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Abstract
Linear discriminant analysis (LDA) is a well-known supervised method that can perform dimensionality reduction and feature 
extraction effectively. However, traditional LDA-based methods need to be turned into the trace ratio form to compute the 
closed-form solution, in which the within-class scatter matrix should be nonsingular. In this article, we design a new model 
named generalized robust linear discriminant analysis (GRLDA) method to tackle this disadvantage and improve the robustness. 
GRLDA uses L

2,1
-norm on both loss functions to reduce the influence of outliers and on regularization term to obtain joint sparsity 

simultaneously. The intrinsic graph and the penalty graph are constructed to characterize the intraclass similarity and interclass 
separability, respectively. A novel optimization method is proposed to solve the proposed model, in which a quadratic problem 
on the Stiefel manifold is involved to avoid the inverse computation on a singular matrix. We also analyze the computational 
complexity rigorously. Finally, the experimental results on face, object, and medical images exhibit the superiority of GRLDA.

Keywords  Generalized Robust Linear Discriminant Analysis (GRLDA) · Feature extraction · Convex optimization problem

1  Introduction

With the development of pattern recognition, dimensional-
ity reduction (DR) algorithms have become more and more 
accessible [1]. Generally speaking, DR algorithms can reduce 
model’s computational complexity and run time, alleviating 
the impact of noisy information [2, 3] and redundant features 
[4, 5]. As one of the hottest topics in pattern recognition 
recently, researchers have paid greater attention to DR algo-
rithms. DR algorithms can be used in many practical applica-
tions, such as human gait recognition and object identification 
[6], which aim to find an optimal projection matrix to main-
tain the most important features [7, 8], and [9].

DR algorithms are classified as linear DR algorithms [10] 
and non-linear DR algorithms [11] based on whether the map-
ping functions are linear or nonlinear. The most typical linear 

DR algorithms include principal component analysis (PCA) 
and locality preserving projection (LPP). The core idea of 
PCA is to obtain a set of orthogonal bases and the variance 
among the reduced data needs to be maximized [12] and 
the reconstruction error needs to be minimized [13]. In LPP 
[14], we first assign larger weights to the data points at closer 
distances. The projection matrix is obtained by minimizing 
the sum of products between the distances among point pairs 
and their corresponding weights. Non-linear DR algorithms 
include locally linear embedding (LLE) [15], isomap [16], and 
laplacian eigenmaps (LE) [17]. LLE tries to keep the linear 
relationship between samples in the neighborhood, while the 
purpose of Isomap is to keep the distance between near-neigh-
bor samples different. And LE is aimed to construct relation-
ships between data from a local approximation perspective.

LDA [13] is a well-known method in the supervised DR 
field. However, traditional LDA-based algorithms have 
many disadvantages. For example, on the one hand, LDA 
is required to be changed to trace ratio form and then uti-
lizes the generalized eigenvalue decomposition (GEVD) 
method to obtain the closed-form solution [18]. This may 
result in errors between the optimal solution and the esti-
mated solution since the trace ratio problem is not a convex 
optimization problem [19]. To solve the trace ratio problem, 
trace ratio linear discriminant analysis (TRLDA) [20] and 
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ratio sum linear discriminant analysis (RSLDA) [21] were 
proposed, which effectively overcome this problem. The 
TRLDA method is a novel formulation of LDA, which can 
be turned into a quadratic problem with regard to the Stiefel 
manifold [20], but RSLDA is dedicated to maximizing the 
ratio of the between-class scatter to the within-class scatter 
in each dimension [21], so it could avoid selecting features 
with small variance. On the other hand, LDA aims to pre-
serve the global Euclidean structure and does not preserve 
the local geometric features of the original high-dimensional 
data. However, locality is considered to be a more important 
characteristic than global structure and affects the perfor-
mance of databases in the real-world applications [22]. As 
such, a large body of research has been done on various 
LDA algorithms that concentrate on locality relationships. 
Marginal Fisher Analysis (MFA) [23], which seeks to learn a 
more discriminating projection given neighbor information, 
is one of the most often used algorithms.

However, the above algorithms share a common draw-
back, i.e., Frobenius norm is used as the basic metric might 
enlarge the effect of outliers in certain senses. Therefore, 
some scholars proposed alternative approaches using L1
-norm to replace the Frobenius norm. Some classical algo-
rithms, such as R1-PCA [24] and LDA-R1 [25], were pro-
posed to improve the robustness. Pang et al. proposed L1-
norm tensor analysis [26], which can enhance the robustness 
of the model for tensor feature extraction. Recently, sparse 
learning has become more and more popular [23–25]. One 
of the most well-known methods, Sparse Principal Compo-
nent Analysis [27], transforms PCA into a regression-type 
optimization problem and exerts a quadratic and a lasso reg-
ularization terms. Lai et al. proposed a novel sparse method 
called sparse bilinear discriminant analysis (SBDA [6]) to 
obtain the sparse subspace for gait recognition. However, 
Nie et al. point out that L1-norm enlarges the gaps among 
data points and degrades the subsequent classification per-
formance [28]. He pointed out that L -norm integrates the 
advantage for distance measurement of L2 -norm and spar-
sity for enhancing the robustness of L1 -norm [28].

Although the aforementioned algorithms, such as new 
formulation of TRLDA and RSLDA, are able to release trace 
ratio problem, they are still sensitive to outliers. Despite the 
fact that the effect of outliers can be suppressed by R1-PCA 
and LDA-R1, they cannot guarantee joint sparsity. Nie et al. 
[29] first pointed out that the mean value calculated by L2 
-norm is not optimal, and they proposed a novel robust PCA 
with an optimal re-weighted mean. Then, Zhao et al. [30] 
proposed a robust LDA measured by L2,1 -norm which can 
alleviate the influence of outliers. Even though extensive 
algorithms based on L2,1 -norm are proposed on different 
occasions, they do not use the local information of the orig-
inal data effectively. Lai et al. [31] proposed a rotational 
invariant framework using L2,1 -norm as the basic metric, 

including rotational invariant LDA (RILDA) and rotational 
invariant MFA (RIMFA) which use L2,1 -norm as the meas-
urement on scatter matrices to reduce the impact of out-
liers. Then, in [32], locally joint sparse marginal embed-
ding (LJSME) was proposed by Mo et al. which can break 
through the small sample size (SSS) problem and enhance 
the ability to preserve the locality relationships with the joint 
sparsity simultaneously. Lin et al. [33] proposed the gen-
eralized robust multiview discriminant analysis (GRMDA) 
method for addressing the SSS problem of LDA in multiple-
view scenarios. Drawing inspiration from the robust discrim-
inative ability of LDA and the benefits of feature extraction 
with L2,p -norm regularization, Li et al. [34] proposed STR-
LDA for classification tasks. Singular value decomposition 
served as inspiration for the development of JSOLDA [35], 
a brand-new subspace learning technique that addresses the 
challenge of obtaining orthogonal sparse solutions in OLDA. 
However, the last three methods are essentially the trace ratio 
optimization problem [19], and finally, eigenvalue decom-
position is used to obtain the optimal solution. Therefore, to 
improve the performance of LDA-based methods for clas-
sification, a more robust and effective method is essential.

In this article, we propose a new LDA algorithm called 
generalized robust linear discriminant analysis (GRLDA) 
for feature extraction. This method is capable of releasing 
the SSS problem in the LDA-based methods and meanwhile 
ensuring locality preservation in a robust and effective form 
to obtain discriminant projections. Moreover, it can also 
guarantee the joint sparsity of the projection matrix. The 
main contributions or novelty of GRLDA are highlighted 
as follows.

1)	 Unlike the trace ratio problem, a new robust LDA in the 
form of trace and square root of trace is proposed, which 
can be converted into a convex optimization problem 
so as to obtain the local optimal solution. We prove the 
equivalence of our proposed method and the trace ratio 
method. Furthermore, it is possible to circumvent the 
drawback that the trace ratio problem can only have an 
approximate solution.

2)	 Several robust factors are integrated into the proposed 
GRLDA. Firstly, we construct two weighted graphs, 
the intrinsic graph and the penalty graph. But different 
from MFA, two scatter matrices are measured by L2,1
-norm so as to preserve the locality relationship with 
higher reconstruction ability and enhance the robustness 
to outliers. Meanwhile, we impose the L2,1-norm-based 
regularization term to ensure that the learned projections 
are jointly sparse and thus improve the performance of 
feature selection.

3)	 To calculate the best answer to the corresponding 
optimization problem, we design an iterative method. 
Additionally, the computational complexity is examined. 



9510	 Y. Zhu et al.

Numerous tests have shown that the suggested GRLDA 
can outperform most algorithms and that the designed 
method has a rapid convergence speed.

The remainder of this paper is briefly outlined as fol-
lows. In Section 2, we first present some notations and then 
we will discuss our motivation and the objective function, 
meanwhile its optimal solution is also shown. The computa-
tional complexity is also presented. In Section 3, a series of 
experiments have been conducted. Finally, we draw a con-
clusion for this article in Section 6.

2 � The proposed method (GRLDA)

In this section, some notations and definitions will be given 
and then the motivation and the objective function of the 
model are presented. We will also show how to compute the 
optimal solution using an iterative algorithm.

2.1 � Notations and definitions

Let ||A||P and tr(A) represent LP -norm and the trace 
of the matrix A, respectively. Given a sample matrix 
X = [x1, x2, ..., xN] ∈ Rd×N including all the training samples 
{xi}

N

i=1
∈ Rd in its columns, where N is the number of sam-

ples and d is the original dimension. Let U ∈ Rd×m denote 
the projection matrix, where m is the subspace dimension.

Given any matrix Q = [qij] ∈ Rm×n , the Frobenius norm 
of the matrix Q is denoted as:

the L2,1 -norm of the matrix Q is denoted as:

Many theoretical analyses and experiments have shown 
that imposing L2,1 -norm as the basic metric on the objective 
function can ensure joint sparsity. And for any given rota-
tional matrix A,||QA||2,1 = ||Q||2,1 . In [36], Nie et al. pointed 
out that this characteristic is rotational invariant.

2.2 � Motivation and objective function

Numerous techniques have been developed to mitigate the 
adverse impact of traditional LDA on outliers. However, 
there are still many drawbacks. Firstly, they cannot preserve 
the local structure of data [37]. However, this characteristic 
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makes differences in reconstructing the locality relationship 
in a low-dimensional space. Secondly, those extensions of 
LDA that keep the locality relationships are required to be 
transformed into another form and then adopt GEVD so 
that the within-class scatter matrix is required to be non-
singular. Therefore, we cannot obtain the closed-form solu-
tion if the sample size is very small. Moreover, the GEVD 
of between-class scatter matrix and within-class scatter 
matrix can only approximate the true value. Last but not 
least, despite the fact that some algorithms take the SSS 
and trace ratio problems into account, they do not consider 
joint sparsity [38]. Therefore, in this paper, we propose a 
generalized robust linear discriminant analysis (GRLDA) 
for feature extraction and dimensionality reduction. This 
approach addresses the joint sparsity utilizing L2,1 -norm 
as the basic metric on the regularization term as well as 
the primary component to increase the robustness. It also 
inherits the property of RIMFA in addition to taking into 
account the benefits of TRLDA.

The local within-class and local between-class scatter 
using L2,1 -norm as the basic metric can be computed as 
follows:

where Ww
ij

 and Wb
ij
 are defined the same as MFA [23] and the 

new sample matrix XGw and XGb are defined as:

and the two diagonal matrices are defined as:

We denote SGw = XT
Gw

DGwXGw and SGw = XT
Gb
DGbXGb , 

and according to the definition of L2,1 -norm, a diagonal 
matrix D with the i-th diagonal element is defined as:

(3)
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where ui denotes the i-th row of the matrix U.
RIMFA aims to learn the projection matrix U by maxi-

mizing the interclass separability and minimizing the 
intraclass compactness simultaneously. The objective 
function of RIMFA is as follows:

The optimal U of RIMFA could be obtained by the eigen-
value decomposition of the matrix S−1

Gw
SGb . However, when 

the number of training samples is very small, the inver-
sion of within-class scatter matrix does not exist. The most 
commonly used method is to add a regularization term to 
the within-class scatter matrix. Therefore, the eigenvalue 
decomposition of SGw and SGb can only approximate the 
true value. Since the optimal solution of RIMFA cannot 
be obtained directly, it is natural to construct a novel func-
tion with respect to U and a learnable variable s, which is 
equivalent to the problem (10):

We can know that the Eq.  (11) is equivalent to the 
Eq. (10) from the following theorem.

Theorem 1  The optimization problem in (11) is equivalent 
to the trace ratio problem (10).

Proof  The optimal solution of s can be obtained by taking 
the derivative of (11) with respect to s and setting it to be 
0, we get.

Substitute the optimal s into the problem (11), we get

which completes the proof. 	�  □
With the above preparations and ensuring the joint 

sparsity of the projection matrix, the objective function of 
GRLDA is finally defined as follows:

(9)Dii =
1

2||ui||2

(10)max
U

tr(UTSGbU)

tr(UTSGwU)

s.t.UTU = I

(11)
min
s,U

s2tr(UTSGwU) − 2s
√
tr(UTSGbU)

s.t.UTU = I

(12)
2str(UTSGwU) − 2

√
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⇒ s =

√
tr(UTSGbU)

tr(UTSGwU)

(13)

min
U

s2tr(UTSGwU) − 2s
√
tr(UTSGbU)

= min
U

tr(UTSGbU)

tr(UTSGwU)
− 2

tr(UTSGbU)

tr(UTSGwU)

= min
U

−
tr(UTSGbU)

tr(UTSGwU)

⇒ max
U

tr(UTSGbU)

tr(UTSGwU)

2.3 � The optimization

In problem (14), there are 2 iterative variables, i.e., projec-
tion matrix U, balance parameter s. In this paper, we firstly 
fix U to iterate s, then fix s to compute U.

1)	 Fix U to update s
	   We can easily get the updated s by setting the deriva-

tive with respect to (w.r.t.) s to 0, then we have:

2)	 Fix s to update U
	   For updating the matrix U, it is worthwhile for us to 

introduce a theorem proposed by Nie [29], which is a 
solution to the maximization problem as follows:

where fi(hi(m)) ≤ 0 is required to be an arbitrary con-
vex function w.r.t.hi(m) under the arbitrary constraint of 
m ∈ Ω . Before introducing the theorem, we firstly give 
the following lemma.

Lemma1 [39]  Assume m is a matrix, vector or scalar, f(m) is 
a scalar output function while h(m) is arbitrary whether it is a 
matrix, vector or scalar. Then we can get the following equality:

which is also called Chain-Rule.

The Lagrange function of the problem (16) is given as 
follows:

Take the derivative of the Eq. (18) and use the lemma 1, 
we have the following derivation:
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For simplicity, we suppose:

Namely, (20) is the Lagrange function of the following 
optimization problem [20]:

With the aforementioned preparations, we present the fol-
lowing theorem to compute the problem (14).

Theorem 2:  The solution to the optimization problem (16) 
can be obtained by the following iterative procedure [20].

1)	 Initialize m that satisfies m ∈ Ω;
2)	 Compute Gi = f �i(hi(m)) , where f �i(hi(m)) is an arbitrary 

super gradient of the function fi(m) at the point hi(m);
3)	 Obtain the optimal m ∗ of the problem (21);
4)	 Update m ← m ∗.
5)	 Repeat 2) – 4) until convergence.

The proof of the theorem 2 is in the appendix. According 
to the theorem 2, we are required to convert the problem (14) 
into a convex function w.r.t.U as follows:

Where a,D̃ = �(�I − D) , � and � need to be large enough to 
make S̃Gw and D̃ be positive semi-definite (PSD). From (22), 
we can obviously know the first and third term are convex 
terms. It is necessary for us to prove the second term is a 
convex term but firstly we need to introduce Lemma 2.

Lemma 2 [21]  If f (s) is a linear output function, and F(s) is 
a convex function, then F(f (s)) is still convex.

Proof  If f (s) is a linear output function, and F(s) is a convex 
function, then according to the definition of convex function, 
we have:

which proves that F(f (s)) is still a convex function. 	�  □
We can easily know that SGb is a PSD matrix so a cor-

responding matrix P ∈ Rn×d can be found which satisfies 
SGb = PTP , then we get:
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where R = PU ∈ Rn×m . It is easy to know that || ⋅ ||2
F
 is a 

convex function, and in each iteration, P is a constant matrix, 
so R(U) is a linear function w.r.t. U. According to the lemma 
2, we can conclude that the second term of problem (22) is 
convex.

For simplicity, we denote S̃Gb = sSGbU∕
√
tr(UTSGbU) , 

so the objective function can be rewritten as:

whe re fi(ui) = uT
i
S̃Gwui + 2uT

i
(S̃Gb)i + uT

i
D̃ui ,hi(ui) = ui ,ui 

denotes the i−th column of the matrix U. It is easy to know 
that fi(ui) is a convex function. According to the theorem 1, 
the convex optimization problem (25) can be rewritten as:

where a and C =
[
c1, c2, ..., cm

]
  . The optimal U* can be 

gained by the following method [21].

Firstly, we adopt the Singular Value Decomposition 
on C, and we get Ũ ∈ Rd×d  and V ∈ Rm×m  which satisfy 
C = ŨΣVT . Then we will have:

where Z = VTUTŨ ∈ Rm×d . We can easily know that 
ZZT = Im ∈ Rm×m,�ii and zii are diagonal elements of Σ and 
Z , so zii, (i = 1, 2, 3, ...,m) is no more than 1. That means 
that the function tr(ΣZ) can be maximized when all of 
the diagonal elements of Z are equal to 1. According to 
Z = VTUTŨ ∈ Rm×d , the optimal U can be obtained by 
U∗ = ŨZTVT = Ũ[Im;0(d−m)×m]V

T . The optimal U∗ of prob-
lem (22) can be obtained via Algorithm 1. The whole algo-
rithm flow is shown in Table 1
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Algorithm 1   For solving the problem (22)

.2.4 � Computational complexity
From the proposed GRLDA algorithm, we can know that the 
outer loop is to update s, DGw , DGb, and the inner loop is to update 
the projection matrix U. The inner loop consists of three parts: 
computing the matrix C, adopting the full SVD of C, updating 
the projection matrix U. The computational complexity of both 
computing the matrix C ∈ Rd×m  and performing the full SVD 
on the matrix C is O(md2) . The outer loop consists of computing 
s,S̃Gw , S̃Gw  and updating DGw,DGb,D , whose complexities are 
O(md2) at most. Therefore, the total computational complexity of 
the proposed algorithm is O(T1T2md2) , where T1 and T2 are the 
number of outer loop and inner loop iterations. Extensive experi-
ments demonstrate that T1 is no more than 3 on lots of databases.

3 � Experiments

In this section, we compare the proposed GRLDA with 
some state-of-the-art algorithms including classical 
dimensionality reduction algorithms and some recent algo-
rithms to illustrate the performance on some well-known 
databases. The classical dimensionality reduction methods 

include principle component analysis (PCA) [40], linear 
discriminant analysis (LDA) [10] and marginal fisher 
analysis (MFA) [23]. The recent methods include L2,1
-norm-based algorithms (i.e. rotational invariant LDA and 
MFA (RILDA, RIMFA) [31], the L2,1-norm regularized 
locally joint sparse marginal embedding (LJSME) [32]), 
trace and square root of trace [18] based algorithms (i.e. 
trace ratio LDA (TRLDA) [20], ratio sum LDA (RSLDA) 
[21], sparse trace ratio LDA (STR-LDA) [34]) and jointly 
sparse orthogonal LDA (JSOLDA) [35]. The original data 
must be pre-processed because the dimensionality of each 
image is extremely high and there are very few training 
samples [41]. As a result, the scatter matrices may contain 
null space. In order to mitigate the effects of null space and 
preserve the primary energy, we employ PCA to minimize 
the dimensionality. Every image had its dimensionality 
lowered to 200. Next, the primary feature on the COIL-20, 
FERET, ORL, Extended Yale B, AR, Yale, BreastMN-
IST, and PneumoniaMNIST databases is extracted using 
GRLDA. Lastly, additional categorization is performed 
using the closest neighbor classifier (NN).

3.1 � Explorations on Parameter Setting

In the experiment of GRLDA, we first try to find the opti-
mal range of the parameter value from which we can obtain 
the best performance. We explore the recognition rate with 
the variable � variously from [10−9, 10−8, ..., 108, 109] on 5 
databases. The recognition rates versus the variable � are 
illustrated in Fig. 1a. From the graph shown in Fig. 1a, it 
can be found that the best parameter area is [102, ..., 109] . 
The potential reason lies in the fact that when the param-
eter α is larger, the projection obtained through the pro-
posed GRLDA exhibits a greater number of rows with all 
zeros, which indicates the learned projection matrix is more 

Table 1   GRLDA algorithm
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jointly sparse, ultimately enabling the proposed GRLDA to 
achieve adaptive feature selection. The recognition rates do 
not decline significantly like other methods (i.e. LJSME, 
JSOLDA) when the parameter � falls within other ranges, so 
we can conclude that our model is very stable even though 
the range of parameter � is very small. For simplicity, we set 
� ∈ [102, 109] in experiments for each database.

3.2 � Experiments on COIL‑20 Database

The COIL-20 object image database contains a total of 
1440 images of 20 different objects, where the image size is 
128 × 128 . The 10 images of the first object with the differ-
ent pose are shown in Fig. 2a. We randomly select the t(t = 5, 
10, 15, 20) images as gallery set [32], and the rest of images 
are used as probe set [32]. We conduct the experiment to 

test the performance of GRLDA under the circumstances 
where images are rotated with 360 degrees. The experiment 
is conducted a total of 10 times.

The average recognition rates of the feature extraction 
algorithms (i.e., the proposed GRLDA and PCA, LDA, 
MFA, RILDA, RIMFA, LJSME, TRLDA, RSLDA, STR-
LDA, GSOLDA) when selecting 200 projections are 
shown in Table 2 and the recognition rates versus sub-
space dimension using above algorithms are illustrated in 
Fig. 1b when the training samples are 10. Table 2 illus-
trates that GRLDA outperforms other algorithms when 
the number of training samples are 10, 15 and 20. Even 
though when the number of training samples are 5, the 
recognition of RSLDA is slightly more than GRLDA but 
GRLDA also performs very well and obtains the second 
place. Figure  1b indicates that the proposed GRLDA 

Fig. 1   a The recognition rates versus the variation of parameter � of GRLDA on different databases. The recognition rates versus the subspace 
dimension of different algorithms on b COIL-20 dataset, on c FERET dataset, on d ORL dataset



9515Generalized robust linear discriminant analysis for jointly sparse learning﻿	

performs better than other methods at a low dimension 
and maintains a relatively stable value. Despite the fact 
that the recognition rate of GRLDA decreases slightly as 
the subspace dimension rises, it still performs better than 
other methods.

3.3 � A. Experiments on FERET Database

The FERET dataset contains 200 people and every person 
has 7 images. It is a well-known dataset to test the robust-
ness of many classical methods. Based on the eye area, the 
original image of each face is automatically cut [42]. The 

(a)               (b) 

(c)                   ( d)

(e)

(f)           (g)

)i()h(

Fig. 2   The samples of COIL-20 images in (a), FERET images in (b), ORL images in (c), Yale images in (d), Extended Yale B images in (e), AR 
original images in (f), AR images with block size 10*10 in (g), BreastMNIST images in (h), PneumoniaMNIST images in (i)

Table 2   The average recognition accuracy (%), standard deviation, training samples of different methods on COIL-20 face database

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

5 80.17
 ± 1.95

61.60
 ± 3.57

74.06
 ± 1.82

70.67
 ± 2.55

81.94
 ± 1.45

82.47
 ± 1.31

82.86
 ± 1.55

80.07
 ± 1.60

76.70
 ± 1.65

81.85
 ± 1.68

82.70
 ± 1.25

10 83.84
 ± 1.42

64.81
 ± 2.34

79.93
 ± 3.40

73.49
 ± 1.81

85.85
 ± 2.22

84.64
 ± 2.02

86.00
 ± 3.70

84.09
 ± 1.29

82.86
 ± 2.04

86.45
 ± 1.52

86.73
 ± 1.12

15 85.32
 ± 1.54

68.37
 ± 2.30

82.14
 ± 2.00

74.27
 ± 3.97

87.54
 ± 1.27

86.98
 ± 0.70

88.64
 ± 1.67

86.46
 ± 1.34

84.31
 ± 1.37

88.67
 ± 0.26

89.62
 ± 1.43

20 85.64
 ± 2.31

70.60
 ± 3.06

84.08
 ± 0.89

75.23
 ± 2.69

82.20
 ± 1.86

88.65
 ± 1.38

89.39
 ± 1.64

88.58
 ± 1.54

87.34
 ± 1.55

89.96
 ± 1.39

92.64
 ± 1.20
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cropped image size is 40 × 40 . The sample images of the 
first person are illustrated in Fig. 2b.

In this experiment, we randomly use L(L = 3, 4, 5) 
images of each individual as gallery set [32], and we use the 
remained images as probe set [32]. Table 3 illustrates the 
recognition rates of different algorithms. Table 3 indicates 
that the proposed GRLDA fully displays its robustness to 
outliers against some classical methods such as LDA, MFA 
etc. Despite the fact that GRLDA is slightly less than RILDA 
when the training samples are 5, it becomes evident that 
GRLDA's superiority increases as the number of training 
samples decreases. We select 6 training samples for exam-
ple, Fig. 1c depicts the trends of the recognition rates versus 
the subspace dimension. The figure indicates that GRLDA 
and STR-LDA are equally effective when the training sam-
ples are small and they can both obtain a high recognition 
rate. Nevertheless, as the dimension rises, GRLDA performs 
better than STR-LDA and they reach the corresponding peak 
when the subspace dimension is at 110 and 70, respectively.

3.4 � Experiments on ORL Database

The ORL dataset contains 400 images of 40 individuals, 
where the image size is 56 × 46. In the experiment, we ran-
domly select l(l = 3, 4, 5) images as gallery set [32], and 
the rest of images are used as probe set [32]. Meanwhile, 
according to Fig. 1a, we set the parameter � to be103 . Table 4 
illustrates the average recognition rates of different algo-
rithms. Figure 1d shows that the recognition rates versus the 
subspace dimension when the training samples are 3. It is 
obviously that GRLDA performs better than other methods 
again (Tables 5, 6, 7 and 8).

3.5 � Experiments on Extended Yale B Database

The Extended Yale B database is a high-dimensional data-
set used for face recognition research. It contains 2414 
frontal-facial images with dimensions of 192 × 168 pix-
els. The dataset includes images of 39 individuals, with 

Table 3   The average recognition accuracy (%), standard deviation, training samples of different methods on FERET face database

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

3 45.66
 ± 2.10

33.18
 ± 1.73

36.48
 ± 2.65

36.98
 ± 3.06

45.58
 ± 2.56

39.93
 ± 4.26

36.28
 ± 2.65

45.09
 ± 3.27

39.74
 ± 1.56

45.78
 ± 1.78

46.79
 ± 1.86

4 52.52
 ± 2.58

48.69
 ± 2.01

44.41
 ± 1.88

50.46
 ± 2.87

52.39
 ± 3.22

39.87
 ± 3.17

48.41
 ± 2.62

54.62
 ± 3.31

53.26
 ± 1.55

54.98
 ± 1.97

55.19
 ± 1.47

5 56.69
 ± 3.18

54.46
 ± 2.88

49.94
 ± 3.04

59.56
 ± 3.21

57.53
 ± 3.54

57.78
 ± 3.64

58.22
 ± 3.07

48.12
 ± 3.84

59.12
 ± 2.68

58.67
 ± 3.16

59.00
 ± 3.87

Table 4   The average recognition accuracy (%), standard deviation, training samples of different methods on ORL face database

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

3 88.09
 ± 1.98

84.95
 ± 2.86

81.53
 ± 2.73

83.53
 ± 2.05

88.19
 ± 1.34

87.91
 ± 1.49

87.35
 ± 2.29

88.16
 ± 1.34

86.79
 ± 2.14

87.86
 ± 2.57

88.27
 ± 2.32

4 90.46
 ± 2.35

86.10
 ± 2.49

87.17
 ± 2.42

84.40
 ± 2.19

91.45
 ± 2.79

91.31
 ± 2.43

91.64
 ± 1.83

91.31
 ± 2.43

90.59
 ± 2.56

90.21
 ± 1.37

91.67
 ± 2.13

5 93.25
 ± 1.33

86.98
 ± 2.05

88.43
 ± 2.89

84.85
 ± 3.36

94.23
 ± 1.60

93.70
 ± 1.90

94.10
 ± 1.74

90.53
 ± 2.37

94.69
 ± 1.75

94.09
 ± 3.07

95.28
 ± 1.77

Table 5   The average recognition accuracy (%), standard deviation, training samples of different methods on YALE face database

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

4 81.90
 ± 2.00

79.90
 ± 3.48

74.06
 ± 3.48

70.33
 ± 6.22

82.58
 ± 2.56

82.10
 ± 2.50

82.61
 ± 2.03

77.90
 ± 4.54

81.99
 ± 3.25

81.78
 ± 2.46

82.86
 ± 2.11

5 83.44
 ± 2.61

80.17
 ± 6.67

74.56
 ± 3.33

73.17
 ± 4.77

82.39
 ± 2.95

82.94
 ± 2.88

82.22
 ± 2.17

76.89
 ± 6.44

83.56
 ± 1.97

82.56
 ± 1.46

84.05
 ± 1.82

6 81.87
 ± 2.90

85.26
 ± 5.42

77.93
 ± 2.51

78.20
 ± 4.81

80.47
 ± 3.11

81.20
 ± 3.04

81.87
 ± 3.51

79.87
 ± 7.29

83.46
 ± 2.79

84.31
 ± 3.42

84.33
 ± 2.53
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an average of about 64 images per person. The images 
were taken under diverse lighting circumstances and with 
a range of facial expressions. Figure 2e displays the 10 
photos of the initial individual. Like the FERET dataset, 
the Extended Yale B dataset includes images of faces taken 
in challenging conditions, leading to the presence of outli-
ers. Table 9 presents the test results of GRLDA and other 
cutting-edge approaches, with training samples of 5, 10, 
15, and 20, respectively. Experimental results demonstrate 
that our proposed GRLDA approach achieves a recognition 
rate of approximately 90% on this high-dimensional data-
set when the training samples are 20. This performance 
is notably superior to the present state-of-the-art method 
STR-LDA. Therefore, our proposed GRLDA is also capa-
ble to effectively handle high-dimensional datasets.

3.6 � Experiments on AR Database

The AR dataset consists of 3120 images of 120 different 
individuals, where each image size is 50 × 40. In this experi-
ment, we use a subsection of AR dataset, namely the first 20 
images are selected to verify the performance of GRLDA 
in the case when images are varying with different illustra-
tion, expressions and occlusions [43]. We randomly select 
t(t = 3, 4, 5) images as gallery set [32], and the rest of images 
are used as probe set [32].

3.6.1 � Robustness Evaluation

To test the robustness of the proposed GRLDA, we ran-
domly add a block noise to each image. The sample images 
are shown in Fig. 2f and g respectively. Table 10 lists the 
highest recognition rates, the dimensions, and the stand-
ard deviations of different algorithms with different block 
size. Figure 3a shows that when the training samples are 
5, the recognition rates versus the subspace dimension of 
the original images, and images with block size 15 × 15, 
10 × 10, 5 × 5, respectively. Results in Table 10 illustrates 
the stronger robustness of the proposed GRLDA to the cor-
ruption of image than other methods.

3.6.2 � Face Reconstruction and Learned Projections

In this subsection, we further conduct a series of experi-
ments to explore the reconstructed face images and the 
projection visualization of the proposed GRLDA and some 
state-of-the-art methods, i.e., LDA, MFA, RSLDA. We take 
two kinds of experiments into account. On the one hand, 
we use the first 5 original images of each individual to train 
and obtain the learned projections of LDA, MFA, RSLDA, 
GRLDA. Figure 4a illustrates one original image of the first 
person. The reconstructed images by LDA, MFA, RSLDA, 
GRLDA are shown in Fig. 4b-e. In each method, we use 
the first 50 projections to reconstruct the face image. To 

Table 6   Details of MedMNIST 
dataset

Name Data modality Number of features Tasks/labels Train/Validation/Test

Breast
MNIST

Breast Ultrasound 784(28 × 28) Binary-Class (2) 546 / 78 / 156

Pneumonia
MNIST

Chest
X-Ray

784(28 × 28) Binary-Class (2) 4,708 / 524 / 624

Table 7   The average validating accuracy (%), standard deviation of different methods on two datasets

Dataset PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

Breast
MNIST

85.97
 ± 1.03

84.49
 ± 2.56

85.02
 ± 3.42

83.29
 ± 5.64

83.21
 ± 5.43

83.21
 ± 2.24

88.42
 ± 1.21

87.93
 ± 3.74

82.64
 ± 2.17

87.51
 ± 2.32

89.79
 ± 1.68

Pneumonia
MNIST

90.32
 ± 5.47

90.04
 ± 4.65

83.57
 ± 2.27

82.47
 ± 4.89

93.49
 ± 2.64

92.65
 ± 2.64

91.87
 ± 2.64

83.54
 ± 6.67

93.34
 ± 1.31

94.85
 ± 1.64

94.33
 ± 1.67

Table 8   The average testing accuracy (%), standard deviation of different methods on two datasets

Dataset PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

Breast
MNIST

71.90
 ± 2.00

76.97
 ± 2.34

74.56
 ± 3.94

77.65
 ± 5.32

83.79
 ± 2.54

81.45
 ± 2.31

80.45
 ± 2.08

75.48
 ± 4.59

83.47
 ± 2.19

83.19
 ± 2.16

83.50
 ± 2.59

Pneumonia
MNIST

82.57
 ± 1.54

85.26
 ± 6.64

75.97
 ± 3.64

73.87
 ± 4.67

84.56
 ± 2.34

83.57
 ± 2.64

82.68
 ± 1.16

74.76
 ± 6.87

88.54
 ± 1.62

87.85
 ± 1.39

88.67
 ± 2.36
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explore the learned subspace, we also show the first learned 
projection of LDA, MFA, RSLDA and GRLDA, respectively 
in Fig. 4f-i. On the other hand, we use the first 5 images 
corrupted by the block size 15 × 15 to obtain the projection 
matrix and conduct the same operation as above mentioned. 
The results are illustrated in Fig. 5 and some conclusions can 
be drawn from Figs. 4 and 5:

From Fig. 4h, we know that RSLDA performs well in 
selecting the most discriminative feature in the original 
space. However, it cannot effectively avoid the impact of 

outliers, which is obviously highlighted in Fig. 5h. From 
Fig. 4b to 4e, it is obvious to see that the reconstructing abil-
ity of LDA is the least but GRLDA not only has a relatively 
good reconstructing ability, but also can find discriminative 
projections for feature extraction and selection. As we know 
that GRLDA can reduce the impact of outliers by the L2,1
-norm as the basic measurement and the regularized term, 
and both Fig. 5e and i indicate this theoretical explanation 
since the images are less influenced by noised block.

Table 9   The average recognition accuracy (%), standard deviation, training samples of different methods on Extended YALE B face database

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA STR-LDA GSOLDA GRLDA

5 56.12
 ± 1.07

61.45
 ± 3.80

63.87
 ± 3.54

67.93
 ± 6.21

68.50
 ± 2.97

62.00
 ± 3.70

64.17
 ± 2.19

70.49
 ± 3.27

70.27
 ± 3.41

71.67
 ± 1.03

71.40
 ± 1.87

10 60.24
 ± 2.05

65.37
 ± 1.87

65.02
 ± 3.96

70.54
 ± 4.02

72.58
 ± 2.40

68.10
 ± 2.50

72.61
 ± 2.07

76.88
 ± 4.76

74.79
 ± 3.45

75.70
 ± 2.10

77.69
 ± 2.14

15 64.50
 ± 2.43

68.79
 ± 4.21

70.25
 ± 2.35

74.43
 ± 1.89

79.37
 ± 2.64

72.46
 ± 2.23

74.70
 ± 3.04

82.37
 ± 5.65

81.92
 ± 2.74

77.64
 ± 1.51

83.87
 ± 3.11

20 66.64
 ± 1.29

71.34
 ± 2.84

73.21
 ± 1.28

78.27
 ± 3.57

83.12
 ± 3.27

73.49
 ± 2.50

76.73
 ± 2.18

84.67
 ± 4.32

85.03
 ± 3.24

81.58
 ± 2.78

89.76
 ± 2.31

Table 10   The top recognition accuracy (%), standard deviation, training samples and dimensions of different methods on AR face database with 
block corruption

Block
size

Training
samples

PCA LDA MFA RILDA LJSME TRLDA RSLDA RIMFA GSO
LDA

STR-
LDA

GRLDA

15 × 15 3 44.04
 ± 2.33
(115)

71.70
 ± 1.60
(140)

61.51
 ± 3.55
(150)

60.40
 ± 3.00
(200)

62.43
 ± 1.76
(190)

43.50
 ± 2.67
(150)

58.08
 ± 3.71
(180)

72.70
 ± 2.27
(100)

73.43
 ± 1.54
(200)

66.46
 ± 3.58
(100)

76.52
 ± 1.77
(200)

4 63.25
 ± 1.72
(115)

78.90
 ± 1.17
(125)

72.41
 ± 2.31
(150)

67.17
 ± 2.09
(200)

62.60
 ± 2.05
(185)

49.86
 ± 2.77
(150)

63.79
 ± 4.68
(180)

80.44
 ± 1.70
(100)

83.79
 ± 1.02
(200)

73.57
 ± 2.43
(100)

83.97
 ± 2.28
(200)

5 67.93
 ± 1.12
(115)

71.67
 ± 2.53
(140)

80.05
 ± 1.86
(150)

67.84
 ± 1.78
(200)

66.68
 ± 1.51
(190)

67.01
 ± 1.63
(150)

66.48
 ± 3.15
(170)

78.19
 ± 1.95
(100)

85.95
 ± 1.21
(200)

77.24
 ± 2.31
(100)

85.96
 ± 1.48
(200)

10 × 10 3 61.70
 ± 2.45
(115)

83.37
 ± 1.09
(140)

68.47
 ± 2.95
(150)

82.21
 ± 1.21
(200)

61.17
 ± 1.12
(175)

62.95
 ± 1.57
(150)

63.64
 ± 7.35
(180)

78.17
 ± 2.40
(100)

84.34
 ± 1.52
(200)

67.57
 ± 1.74
(100)

87.57
 ± 1.96
(200)

4 67.38
 ± 1.82
(115)

84.75
 ± 1.46
(140)

79.75
 ± 1.39
(150)

85.42
 ± 1.29
(200)

67.80
 ± 1.96
(190)

67.30
 ± 1.54
(150)

66.59
 ± 1.70
(180)

82.02
 ± 3.12
(110)

90.06
 ± 3.24
(200)

79.15
 ± 2.23
(100)

91.10
 ± 1.17
(200)

5 71.64
 ± 2.01
(115)

78.43
 ± 2.57
(140)

85.68
 ± 2.40
(150)

79.20
 ± 1.78
(200)

72.22
 ± 1.90
(190)

71.48
 ± 1.90
(150)

71.49
 ± 1.99
(180)

81.69
 ± 1.81
(100)

91.24
 ± 1.38
(200)

81.09
 ± 2.21
(100)

91.04
 ± 1.70
(200)

5 × 5 3 61.82
 ± 1.90
(115)

85.40
 ± 1.48
(140)

73.80
 ± 2.31
(150)

85.97
 ± 2.13
(200)

62.64
 ± 2.22
(190)

62.74
 ± 2.39
(150)

64.28
 ± 6.25
(180)

78.10
 ± 2.93
(110)

83.56
 ± 1.60
(200)

78.36
 ± 3.24
(100)

88.54
 ± 1.59
(200)

4 67.76
 ± 2.55
(115)

87.79
 ± 1.24
(140)

83.23
 ± 1.39
(150)

88.44
 ± 0.94
(200)

67.86
 ± 1.84
(190)

68.85
 ± 1.64
(150)

69.41
 ± 3.98
(180)

81.41
 ± 4.98
(100)

88.29
 ± 1.79
(200)

81.30
 ± 2.41
(100)

89.29
 ± 1.56
(200)

5 72.26
 ± 2.38
(120)

82.26
 ± 1.95
(140)

88.82
 ± 1.69
(150)

82.70
 ± 1.11
(200)

71.85
 ± 2.18
(190)

72.48
 ± 1.79
(150)

71.62
 ± 2.41
(180)

84.10
 ± 2.67
(100)

90.24
 ± 1.88
(200)

83.23
 ± 2.37
(100)

90.28
 ± 1.54
(200)
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3.7 � Experiments on Yale Database

The Yale dataset involves a total of 15 people, each with 11 
face images, with size of 100 × 80. This dataset contains var-
iations in illumination, facial expression and with or without 
glasses [43], Fig. 2d shows the sample images of the first 
person. In this experiment, we randomly choose t(t = 5, 6, 
7) images of each individual as gallery set [32], and the rest 
of images are used as probe set [32]. And the corresponding 
parameter � is set in 103 according to Fig. 1a.

The average recognition rates of different algorithms are 
shown in Table 5. When the first 6 images of each people 

were used as gallery set, the testing recognition rates ver-
sus the subspace dimension are illustrated in Fig. 3b. Both 
of them indicates that the proposed GRLDA is robust to 
small samples and can reach a high recognition in a very 
low dimension and maintain a good stability.

3.8 � Experiments on MedMNIST Database

The MedMNIST dataset comprises a vast collection of 
standardized biomedical images, consisting of 708,069 2D 
medical images across 12 different categories and 9,998 

Fig. 3   a The recognition rates versus the subspace dimension by GRLDA with different block size. b The recognition rates versus the subspace 
dimension by different methods on the Yale dataset

(a) (b)        (c)      (d)        (e)              (f)       (g)       (h)      (i)

Fig. 4   Original images in (a), reconstructed images by LDA (b), MFA (c), RSLDA (d), GRLDA (e); the first projection obtained by LDA (f), 
MFA (g), RSLDA (h), GRLDA (i)

(a) (b)        (c)       (d)       (e)              (f)       (g)       (h)       (i)

Fig. 5   Images with random block size 15*15 in (a), reconstructed images by LDA (b), MFA (c), RSLDA (d), GRLDA (e); the first projection 
obtained by LDA (f), MFA (g), RSLDA (h), GRLDA (i)
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3D medical images spanning 6 different types. The dimen-
sions of 2D images are 28 × 28, while the dimensions of 
3D images are 28 × 28 × 28. Additionally, the background 
information of the images is eliminated, making them very 
suitable for testing machine learning methods. This data-
set is utilized for lightweight image classification tasks, 
encompassing binary classification, multi-classification, 
ordinary regression, and multi-category tasks. For this 
study, we specifically chose two datasets, namely BreastM-
NIST and PneumoniaMNIST, to evaluate the performance 
of our approach. The sample images of the two subdatasets 
are shown in Fig. 2h and i. Table 6 provides a more com-
prehensive overview of the two subdatasets. The experi-
mental results presented in Tables 7 and 8 clearly indicate 
that GRLDA achieves the highest level of classification 
accuracy among all the methods tested on breast cancers 
and pneumonia test datasets. Furthermore, GRLDA also 
attains the second-highest accuracy on the PneumoniaMN-
IST validation set.

3.9 � Convergence Study

It is interesting and necessary for us to explore how fast 
GRLDA converges. Figure 6 depicts the objective function 
value of the proposed GRLDA versus the number of itera-
tion times on different databases. It clearly indicates that the 
proposed GRLDA can converge within 3 iterations.

3.10 � Experimental Results and Discussions

The experimental results in terms of the recognition accu-
racy of the proposed GRLDA and the classical algorithms 
(i.e., PCA, LDA and MFA), and some methods based on 
rotational invariant L2,1-norm (i.e., RILDA and RIMFA [31], 
LJSME [32]) and other new methods (i.e. TRLDA [20], 
RSLDA [21], STR-LDA [34], and GSOLDA [35]) are listed 
in tables and figures above, we can draw some interesting 
conclusions:

1.	 In most cases, the proposed GRLDA and GSOLDA [35] 
outperform other algorithms. The main reason is that 
the loss functions of the two algorithms are based on 
L2,1-norm so that they are more robust to outliers than 
methods using L2-norm as the basic metric. However, 
GRLDA not only computes the intraclass and interclass 
scatter matrices using L2,1-norm, but also defines a new 
formulation measured by trace and square root of trace, 
which can obtain the local optimal solution.

2.	 The performances of rotational invariant algorithms and 
some classical algorithms approach GRLDA when the 
training samples are big. However, when the quantity of 
training samples falls, their performances significantly 
deteriorate. Furthermore, when the training samples 
change, GRLDA can retain greater stability. The pos-
sible explanation is that, in order to avoid computing the 
inverse of the intraclass (or interclass) scatter matrix and 

Fig. 6   Convergence curves of GRLDA on (a) Yale, (b) FERET, (c) COIL-20, (d) AR, (e) ORL, (f) PIE
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to obtain the optimal solution, the optimization prob-
lem is converted into a quadratic problem on the Stiefel 
manifold and singular value decomposition is used.

3.	 Based on the performance statistics of various 
approaches as the subspace dimension increases, it can 
be observed that LDA, MFA, and RSLDA are suscep-
tible to variations in the subspace dimension in some 
datasets. However, in the majority of databases, the sug-
gested GRLDA can successfully overcome this draw-
back and reach the peak at a very low dimension.

4.	 In most cases, the proposed GRLDA outperforms 
RSLDA, which is aimed to maximize the separability of 
the data point in each dimension of the subspace so that 
it can obtain the features with more discriminative abil-
ity. Figure 4h indicates that. However, when we compare 
Fig. 4d and e, we can observe that the reconstructing 
ability of GRLDA is better than RSLDA. The potential 
reason is that GRLDA preserves the local geometric 
structure, which is helpful to learn discriminative infor-
mation and reconstruction ability simultaneously.

4 � Conclusion

In this paper, we propose a more robust linear discriminant 
analysis method incorporating multiple factors and using L2,1
-norm as the basic metric on both loss function and regu-
larization term. GRLDA tends to preserve the local geomet-
ric structures in the learned subspace with joint sparsity to 
obtain more discriminative features. Two sub problems can 
be broken down into an iterative approach that is designed 
to compute the optimal answer. The ideal solution can be 
found simply in the first section. The suggested goal func-
tion is transformed into a quadratic problem on the Stiefel 
manifold in the second section, and the best solution is found 
by applying SVD. This technique effectively avoids comput-
ing the inverse of a singular matrix so that the number of 
samples can be very small. Moreover, we rigorously ana-
lyze the computational complexity. Extensive experiments 
on face, object, and medical databases indicate that the 
speed of the convergence is very fast and the performance 
of the proposed GRLDA is superior to most state-of-the-art 
algorithms.

Appendix

First, we introduce a lemma as follows:

Lemma 3

Assuming that f(x) is a convex function of x where x can be 
a scalar, vector or matrix variable, then we obtain:

where f'(x2) is the super-gradient of f(x) at x2.

Proof of the theorem 2

It is easy to know that fi(hi(m)) is an arbitrary convex func-
tion w.r.t. hi(m)  under the arbitrary constraint of m ∈ Ω . We 
assume that fi(hi(m)) ≤ 0 . In the t-th iteration, we denote 
Gt

i
= f�i(hi(m

t−1)) . For each i, according to the lemma 3, 
we have:

According to (21), the following can be derived:

Summing (29) and (30), we have:

Summing (31) and fi(hi(m)) ≤ 0 , the value of the 
objective function (16) will monotonically increase until 
convergence.
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