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Abstract
Blasting is the primary method for ultra-deep roadway engineering, which is facing the challenge of low footage caused by 
unsatisfactory blasting effects. Among all the evaluation indicators, the blast-hole utilization rate is the most important index 
for measuring blasting effect. Consequently, accurately predicting this index is essential for improving roadway excavation 
efficiency. In recent decades, the field applications of artificial intelligence have emerged as the prime method, yet the issue of 
data loss and large errors in large-scale data processing remains unresolved. In this study, novel Structured Nonlinear Support 
Vector Machine (SNSVM) is introduced as the primary research tool. To enhance prediction performance and accuracy, Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO) and Sparrow Search Algorithm (SSA) are utilized to optimize the hyper-
parameters of SNSVM. The prediction models comprise fourteen influencing factors, constituting the comprehensive blasting 
effect prediction system based on artificial intelligence. The principal criteria for assessing the performance of various models 
are the error correlation coefficients (Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), R-Square 
 (R2)) and the Receiver Operating Characteristic (ROC) curve (standard deviation rate (γ)). Among the models considered, SSA-
SNSVM exhibited the greatest capability when the swarm size is 90. The RMSE, MAPE and  R2 values of training datasets are 
0.0070, 15.54% and 0.9295, respectively. The RMSE, MAPE and  R2 values of testing datasets are 0.0086, 16.37% and 0.9490, 
respectively. Furthermore, the minimum standard deviation rate of SSA-SNSVM serves as the vital index for measuring the 
accuracy, with a value of 0.11. Subsequently, the sensitivity analysis results indicate that the most sensitive factor of blast-hole 
utilization rate is the surrounding rock itself. The comprehensive blasting effect evaluation is of significant importance for the 
dynamic adjustment of on-site blasting schemes, including roadway excavation, shaft excavation, or pressure-relief engineering.

Keywords Blast-hole utilization rate · Structured nonlinear support vector machine · Swarm bionic optimization 
algorithms · Error correlation coefficients · Receiver Operating Characteristic curve · Sensitivity analysis

1 Introduction

Blasting operation is widely employed in large-scale civil 
and mining engineering, such as tunnel excavation [1], the 
open-pit mining [2–5], shaft development [6] and roadway 

excavation [7]. For the ultra-deep roadway excavation 
engineering, within the premise of ensuring safe produc-
tion, the prime objective of optimization and adjustment 
for the blasting scheme is increasing the single cycle foot-
age, optimizing the number of cross-section blast-hole, 

 * Yuantong Zhang 
 zhang_yuant@163.com

 Bingbing Yu 
 394744667@qq.com

 Bo Wang 
 2441093281@qq.com

 Yi Li 
 1924009199@qq.com

 Guohao Wang 
 wgh611118@qq.com

1 School of Mechanics and Civil Engineering, China 
University of Mining and Technology-Beijing, 
Beijing 100083, China

2 School of Cyberspace Security, Hainan University, 
Haikou 570228, Hainan, China

3 School of Civil and Resource Engineering, University 
of Science and Technology-Beijing, Guiyang 100083, 
Beijing, China

/ Published online: 10 July 2024

Applied Intelligence (2024) 54:9136–9157

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05614-8&domain=pdf


and reducing material loss as much as possible [8, 9]. 
Furthermore, the ultimate goal of all the measures is to 
improve the blast-hole utilization rate, which can achieve 
the best blasting effect and enhance the efficiency of the 
blasting operation [2–5].

Aiming at the problem of low blast-hole utilization rate, 
despite the efforts of domestic and domestic-foreign schol-
ars, who have conducted a series of theoretical analyses, 
numerical simulations, and model experiments [10], the 
complex environment of “three high and one disturbance” 
in ultra-deep roadway continues to affect the excavation 
efficiency [11]. Moreover, due to the fact that only one 
blasting scheme is generally adopted on site, or slight 
adjustments are made on the basis of the original scheme 
[12], the single-cycle operation effect of roadway excava-
tion is not optimal, while the blast-hole utilization rate 
is only 50% -70% [13]. In addition, it is widely acknowl-
edged that the process of fine-tuning blasting parameters 
is laborious, as it necessitates the simultaneous adjust-
ment of multiple parameters, which inevitably leads to 
the generation of numerous cross-experiments [14]. As 
a consequence, exploring how to improve the blast-hole 
utilization rate has consistently constituted a focal point 
of research in the field of ultra-deep roadway excavation 
engineering.

For the blasting engineering, the previous empirical 
formulas or models only contain five to six parameters 
[15–17]. However, the blasting effect is limited by numer-
ous factors, including the excavation site, geological con-
ditions, and the explosive itself [16–18]. Developing a 
comprehensive equation that considers multiple factors 
simultaneously is a challenging task [19]. However, the 
introduction of artificial intelligence (AI) has provided 
a solution to the complex relationship between multiple 
inputs and outputs [20]. The past 20 years have witnessed 
a rapid development in the application of various AI tools 
in civil and mining engineering with encouraging results 
[21].

The utilization of AI tools to address engineering chal-
lenges associated with coal mine blasting is illustrated in 
Table 1. It is evident that Support Vector Machine (SVM) 
is an indispensable application or comparison tool in pre-
vious AI-based studies, which is utilized to solve prac-
tical problems in deep roadway excavation and blasting 
engineering. However, there are still some problems to be 
addressed in these studies or work outcomes using SVM: 
(1) The majority of research endeavors to enhance the pre-
processing algorithms for the standard SVM model [18]. 
Nevertheless, the issue of data loss resulting from errors 
in large-scale data processing remains unresolved [2–5]. 

Table 1  Coal mine blasting engineering field challenges solved by AI

Abbreviations: PSO: particle swarm optimization, GWO: grey wolf optimizer, SSA: sparrow search algorithm, GA: genetic algorithm, GS: grid 
search, SVR: support vector machine, MLP: multi-layer perception, HHO: harris hawks optimization, WOA: whale optimization algorithm, 
RBF: radial basis function, RF: random forest, FCM: fuzzy cognitive map, RES: rock engineering system, GBDT: gradient boosting decision 
tree

Source Algorithm Target Number of 
datasets

Performance

Li et al. (2021a, b)[16, 17] PSO-e-SVR Blasting mean fragment size prediction 76 MSE = 0.01690
GWO- e-SVR MSE = 0.00415
SSA- e-SVR MSE = 0.00416
GA- e-SVR MSE = 0.01498
GS- e-SVR MSE = 0.02685

Murlidhar et al. [27] MLP Fly-rock distance induced by open pit mine 
blasting

82 RMSE = 9.664
HHO-MLP RMSE = 7.205
WOA-MLP RMSE = 9.210

Zhang et al. (2022a, b) [28, 29] RBF-2 Blasting induced air-overpressure 76 RMSE = 1.98
MLP RMSE = 3.83
RBF RMSE = 3.69
GA-MLP RMSE = 6.86
RF RMSE = 3.45

Hosseini et al. [30] FCM-RES Blast-induced rock mass fragmentation 67 RMSE = 0.996
FCM-Linear RMSE = 1.646
FCM-Polynomial RMSE = 1.771

Li et al. [2–5] GBDT Blast loading prediction 1000 MAPE = 3.56%
MLP MAPE = 3.65%
SVM MAPE = 2.98%
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(2) The selection of influencing factors at the input stage 
is based solely on experience or prior research, and fails 
to take into account engineering geological and field con-
ditions, as well as additional factors. This deviation from 
the true engineering site is significant [22, 23]. (3) The 
comparison method of the models with various algorithms 
is relatively simple [24]. The evaluation of the models is 
based on a limited number of indicators, such as RMSE, 
 R2 and VAF [25, 26]. Well then, this approach does not 
allow for a comprehensive assessment of the model diver-
sity. Furthermore, the reliability and authenticity of the 
results remain uncertain.

This study is organized as follows. Section 2 intro-
duced the situation of the test site and the specific method 
of influencing factor selection based on analysis of the 
blasting scheme design, also displays the collected data. 
The primary research tool (SNSVM) and three optimi-
zation algorithms (GA, PSO and SSA) are presented in 
Section 3. Section 4 displayed the evaluation indices of 
models. Section 5 showed the experimental results of 
SVM and SNSVM models, includes the error correla-
tion coefficients and the ROC curves. In-depth analysis 
of each model is discussed in Section 6, the SSA-SNSVM 
obtained the greatest performance with a swarm size of 
90. Section 7 demonstrates the sensitivity analysis results 
of influencing factors. Some fundings are discussed in 

Section 8. Section 9 addressed the limitation of this study. 
Finally, the impact of multiple influencing factors at the 
input end on the blast-hole utilization rate is demonstrated 
through sensitivity analysis. The work framework flow of 
this study is illustrated in Fig. 1.

2  Data description

2.1  Testing location

In this study, the blasting site is situated in Fengtai County, 
Huainan City, Anhui Province (Fig. 2(a)), which is part of the 
Huaihe mine area. As the primary coal-producing region, the 
Huaihe mine area is rich in coal resources and is responsible for 
transporting coal to southeast China. It occupies a pivotal stra-
tegic position. Fengtai County serves as a hub for coal seams 
in this region, with a large significant concentration of coal 
mines, collectively producing over one million tons coal annu-
ally. However, the majority of coal mines are ultra-deep road-
ways with a buried depth of more than 600 m. Furthermore, due 
to the hard rock lithology and complex geological conditions, 
the vast majority still use the traditional blasting excavation 
method, as illustrated in Fig. 2(b) and Fig. 2(c).

The rock strata in the Fengtai mine group are predomi-
nantly sandstone, distributed throughout the upper and 

Fig. 1  The blast-hole utilization rate prediction framework
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lower mining areas (Fig. 2(d)). There are few weak aqui-
fers in the mining area, with each rock stratum exhibiting 
greater stability and control of surrounding rock, while 
rock strength generally being high. It can be seen that 
the traditional blasting method employed in this region 
presents a number of challenges. These include the gen-
eration of large blocks of gangue, the lower footage, mas-
sive material loss, lack of an obvious half-hole mark, 
and so on. These issues have a detrimental impact on the 
efficiency of the excavation and production processes, as 
illustrated in Fig. 3.

Combine with the field investigation, the primary reasons 
for lower footage can be attributed to the following factors:

The lithology and integrity of surrounding rock are 
sound, but breaking of molecular bonds within the rock 
requires greater energy;
The in-situ stress is high, and the lateral pressure coef-
ficient reaches 1.35, making it resistant to shock wave 
crushing and explosive gas wedging, and able to with-
stand radial fissures caused by failure;
Groundwater storage conditions are favorable, with few 
weak aquifers or roof leaks;

During the drilling or loading process, structural surfaces 
and faults cause the hole to collapse, which can negatively 
impact the blasting effect;
Excavating large sections of roadways presents challenges 
in terms of blast charge control and scheme design, par-
ticularly in the core area where straight cut-hole forms 
are still common.

2.2  Influencing factors

Data collection after blasting serves as the foundation for 
the evaluation of overall blasting effect. The measure-
ment of blast-hole utilization rate is primarily focused on 
two aspects: firstly, the core is the cutting hole blasting 
excavation depth; the periphery hole blasting forms the 
roadway contour, which serves as the secondary aspect. 
Hong et al., [31] introduced the blast-hole utilization rate 
(η) as a means of more accurately evaluating the blast-
hole utilization rate through the data, which is defined 
as the ratio from footage of a single blasting cycle to the 
average depth of blast hole (Eq. (1)). This measure indi-
cates both the depth of cavity created by the hole and the 
impact of the surrounding hole on the roadway contour.

Fig. 2  Specific location and rock strata situation of field blasting test
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In the formula: S is the footage of single circula-
tion operation; L is the average length of the blast hole, 
L = (L1 + L2 + L3)/3, L1, L2, L3 represent the depth of the cut-
ting hole, the auxiliary hole and the periphery hole.

The factors influencing the direction of blasting in road-
way excavation are selected based on two aspects: geological 
conditions and blasting scheme. This selection is made with 
consideration of both the specific construction site situation 
and the blasting scheme design.

(1) Geological conditions

In the field of geotechnical engineering and mining, 
uniaxial compressive strength (UCS) is often the preferred 
choice for prediction and evaluation studies. Additionally, 
in the research of predicting blast-hole utilization rate, the 
impact of structural planes inside the rock must also be 
considered. Based on the results of on-site coring, another 
vital factor of initial property is the rock quality designa-
tion (RQD). Subsequently, it is imperative to undertake an 
objective assessment of the geological conditions at the 
site, with particular attention to the occurrence of the “three 
high and one disturbance” phenomenon. This encompasses 
groundwater, ground temperature, in-situ stress, and blast-
ing disturbance in ultra-deep roadway engineering.

(1)� = S∕L
To quantify the effects of diverse factors, Groundwater 

erosion is defined using the softening coefficient K [2–5], 
with the calculation detailed in Eq. (2). Blasting distur-
bance is assessed by the damage degree, which is a com-
parison of the results of CT scans of core rock samples 
taken before and after blasting [32], and the calculation 
method is shown as Eq. (3).

In this formula: f is the UCS value of rock samples in 
water-saturated state, and F is the UCS value of rock sam-
ples in the dry state.

In this formula: Dt is the fractal dimension of the 
internal damage area after the explosion; D0 is the frac-
tal dimension of the initial damage area; and Dmax

t
 is the 

fractal dimension of the maximum damage area inside 
the rock sample.

(2) Blasting scheme

In order to predict the blast-hole utilization rate, it 
is necessary to analyze the impact of different types of 
blast-holes on the entire roadway face. By examining 
the on-site blasting scheme (Fig. 4), which is utilized 

(2)K = f∕F

(3)w =
Dt − D0

Dmax
t − D0

Fig. 3  Practical problems of on-site blasting in roadway excavation
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for the “-648 m horizontal cooling chamber” in Gubei 
Coal Mine, it is possible to determine the region division 
affected by each type of blast hole. The roadway section 
has been divided into three regions: region 1 serves as the 
cutting hole; region 2 acts as the auxiliary hole; region 
3 takes the role of the periphery hole. Moreover, region 
1 forms the cutting cavity, which is the core of the entire 
section; while region 3 forms the roadway outline, which 
is the supplement of region 1; at last, region 2 is the blast-
ing assistance for region 1 and region 3.

Once the functions of each area have been identi-
fied, the elements that impact blast-hole utilization rate 
are presented. In the case of determining the charging 
method, the factors that influence the utilization rate 
of blast holes in the blasting design are determined, 

including the cutting hole depth, number, arrangement 
form and average charge; cycle number of the auxiliary 
hole; the periphery hole depth, number and average 
charge. In particular, the distribution form of the cut-
ting hole is primarily fixed by the hole arrangement for 
region 1, which is roughly categorized into four types 
[19]: triangle, rectangle, arch, and inverted trapezoid, as 
illustrated in Fig. 5.

2.3  Data collection

In this study, 118 datasets are collected from 12 roadways 
in Gubei, Guqiao and Dingji Coal Mine. The objective of 
dataset acquisition is to investigate the factors that influ-
ence blast-hole utilization rate, using data obtained from 

Fig. 4  The specific situation of various types of blast holes in actual blasting on-site

Fig. 5  Blast-hole arrangement 
form, (a) triangle, (b) rectangle, 
(c) arch, (d) inverted trapezoid

(a)triangle         (b)rectangle           (c)arch          (d)inverted trapezoid
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field investigations and quantitative laboratory analyses. 
Figure 6(a) presents the geological condition parameters, 
while Fig. 6(b) displays the influence factors of cutting 

holes, well then, the influence factors of auxiliary and 
periphery holes are shown in Fig. 6(c). The cycle num-
ber of the auxiliary hole will change with the roadway 

Fig. 6  Distribution of factors 
affecting blast-hole utiliza-
tion rate, (a) The parameters 
of geological conditions, (b) 
The cutting-hole influencing 
factors, (c) The auxiliary hole 
and periphery hole influencing 
factors

(a) The parameters of geological conditions
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cross-section area, but this only happens at a few fixed 
values with no special cases.

3  Methodology

3.1  SNSVM

The traditional SVM is widely used in statistical classi-
fication and regression analysis [25, 26], which exhibits 
maturity of prediction and evaluation of the field engineer-
ing, has the following advantages: (1) It can eliminate a 
large number of redundant samples and has good robust-
ness and generalization ability [33],(2 The complexity of 

the calculation results depends on the number of support 
vectors, which can effectively avoid the curse of dimen-
sionality [34],(3) With the help of the sum function, high-
dimensional space mapping can be realized, which has the 
ability to solve nonlinear problems [35].

However, due to its inability to address data loss during 
large-scale data processing, it proves inefficient for train-
ing and testing when working with more than 40 samples, 
which will lead to considerable errors and diminished 
accuracy [36]. Therefore, its utilization for geotechnical 
engineering and mining fields remains problematic. A new 
Structured Nonlinear Support Vector Machine (SNSVM) 
is created by expanding the Gaussian kernel function to 
address nonlinear issues (Fig. 7), which is based on SVM 

(b) The cutting-hole influencing factors

(c) The auxiliary hole and periphery hole influencing factors

Fig. 6  (continued)
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and SSVM (Structured Support Vector Machine). The exact 
process of constructing SNSVM is as follows:

a real-valued function is created for each category label: 
g(x, y; w) = w‧ξv (x, y), ξv is a characteristic function of 
X‧Y → R*, then the decision function can be expressed as:

Suppose: Given “m” sample points, any (xj, yj) of them is 
not in the class label y, and all sample points (xi, yi) belong to 
the class label y (y = yi). At the same time, the loss function C 
is re-divided into intra-class loss C1 and inter-class loss C2.

(4)f = arg max
y

g(x, y;w)

Intra-class loss C1: Losses between sample points (xi, yi) in 
class label y are recorded as intra-class losses and expressed as:

Inter-class loss: The loss between the sample point (xi, 
yi) and the class label y is recorded as an inter-class loss, 
expressed as:

Then the loss function of SNSVM is redefined as:

(5)C1 =
|||w ⋅ �y

(
xi, yi

)
− Δ

(
yi, yi

)||| =
|||w ⋅ �y

(
xi, y

)
− Δ

(
yi, y

)|||i ∈
{
i, y = yi

}

(6)

C2 = max
i∈{i,y=yi}

{[
w ⋅ �y

(
xj, yj

)
− w ⋅ �y

(
xi, yi

)]
Δ
(
yi, yj

)}
j ∈

{
j, y ≠ yj

}

The original problem of SNSVM is transformed into the 
loss function reconstruction as

(7)C
i ∈

{
i, y = yi

}
j ∈

{
j, y ≠ yj

}
= C1 + C2 =

|||w ⋅ �
(
xi, y

)
− Δ

(
yi, y

)||| + max
{[
w ⋅ �

(
xj, yj

)
− w ⋅ �

(
xi, yi

)]
Δ
(
yi, yj

)}

(8)

min
w

1

2
‖w‖2 + C1

∑
y=yi

L1
i

i∈{i,y=yi}

+ C2

∑
y≠yj

L2
i

j∈{j,y≠yj}

⇒ min
w

1

2
‖w‖2 + �1

∑
y=yi

���⟨w, �y
�
xj, y

�⟩ − Δ
�
yi, yj

����
+�2

∑
y≠yj

Δ
�
yi, yj

�⟨w, �y
�
xj, yj

�⟩
+�2

∑
y≠yj

max
i∈{i,y=yi}

�
−Δ

�
yi, yj

�⟨w, �y
�
xi, y

�⟩�

It is not possible to guarantee the accuracy of the 
SNSVM, due to manual determination of penalty factors 
“C1”, “C2” and kernel deviation “g”, which are optimized 
by algorithms [37]. Thus, swarm bionic optimization 
algorithms play the significant role in optimal methods 
[38], such as Artificial Bee Colony ( [39]), Ant colony 
optimization [40], Moth-Flame Optimization [41], Grey 
Wolf Optimization [42] and Whale Optimization Algo-
rithm (Zhou et al., 2021) have gained widespread usage. 
In this study, three algorithms are utilized to parameter 
optimization: Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO) and Sparrow Search Algorithm 

Fig. 7  Construction flow-chart of SNSVM with SVM and SSVM
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(SSA). These algorithms are coupled with SNSVM to 
develop a variety of prediction models.

3.2  GA

Genetic Algorithm (GA) is an AI-based approach to find-
ing the optimal solution by simulating the organic evolu-
tion process [43]. The algorithm expresses the evolution 
process of natural swarms through mathematical methods. 
Computer simulations transform the problem’s solution 
into the selection, crossover, and mutation of chromosome 
genes, mimicking biological evolution. The process gradu-
ally updates individuals at each iteration to become more 
adaptable to the environment, ultimately resulting in the 
optimal solution to the problem.

As depicted in Fig. 8, GA includes three basic operations: 
selection, crossover and mutation:

(1) Selection: select some individuals from the old group 
to the new group by probability, where the probability 
is related to the fitness function, the higher the fitness 
function value, the greater the probability of selection;

(2) Crossover: The partial gene codes of two different chro-
mosomes in the swarm were crossed and combined into 
new individuals;

(3) Mutation: Randomly select an individual from the 
swarm, that is, randomly select a gene from the chro-
mosome to mutate, resulting in a better individual.

3.3  PSO

Particle Swarm Optimization (PSO) is a swarm intelli-
gence algorithm [44], which was proposed by Eberhart 
and Kennedy in 1995. Each particle in the N-dimensional 
space has independent thinking ability, and moves 

selectively in the process of judging the best position, 
and achieves the optimal solution through the movement 
of internal individuals or groups. In the N-dimensional 
space, the number of particle swarms is n, the position 
of each particle is xis, the velocity is vh

is
 , the best position 

for a single particle to think is Ph
is,pbest

 , and the best posi-

tion for the particle swarm is P
h

is,gbest
 . Then the trajectory 

of each particle includes its motion and the motion of the 
group, which can be expressed as Eq. (9) and Fig. 9.

In the formula: R1 and R2 are random numbers (0,1) 
subject to logistic function distribution; h is the number 
of iterations; C1 and C1 are the acceleration influence 
coefficients.

3.4  SSA

Sparrow Search Algorithm (SSA) is also a swarm bionic 
optimization algorithm, which belongs to the same cat-
egory as GA and PSO (Li et al., 2022). It is designed to 
simulate the foraging and anti-predation behavior of spar-
row groups. To complete the foraging process, sparrows are 
divided into explorers and followers, which are not fixed 
entities and can be altered at any time. In nature, to enhance 
their predation rates, “followers” frequently compete for 
food resources from high-intake companions. While forag-
ing, all individuals will remain vigilant to the surrounding 
environment to prevent the arrival of natural enemies. The 
specific optimization process is shown in Fig. 10.

SSA mainly comprises four steps: initialize parameters 
and calculate the fitness, update explorer location, update 
follower location and update danger receiver location. the 

(9)

{
vh+1
is

= wi(n)v
h
is
+ C1R1

(
Ph
is,pbest

− xis

)
+ C2R2

(
P
h

is,gbest
− xis

)

xh+1
is

= xh
is
+ vh+1

is

Fig. 8  Optimization Process of 
Genetic Algorithm
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initial swarm defines quantities and locations to determine 
the best food source based on fitness values. Assuming that 
there are “n” sparrows, each with D-dimensional character-
istics, then the swarm and fitness matrix are expressed as:

The explorer first provides optimized guidance for follow-
ers, and its position is updated to:

(10)

X =

⎡
⎢⎢⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,d

x2,1 x2,2 ⋯ x2,d

⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,d

⎤
⎥⎥⎥⎥⎥⎦

and F(X) =

⎡⎢⎢⎢⎢⎢⎢⎣

f1

�
x1,1 x1,2 ⋯ x1,d

�

f2

�
x2,1 x2,2 ⋯ x2,d

�

⋮

fn

�
xn,1 xn,2 ⋯ xn,d

�

⎤⎥⎥⎥⎥⎥⎥⎦

In the formula: i is the current number of iterations, imax 
is the maximum number of iterations; uit and uit+1 indicate 
the position at time t and t + 1 after the update; α is a random 
number within [0,1]; A is a random number obeying normal 
distribution; S is a matrix of 1 X d elements are 1; Q ∈ [0,1] 
is the warning value, R ∈ [0.5,1] is the safety value.

When Q > R, it indicates that some sparrows have found 
the danger of predators, swarms should take action; while 
Q < R indicates that there are no natural enemies, the 

(11)ut+1
i

=

{
ut
i
⋅ e

−
i

𝛼⋅imax Q < R

ut
i
+ A ⋅ S Q < R

Fig. 9  Particle Optimization 
Algorithm optimal process

Fig. 10  Sparrow Search Algo-
rithm core operation flowchart

B. Yu et al.9146



explorer can perform global optimal searches to provide 
optimal guidance to the follower, the follower’s location 
is updated as:

In the formula: uworst is the worst position in the global 
search process; ui,op is the optimal position for the explorer; 
B is a matrix of 1 X d, and the element random amplitude 
is -1 or 1.

When followers emerge, the initial follower with a 
lower fitness value is in a poor state and must seek out a 
new foraging location. Assuming that 20% of the swarm 
is hazardous and the individual is randomly generated, 
the sparrow's position is then updated as:

In the formula: utbest is the current global optimal posi-
tion; β is the step length control parameter, which obeys the 
normal distribution; C is a random number in [-1,1]; D is to 
avoid the constant of denominator 0; fi is the fitness value, 
while fb is the current optimal value, fw is the worst value.

4  Evaluation indicators

To comprehensively assess the predictive capacity of 
SNSVM models that rely on GA, PSO and SSA, three error 
correlation coefficients will be performed on the experimen-
tal process and results [45], including the root mean square 
error (RMSE), mean absolute percentage error (MAPE), and 
R-Square  (R2), the matrices are expressed as Eq. (14) to 
Eq. (16).
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In the formula: n is the training sample number;yi is the true 
value, ̂yi is the predicted value, and yi is the average of true value.

5  Results

To avoid the issue of local minimum value, three distinct 
swarm bionic algorithms (GA, PSO, SSA) for global 
search are utilized. Three prediction models of blast-hole 
utilization rate (GA-SNSVM, PSO-SNSVM and SSA-
SNSVM) are established, which facilitate the expansion 
and advancement of the SNSVM. The aforementioned 
fourteen factors are employed as input parameters, while 
the blast-hole utilization rate serves as output parameters. 
The final test outcomes are influenced by multiple param-
eters in three algorithms. The most representative swarm 
sizes and the number of iterations has been selected for the 
primary analysis. Furthermore, the remaining parameters 
are set as demonstrated in Table 2.

Table 2  Important parameters of various algorithms

Group Bionic 
optimization algorithm

Parameter Value

GA ggap 0.9
PSO C1 2

C2 2
wi wv 1.2

wp 1
SSA Lower boundary 0.01

Upper boundary 2

Fig. 11  ROC curve of GA-SNSVM
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5.1  GA‑SNSVM

To achieve the most optimal results, it is necessary to select 
significant parameters that impact GA performance. These 
include swarm sizes and the number of iterations. In general, 
as the number of iterations increases, performance stabilizes 
but the program’s running time increases. This section will 
demonstrate the optimization performance of various models 
through the ROC curve and RMSE values.

In the GA-SNSVM pre-testing process, the model’s pre-
diction performance region becomes stable with number of 
iterations reaching 400, which leads to the determination of 
a maximum iteration number limit of 400. The swarm sizes 
are 50, 60, 70, 80, 90 and 100, respectively. As shown in 
Fig. 11 and Fig. 12, while the optimal processes for various 
swarm sizes differ, the ROC curve and RMSE trends for 
models remain consistent. Furthermore, the RMSE value 
decreases with the increased number of iterations. The GA-
SNSVM models achieve the minimum RMSE value, ulti-
mately stabilizing at 0.013–0.014.

To assess the performance of GA-SNSVM models with 
varying swarm sizes, RMSE, MAPE and  R2 are utilized. 
These evaluation indices are generated by integrating a com-
prehensive evaluation system. The comprehensive scores for 
various swarm sizes are calculated, and the final results are 
presented in Table 3. The optimal parameter combination 
for GA-SNSVM models is identified as the highest-scoring 
configuration.

When the swarm size is 90, the model achieves the high-
est score of 25, resulting in the best prediction performance. 
Furthermore, the values of RMSE, MAPE and  R2 of the 
training sample are 0.0115, 17.21% and 0.8601, respectively. 
The RMSE, MAPE and  R2 of the testing sample are 0.0144, 
16.88% and 0.8673, respectively. Despite the model’s sub-
optimal evaluation indices at a swarm size of 90, its com-
prehensive performance is superior to that of other models. 
Upon reaching a swarm size of 80, the training sample and 
test sample exhibited disparate performance. The training 
sample demonstrated remarkable efficacy, yet this is not 
reflected in the testing sample.

Fig. 12  RMSE evaluation process of GA-SNSVM

Table 3  Error analysis of 
GA-SNSVM models with 
various swarm sizes

Swarm size Performance Final score

Training sample Testing sample

RMSE MAPE R2 RMSE MAPE R2

50 0.0117 (3) 16.91% (3) 0.8521 (5) 0.0144 (5) 17.91% (2) 0.8688 (5) 23
60 0.0115 (5) 16.49% (2) 0.8594 (3) 0.0146 (3) 16.56% (5) 0.8616 (3) 21
70 0.0118 (2) 17.53% (4) 0.8510 (5) 0.0147 (2) 17.23% (3) 0.8659 (4) 20
80 0.0118 (2) 15.80% (5) 0.8553 (4) 0.0147 (2) 17.65% (2) 0.8592 (2) 17
90 0.0115 (5) 17.21% (3) 0.8601 (3) 0.0144 (5) 16.88% (4) 0.8673 (5) 25
100 0.0116 (4) 16.05% (4) 0.8577 (2) 0.0145 (4) 17.03% (4) 0.8655 (4) 22

Fig. 13  ROC curve of PSO-SNSVM
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5.2  PSO‑SNSVM

The parameter control of PSO has a synergistic rela-
tionship with the reconstruction of the loss function in 
SNSVM. Particle and particle swarm optimization is 
consistent with the division of intra-class and inter-class 
losses. Similar to the analysis of the GA-SNSVM model, 
the number of iterations and swarm sizes are selected to 
be discussed in the test results. Furthermore, the num-
ber of iterations is maintained at 400, while the swarm 
size is controlled at 50, 60, 70, 80, 90, and 100 to enable 
comparison. The ROC and RMSE curve of various swarm 
sizes are displayed in Fig. 13 and Fig. 14, when the num-
ber of iterations reaches 250, the PSO-SNSVM models 
achieve the minimum RMSE value, which finally stabi-
lizes at 0.010–0.011.

The evaluation metrics of PSO-SNSVM models are listed 
in Table 4. The model attains its optimal performance with a 
swarm size of 100, the comprehensive performance is better 
than other swarm sizes, which achieves the highest score of 
22. The training sample displays RMSE, MAPE and  R2 val-
ues of 0.0089, 18.53% and 0.8905, respectively. In contrast, 

the testing sample shows RMSE, MAPE and  R2 values of 
0.0107, 18.47% and 0.9082 respectively. However, when the 
swarm sizes reach 50 and 70, the training sample performs 
better than the testing sample, it is not fed back to the testing 
sample, which is similar to GA-SNSVM.

5.3  SSA‑SNSVM

Sparrow Search Algorithm (SSA) is a new swarm bionic 
optimization algorithm, which showcases the superior-
ity and stability in parameter optimization. To conduct a 
controlled trial, the same number of iterations are utilized 
while maintaining a swarm size of 50, 60, 70, 80, 90 and 
100. ROC and RMSE curve with various swarm sizes are 
shown in Fig. 15 and Fig. 16. When the number of iterations 
reaches 50, the SSA-SNSVM models obtains minimum 
RMSE value, and ultimately stabilize at 0.008–0.009. It is 
evident that SSA-SNSVM models demonstrate rapid con-
vergence, indicating exceptional optimization proficiency.

The evaluation indices of SSA-SNSVM models are 
presented in Table 5. The model achieves the best optimal 

Fig. 14  RMSE evaluation process of PSO-SNSVM

Table 4  Error analysis of PSO-
SNSVM models with various 
swarm sizes

Swarm size Performance Final score

Training sample Testing sample

RMSE MAPE R2 RMSE MAPE R2

50 0.0091 (3) 18.16% (4) 0.8973 (4) 0.0108 (2) 18.81% (3) 0.9059 (3) 19
60 0.0087 (5) 18.79% (3) 0.8918 (2) 0.0105 (5) 19.01% (2) 0.9067 (4) 20
70 0.0089 (4) 17.82% (5) 0.8952 (3) 0.0108 (4) 18.69% (3) 0.9015 (1) 20
80 0.0091 (3) 19.48% (1) 0.8934 (3) 0.0106 (2) 18.72% (3) 0.9063 (4) 16
90 0.0093 (1) 19.15% (2) 0.8991 (5) 0.0105 (5) 18.95% (2) 0.9048 (3) 18
100 0.0089 (4) 18.53% (3) 0.8925 (3) 0.0107 (3) 18.47% (4) (5) 22

Fig. 15  ROC curve of SSA-SNSVM
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performance with a swarm size of 90, resulting in a score 
of 24. The RMSE, MAPE and  R2 of the training sam-
ples are 0.0070, 15.54% and 0.9295, respectively. The 
RMSE, MAPE and  R2 of the testing samples are 0.0086, 
16.37% and 0.9490, respectively. The prediction model 
demonstrates excellent performance across all evaluation 
metrics, with the most favorable feedback provided. The 
SSA-SNSVM model performs exceptionally well, with 
no significant discrepancy between testing samples and 
training samples.

6  Discussion

The Area of Under Curve (AUC) is a metric used to assess the 
advantages and disadvantages. It is commonly used to ascer-
tain the viability and authenticity of the models, by recording 
the area enclosed to the coordinate axis under the ROC curve, 
while the value range is 0.5 to 1.0. When the value is equal 
to 0.5, the model is not available due to its lowest feasibility, 
while the closer the value is to 1.0, the greater the authenticity 
of the detection method. In addition, Std is another index that 
measures the degree of data dispersion. The AUC and Std val-
ues for SNSVM models conducted with various swarm sizes 
are listed in Table 6, and the running time is also recorded.

In addition to error correlation coefficients, the con-
cept of standard deviation rate γ is introduced to enhance 
the operational precision of SNSVM models, which can 
be expressed by Eq. (17). Well then, the dynamic evolu-
tion of standard deviation rate with swarm sizes will be 
recorded.

As depicted in Fig.  17, the three types of SNSVM 
model performance exhibit distinct differences with vary-
ing swarm sizes. When the swarm size is 90, the GA-
SNSVM model displays the most favorable results, with a 
minimum standard deviation rate of 0.26%. Similarly, the 
SSA-SNSVM also demonstrates remarkable efficacy, with 

(17)� =
Std

AUC
× 100%

Fig. 16  RMSE evaluation process of SSA-SNSVM

Table 5  Error analysis of SSA-
SNSVM models with various 
swarm sizes

Swarm size Performance Final score

Training sample Testing sample

RMSE MAPE R2 RMSE MAPE R2

50 0.0072 (3) 15.73% (4) 0.9271 (4) 0.0089 (3) 16.94% (1) 0.9486 (5) 20
60 0.0072 (3) 15.91% (2) 0.9216 (2) 0.0087 (5) 16.83% (2) 0.9428 (3) 17
70 0.0070 (5) 15.88% (3) 0.9255 (3) 0.0090 (2) 15.95% (4) 0.9457 (3) 20
80 0.0073 (2) 15.69% (5) 0.9290 (5) 0.0090 (2) 16.56% (3) 0.9445 (4) 21
90 0.0070 (5) 15.54% (5) 0.9295 (5) 0.0086 (5) 16.37% (4) 0.9490 (5) 24
100 0.0072 (3) 15.80% (3) 0.9207 (1) 0.0088 (4) 16.40% (4) (3) 19

Table 6  AUC ± Std and running 
time of SNSVM models

Swarm size AUC ± Std (Time/s)

GA-SNSVM PSO-SNSVM SSA-SNSVM

50 0.9108 ± 0.0054 (18.7541) 0.9236 ± 0.0032 (14.8873) 0.9452 ± 0.0023 (12.1058)
60 0.8987 ± 0.0072 (18.1287) 0.9277 ± 0.0034 (16.1009) 0.9214 ± 0.0017 (11.9475)
70 0.8953 ± 0.0049 (17.9872) 0.9304 ± 0.0022 (15.3874) 0.9288 ± 0.0019 (11.5103)
80 0.8859 ± 0.0041 (18.8465) 0.9125 ± 0.0049 (16.2678) 0.9307 ± 0.0025 (12.3846)
90 0.9141 ± 0.0024 (17.8541) 0.9192 ± 0.0043 (15.2831) 0.9485 ± 0.0011 (11.2657)
100 0.9026 ± 0.0058 (19.0497) 0.9357 ± 0.0018 (14.6597) 0.9411 ± 0.0015 (11.5843)
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a value of is 0.11%. On the contrary, the PSO-SNSVM 
performs the poorest with a value of 0.9%, its minimum 
standard deviation rate is 0.19% with a swarm size of 100. 

The SSA-SNSVM model consistently demonstrates the 
lowest value compared to the other two models, regard-
less of swarm sizes. A comprehensive comparison of the 

(a) Swarm size = 50                        (b) Swarm size = 60

   (c) Swarm size = 70                        (d) Swarm size = 80

(e) Swarm size = 90                         (f) Swarm size = 100

Fig. 17  The standard deviation rate of SNSVM models with various swarm sizes, (a) Swarm size = 50, (b) Swarm size = 60, (c) Swarm 
size = 70, (d) Swarm size = 80, (e) Swarm size = 90, (f) Swarm size = 100
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gentle area trend reveals that three types of SNSVM mod-
els exhibit the following operational accuracy ranking: 
SSA-SNSVM > PSO-SNSVM > GA-SNSVM.

Finally, predicted values along with actual values of 
blast-hole utilization rate for GA-SNSVM, PSO-SNSVM 
and SSA-SNSVM are presented in Fig. 18(a), (b) and (c), 
respectively. The accuracy of three models for training 
datasets and testing datasets are shown in Fig. 18(d). Com-
pared to the other two models, the SSA-SNSVM obtains 
the best convergence for predicted and actual values, while 
demonstrating minimal error during the test. These find-
ings align with previous RMSE and error analysis results, 
which indicate that the SSA-SNSVM model has the most 
optimal performance with a swarm size of 90.

Furthermore, the performance comparison among 
the SVM models (SVM, GA-SVM, PSO-SVM, SSA-
SVM) and SNSVM models (SNSVM, GA-SNSVM, 

(a) GA-SNSVM                          (b) PSO-SNSVM

(c) SSA-SNSVM                    (d) Accuracy of three models  

Fig. 18  Predicted values using SNSVM combined models, (a) GA-SNSVM, (b) PSO-SNSVM, (c) SSA-SNSVM, (d) Accuracy of three models

Fig. 19  Accuracy of the eight models
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PSO-SNSVM, SSA-SNSVM) can be conducted in term 
of accuracy and efficiency, as illustrated in Fig. 19 and 
20. In comparison to the SVM models, there is a signifi-
cant enhancement in the accuracy of the SNSVM mod-
els. Notably, the accuracy of SNSVM models is increased 
by 17.95% on average. More importantly, SSA-SNSVM 
achieved an accuracy of up to 95.08%, experienced an 
increase in accuracy by 19.07%. The reconstruction of the 
loss function enables precise data control. Meanwhile, the 

dual kernel function’s implementation facilitates accurate 
data classification, thus resolving the issue of data loss in 
large-scale data applications.

In Fig. 20, the SVM and SNSVM models exhibit a con-
siderable range in operational efficiency, the average running 
time is 7.5589 s, 15.1321 s, 12.6127 s, 13.1340 s, 8.4629 s, 
17.8541 s, 14.6597 s and 11.2657 s, respectively. The double 
kernel function and the loss function both increase the run-
ning burden of SNSVM, resulting in a 11.96% prolongation 
of the running time. However, this remains within a toler-
able range. With regard to SNSVM models, SSA algorithm 
has the greatest improvement in the learning efficiency of 
SNSVM, while SNSVM with GA and PSO is weaker than 
that of SVM models. Nevertheless, SSA-SNSVM exhibits 
ana improvement of 14.23% than SSA-SVM. In considera-
tion of the error correlation coefficients, ROC curve, standard 
deviation rate, accuracy and running time, it can be observed 
that SNSVM has a significant improvement in data process-
ing and learning capabilities in comparison to SVM.

7  Sensitivity

To achieve the research objectives of this paper, the predic-
tion model for blast-hole utilization rate in deep rock exca-
vation engineering is proposed. These models have been 
developed through a combination of site survey, addressing 
conditions, and blasting scheme analysis. Meanwhile, the sen-
sitivity-cosine analysis method has been employed in order to  

Fig. 20  The running time of the eight models

Fig. 21  Sensitivity comparison of influencing factors
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enhance the computational efficiency of the AI-based model 
and handle the intricate data interaction [46]. This method 
is utilized to identify and compare the sensitivity of each 
influencing factor to the blast-hole utilization rate, thereby 
assessing the significance of input variables.

The input and output variables are organized as column 
matrices, resulting in fifteen column matrices that match the 
dataset sizes. The Eq. (18) is then used to analyze the blast 
hole utilization's sensitivity to different impact indicators.

In the formula: m is the total number of input and output 
variables, n is the total number of data to be processed; xan is 
the input variable, xbn is the output variable, a is the number 
of input variables, b is the number of output variables; Si

mn
 is 

the sensitivity of the model, i is the type of model.
The data presented in Fig. 21 indicates the sensitivity of 

different factors to blast-hole utilization rate. The results 
demonstrate that the nature of the surrounding rock, includ-
ing UCS and RQD, is the most sensitive factor to blast-hole 
utilization rate. This finding aligns with the fundamental the-
ory of blasting, as the rock’s strength and integrity offset the 
dynamic stress from the explosion shock wave and detonation 
gas during the blasting process. Consequently, these findings 
indicate that both UCS and RQD have a positive impact on 
blast-hole utilization rate.

Secondly, considering the factors of the blasting scheme, 
in region 1 (Fig. 4) of the cutting hole, when the blast-hole 
number is constant, the triangle or rectangular arrangement 
has little effect on the blast-hole utilization rate. In region 3 
of the periphery hole, after determining the contour range, 
increasing or decreasing the hole count has little impact 
on the formation of the roadway contour. However, both 
depth and average charge are the primary factors in blast-
hole utilization rate prediction, regardless of whether it is 
the cutting hole, the periphery hole or the auxiliary hole.

Moreover, the sensitivity of at least 0.8 for each factor 
indicates the significant contribution of selected factors 
to the blast-hole utilization rate. Based on the aforemen-
tioned experiments and collected datasets, the sensitivity 
of various factors to blast-hole utilization rate is ranked 
from highest to lowest: RQD, UCS, average charge of cut-
ting hole, groundwater erosion, cutting hole arrangement 
form, cycle number of auxiliary hole, depth of cutting 
hole, depth of auxiliary and periphery hole, in-situ stress, 
geo-temperature, number of cutting hole, average charge 
of single hole, blasting disturbance and number of periph-
ery hole. It should be noted that different sample data may 
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lead to varying results, but analysis findings can serve as 
a guide for blasting design in similar working conditions.

8  Conclusion

In this study, we propose a new support vector machine 
(SNSVM) model for managing large-scale datasets, well 
then, establish GA-SNSVM, PSO-SNSVM, and SSA-
SNSVM models by combining with GA, PSO, and SSA 
algorithms. These models are then utilized to predict the 
blast-hole utilization rate in ultra-deep roadway engineering. 
The SNSVM model divides the loss function into intra-class 
and inter-class categories to decrease data dispersion while 
preserving high sensitivity. This approach addresses the 
issue of large errors that can occur during the processing of 
large datasets. Additionally, swarm bionic optimization algo-
rithms are employed to optimize hyper-parameters, thereby 
enhancing the accuracy and stability of SNSVM models.

Five performance measures are employed to compare the 
performance of SVM and SNSVM models. These included 
error correlation coefficients, ROC curves, standard deviation 
rates, accuracy, and running time. On average, the accuracy 
of SNSVM models improved by 17.95% compared to SVM 
models. Among various models, the SSA-SNSVM demon-
strated exceptional comprehensive performance with a swarm 
size of 90. RMSE, MAPE, and  R2 values for the training data-
sets are 0.0070, 15.54%, and 0.9295, respectively. The test-
ing datasets yield RMSE, MAPE, and  R2 values of 0.0086, 
16.37%, and 0.9490, respectively. SSA-SNSVM also obtains 
the lowest standard deviation rate of 0.11% with an AUC ± Std 
value of 0.9485 ± 0.0011. Furthermore, the model achieves a 
high accuracy of 95.08%, while the study efficiency improves 
by 14.23% compared to the SSA-SVM model.

Based on the sensitivity analysis, RQD and UCS exert 
the greatest impact on the prediction outcomes. In compari-
son with AI-based studies on ground or shallow blasting, 
our research incorporates more intricate factors of ultra-
deep blasting excavation engineering. Therefore, the derived 
results can provide crucial recommendations for blasting 
scheme designations. On the other hand, this study presents 
a viable investigation into employing AI tools in the field of 
blasting engineering. This approach offers a novel solution 
to enhance the efficiency of blasting excavation and expedite 
the intelligent progression of ultra-deep mineral resources.

9  Limitation

The SNSVM models present the dominant approach for 
forecasting the blast-hole utilization rate in ultra-deep road-
way excavation engineering, with notable success. However, 
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there are still limitations and shortcomings that require fur-
ther attention in subsequent studies. Firstly, the test sam-
ple dataset is relatively small, only 118 samples and just 
collected in the Huainan mining area. Data mining is more 
reliable when performed on large datasets collected from 
diverse conditions, strata, landscapes, or regions. Addition-
ally, the mechanism of blasting excavation in ultra-deep 
roadways is more complex than that in open-pit and shallow 
parts. Therefore, it is crucial to deeply analyze the mech-
anism of deep blasting, to dig more factors related to the 
blast-hole utilization rate. Finally, to improve the prediction 
accuracy of the blast-hole utilization rate, algorithms can be 
utilized, which are suitable for the development of SNSVM. 
More importantly, a plethora of sophisticated metaheuristic 
models can be emploied to model investigation and com-
parison, including Adaptive-Network-Based Fuzzy Inference 
System (ANFIS), Gradient Boosting Machine (GBM), Con-
volutional Neural Networks (CNNs), Random Forest (RF), 
Bayesian methods (BN), and so on.
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