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Abstract
Power load data frequently display outliers and an uneven distribution of noise. To tackle this issue, we present a forecasting
model based on an improved extreme learning machine (ELM). Specifically, we introduce the novel Pinball-Huber robust
loss function as the objective function in training. The loss function enhances the precision by assigning distinct penalties
to errors based on their directions. We employ a genetic algorithm, combined with a swift nondominated sorting technique,
for multiobjective optimization in the ELM-Pinball-Huber context. This method simultaneously reduces training errors while
streamlining model structure. We practically apply the integrated model to forecast power load data in Taixing City, which is
situated in the southern part of Jiangsu Province. The empirical findings confirm the method’s effectiveness.

Keywords Load forecasting · Robust loss function · Multi-objective optimization · Neural networks · Extreme learning
machine

1 Introduction

Power load forecasting forms the foundation of power sys-
tem scheduling and operation [1, 2]. Ensuring accurate power
load forecasting is crucial for the stable operation and eco-
nomic efficiency of a power system [3, 4]. Power load data
often encompass anomalies and asymmetric noise because
of factors such as climate fluctuations and changes in market
demands [5]. These data elements can impede model train-
ing, hence affecting the accuracy of power load forecasting
and making the subject of mitigating asymmetric noise a sig-
nificant concern in the field of power load forecasting.

Despite significant advancements in power load forecast-
ing methods, there is a need for further improvement to
meet the current demands. Existing loss functions havemade
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substantial progress in enhancing robustness and accuracy.
However, their symmetric nature renders them inadequate
for effectively addressing the deviations caused by outliers in
power loaddatasets. Thus, there is a need for a comprehensive
and robust loss function that can consider both themagnitude
and direction of errors within the machine learning frame-
work.Additionally, the number of hidden layer nodes inELM
significantly impacts the complexity of model training and
final predictive accuracy. The lack of reliable benchmarks
to balance the structural parameters and prediction accu-
racy also poses a challenge. Therefore, integrating novel and
effective optimization techniques is essential for enhancing
the ELM model and determining the optimal parameters for
precise predictive modeling.

The present paper focuses on two key aspects: asymmet-
ric loss function andmulti-objective optimization. To address
the aforementioned challenges, the paper contributes the fol-
lowing:

(1) An asymmetric Pinball-Huber loss function for more
effective data handling is developed. Because of its supe-
rior characteristics compared with other loss functions,
it has been incorporated into the training objective of the
ELM model.

(2) The multiobjective optimization algorithm NSGA-II has
been used to optimize two critical objectives of the ELM
model: training error and output weight. By considering
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the input weights, hidden layer thresholds, and hidden
node numbers as input parameters, the optimized ELM
model can achieve minimized training errors and a more
streamlined network structure.

(3) The superiorty of proposedNSGA-II-ELM-Pinball-Huber
model is validated by comparing it with benchmarks
(LSTM, GRU, CNN-BiLSTM-Attention) using power
load data from Taixing City. This validation has empha-
sized the effectiveness of the Pinball-Huber loss, high-
lighting the enhanced performance of the multiobjective
optimization algorithm NSGA-II.

The rest of the current paper is organized as follows: Section 2
contains the literature review. Section 3 presents definitions
of some terms. Section 4 gives the methodology (method).
Section 5 goes over the results. Section 6 discusses the con-
clusions and future research areas.

2 Literature review

Over the past few decades, researchers have proposed numer-
ous short-term load forecasting methods [6], which can be
broadly categorized into physical, statistical, and intelligent
methods [7]. Physical methods establish the mathematical
relationships between historical data and physical character-
istics to achieve power load forecasting. Statistical methods
perform mathematical statistics on historical data, estab-
lishing the correlations between load and time to make
predictions [8]. These models typically include linear regres-
sion (LR) [9], autoregressive integrated moving average
(ARIMA) [10], gray models (GM) [11], and seasonal expo-
nential smoothing(SEs) [7]. However, these methods fail to
capture the nonlinear characteristics present in load data.

Compared with traditional physical and statistical meth-
ods, intelligent methods exhibit greater potential in handling
the nonlinear fluctuations and complex relationships within
power load data, hence demonstrating higher accuracy in the
field of power load forecasting [12, 13]. Intelligent methods
such as artificial neural networks (ANN) [14], support vector
regression (SVR) [15], and ELM [16] have found exten-
sive applications in recent power forecasting studies. Among
these, ANN is adept at modeling more intricate relationships
between the power load and correlated variables compared
with other methods, hence leading to its widespread usage
in power load forecasting [2, 17]. ANN, which is akin to
the structure of the human brain, can interpret vast amounts
of data and transform it into actionable knowledge [18].
ELM, an enhanced single-hidden-layer feedforward neural
network, has been widely employed in forecasting tasks [19,
20].

Unlike traditional artificial neural networks, ELM’s input
weights and biases in the hidden layer are randomly assigned.
ELM derives hidden weights through the least squares
method, eliminating the need for adjusting hidden layer
weights through iterative backpropagation [21]. As a result,
the ELM model demonstrates faster learning and more pro-
nounced generalizationwithminimal preset parameters [22].
Numerous ELM-based predictive models have been pro-
posed, showcasing their exceptional regression capabilities
in forecasting. Ni et al. [23] employed an ensemble method
using ELM and lower upper bound estimation (LUBE) for
short-term power prediction. Han et al. [24] developed sea-
sonalmultimodels basedonELMbyconsidering the seasonal
distribution of power features. The effectiveness of the pro-
posed methods was validated through a comparison with
other approaches. Thus, comparedwith shallow learning sys-
tems, ELM exhibits higher efficiency, lower computational
costs, and stronger generalization.

The loss function reflects the disparity between the pre-
dicted values and actual values during the optimization
process, significantly impacting the learning model’s gen-
eralization and accuracy [25]. Chen et al. [26] utilized ELM
enhanced with an L2-norm loss function for feature selec-
tion.Most neural networkmethods adopt mean squared error
(MSE) or L2 loss function. Unfortunately,MSE loss function
relies on Gaussian assumptions, making it sensitive to out-
liers and challenging to precisely evaluate nonlinear errors.
Yang et al. [27] suggested employing the Huber loss func-
tion as the model’s training objective. The Huber loss treats
errors of different magnitudes differently. However, it lacks
consideration for the direction of errors. Power load data are
nonlinear and often exhibit various asymmetric noise dis-
tributions [5], necessitating the development of a new loss
function that comprehensively considers both error magni-
tude and direction.

In conventional ANNs, including ELM, certain param-
eters are set randomly, leading to a degree of error and
variability in the predictive outcomes. Artificial intelligence
also exhibits drawbacks such as slow convergence, suscepti-
bility to local optima, and overfitting [11, 28]. Hence, several
intelligent optimization algorithms have been proposed to
alleviate these limitations. Optimization algorithms applied
to machine learning algorithms have further improved their
regression capabilities to some extent [22]. For instance,
Niu et al. [29] utilized a cooperative search algorithm
that can explore the optimal hyperparameters of support
vector machines (SVM), using this algorithm to predict elec-
tricity consumption in four Chinese provinces. Niu et al.
[29] optimized BPNN parameters using a genetic algo-
rithm (GA). Shang et al. [30] established a prediction model
combining least squares support vector machines (LSSVM)
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with generalized regression neural networks and optimized
the weight coefficients by using the whale optimization
algorithm (WOA). Xie et al. [31] proposed a short-term
power load forecasting method combining Elman neural
network (ENN) and particle swarm optimization (PSO).
Differing from traditional random initialization, PSO was
employed to search for the optimal learning rate for ENN.
Addressing the issue of model parameter determination,
arithmetic optimization algorithms (AOA) [32], gene expres-
sion programming (GEP) [33], and chimpanzee optimization
algorithm (ChOA) [34], among others, have been utilized.
Many studies on power load forecasting solely employed
single-objective algorithms to optimize a criterion. However,
in practical applications,meetingmultiple constraints is often
necessary [7, 35].

The present paper introduces a novel power load fore-
casting model to address the aforementioned issues. Named
NSGA-II-ELM-Pinball-Huber, this model is based on an
enhanced Pinball-Huber loss function and multiobjective
optimization algorithm NSGA-II. To effectively handle
errors and anomalies in power load data, we introduced an
asymmetric and robust Pinball-Huber loss function. Within
the ELM framework, this loss function is employed as the
objective, and the iteratively reweighted least squares (IRLS)
method is utilized to determine the output weight vector. The
present paper conducts global multiobjective optimization
of the ELM model by employing the NSGA-II algorithm to
simultaneously optimize training errors and output weights.
The experimental results demonstrate that the proposed load
forecasting model significantly enhances predictive perfor-
manc

3 The preliminaries

3.1 Regression loss function

Within various enhanced algorithms, the role of the loss func-
tion is to assess the merits and drawbacks of the improved
model by computing its minimum value within the improved
function. Yet during practical application, because of factors
such as the loss function’s objective, the nature of the applica-
tion, data attributes, and the desired level of confidence in the
forecasted values, a single loss function cannot be universally
applied to all model experiments. Thus, a range of loss func-
tions is required to be explored to optimize the treatment of
target-type data and achieve optimal evaluation results [36].

3.1.1 L2-norm loss

L2-norm loss is a smooth function that is derivable in the
whole domain and simplifies the calculation. When the error
increases, the error is squared because of L2-norm loss, so

that the error obtained is amplified. The L2-norm loss func-
tion can be described as follows:

L2(r) = 1

2
r2, (1)

where r = y − ŷ is the residual, y represents the expected
results, and ŷ represents the forecasting results.

3.1.2 L1-norm loss

In the regression problem, L1-norm loss measures the abso-
lute value of the difference between the forecasting value and
true value. The L1-norm loss function can be described as
follows:

L1(r) =| r | . (2)

The L1-norm loss function is a function commonly used
in regression problems.

3.1.3 Huber loss

The Huber loss function was proposed in 1964. It absorbs
the advantages of L1-norm and L2-norm loss functions and
makes up for their shortcomings. Concerning outliers in the
data, Huber loss can perform more robustly. Not only is it
more robust to outliers, but Huber is also derivable in the
whole domain, greatly simplifying the calculation difficulty.
Huber loss function can be described as follows:

Hδ(r) =
{

1
2r

2, |r | ≤ δ

| r | δ − δ2

2 , |r | > δ,
(3)

where parameter δ represents tuning parameters, which con-
trol the quadratic and linear range. It is recommended to set
the parameter δ to 1.345 [37].

3.1.4 Pinball loss

The Pinball loss function is asymmetric. It not only imposes
certain penalties on outliers in data, but it also imposes addi-
tional penalties according to different situations of outliers.
In addition, because of the introduction of quantile distance,
the Pinball loss function improves the insensitivity to charac-
teristic noise and resampling. The expression of the Pinball
loss function is as follows:

Pτ (r) =
{
rτ, r ≥ 0

r(1 − τ), r < 0.
(4)

The parameter τ ∈ [0, 1]. When parameter τ = 1, Pinball
loss is the same as the L1-norm loss in function, so the Pinball
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loss function can be considered a generalized L1-norm loss
function. In addition, Pinball loss also absorbs the advantages
of L1-norm loss and can handle the deviation of outliers.

3.1.5 Biweight loss

Tukey’s Biweight loss function is also a non-convex loss
function, which can overcome the interference and influence
caused by outlier samples and noise samples in regres-
sion tasks, hence showing strong robustness in regression
tasks [38, 39]. The Biweight loss function is defined as fol-
lows:

Bc(r) =
{

c2
6 [1 − (1 − ( rc )

2)], | r |≤ c
c2
6 , otherwise,

(5)

where c is a tuning constant, which is generally specified as
4.685. At this time, Tukey’s Biweight can achieve a regres-
sion effect like that of the L2-norm loss function (95%
progressive) in minimizing the variance consistent with the
normal distribution [40]. Tukey’s Biweight suppresses the
influence of outliers during backpropagation by reducing the
gradient size to near zero. Another interesting feature of this
loss function is that it imposes a soft constraint between the
inner layer and outlier without setting a hard threshold for
the residual.

3.1.6 Lncosh loss

Lncosh is a loss function commonly used in regression tasks,
with high smoothness. Define it as [41, 42]:

L(r) = ln(cosh(r)). (6)

For the smaller residual r , ln(cosh(r)) is approximately
equal to r2

2 ; for the larger residual r , it is roughly equal to
| r | −ln2. This means that the working principle of Lncosh
is very similar to themean square error to a large extent, but it
is not greatly affected by the occasional wrong forecasting. It
has all the advantages of the Huber loss function, but unlike
Huber loss, it is quadratically differentiable everywhere.

3.2 Extreme learningmachine

Unlike traditional feedforward neural networks, such as BP,
ELM is a single hidden layer feedforward neural network
that removes the requirement to set an excessive number of
node parameters. ELM was introduced by Huang et al. [16]
and has demonstrated substantial progress in the realm of
artificial intelligence algorithms.

ELM stands out from conventional neural networks
because of its distinctive approach. ELM selects its weight
matrix between the input and hidden layers randomly, along

with hidden layer thresholds,without any further adjustments
during algorithm execution. With no need for additional
parameter settings, ELM offers simplicity in its usage. As
highlighted by Huang et al. [43], ELM commonly employs
the Moore-Penrose generalized inverse to determine key
node weights. This methodology involves only a single cal-
culation step (linear equation operation) to establish the
weight matrix between the hidden and output layers [44].
Unlike backpropagation, there’s no gradient operation, sig-
nificantly reducing computational demands and enhancing
speed. Furthermore, ELM demonstrates superior general-
ization compared with alternative algorithms. The structural
diagram of ELM is shown in Fig. 1.

A typical ELM network structure consists of an input
layer, a hidden layer, and an output layer, with n, L , and
m nodes, respectively. For data set (xi , yi )(i = 1, 2, ..., N )

with N samples, xi = [xi1, xi2, ..., xin]T is the input vector,
yi = [yi1, yi2, ..., yim]T is output vector, and the output of
ELM can be described as:

y =
L∑
j=1

β j G(w j · xi + b j ) (i = 1, 2, ..., n) (7)

wherew j is theweight from the input layer to the j-th hidden
layer node, b j is the threshold of the j-th hidden layer node,
β j is the output layer weight connecting the j-th hidden layer
node, and G(·) represents the activation function.

Equation (7) can be simplified as Hβ = Y . The objective
function of the ELM model can be written as follows:

min ||Hβ − Y ||. (8)

Using the least square method to solve the (8), the solution
β is the following:

β = (HT H)−1HTY = H+Y , (9)

Fig. 1 The structural diagram of ELM. ((x1, x2, ..., xN ) is the input of
ELM. (wN , bN ) is the weight and threshold of hidden layer. βM is the
output layer weight.)
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where H+ is the Moore-Penrose generalized inverse of the
hidden layer output matrix H .

3.3 Multiobjective optimization

The concept behind the multiobjective optimization algo-
rithm is to identify a collection of optimal Pareto solutions,
where each solution fulfills the fundamental criteria of mul-
tiple optimization objectives and showcases an optimal state
holistically. Within the optimal Pareto solution set, no other
solution surpasses itself in all optimization objectives [45].
Achieving this demands that the optimization algorithm
extensively explores the solution set, guarantees a global
optimization outcome, and prevents being trapped in local
optimization.

Derived from biological genetic theory, the genetic algo-
rithm has evolved and found applications across diverse
domains [46]. By incorporating the genetic algorithm, the
drawbacks associated with traditional multiobjective opti-
mization approaches, such as the risk of converging to local
optima, are circumvented. This integration ensures that the
solutions’ diversity is effectively maintained.

The general multiobjective optimization problem can be
described as follows:

min F(x) = [ f1(x), f2(x), ..., fn(x)]
s.t . x ∈ C, (10)

where fi (x) is the optimization objective, x is the solution,
and C is the constraint.

NSGA-II is an advanced multiobjective optimization
algorithm that was improved by Deb et al. [47]. NSGA-
II introduces the concepts of fast nondominated sorting,
crowding-distance sorting, and elitist strategy, which greatly
enhance the practical application of NSGA-II. In NSGA-II,
we can initialize a certain population P and use the genetic
algorithm to select, cross, and mutate the parent population
P to produce the offspring population Q. After fast nondom-
inated sorting and crowding distance sorting of the combined
population R = P

⋃
Q, the new population and its Pareto

optimal solution set are obtained by using the elitist strategy.
The outflow diagram of NSGA-II is shown in Fig. 2. The
specific steps are as follows:

Step 1: Set population and iteration times and initialize
the parent population P .

Step 2: For the parent population P , conduct fast non-
dominated sorting and crowding distance sorting and assign
each individual the rank.

Step 3: Generate the offspring population Q0 through
tournament selection, simulated binary crossover, and poly-
nomial mutation.

Step 4: Combine the parent Pt and offspring Qt to get
the population Rt = Pt

⋃
Qt , where t is the number of

iterations; a new parent population Pt+1 is selected through
elitist strategy.

Step 5: When the iteration reaches the specific number or
the termination condition is met, the final population and its
Pareto solution setwill be obtained; otherwise, let the number
of iterations t = t + 1 and go to Step 2.

4 The proposedmethod

4.1 Proposed Pinball-Huber loss

Section 3.1 provides an overview of six fundamental loss
functions: L2-norm, L1-norm, Huber, Pinball, Biweight, and
Lncosh. The strengths, weaknesses, and suitable application
contexts for each loss function are analyzed. Upon examina-
tion and consolidation, it is evident that these loss functions
often lack compatibility with robustness and accuracy in
diverse evaluation models, measurement approaches, and
forecasting experiments. Additionally, they tend to inade-
quately address standard positive and negative errors and
outliers in machine learning challenges. As a result, this may
lead to suboptimal evaluation levels and reduced accuracy in
forecasting outcomes.

To address the aforementioned challenges, we propose a
solution bymerging the Pinball loss with the Huber loss. The
Pinball loss function offers the ability to adapt to positive and
negative errors during forecasting computations, displaying
self-adjusting asymmetry. On the other hand, the Huber loss
function demonstrates remarkable robustness and effectively
handles outliers; however, it treats both positive and negative
issues concurrently in the algorithmic process, leading to a
reduction in forecasting precision. Our innovation lies in the
development of novel loss functions, combining the attributes
of Huber and Pinball. This allows for distinct measures to be
applied to diverse errors within the training procedure, sig-
nificantly enhancing the model’s performance. The proposed
Pinball-Huber loss function is presented as follows:

PHδ,τ (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2r

2τ, 0 ≤ r ≤ δ
1
2r

2(1 − τ),−δ ≤ r ≤ 0

(| r | δ − δ2

2 )τ, r > δ

(| r | δ − δ2

2 )(1 − τ), r < −δ.

(11)

The newly introduced Pinball-Huber loss function com-
prises two adjustable parameters: δ and τ . Notably, these
parameters originate from the Huber and Pinball loss func-
tions and are skillfully merged to leverage their distinct roles.
Their combined utilization allows for tailored actions based
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Fig. 2 The outflow diagram of
NSGA-II

on the magnitude and direction of training errors. Beyond
refining the accuracy of the foundational loss function,
the Pinball-Huber approach introduces a novel perspective
by categorizing training errors based on their directional
attributes. This innovative method presents a fresh approach
for addressing outliers. In the context of the power sys-
tem, where power load data are influenced by variables like
weather, season, and market demand, volatility and the pres-
ence of outliers and asymmetric noise are common. Our
proposedPinball-Huber loss function addresses these intrica-
cies by meticulously dissecting errors and handling positive
and negative scenarios in distinct ways.

4.2 NSGA-II-ELM-Pinball-Huber

In the practical application of ELM, there exists a funda-
mental trade-off between forecasting accuracy and network

structure complexity. Achieving higher accuracy demands
a network that can personalize its modeling to the data,
which often results in an intricate network structure, particu-
larly within the hidden layer, potentially harboring numerous
unnecessary nodes. While pursuing a simplified neural net-
work structure, it is not prudent to directly designate a
minimal number of nodes and related parameters. Subjec-
tively determining the appropriate count of neurons for the
network to accurately capture the input-to-output relation-
ship is not a feasible approach. What is required is a rational
and efficient algorithm to assist in identifying the optimal
number of nodes for ELM.

Utilizing the minimization of training error and output
weight within the ELM-Pinball-Huber model as the dual
optimization objectives, we employ the multiobjective opti-
mization algorithm NSGA-II to enhance the ELM model.
From the derived set of Pareto front solutions, we carefully
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choose the most suitable solution to execute the forecasting
task. The objective function for this multiobjective optimiza-
tion endeavor is presented as follows:

{
min

∑N
i=1 PH(ri )

min
∑L

i=1 | βi |, (12)

where ri is the training error and N represents the number of
samples; we use the training error based on the new proposed
Pinball-Huber loss function as one optimization objective. β
is the output weight vector of the output layer in the ELM
model, and L is the number of hidden layer nodes; in addition,
we take the L1 norm of it as the other optimization objective.

Following the multiobjective optimization process, we
arrive at the set of Pareto solutions. By representing the two
optimization objectives along the horizontal and vertical axe,
respectively, we observe that the solutions within the Pareto
set form a U-shaped distribution. This pattern highlights the
inherent trade-off between training error and output weight
as optimization objectives. The solution situated at the inflec-
tion point simultaneously possesses a lower training error and
output weight norm, rendering it the optimal choice for our
multiobjective optimization.

Furthermore, to validate the effectiveness of the Pinball-
Huber loss function, we conducted a separate comparative
test. Employing various loss functions in conjunction with
ELM and integrating a lasso penalty term, the composite
ELM-loss function models were employed for power load
forecasting within identical experimental parameters. Elab-
orate insights into the model’s objective function and its
solution procedure are provided in Appendix A.

4.2.1 The overall steps

In this section,weprovide a combined load forecastingmodel
NSGA-II-ELM-Pinball-Huber. The model is ELM based on
the Pinball-Huber loss function and then optimized by the

multiobjective optimization algorithm NSGA-II. The steps
of the model can be found in pseudocode Algorithm 1.

Algorithm 1 The NSGA-II-ELM-Pinball-Huber model.
Require: Hidden layer nodes L , input weight ω, and hidden layer

threshold b
Ensure: Training error and output weight of ELM
1: Set the population and iteration times
2: Initialize the population:
3: Randomly generatemultiple groups ofELMswith different numbers

of hidden layer nodes
4: for each ELM
5: Select the input weightω and hidden layer threshold b randomly
6: Take the proposed Pinball-Huber loss function as the

objective function and solve the output weight vector β =
(HTWH)−1HTWY by IRLS

7: Get the training error
∑N

i=1 PH(ri ) based on Pinball-Huber loss
function and output weight

∑L
i=1 | βi | of ELM as the two optimiza-

tion objectives
8: end for
9: Fast nondominated sort and crowding distance sort on the population

and take it as the Parent
10: for each i = 1, 2, 3, · · · , gen do
11: Tournament selection, Simulated Binary Crossover, and Poly-

nomial mutation to produce the Offspring
12: Merge Parent and Offspring
13: Fast nondominated sort and crowding distance sort
14: Generate new Parent by Elitist strategy
15: end for
16: Get optimized Pareto solution set of all the groups
17: Select the best sample from the set, that is, the ELM model with

the best parameters L, ω, b

5 Case study

This section employs the power load dataset from Taixing
City in southern Jiangsu Province to validate the efficacy
of the integrated NSGA-II-ELM-Pinball-Huber forecasting
model within the power load system.

Fig. 3 The loss functions

(a) L2-norm                                              (b) L1-norm                     (c) Huber

(d) Biweight (e) Lncosh (f) Pinball-Huber
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Table 1 Loss functions and their weight functions

Loss Loss function Derivative function Weight function Default

�(r) φ(r) = ∂(�(r))
∂r) ω(r) = φ(r)

r

L2 loss 1
2 r

2 r 1 –

L1 loss | r | sign(r) 1
max(|r |,ε) , ε = 10−6 –

Huber loss

{
1
2 r

2, | r |≤ δ

| r | δ − δ2

2 , | r |> δ

{
r , | r |≤ δ

δsign(r), | r |> δ
min(1, δ

|r | ) 1.345

Biweight loss

{
c2
6 [1 − (1 − ( rc )

2)3], | r |≤ c
c2
6 , otherwise

r(1 − ( rc )
2)2, | r |≤ c (1 − ( rc )

2)2, | r |≤ c 4.685

Lncosh loss ln(cosh(r)) tanh(r) tanh(r)
r –

Pinball-Huber loss

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 r

2τ, 0 ≤ r ≤ δ
1
2 r

2(1 − τ),−δ ≤ r ≤ 0

(| r | δ − δ2

2 )τ, r > δ

(| r | δ − δ2

2 )(1 − τ), r < −δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τr , 0 ≤ r ≤ δ

(1 − τ)r ,−δ ≤ r ≤ 0

δτ sign(r), r > δ

δ(1 − τ)sign(r), r < −δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ, 0 ≤ r ≤ δ

1 − τ,−δ ≤ r ≤ 0
δτ
|r | , r > δ
δ(1−τ)

|r | , r < −δ

δ, τ

5.1 Experimental setup and evaluation criteria

In this section, alongside the newly proposed Pinball-Huber
loss function, various common loss functions are integrated
with ELM for comparison, highlighting the performance of
the novel loss function. Six loss functions, namely L2-norm,
L1-norm, Huber, Biweight, Lncosh, and Pinball-Huber, are
employed as the objective functions for ELM, enabling a
comparison of their distinct effects.

The specific experiments involve forecasting the 49th
observation based on the preceding 48 observations. Multi-
step experiments, encompassing three-step, five-step, and
seven-step forecasts, are conducted under consistent condi-
tions. A choice of 200 is made for the number of hidden layer
nodes in ELM, allowing for the demonstration of the com-
pression effect from the lasso penalty within the ELM-loss
function model. The entire experimentation is conducted in
Matlab, utilizing Matlab2016 to compile the experimental
code (Fig. 3).

We use root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE)
to measure the forecasting effect of the model, as follows:

MAE = 1

N

N∑
i=1

| ri |, (13)

RMSE =
√√√√ 1

N

N∑
i=1

ri 2, (14)

and

MAPE = 100%

N

N∑
i=1

| ri
yi

| . (15)

In the three formulas, ri = yi − ŷi (i = 1, 2, ..., N ) is
the residual, yi is the actual power load value, and ŷi is the
forecasting value, representing the forecasting value of the
i-th sample (Table 1).

5.2 Taixing power load data

For the Taixing electric power data set, we carry out power
load forecasting. From 2018.5.13 to 2021.8.2, the data set
records the power load data every other day. In the power
data set of TaixingCity, there are 1,175 data points.We divide
these into the training set and test set by a ratio of 8:2, inwhich
the former includes 940 points and the latter 235 points. The
specific characteristics of the data are shown in Table 2.

In Table 1, some of the six loss functions listed need
to set parameters. The δ in Huber loss represents the tun-
ing parameters, which determines how to deal with outliers.

Table 2 The descriptive
statistics of Taixing data set

Taixing data set Size Min. Max. Median Mean Std. Dev.

Data set 1175 1210.872 2875.318 1893.728 1902.926 249.691

Training set 940 1210.872 2578.343 1842.336 1843.150 216.938

Testing set 235 1424.918 2875.318 2137.340 2142.030 228.071
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Fig. 4 Training error distribution diagram of ELM-Pinball-Huber in the Taixing data set

The hyperparameter τ in Pinball loss is the target quantile,
which is used to handle the direction errors in forecasting.
For the robust Pinball-Huber loss function proposed by us,
both parameters δ and τ need to be set. The proper values are
determined using the time series cross-validation approach,
with δ and τ each choosing a random value between [0,1]
and [1,2]. Taking the training error in single-step forecasting
as an example for analysis, as shown in Fig. 4, the training
errors have deviations and are asymmetrically distributed.
The hyperparameters of the Pinball-Huber loss function
obtained through the time series cross-validation method are
shown in Table 3. The experimental analysis is as follows:

5.2.1 Comparisons among ELM-Pinball-Huber and ELM
with other loss functions

This section presents the comparative experiments conducted
on the ELM model using six distinct loss functions that are
aimed at substantiating the benefits of the newly introduced
Pinball-Huber loss function. Based on the three evaluation
metrics-RMSE, MSE, and MAPE-outlined in Table 4, it can
be deduced that the forecasting outcomes of ELM utilizing
our Pinball-Huber loss function surpass those achieved with
other loss functions, both in single-step and multistep fore-
casting scenarios. Figure 5 provides a visual representation
of the ELM’s performance in multistep forecasting across
the six different loss functions. Hence, adopting the pro-
posed Pinball-Huber loss function as the objective function
for ELM can lead to enhanced forecasting capabilities within
the power load prediction.

Table 3 The hyperparameters of Pinball-Huber loss function

Steps Single-step Three-step Five-step Seven-step

δ 1.25 1.60 1.20 1.50

τ 0.45 0.30 0.50 0.30

Furthermore, an intriguing observation emerged from the
comparison among the six loss functions. The L2-norm and
L1-norm loss functions exhibited subpar and unstable perfor-
mance inmultistep forecasting.Huber, Biweight, andLncosh
loss functions demonstrated favorable performance, but their
stability in multistep experiments displayed notable fluc-
tuations. Conversely, the ELM-Pinball-Huber consistently
demonstrated the most optimal forecasting results while
maintaining a relatively stable performance throughout the
experiments.

5.2.2 Comparisons of ELMwith loss functions with/without
multiobjective optimization

In the preceding section’s comparative experiments, ELM
utilizing the Pinball-Huber loss function exhibited consistent
advantages in forecasting accuracy. Nonetheless, a notewor-
thy observation was that achieving higher precision often
resulted in elevated output weights within the ELM model.
This outcome could lead to intricate network structures and
even overfitting issues. To ascertain the enhanced forecast-
ing performance of ELM-Pinball-Huber through NSGA-II
optimization, a comparative validation was conducted.

Table 5 presents the outcomes of multiobjective opti-
mization for ELM using diverse loss functions. Upon
comparison with the results from the pre-multiobjective
optimization experiments illustrated in Table 4, the ELM,
post-multiobjective optimization not only attains heightened
forecasting precision, but it also substantially diminishes the
output weight within the ELM model. The distribution of
solutions within the Pareto solution set, along with the curve
showcasing the alteration in the two optimization objectives
with the number of iterations, is depicted inFig. 6.Notably, as
the number of iterations increases, the values of the two opti-
mization objectives consistently decrease. Ultimately, within
the figure, a Pareto solution is discernible, maintaining com-
mendable values for both optimization objectives, thereby
achieving elevated forecasting accuracy while concurrently
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Table 4 Multistep forecasting results of ELM-loss function models in the Taixing data set

Models Taixing data set
MAE RMSE MAPE β(%) MAE RMSE MAPE β(%)

Single-step Three-step

ELM-L2 115.337 157.701 0.055 48.0 130.577 183.425 0.063 56.0

ELM-L1 274.207 329.957 0.125 52.5 233.836 269.626 0.107 60.5

ELM-Huber 274.858 330.423 0.126 34.0 222.722 285.020 0.103 26.5

ELM-Biweight 85.986 112.454 0.041 38.0 132.345 186.186 0.064 31.0

ELM-Lncosh 258.347 317.961 0.119 50.5 143.788 192.219 0.069 58.0

ELM-Pinball-Huber 73.946 96.879 0.036 73.0 121.818 167.292 0.060 72.0

Five-step Seven-step

ELM-L2 161.549 214.583 0.077 55.5 163.955 216.922 0.079 51.5

ELM-L1 258.779 316.949 0.119 58.5 273.857 331.715 0.125 61.0

ELM-Huber 273.836 330.600 0.125 25.5 274.930 332.128 0.126 31.0

ELM-Biweight 162.277 208.288 0.077 27.0 168.125 221.927 0.081 27.0

ELM-Lncosh 273.831 331.458 0.125 61.0 234.569 296.230 0.108 57.5

ELM-Pinball-Huber 258.779 316.949 0.119 69.0 163.492 222.261 0.077 75.5

Fig. 5 Multistep forecasting
results of ELM-Pinball-Huber
and ELM with other loss
functions in the Taixing data set
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Table 5 Multistep forecasting
results of NSGA-II-ELM-loss
function models in the Taixing
data set

Steps Models RMSE Output weight Hidden neurons
Training Test

Single-step NSGA-II-ELM-L2 67.993 96.143 7.974 60

NSGA-II-ELM-L1 67.499 98.078 7.622 50

NSGA-II-ELM-Huber 68.335 109.475 7.556 55

NSGA-II-ELM-Biweight 69.071 114.421 7.644 55

NSGA-II-ELM-Lncosh 71.925 86.592 6.402 45

NSGA-II-ELM-PH 66.545 84.273 7.427 50

Three-step NSGA-II-ELM-L2 98.761 139.295 7.957 60

NSGA-II-ELM-L1 117.152 146.849 3.770 25

NSGA-II-ELM-Huber 120.028 150.411 2.491 15

NSGA-II-ELM-Biweight 117.582 163.121 3.215 20

NSGA-II-ELM-Lncosh 124.808 199.248 2.957 20

NSGA-II-ELM-PH 113.192 129.229 6.934 45

Five-step NSGA-II-ELM-L2 123.072 181.270 4.929 35

NSGA-II-ELM-L1 121.165 179.277 7.597 35

NSGA-II-ELM-Huber 124.281 171.076 6.407 50

NSGA-II-ELM-Biweight 122.325 177.307 5.344 50

NSGA-II-ELM-Lncosh 120.771 185.114 6.386 50

NSGA-II-ELM-PH 120.812 169.957 6.235 45

Seven-step NSGA-II-ELM-L2 126.301 206.447 12.118 70

NSGA-II-ELM-L1 146.658 210.009 3.016 20

NSGA-II-ELM-Huber 147.564 202.533 2.511 20

NSGA-II-ELM-Biweight 145.008 213.595 3.167 20

NSGA-II-ELM-Lncosh 147.561 219.394 2.700 20

NSGA-II-ELM-PH 143.977 196.647 8.706 50

preserving smaller output weights. This simplification con-
siderably reduces the intricacies of the model network. The
streamlined ELM necessitates fewer hidden layer nodes,
enhancing its generalization capabilities. Moreover, we have
also observed that NSGA-II can enhance the performance
of various ELM-loss function combinations, indicating its
wide applicability for ELM. Notably, the amalgamation of
the Pinball-Huber loss function and ELM, following NSGA-
II optimization, demonstrates the most optimal performance.

The multistep ahead forecasting curves for the NSGA-II-
ELM-Pinball-Huber model are displayed in Fig. 7.

5.2.3 Comparisons among NGSA-II-ELM-Pinball-Huber
and comparative models

To assess the predictive performance of the NSGA-II-ELM-
Pinball-Huber model, we conduct comparative experiments

Fig. 6 Distribution of Pareto
solution set and optimization
iteration curves of
NSGA-II-ELM-Pinball-Huber
in the Taixing data set
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Fig. 7 Multi-step forecasting curves of NSGA-II-ELM-Pinball-Huber in Taixing data set

Table 6 Parameter of
comparative models

Model Parameter name Parameter value

LSTM number of layers, units [3, 64]

GRU number of layers, units [3, 64]

CNN-BiLSTM-Attention number of layers, kernel size, units [9, 1, 64]

Table 7 Comparisons among
NGSA-II-ELM-Pinball-Huber
and other models

Steps Models RMSE Output weight

Single-step LSTM 184.97 11.06

GRU 184.58 11.15

CNN-BiLSTM-Attention 273.91 96.45

NSGA-II-ELM-PH 84.27 7.43

Three-step LSTM 221.56 29.94

GRU 228.79 31.56

CNN-BiLSTM-Attention 257.66 287.01

NSGA-II-ELM-PH 129.23 6.93

Five-step LSTM 229.74 47.26

GRU 256.36 49.84

CNN-BiLSTM-Attention 259.29 480.26

NSGA-II-ELM-PH 169.96 6.24

Seven-step LSTM 256.58 67.89

GRU 314.94 63.85

CNN-BiLSTM-Attention 258.21 669.97

NSGA-II-ELM-PH 196.65 8.71
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Table 8 The Wilcoxon
signed-rank test of the compared
models

Steps NSGA-II-ELM-PH NSGA-II-ELM-PH NSGA-II-ELM-PH
vs vs vs
LSTM GRU CNN-BiLSTM-Attention
p-value h p-value h p-value h

Single-step <0.05 1 <0.05 1 < 0.05 1

Three-step <0.05 1 <0.05 1 < 0.05 1

Five-step <0.05 1 <0.05 1 > 0.05 0

Seven-step <0.05 1 <0.05 1 > 0.05 0

with three models: LSTM, GRU, and CNN-BiLSTM-Atten-
tion. Brief descriptions of these models are as follows:

(1) LSTMmodel: LSTM, an improved variant of traditional
RNN, effectively captures the semantic relationships in
long sequences, mitigating gradient vanishing or explod-
ing issues. LSTMfeatures amore complex structure [48].

(2) GRU model: Introduced by Cho et al. [49] in 2014, the
GRU neural network addresses the gradient vanishing
problem in standard recurrent neural networks and shares
a similar design philosophy with LSTM.

(3) CNN-BiLSTM-Attention model [50]: This model employs
complex mathematical operations in the convolutional
and pooling layers of the convolutional neural net-
works (CNN) to extract the spatial features of the input
variables. Themulti-head attention layerminimizes irrel-
evant feature impact, enhancing the extracted features.
The BiLSTM layer models trend information in time
series, generating a probability model for prediction dis-
tribution.

We adjust the hyperparameters of eachmodel to achieve opti-
mal performance, as shown inTable 6. The evaluationmetrics
for forecasting performance are presented in Table 7.

The predictive performance of LSTM and GRU is simi-
lar, showing close values for RMSE and the output weight.
Comparing the predictive performance evaluation metrics of
LSTM, GRU, and CNN-BiLSTM-Attention with NSGA-II-
ELM-Pinball-Huber, the RMSE of the proposed model was
always lower than that of the three comparison models. Par-
ticularly in single-step forecasting, the prediction error of
NSGA-II-ELM-Pinball-Huber (RMSE=84.27) was signifi-
cantly smaller than that of the three comparative models
(RMSE=184.87, 184.58, 273.91). These results indicate that
the proposed model effectively captured the changing trends
in power load data in both the spatial and temporal dimen-
sions. Furthermore, the proposed model maintained a stable
structure in multistep forecasting.

Finally, to verify whether the NSGA-II-ELM-Pinball-
Huber model significantly improves predictive accuracy
in power load forecasting compared with other models,
we conducted the Wilcoxon signed-rank test [51]. The

significance level for the one-tailed test was set at α = 0.05.
The original hypothesis posited that there would be no signif-
icant difference in the predictive results between our model
and the comparative models in power load forecasting. If
the p-value is less than 0.05, the original hypothesis will be
rejected (h=1). The predicted values of the proposed model
and three comparison models were turned into Wilcoxon
signed-rank tests separately in multistep forecasting from 1
to 7 steps. The results are shown in Table 8.

6 Conclusion and future work

In the current paper, we have introduced a robust Pinball-
Huber loss function that demonstrates remarkable resistance
to outliers and substantially reduces the likelihood of over-
fitting. This loss function effectively manages outliers and
asymmetrical noise within the dataset, serving as the objec-
tive function for training the ELM model. Given the ELM’s
susceptibility to preset parameters’ influence, and aiming to
ensure forecasting accuracy while maximizing and simpli-
fying the ELM network structure, as well as preventing the
squandering of training time and the emergence of overfit-
ting because of an excessive number of hidden layer nodes,
we employed the NSGA-II algorithm for the optimization
of both training errors and output weights within the ELM
model. The combined NSGA-II-ELM Pinball-Huber model
was then employed for power load forecasting in the context
of Taixing City. By employing the multi-objective optimiza-
tion algorithm NSGA-II, we acquired the Pareto optimal
solution set for the number of hidden layer nodes in the ELM
model, enabling an in-depth analysis of the forecasting out-
comes. Our analysis of the experimental outcomes revealed
that the performance of the suggested Pinball-Huber loss
function within the ELM framework surpassed that of other
loss functions. Moreover, the NSGA-II algorithm effectively
enhanced the performance of diverse ELM-loss function
combinations. The innovative combined approach, NSGA-
II-ELM Pinball-Huber model, can be seen as a promising
and effective method for power load forecasting, offering a
novel solution to this domain.
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Multiobjective optimization greatly improves the predic-
tive performance of the model, but it takes up a significant
amount of computational resources. In the future, we aim to
delve deeper into simplifying the computational resources
and time required for training the proposed method, which
is crucial for the widespread applicability of the model. Fur-
thermore, this forecasting model can only provide predicted
values for future power loads, and recent research has focused
onuncertain predictions. Future studieswill delve deeper into
the probability predictions of the model, which holds signif-
icant value for practical applications in power systems [52,
53].

Appendix

AThe ELM-loss functionmodel

The combinedELM-loss function is a single objectivemodel,
and its mathematical model can be written as follows:

min C
N∑
i=1

PH(ri ) +
L∑
j=1

| β j |

s.t . h(xi ) = yi − ri , i = 1, 2, ..., N

(16)

where ri represents the training error of the sample and∑N
i=1 PH(ri ) is the total error under Pinball-Huber loss

function of N different training samples, here representing
experience risk.

∑L
j=1 | β j | is a lasso penalty term, repre-

senting the complexity of the model. C > 0 is called the
regularization parameter or the penalty parameter and is used
to balance empirical risk and model complexity.

Lagrangian multipliers are introduced for each equality
constraint condition in the model, and the Lagrangian func-
tion is constructed to transform it into an unconstrained
optimization problem:

L(β, r , α) = C
N∑
i=1

PH(ri ) +
L∑
j=1

| β j |

−
N∑
i=1

αi (h(xi )β − yi − ri ). (17)

where α = [αi , α2, ..., αN ] is the Lagrangemultiplier vector.
We solve (17), and we obtain the output weight vector β

as follows:

β =
{

(WL
C + HTWN H)−1HTWNY , N ≥ L

W−1
L HT ( I

C + WN HW−1
L HT )−1WNY , N < L

(18)

whereWN is the sample weight matrix andWL is the weight
matrix of hidden nodes. The details ofwi of the loss function
can be found in Table 1. Their specific forms are as follows:

WN =

⎡
⎢⎢⎢⎣

w(r1) 0 · · · 0
0 w(r2) · · · 0
...

...
. . .

...

0 0 · · · w(rN )

⎤
⎥⎥⎥⎦

WL =

⎡
⎢⎢⎢⎢⎣

1
max(|β1|,ε) 0 · · · 0

0 1
max(|β2|,ε) · · · 0

...
...

. . .
...

0 0 · · · 1
max(|βL |,ε)

⎤
⎥⎥⎥⎥⎦

In general, the specific steps of the ELM-Pinball-Huber
model are as follows:

Step 1: Initialize the relevant parameters w, b, and L of
the ELM-Pinball-Huber model.

Step 2: Calculate the output weight vector β by (18).
Step 3: Update sample weight matrix WN and hidden

nodes’ weight matrix WL .
Step 4: Repeat steps 2-3 until β converges; then, obtain

the trained ELM-Pinball-Huber model.
Step 5: Substitute the test set into the trained model to get

the forecasting results.
Similar to the above ELM-Pinball-Huber model, we can

combine the loss functions inTable 1withELM, respectively,
to compare their performance.
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