions for
M time steps, the output Z(r)

gout ∈ R
N×M×Cr is obtained as

the result of the GRU part.
As a result, the M-GTU mainly captures short-term tem-

poral dependencies, and the output is Z(r)
Mout ∈ R

N×M×Cr .
In contrast, the GRU part improves the capture of long-term
temporal dependencies, and the output is Z(r)

gout ∈ R
N×M×Cr

for this part. Similar to the graph convolution static-dynamic
parallel module, both theM-GTU andGRUparts also use the
dynamic gated fusionmodule to adaptively fuse the results of
these two parts to self-learn the influence of short-term and
long-term dependencies from historical data. It is expressed
as follows:

Z(r)
out = λ · Z(r)

mout + (1 − λ) · Z(r)
gout (26)

where Z(r)
out = λ · Z(r)

mout + (1 − λ) · Z(r)
gout is the adaptive

learning parameter that also changes dynamically with the
specific time step mentioned in the previous section, reflect-
ing the extent to which the short-term versus the long-term
influence of the time series prediction component impacts
final prediction result, and Z(r)

out ∈ R
N×M×Cr is the final out-

put of the temporal fusion module.

4 Experimentation

In this section, we present experiments conducted on real
datasets to verify the effectiveness of the STMFGNN. First,
we introduce the datasets used for our experiments. Second,
we introduce some baseline methods, conduct compara-
tive experiments with overall and different prediction time
targets, and conduct ablation experiments and statistical anal-
ysis to showcase the performance of our model compared
to the baselines. Finally, we conduct parameter research
experiments and time cost experiments, aswell as some inter-
mediate component and result visualization experiments.

4.1 Datasets

The experiments were conducted on four actual roadway
datasets (PEMS03, PEMS04, PEMS07, and PEMS08) from
California. These datasets were collected in real time by the
PEMSsystemevery30 seconds, aggregating the rawdata into
5-minute intervals. In addition, the datasets contain spatially
adjacent matrices constructed based on actual road networks.
Table 1 shows more details about the datasets.

4.2 Baselinemethod

We compare our STMFGNN with the following baselines:

1. DCRNN [17]: Diffusion Convolutional Recurrent Neu-
ral Network. It captures spatial correlation by modeling
traffic flow changes as a one-dimensional convolutional
diffusion process.

2. STGCN [22]: Spatio-Temporal Graph Convolutional
Network. It integrates graph convolution into 1D con-
volutional units and incorporates causal convolution to
process temporal information.

3. GraphWaveNet [23]: GraphWaveNet combines adap-
tive graph convolution and extended causal convolution.

4. ASTGCN [18]:AttentionBasedSpatial-TemporalGraph
ConvolutionalNetworks. It introduces an attentionmech-
anism before spatio-temporal convolution.

5. STSGCN [19]: Spatial-Temporal Synchronous Graph
Convolutional Networks: A New Framework for Spatial-
Temporal Network Data Forecasting. It designs spatio-
temporal subgraphs to capture heterogeneity in local
spatio-temporal graphs.

6. AGCRN [49]: Adaptive Graph Convolutional Recurrent
Network. It proposes an adaptive graph convolutional
recurrent network to automatically unify information
through node embedding to capture fine-grained spatio-
temporal traffic sequence correlations.

7. STFGNN [50]: Spatial-Temporal Fusion Graph Neural
Networks for Traffic Flow Forecasting. It proposes the a
"temporal graph" and compensates for correlations that
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Table 1 Statistics and
description of the datasets

Datasets Sensors Edges Time step Time scale Missing ratio(%)

PEMS03 358 547 26208 2018/9/1-2018/11/30 0.672

PEMS04 307 340 16992 2018/1/1-2018/2/29 3.182

PEMS07 883 866 28224 2017/5/1-2017/8/31 0.452

PEMS08 170 295 17856 7/1/2016 - 8/31/2016 0.696

may not be reflected in the spatial graph through the
spatio-temporal fusion graph.

8. Z-GCNETS [51]: Time Zigzags at Graph Convolutional
Networks for Time Series Forecasting. It introduces the
concept of time-aware zigzag persistence into learning
temporal conditional graph structures and develops a
zigzag topology layer (Z-GCNET) for time-aware graph
convolutional networks (GCNs).

9. DSTAGNN [20]: Dynamic Spatial-Temporal Aware
Graph Neural Network. It uses dynamic spatial-temporal
aware graphs to model spatial-temporal interactions in
road networks.

4.3 Experiment settings

For a fair comparisonwith the previous baselines, we divided
the data from PEMS03, PEMS04, PEMS07, and PEMS08
into a training set, a validation set, and a test set at the ratio
of 6:2:2. We use the historical traffic flow data for the past 1
hour (that is, 12 consecutive time steps) to predict the traffic
flow data for the next 1 hour (that is, 12 consecutive time
steps). The experiments were conducted in an AMD EPYC
7T83 CPU and an NVIDIA RTX 4090 24 GB GPU environ-
ment. We set the following hyperparameters: all experiments
stacked 5 layers of STMF blocks. The number of Chebyshev
polynomial terms K is 3. The number of heads of the spatial-
temporal multihead attention mechanisms paired with the
dynamic graph convolution is 3. The sparsity Psp of the
dynamic graph is 0.01. The convolution kernel of the M-
GTU along the time dimension is {S1,S2,S3}={2, 5, 8}. To
train the model, we employed the Huber loss function, and
the threshold parameter of the loss function was set to 1.
We used the Adam optimizer with a learning rate of 0.0001
for 100 epochs. The settings for the batch size varied from
dataset to dataset and were 32, 32, 12 and 64.

4.4 Evaluation indicators

The mean absolute error (MAE), the mean absolute percent-
age error (MAPE), and the root mean squared error (RMSE)
are used to calculate the model’s performance in terms of
error [52]. Lower values of MAE and RMSE indicate lower
prediction errors of the model, while lower values of MAPE
indicate lower relative errors of the model. In addition, some

of the baselinemethod results ( markedwith * in Tables 2 and
3 ) were obtained by running the corresponding open-source
code. In contrast, the other part was extracted directly from
published papers. The above mathematical formulas are as
follows:

RMSE
(
y, ŷ

) =
√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2 (27)

MAE
(
y, ŷ

) = 1
n

n∑
i=1

∣∣ yi − ŷi
∣∣ (28)

MAPE
(
y, ŷ

) = 100%
n

n∑
i=1

∣∣ yi − ŷi
∣∣

yi
(29)

4.5 Experimental results and analysis

4.5.1 Overall comparison

Table 2 shows the average results of our STMFGNN and ten
baseline methods for 60-minute predictions on the PEMS03,
PEMS04, PEMS07, and PEMS08 datasets. The results show
that our STMFGNNoutperforms the baselinemodel in terms
of all the metrics on all four datasets, achieving the best
results.

The relatively poor performance of GraphWaveNet may
be due to its inability to superimpose its spatial-temporal lay-
ers, resulting in a relatively minor feature receptive range.
Moreover, methods such as the DCRNN, STGCN and AST-
GCN highly rely on predefined graph structures which is
helpful for short-termprediction.However, the dynamic rela-
tionship between nodes will be ignored over time, so the
effect of long-term prediction is significantly reduced; thus,
these methods perform poorly. STSGCN extracts only local
spatial dependencies and requires more data to build sub-
graphs for training; thus, limited by the size of the dataset,
it performs generally and may perform better on large-scale
graphs. In contrast, the STFGCN and DSTAGNN, which use
a dynamic graph structure to model spatial dependencies,
significantly improve the prediction performance, indicating
that such methods can capture the underlying spatial depen-
dencies over time. However, they discard the predefined
graph structure and use only the dynamic graph structure that
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Table 2 Performance comparisonof our STMFGNNandbaselinemod-
els

Datasets Models MAE MAPE(%) RMSE

Pems03 Graph WaveNet 19.85 19.31 32.94

DCRNN 18.18 18.91 30.31

STGCN 17.49 17.15 30.12

ASTGCN 17.69 19.40 29.66

STSGCN 17.48 16.78 29.21

AGCRN 15.98 15.23 28.25

STFGNN 16.77 16.30 28.34

Z-GCNETS 16.64 16.39 28.15

DSTAGNN* 15.64 14.73 27.33

STMFGNN(Ours) 15.51 14.43 27.01

Pems04 Graph WaveNet 25.45 17.29 39.70

DCRNN 24.70 17.12 38.12

STGCN 22.70 14.59 35.55

ASTGCN 22.93 16.56 35.22

STSGCN 21.19 13.90 33.65

AGCRN 19.83 12.97 32.26

STFGNN 19.83 13.02 31.88

Z-GCNETS 19.50 12.78 31.61

DSTAGNN* 19.45 12.83 31.72

STMFGNN(Ours) 19.32 12.69 31.42

Pems07 Graph WaveNet 26.85 12.12 42.78

DCRNN 25.30 11.66 38.58

STGCN 25.38 11.08 38.78

ASTGCN 28.05 13.92 42.57

STSGCN 24.26 10.21 39.03

AGCRN 22.37 9.12 36.55

STFGNN 22.07 9.21 35.80

Z-GCNETS 21.77 9.25 35.17

DSTAGNN* 21.72 9.25 34.96

STMFGNN(Ours) 21.54 9.10 34.77

Pems08 Graph WaveNet 19.13 12.68 31.05

DCRNN 17.86 11.45 27.83

STGCN 18.02 11.40 27.83

ASTGCN 18.61 13.08 28.16

STSGCN 17.13 10.96 26.80

AGCRN 15.95 10.09 25.22

STFGNN 16.64 10.60 26.22

Z-GCNETS 15.76 10.01 25.11

DSTAGNN* 15.81 9.96 25.06

STMFGNN(Ours) 15.66 9.86 24.71

Note: * denotes retraining _ denotes the best indicator among the base-
lines

changes in time units of days, resulting in ignoring themutual
transmission of traffic fluctuations between actual adjacent
nodes at a single time point. Furthermore, predefined graphs
might contain noise, and the generated dynamic graphs are
also constrained by these limitations. Thus, they are not as

effective as our STMFGNN. Second, most of the abovemod-
els still fundamentally rely on variants of 1D convolution
for modeling temporal dependence. For time series data, 1D
convolution does not fully consider historical data, leading
to inaccurate predictions of time series data and affecting
overall predictive performance.

Our method comprehensively considers multiple factors,
aiming to model spatial and temporal dependencies as thor-
oughly as possible. In spatial dependency modeling, we
utilize both the static adjacency graph as local prior knowl-
edge and the dynamic similarity graph generated based
on Wasserstein distance as global hidden knowledge. This
design enables our model to comprehensively capture com-
plex spatial dependencies. For temporal dependency, we
dynamically fuse short-term temporal features extracted by
M-GTU and long-term temporal information captured by
GRU, overcoming the trade-off between short-term and long-
term temporal dependencies. Therefore, our model avoids
the problem of missing spatial-temporal dependency model-
ing caused by excessive dependence on a single factor. As
a result, our model performs better than the baseline meth-
ods, especially on the PEMS07 dataset, which has the largest
graph size and the longest total time steps.

To demonstrate our model’s performance in both short-
term and long-term forecasting tasks, we also selected some
of the baseline models and compared their prediction per-
formances with our proposed STMFGNN under the same
conditions for different prediction steps. Specifically, Table 3
shows the performance comparison between the STMFGNN
and selected baseline models for 15 minutes, 30 minutes,
and 60 minutes on the PEMS04 and PEMS08 datasets. The
results show that our STMFGNN outperforms the selected
baseline models in terms of all the metrics, both for short-
term and long-term predictions. This improvement may be
attributed to the complex modules in our model, which are
tailored to excel in situations where they are most needed for
both short-term and long-term predictions. To more visually
show the performance of some of the baseline models and
our STMFGNN under different prediction steps, Fig. 5 plots
the data from Table 3 as a line graph.

In general, as the prediction target time interval becomes
longer, the corresponding prediction difficulty increases,
leading to larger prediction errors. As shown in Table 3 and
Fig. 5, models using predefined graph structures, such as
DCRNN, STGCN, and ASTGCN, do not show significant
differences in performance compared to improved models
using dynamic graphs in short-term predictions. However,
as the prediction interval increases, the prediction accu-
racy of these models decreases significantly. In contrast,
DSTAGNN, which uses dynamic graph structures, shows a
slower decline in performance. This is mainly because the
previously mentioned models only consider the influence
of neighboring nodes and fail to capture the time-varying
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Table 3 Performance comparison of our STMFGNN and selected baseline models on the PEMS04 and PEMS08 datasets

Models 15min 30min 60min
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

PEMS04

DCRNN 19.34 30.77 12.82 21.11 33.56 14.01 24.52 38.84 16.40

STGCN 19.66 30.84 12.44 22.47 34.38 13.93 28.68 42.21 17.36

ASTGCN 21.01 32.22 15.37 22.23 34.01 16.44 25.28 38.29 19.00

DSTAGNN* 18.47 29.99 12.36 19.41 31.71 12.73 21.20 34.43 14.04

STMFGNN 18.35 29.53 12.05 19.29 31.34 12.70 21.03 34.13 13.71

PEMS08

DCRNN 14.78 23.06 9.90 16.06 25.42 10.64 18.56 29.22

STGCN 15.16 23.61 8.95 17.47 27.01 10.15 22.08 33.48 12.37

ASTGCN 18.05 27.50 12.16 18.55 28.44 12.39 20.74 31.51 13.89

DSTAGNN* 14.75 23.16 9.34 15.83 25.05 9.95 17.62 27.99 10.97

STMFGNN 14.60 22.92 9.25 15.55 24.55 9.81 17.44 27.48 10.95

Note: * denotes retraining _ denotes the best indicator among the baselines

Fig. 5 Comparison of the performances of several of the baseline models on the PEMS04 and PEMS08 datasets
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dynamic spatio-temporal correlation. DSTAGNN leverages
the generated dynamic graph structure to better model the
dynamic spatio-temporal dependencies that are more crucial
for long-term predictions. However, DSTAGNN considers
only global dynamic spatio-temporal dependencies and over-
looks the impact of local neighboring node trafficfluctuations
on node traffic changes, resulting in less effective perfor-
mance compared to our model. The results demonstrate that
our STMFGNN outperforms the selected baseline models
in all metrics, both in short-term and long-term predictions.
This superior performance is due to our model simultane-
ously modeling both static local and dynamic global spatial
dependencies and dynamically integrating GTU, responsi-
ble for capturing short-term temporal features, with GRU,
responsible for long-term temporal dependency modeling.

4.5.2 Ablation experiments

To further evaluate the effectiveness of the individual com-
ponents in the STMFGNN, we made the following variants
of the STMFGNN:

1. RemDI: removes the data preprocessing layer and uses
the original traffic flowdata directly as input; that is, there
is no complementary processing of missing data;

2. RemSSC: in the graph convolution part, the static graph
convolution part that uses static graphs is removed, but
the dynamic convolution module is retained;

3. RemGRU: in the time series prediction layer, theM-GTU
module is retained, but the GRU module is removed.

We selected the PEMS08 dataset, which has the small-
est graph size, and the PEMS07 dataset, which has the
largest graph size, as representative datasets to conduct abla-
tion experiments and compared the results with DSTAGNN,
which is the state-of-the-art model in the baseline. Table 4
shows the measurements of each performance metric, and it

Table 4 Ablation experiment of module effectiveness

Datasets Module Composition MAE MAPE(%) RMSE

DSTAGNN 15.81 9.96 25.06

RemDI 15.76 9.88 24.90

PMES08 RemSSC 15.72 9.93 24.81

RemGRU 15.73 9.90 24.82

STMFGNN 15.66 9.86 24.71

DSTAGNN 21.72 9.25 34.96

RemDI 21.55 9.10 34.78

PMES07 RemSSC 21.56 9.11 34.80

RemGRU 21.57 9.13 34.95

STMFGNN 21.54 9.10 34.77

can be clearly observed that our STMFGNN outperforms the
other variants and the baseline, confirming the effectiveness
of each individual module in our model.

Table 4 shows the average results of the 60-min prediction
performance for comparison, while Figs. 6 and 7 compare the
prediction performance at different time settings for the 5-
min, 20-min, 40-min, and 60-min settings. These different
prediction durations represent short-term predictions (5 and
20 minutes) and long-term predictions (40 and 60 minutes),
respectively.

The results of the ablation study are shown in Figs. 6 and 7,
from which it can be seen that each component of the model
contributes positively to the performance improvement of the
whole model, and the conclusions obtained are as follows:

• As shown in Fig. 6, for the model without data impu-
tation preprocessing, the effect of the model using the
other parts of the critical design also outperforms that
of the baseline, indicating the effectiveness of other cru-
cial design aspects. However, as shown in Fig. 7, the
variant after data imputation preprocessing consistently
outperforms the baseline in various performance met-
rics, highlighting the vital role of the data imputation
module. For the PEMS07 dataset, which is character-
ized by large-scale and minimal missing data, the impact
of data imputation on model performance is not signif-
icant since the available data are sufficient to support
network training. However, as illustrated in Fig. 6a, for
the smaller-scale PEMS08 dataset with existing missing
data, the data imputation module significantly enhances
model performance.

• As shown in Fig. 7, removing the static spatial convolu-
tion part of the graph convolution layer has a significant
impact on the short-range prediction performance. How-
ever, due to the combination of short-term and long-term
time series prediction methods used in the temporal pre-
diction layer, especially GRU, which is responsible for
long-term time series prediction, the long-term predic-
tion performance is better than that of the RemGRU,
which illustrates the effectiveness of the GRU compo-
nent for long-term temporal dependency capture. On the
large-scale graph-structured PEMS07 dataset, this effect
is even more pronounced. As shown in Fig. 7b, starting
from the 20-minute prediction target, the GRU compo-
nent has already demonstrated a significant enhancement
in predictive performance.

• As shown in Fig. 7, removing the GRU component of the
time series prediction layer has a significant impact on
the long-term prediction performance. However, due to
the effect of the static local spatial convolution module in
the graph convolutional layers, the short-term predictive
performance is better than that of the non-static spatial
convolution variant. Especially for the 5-minute predic-
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Fig. 6 Ablation experiment of the unimputated variant

tion target, the static local spatial convolution has an
obvious effect, indicating that it has a good ability to cap-
ture traffic fluctuations. This confirms the effectiveness
of the static spatial convolution for extracting local static
spatial relational dependencies and verifies its effective-
ness in improving the performance of short-term traffic
prediction.

• Overall, the results from Table 4 and Figs. 6 and 7
collectively demonstrate that our STMFGNNmodel out-
performs its various variants and baseline models. This
confirms the effectiveness of the synergy of the various
components in our model.

4.5.3 Visualization of data imputation

The improvement effect of missing data point imputation on
the overall model prediction performance has been explained
in detail in the previous section on ablation experiments.

Since the PEMS04dataset has a highmissing data rate among
the four datasets, the nodes with missing data points in this
dataset are used as examples to visually compare the effect of
imputing to demonstrate the superiority of our method more
comprehensively. Each node in the PEMS04 dataset contains
16,992 data points, and Fig. 8 shows the imputation compar-
ison results for node 10, which contains 2,464 missing data
points, and node 12, which contains 677 missing data points.

As shown in Fig. 8, our imputation method can accurately
learn the distribution trend of the data and reasonably fill in
missing data points, whether for continuous or discrete miss-
ing points. Specifically, for consecutive missing data points,
our method accurately captures the overall trend of the data
and performs smooth imputation. For scattered missing data
points, our method effectively restores the variability of the
data, ensuring that the imputed data aligns with the trend of
the surrounding data points. Overall, the data after imputa-
tion show a more complete and consistent trend, which is a
significant improvement compared to the original data.
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Fig. 7 Ablation experiment of other variant

4.5.4 Visualization of spatial dependency

To enhance the interpretability of the proposed model and
demonstrate its effectiveness in capturing dynamic spa-
tiotemporal dependencies, Fig. 9 shows the visualization
results of the STMFGNN’s predefined static adjacent matrix
and the dynamic correlation matrix on the first day of record-
ing for 20 nodes from nodes 0 to 19 in the PEMS08 dataset.
As seen from Fig. 9, in terms of days, the two nodes adja-
cent to each other are not necessarily the most correlated,
although they are physically closest. In contrast, even when
two nodes are not adjacent or are geographically distant, they
may be highly relevant to each other due to their similar
patterns of change. Our model is able to capture potential
spatial correlations in a global scope beyond just the adjacent
nodes, indicating that STMFGNNextracts complex informa-
tion within the road network and can capture time-varying

spatial dependencies. This capability allows the model not
only to rely on predefined adjacency relationships but also to
dynamically adjust the correlations between nodes based on
actual observed data, thereby more accurately reflecting the
spatio-temporal interactions between nodes in the real traffic
network.

The visualized results of these dynamic correlation matri-
ces clearly show how our method surpasses the limitations
of traditional static graph structures, revealing deeper asso-
ciations between nodes. This further demonstrates the effec-
tiveness and superiority of STMFGNN inmodeling dynamic
spatio-temporal dependencies, providing strong support for
understanding and interpreting the model. Additionally, this
dynamic modeling capability makes our model more flexible
and adaptable in practical applications, allowing it to more
accurately tackle complex and variable traffic flowprediction
tasks.
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Fig. 8 Comparison of missing data imputed on the PEMS04 dataset. Figures (a) and (b) show the comparison between the original data and the
missing point data after filling on node 10 and node 12 of the PEMS04 dataset, respectively

Fig. 9 Visualization results of the graphs used for the STMFGNN at nodes 0 to 19 on the PEMS08. Figure (a) shows the predefined static adjacent
matrix of the nodes. Figure (b) shows the dynamic correlation matrix. Figure (c) shows the binarization of the dynamic correlation matrix with a
specific sparsity setting
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Table 5 Parameter study of STMF block stacking layers

Stacking Layers MAE MAPE(%) RMSE

4 15.82 9.94 25.06

5 15.66 9.86 24.71

6 15.84 10.08 24.95

4.5.5 Parametric studies

To further investigate the effect of hyperparameter setup
on model performance, we conducted a parameter study
experiment on the PEMS08 dataset for the control variables
that have a significant impact on model performance. This
includes the stacked layers of the STMF block, the size of
the convolutional kernel along the time dimension in the M-
GTU, and the batch size. KS represents the kernel size along
the time dimension in the M-GTU module. Tables 5, 6, and
7 show the results of the experiments.

We observed that the number of STMF blocks signifi-
cantly affects the performance of our model. There is an
optimal range for the number of STMF blocks that bal-
ances the benefits of deeper architectures with the risks
of overfitting and gradient issues. Typically, a moderate
depth outperforms very shallow or excessively deep models.
Deeper models performing better than shallow ones because
fewer layers lead tomodel underfitting, but too deepnetworks
may lead to problems such as vanishing gradients, explod-
ing gradients, or model overfitting. As shown in Table 5,
the stacking of STMF blocks can significantly improve the
model performance. The reason behind this phenomenon is
that adding more STMF blocks enables the model to cap-
ture more complex spatial-temporal features, enhancing the
model’s expressive capability. However, as the number of
layers continues to increase, the model performance begins
to decline. We attribute this to the issue of vanishing or
exploding gradients caused by overly deep network struc-
tures, thereby impacting the model’s training effectiveness.
Moreover, an excessive number of STMF blocks may intro-
duce too much noise, leading to overfitting of the training
data. The experimental results demonstrate that the model
achieves optimal performance when stacked with 5 layers of
STMF blocks, striking a balance between capturing intricate
features and avoiding overfitting.

Table 6 Parameter study of K-S

K-S MAE MAPE(%) RMSE

3,5,7 15.73 9.86 24.84

2,5,8 15.66 9.86 24.71

4,5,6 15.91 9.90 25.01

The kernel size significantly affects temporal feature
extraction. In particular, a larger kernel size increases the
receptive field, allowing the model to capture longer-term
dependencies. However, if the kernel size is too large, it may
include irrelevant information and noise, which can degrade
performance. Conversely, a smaller kernel size focuses on
short-term dependencies and may miss out on important
long-term patterns. Table 6 illustrates the impact of differ-
ent convolution kernel sizes on model performance. It is
observed that utilizing a combination of 2, 5, 8 receptive
fields significantly enhances the model’s predictive perfor-
mance. This suggests that when simultaneously utilizing
short-term and long-term temporal information, the model
can better capture patterns and trends within time series data.
Smaller convolution kernels (e.g., 2) are adept at capturing
fine-grained short-term variations, while larger kernels (e.g.,
8) excel at capturing long-term trends. The combination of
varying kernel sizes allows the model to exhibit greater flexi-
bility in processing temporal information, thereby improving
prediction accuracy.

Batch size significantly affects the stability and conver-
gence of model training. As shown in Table 7, a batch size
of 64 yielded the best performance for the model on the
PEMS08 dataset. Smaller batch sizes, such as 32, update the
model parameters more frequently, which can introduce high
noise levels during the update process, causing the model to
get stuck in local minima. Additionally, models trained with
small batches may experience unstable convergence due to
frequent parameter updates. On the other hand, excessively
large batch sizes can lead to each update containing toomuch
information, which may cause the model to overfit the train-
ing data and perform poorly on the test set. A batch size of
64 strikes a balance between update frequency and stabil-
ity, allowing the model to avoid local minima and preventing
overfitting. This balanced batch size ensures that the model
benefits from stable convergence while maintaining the abil-
ity to generalize well to unseen data.

These experimental results demonstrate the performance
of our model under different hyperparameter settings and
help to understand how to optimizemodel parameters for best
performance. By reasonably adjusting the stacked layers of
the STMF block, convolution kernel size and data batch size,
we can further improve the prediction accuracy and stability
of the model.

Table 7 Parameter study of data batch size

Batch Size MAE MAPE(%) RMSE

32 15.76 9.87 24.95
64 15.66 9.86 24.71
128 15.78 9.92 25.00
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Table 8 TF values corresponding to each metric

Metrics TF

MAE 64.6923

RMSE 52.3846

MAPE 45.5890

4.5.6 Statistical analysis

To verify the performance differences between our model
and the baseline models listed in Table 2, we conducted the
Friedman test and Nemenyi post-hoc test.

The Friedman test assumes that all k compared methods
exhibit the same performance across N datasets. The first
step is calculating Tx2 and TF according,

TF = (N − 1) Tx2
N (k − 1) − Tx2

(30)

where Tx2 = 12N
k(k+1) (

∑k
i=1 r

2
i − k(k+1)

4 ) and ri represents
the average rank value of the i-th model. In addition, TF
obeys the F-distribution with degrees of freedom k − 1 and
(k − 1)(N − 1).

The second step tests whether the assumption is true
by comparing TF and its corresponding threshold. If the
assumption is denied, there are significant differences in the
performance of the models being compared. Then, a post
hoc test is required to further distinguish the algorithms. The
Nemenyi test is a common post-hoc test.

The Nemenyi calculates the critical distance by For-
mula 31 to reflect the differences between the average rank
values of each method:

CD = qα

√
k + 1

6N
(31)

where qα represents the critical value of the Tukey distribu-
tion and CD is the critical value for the Nemenyi test. If the
difference between the average rank values of two methods
exceeds the critical value range, it indicates significant per-
formance differences between the two methods; otherwise,
no significant differences are observed.

In our experiment, N = 4 and k = 0. When α = 0.05,
according to (30), Table 8 displays the corresponding values
for the MAE, RMSE, and MAPE, all of which surpass the
threshold of 2.2501. In other words, the assumption that all
algorithms have the same performance is denied; therefore,
we need to use the Nemenyi test to continue verification.
With CD = 6.3113, as calculated by (31), we generated the
Friedman test graph, as shown in Fig. 10.

Overall, we can conclude that, overall, our proposedSTM-
FGNN exhibits significant differences in MAE, RMSE, and
MAPE compared to those of the STFGNN, AGCRN, STS-
GCN, ASTGCN, STGCN, DCRNN, and Graph WaveNet,
with no substantial differences observed compared to those
of the top-performingmethods,DSTAGNNandZ-GCNETS,
in recent years. As shown in Fig. 10, our method achieves the
best average ranking in comparison with the other methods
regardless of whichmetric is used. In summary, our proposed
method is statistically superior.

4.5.7 Time cost study

The timecost of eachmodule in ourmodel is closely related to
the size of the dataset. To show the time cost more intuitively,
we test the time cost of the proposed model on four datasets
under the experimental settings described in Section 4.3, and
the results are shown in Table 9.

The data imputation module includes a generative adver-
sarial imputation network, which includes a generator and a
discriminator. The time complexity of the generator and dis-
criminator can be expressed as O(1) or O(k), where k is the

Fig. 10 Friedman test charts. For each algorithm, the blue dot marks its average rank. The horizontal lines with the dot as the center indicate the
critical distance. No overlapping areas of the lines indicate a significant difference
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Table 9 STMFGNN run speed
comparison

PEMS03 PEMS04 PEMS07 PEMS08

Data Imputation Module(s) 29 22 139 11

Precomputing the Dynamic Graph (s) 1604 1374 5400 655

Graph Convolution Process (s/epoch) 240 128 425 70

Time Series Prediction (s/epoch) 324 210 500 112

STMFGNN (s/epoch) 578 460 1224 204

number of network parameters, and usually does not change
significantly with the size of the dataset. The time complex-
ity of training a generative adversarial imputation network is
related to the dataset size and is usually expressed as O(T N ),
where T represents the total time step in the dataset and N
represents the number of sensors. Specifically, Table 9 shows
that the time cost of the data imputation module on different
datasets, and the PEMS07 dataset has the highest time cost
of 139 seconds, which correlates with its larger data size.

The time cost of the spatial fusion module mainly stems
from the process of precomputing the dynamic graph and
graph convolution process. For the precalculated dynamic
graphs, the time complexity can be expressed as O(DN 2).
In this prediction task, sensors collect data every 5 minutes,
and the dynamic correlations of nodes change according to
the time of day, so the total time steps are divided according
to the day as the segmentation step; thus, O(kNd). For graph
convolution, the k-order Chebyshev polynomial is used for
graph signal aggregation, and the computational time com-
plexity is denoted by O(kNd), where k represents the order
of the Chebyshev polynomial, N represents the number of
nodes in the graph, and d represents the feature dimension

of each node. Table 9 shows that the dynamic graph compu-
tation time cost is the highest on PEMS07 dataset, which is
5400 seconds, mainly due to its large number of nodes and
long time step.

The time cost of the time series prediction part mainly
comes from the GRU. For a sequence length of Q, the total
time complexity can be expressed as O(Qd), where Q is
the sequence length and d is the dimension of the input fea-
tures or the dimension of the hidden states. In the traffic flow
prediction task, the prediction target is usually the traffic con-
dition for the next hour, which means that Q is 12. Table 9
shows that the time series prediction block has the highest
time cost of 500 seconds on the PEMS07 dataset, which is
related to the sequence length and feature dimension.

Overall, the time cost of model training increases with the
assembly of individual modules and increases with increas-
ing dataset size. However, as seen in the previous ablation
experiments, each part is critical to the accuracy of the
model’s final prediction of the target. The collaborative work
of these modules enables STMFGNN to perform excellently
in traffic flow prediction tasks, maintaining high accuracy
even with large datasets and missing data.

Fig. 11 Visualization of the prediction results at node 0 for 15 mins
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Fig. 12 Visualization of the prediction results at node 0 for 30 mins

4.5.8 Visualization of forecast results

We compared the one-week traffic flow predictions on the
PEMS08 dataset with the actual values and zoomed in on
the data for the first, fourth, and seventh days. Figures 11,
12, and 13 compare the model’s predictions with the actual
values on PEMS08 at node 0 for 15 minutes, 30 minutes,
and 60 minutes, respectively. In addition, to show that the
model performs consistently across nodes, Fig. 14 com-

pares the actual values and the predictions at node 1 for 60
minutes.

We observe that (1) The general trend of the STMFGNN
is consistent with the actual values and it can track the change
pattern of traffic flow well. This indicates the model’s excel-
lent performance in capturing spatiotemporal dependencies,
accurately reflecting real-world traffic flow changes. (2) In
instances where the actual values are significantly lower, this
discrepancy may be attributed to the presence of missing

Fig. 13 Visualization of the prediction results at node 0 for 60 mins
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Fig. 14 Visualization of the prediction results at node 1 for 60 mins

data points. Our model does not follow these extreme devi-
ations but instead predicts values that conform to the overall
distribution. This showcases STMFGNN’s robustness in han-
dling missing data. Through an effective data imputation
method, the model maintains high predictive accuracy even
with incomplete data. (3) Peak values are further accentuated,
illustrating STMFGNN’s ability to perform well under chal-
lenging conditions. In the face of sharp changes in trafficflow,
the model can still accurately predict the peak flow, which
proves its modeling ability under complex spatio-temporal
dependencies.

In summary, STMFGNN accurately captures the trends in
traffic flow across different nodes and time intervals, exhibit-
ing outstanding performance. These experimental results
highlight the model’s significant advantage in capturing
spatio-temporal dependencies. Particularly in handlingmiss-
ing data, our imputation strategy enables the model to deliver
high-quality predictions despite data incompleteness.

5 Conclusion

This paper proposes a newGNNframework, the STMFGNN,
for traffic flow prediction. This model considers the influ-
ence of multiple factors when modeling spatial-temporal
dependencies and fuses multiple factors by using a dynamic
gated fusion mechanism to self-learn dynamic importance.
When modeling spatial dependence, we dynamically fuse
the static adjacency graph as local prior knowledge and the
dynamic similarity graph as global hidden knowledge to
model complex spatial dependence as completely as possible.

Regarding temporal dependence, the short-term characteris-
tics of different receptive field gated convolutions and the
long-term information captured by the GRU are dynamically
fused,which overcomes the trade-off problembetween short-
term and long-term temporal dependence. In addition, we
imputed the traffic data presenting incomplete observability
using a generative adversarial imputation network with an
improved masking mechanism and training process. Exper-
imental results on four real datasets (PEMS03, PEMS04,
PEMS07, and PEMS08) show that the STMFGNN achieves
state-of-the-art results.

However, the model proposed in this paper has sev-
eral areas of potential improvement, such as insufficient
consideration of the influence of external factors and under-
utilization of data periodicity. In the future, we will consider
the influence of external factors (such as weather) on data
fluctuations and model the periodicity of data to further opti-
mize the integrity of traffic flow prediction model modeling
and improve the accuracy of prediction. In addition, since
STMFGNN is a general spatio-temporal prediction frame-
work for graph-structured data, we can also apply it to other
applications, such as traffic speed prediction.
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