
Applied Intelligence (2024) 54:8278–8295
https://doi.org/10.1007/s10489-024-05610-y

Efficient perception, planning, and control algorithm for vision-based
automated vehicles

Der-Hau Lee1

Accepted: 10 June 2024 / Published online: 25 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Autonomous vehicles have limited computational resources and thus require efficient control systems. The cost and size of
sensors have limited the development of self-driving cars. To overcome these restrictions, this study proposes an efficient
framework for the operation of vision-based automatic vehicles; the framework requires only a monocular camera and a few
inexpensive radars. The proposed algorithm comprises a multi-task UNet (MTUNet) network for extracting image features
and constrained iterative linear quadratic regulator (CILQR) and vision predictive control (VPC) modules for rapid motion
planning and control. MTUNet is designed to simultaneously solve lane line segmentation, the ego vehicle’s heading angle
regression, road type classification, and traffic object detection tasks at approximately 40 FPS for 228 × 228 pixel RGB input
images. The CILQR controllers then use the MTUNet outputs and radar data as inputs to produce driving commands for
lateral and longitudinal vehicle guidance within only 1 ms. In particular, the VPC algorithm is included to reduce steering
command latency to below actuator latency, preventing performance degradation during tight turns. The VPC algorithm uses
road curvature data from MTUNet to estimate the appropriate correction for the current steering angle at a look-ahead point
to adjust the turning amount. The inclusion of the VPC algorithm in a VPC-CILQR controller leads to higher performance
on curvy roads than the use of CILQR alone. Our experiments demonstrate that the proposed autonomous driving system,
which does not require high-definition maps, can be applied in current autonomous vehicles.

Keywords Automated vehicles · Deep neural network · Constrained iterative linear quadratic regulator · Model predictive
control

1 Introduction

The use of deep neural network (DNN) techniques in intelli-
gent vehicles has expedited the development of self-driving
vehicles in research and industry. Self-driving cars can oper-
ate automatically because equipped perception, planning,
and control modules operate cooperatively [1–3]. The most
common perception components used in autonomous vehi-
cles include cameras and radar/lidar devices; cameras are
combined with DNN to recognize relevant objects, and
radars/lidars are mainly used for distance measurement [2,
4]. Because of limitations related to sensor cost and size, cur-
rent Active Driving Assistance Systems (ADASs) primarily

B Der-Hau Lee
derhaulee@gmail.com

1 Department of Electrophysics, National Yang Ming Chiao
Tung University, 1001 University Road, Hsinchu 300, Taiwan

rely on camera-based perception modules with supplemen-
tary radars [5].

To understand complex driving scenes, multi-task DNN
(MTDNN) models that output multiple predictions simulta-
neously are often applied in autonomous vehicles to reduce
inference time and device power consumption. In [6], street
classification, vehicle detection, and road segmentation prob-
lems were solved using a single MultiNet model. In [7], the
researchers trained an MTDNN to detect drivable areas and
road classes for vehicle navigation. DLT-Net, presented in
[8], is a unified neural network for the simultaneous detection
of drivable areas, lane lines, and traffic objects. The network
localizes the vehicle when a high-definition (HD) map is
unavailable. The context tensors between subtask decoders in
DLT-Net share mutual features learned from different tasks.
A lightweightmulti-task semantic attention networkwas pro-
posed in [9] to achieve simultaneous object detection and
semantic segmentation; this network boosts detection perfor-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05610-y&domain=pdf

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8279

mance and reduces computational costs through the use of a
semantic attention module. YOLOP [10] is a panoptic driv-
ing perception network that simultaneously performs traffic
object detection, drivable area segmentation, and lane detec-
tion on an NVIDIA TITAN XP GPU at a speed of 41 FPS
(frames per second). In the commercially available TESLA
Autopilot system [11], images from cameras with different
viewpoints are entered into separate MTDNNs that perform
driving scene semantic segmentation, monocular depth esti-
mation, and object detection tasks. The outputs of these
MTDNNs are further fused in bird’s-eye-view (BEV) net-
works to directly output a reconstructed aerial-view map of
traffic objects, static infrastructure, and the road itself.

In a modular self-driving system, the environmental per-
ception results can be sent to an optimization-based model
predictive control (MPC) planner to generate spatiotemporal
curves over a time horizon. The system then reactively selects
optimal solutions over a short interval as control inputs to
minimize the gap between target and current states [12].
These MPC models can be realized with various methods
[e.g., active set, augmented Lagrangian, interior point, or
sequential quadratic programming (SQP)] [13, 14] and are
promising for vehicle optimal control problems. In [15], a
linear MPC control model was proposed that addresses vehi-
cle lane-keeping and obstacle avoidance problems by using
lateral automation. In [16], an MPC control scheme com-
bining longitudinal and lateral dynamics was designed for
following velocity trajectories. Ref. [17] proposed a scale
reduction method for reducing the online computational
efforts of MPC controllers, and they applied it to longitudi-
nal vehicle automation, achieving an average computational
time of approximately 4 ms. In [14], a linear time-varying
MPC scheme was proposed for lateral automobile trajectory
optimization. The cycle time for the optimized trajectory to
be communicated to the feedback controller was 10 ms. In
addition, [18] investigated automatic weight determination
for car-following control, and the corresponding linear MPC
algorithm was implemented using CVXGEN [19], which
solves the relevant problem within 1 ms.

The constrained iterative linear quadratic regulator (CILQR)
method was proposed to solve online trajectory optimiza-
tion problems with nonlinear system dynamics and general
constraints [20, 21]. The CILQR algorithm constructed on
the basis of differential dynamic programming (DDP) [22]
is also an MPC method. The computational load of the well-
established SQP solver is higher than that of DDP [24]. Thus,
the CILQR solver outperforms the standard SQP approach in
termsof computational efficiency; comparedwith theCILQR
solver, the SQP approach requires a computation time that
is 40.4 times longer per iteration [21]. However, previous
CILQR-relates studies [20, 21, 23, 24] have focused on
nonlinear Cartesian-frame motion planning. Alternatively,

planningwithin the Frenét-frame can reduce problem dimen-
sions because it enables vehicle dynamics to be solved in
tangential and normal directions separately with the aid of
road reference line [25]; furthermore, the corresponding lin-
ear dynamic equations [18, 26] do not have adverse effects
when high-order Taylor expansion coefficients are truncated
in the CILQR framework [cf. Section 2]. These considera-
tions motivated us to use linear CILQR planners to control
automated vehicles.

We proposed an MTDNN in [27] to directly perceive ego
vehicle’s heading angle (θ) and distance from the lane center-
line (�) for autonomous driving. The vision-based MTDNN
model in [27] essentially provides the information necessary
for ego car navigation within Frenét coordinates without the
need forHDmaps.Nevertheless, this end-to-end autonomous
driving approach performs poorly in environments that are
not shown during the training phase [2]. In [28], we pro-
posed an improved control algorithm based on a multi-task
UNet architecture (MTUNet) that comprises lane line seg-
mentation and pose estimation subnets. A Stanley controller
[30] was then designed to control the lateral automation
of an automobile. The Stanley controller takes θ and �

yielding from the network as it’s input for lane-centering
[29]. The improved algorithm outperforms the model in [27]
and has comparable performance to a multi-task-learning
reinforcement-learning (MTL-RL) model [31], which inte-
grates RL and deep-learning algorithms for autonomous
driving. However, our algorithms presented in [28] have a
variety of problems as follows. 1) Vehicle dynamic models
are not considered in the Stanley controller, and the model
has poor performance for lanes with rapid curvature changes
[32]. 2) The proposed self-driving system does not consider
road curvature, resulting in poor vehicle control on curvy
roads [33]. 3) The corresponding DNN perception network
lacks object detection capability, which is a core task in
automated driving. 4) The DNN input has high dimensional
resolution of 400 × 400, which results in long training and
inference times.

To address these shortcomings, this paper proposes a new
system for real-time automated driving based on the develop-
ments described in [28, 29]. First, a YOLOv4 detector [34] is
added to theMTUNet for object detection. Second, the infer-
ence speed of MTUNet was increased by reducing the input
sizewithout sacrificing network performance. Third, a vision
predictive control (VPC) algorithm is proposed for reducing
the steering command delay by enabling steer correction at
a look-ahead point by applying road curvature information.
The VPC algorithm can also be combined with the lateral
CILQR algorithm (denoted VPC-CILQR) to rapidly perform
motion planning and automobile control. As shown in Fig. 1,
the vehicle actuation latency (Tact) was shorter than the steer-
ing command latency (Tlat) in our simulation. This delaymay

123

8280 D.H. Lee

Radars

Lateral
CILQR

Longitudinal
PI + CILQR

Driving
Commands

A
Monocular
Camera

Vehicle
Actuators

Environment

Deep Neural
Network

Vision
Predictive
Control

a b

cd

Fig. 1 Proposed vision-based automated driving framework. The sys-
tem comprises the following modules: a multi-task DNN for perceiving
surroundings, vision predictive control and CILQR controllers for vehi-
cle motion planning and adherence to driving commands (steering,
acceleration, and braking), and a PI controller combined with the longi-
tudinal CILQR algorithm for velocity tracking. These modules receive
input data from a monocular camera and a few inexpensive radars and

operate collaboratively to operate the automated vehicle. The DNN,
vision predictive control, and lateral and longitudinal CILQR algo-
rithms are run efficiently every 24.52, 15.56, and 0.58 and 0.65 ms,
respectively. In our simulation, the end-to-end latency from the camera
output to the lateral controller output (Ta→b ≡ Tlat) is longer than the
actuator latency (Tc→d ≡ Tact = 6.66 ms)

also be present in automated vehicles [35] or autonomous
racing systems [36] and may induce instability in the sys-
tem being controlled. Equipping the vehicle with low-level
computers could further increase this steering command lag.
Therefore, compensating algorithms such as VPC are key to
cost-efficient automated vehicle systems.

In general, the research method of this paper is similar
to those in [51, 52], which have also presented self-driving
systems based on lane detection results. In [51]. an optimal
LQR scheme with the sliding-mode approach was proposed
to implement preview path tracking control for intelligent
electric vehicles with optimal torque distribution between
their motors. In [52], a safeguard-protected preview path
tracking control algorithm was presented. The proposed pre-
view control strategy comprises feedback and feedforward
controllers for stabilizing tracking errors and preview con-
trol, respectively. The proposed controller was implemented
and validated on open roads andMcity, an automated vehicle
platform. The tested vehiclewas equippedwith a commercial
Mobileye module to detect lane markings.

The main goal of this work was to design a compu-
tationally efficient automated driving system for real-time
lane-keeping and car-following. The contributions of this
paper are as follows:

1. The proposed MTDNN scheme can execute simulta-
neous driving perception tasks at a speed of 40 FPS.
The main difference between this scheme and previous
MTDNN schemes is that the post-processing methods
provide crucial parameters (lateral offset, road curvature,
and heading angle) that improve local vehicular naviga-
tion.

2. The VPC-CILQR controller comprising the VPC algo-
rithm and lateral CILQR solver is proposed to improve
driverless vehicle path tracking. The method has a low
online computational burden and can respond to steering
commands in accordance with the concept of look-ahead
distance.

3. We propose a vision-based framework comprising the
aforementioned MTDNN scheme and CILQR-based
controllers for operating an autonomous vehicle; the
effectiveness of the proposed framework was demon-
strated in challenging simulation environments without
maps.

The remainder of this paper is organized as follows: the
research methodology is presented in Section 2, the exper-
imental setup is described in Section 3, and the results are
presented and discussed in Section 4. Section 5 concludes
this paper.

2 Methodology

The following section introduces each part of the proposed
self-driving system. As depicted in Fig. 1, our system com-
prises several modules. The DNN is an MTUNet that can
solve multiple perception problems simultaneously. The
CILQR controllers receive data from the DNN and radars
to compute driving commands for lateral and longitudinal
motion planning. In the lateral direction, the lane line detec-
tion results from the DNN are input to the VPC module
to compute steering angle corrections at a certain distance
in front of the ego car. These corrections are then sent

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8281

to the CILQR solver to predict a steering angle for the
lane-keeping task. This two-step algorithm is denoted VPC-
CILQR throughout the article. The other CILQR controller
handles the car-following task in the longitudinal direction.

2.1 MTUNet network

As indicated in Fig. 2, the proposed MTDNN is a neural
network with an MTUNet architecture featuring a common
backbone encoder and three subnets for completing multiple
tasks at the same time. The following sections describe each
part.

2.1.1 Backbone and segmentation subnet

The shared backbone and segmentation (seg) subnet employ
encoder-decoder UNet-based networks for pixel-level lane

line classification task. Two classical UNets (UNet_2× [28]
and UNet_1× [37]) and one enhanced version (MultiRe-
sUNet [37], denoted as MResUNet throughout the paper)
were used to investigate the effects of model size and com-
plexity on task performance. For UNet_2× and UNet_1×,
each repeated block includes two convolutional (Conv) lay-
ers, and the first UNet has twice as many filters as the second.
For MResUNet, each modified block consists of three 3 × 3
Conv layers and one 1 × 1 Conv layer. Table 1 summarizes
the filter number and related kernel size of the Conv layers
used in these models. The resulting total number of param-
eters of UNet_2×/UNet_1×/MResUNet is 31.04/7.77/7.26
M, and the corresponding total number of multiply accumu-
late operations (MACs) is 38.91/9.76/12.67 G. All 3 × 3
Conv layers are padded with one pixel to preserve the spatial
resolution after the convolution operations are applied [38].
This setting reduces the network input size from 400 × 400

Fig. 2 Overview of proposed MTUNet architecture. The input RGB
image of size 228 × 228 is fed into the model, which then performs
lane line segmentation, ego vehicle’s pose estimation, and traffic object
detection at the same time. The backbone-seg-subnet is an UNet-based

network; three variants of UNet (UNet_2× [28], UNet_1× [37], and
MResUNet [37]) are compared in this work. The ReLU activation func-
tions in pose and det subnets are not shown for simplicity

123

8282 D.H. Lee

Table 1 Conv layers used in the
UNet-based networks

Conv-block UNet_2× [28] UNet_1× [37] MResUNet [37]

Block1a /9 64 (3 × 3)b 32 (3 × 3) 8 (3 × 3), 17 (3 × 3),

64 (3 × 3) 32 (3 × 3) 26 (3 × 3), 51 (1 × 1)

Block2/8 128 (3 × 3) 64 (3 × 3) 17 (3 × 3), 35 (3 × 3),

128 (3 × 3) 64 (3 × 3) 53 (3 × 3), 105 (1 × 1)

Block3/7 256 (3 × 3) 128 (3 × 3) 35 (3 × 3), 71 (3 × 3),

256 (3 × 3) 128 (3 × 3) 106 (3 × 3), 212 (1 × 1)

Block4/6 512 (3 × 3) 256 (3 × 3) 71 (3 × 3), 142 (3 × 3),

512 (3 × 3) 256 (3 × 3) 213 (3 × 3), 426 (1 × 1)

Block5 1024 (3 × 3) 512 (3 × 3) 142 (3 × 3), 284 (3 × 3),

1024 (3 × 3) 512 (3 × 3) 427 (3 × 3), 853 (1 × 1)

a Block1 of UNet_2×/UNet_1× only contains one 3 × 3 Conv layer
b The notation n (k × k) represents a Conv layer with n filters of kernel size k × k

to 228× 228 but preserves model performance and increases
inference speed compared with the models in our previous
work (the experimental results are presented in Section 4)
[28]. That network used unpadded 3 × 3 Conv layers [39],
and zero padding was therefore applied to the input to equal-
ize the input–output resolutions [40]. In the training phase,
the weighted cross-entropy loss is adopted to deal with the
lane detection sample imbalance problem [41, 42] and is rep-
resented as

L S = − N−

N+ + N−
∑

ỹ=1

log (σ (y))

− N+

N+ + N−
∑

ỹ=0

log (1 − σ(y)) ,

(1)

where N+ and N− are the numbers of foreground and back-
ground samples in a batch of images, respectively; y is a
predicted score; ỹ is the corresponding label; and σ is the
sigmoid function.

2.1.2 Pose subnet

This subnet is mainly responsible for whole-image angle
regression and road type classification problems, where the
road involves three categories (left turn, straight, and right
turn) designed to prevent the angle estimation frommode col-
lapsing [28, 43]. The network architecture of the pose subnet
is presented in Fig. 2; the pose subnet takes the fourth Conv-
block output feature maps of the backbone as its input. Sub-
sequently, the input maps are fed into shared parts including
two consecutive Conv layers and one global average pooling
(GAP) layer to extract general features. Lastly, the resulting
vectors are passed separately through two fully connected
(FC) layers before being mapped into a sigmoid/softmax
activation layer for the regression/classification task. Table
2 summarizes the number of filters and output units of the

corresponding Conv and FC layers, respectively. The expres-
sion MTUNet_2×/MTUNet_1×/MTMResUNet in Table 2
represents a multi-task UNet scheme in which subnets are
built on the UNet_2×/UNet_1×/MResUNet model through-
out the article. The pose task loss function, including
L2 regression loss (L R) and cross-entropy loss (LC), is
employed for network training; this function is represented
as follows:

L R = 1

2B

B∑

i=1

∣∣∣σ(θ̃i) − σ(θi)

∣∣∣
2
, (2a)

LC = − 1

B

B∑

i=1

3∑

j=1

p̃i j log(pi j), (2b)

where θ̃ and θ are the ground truth and estimated value,
respectively; B is the input batch size; and p̃ and p are true
and softmax estimation values, respectively.

2.1.3 Detection subnet

The detection (det) subnet takes advantage of a simplified
YOLOv4 detector [34] for real-time traffic object (leading
car) detection. This fully-convolutional subnet that has three
branches for multi-scale detection takes the output feature
maps of the backbone as its input, as illustrated in Fig. 2.

Table 2 Conv and FC layers used in the pose subnet of various
MTUNets

Layer MTUNet_2× MTUNet_1×
MTMResUNet

Conv1 1024 (3 × 3) 512 (3 × 3)

Conv2 1024 (3 × 3) 512 (3 × 3)

FC1-2 256, 256 256, 256

FC3-4 1, 3 1, 3

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8283

The initial part of each branch is composed of single or con-
secutive 3× 3 filters for extracting contextual information at
different scales [37], and a shortcut connection with one 1 ×
1 filter from the input layer for residual mapping. The top of
the addition layer contains sequential 1 × 1 filters for reduc-
ing the number of channels. The resulting feature maps of
each branch have six channels (five for bounding box offset
and confidence score predictions, and one for class probabil-
ity estimation) with a size of K = 15 × 15 to divide the input
image into K grids. In this article, we select M = 3 anchor
boxes, which are then shared between three branches accord-
ing to the context size. Ultimately, spatial features from three
detecting scales are concatenated together and sent to the out-
put layer. Table 3 presents the design of detection subnet of
MTUNets. The overall loss function for training comprises
objectness (L O), classification (LC L), and complete intersec-
tion over union (CIoU) losses (LC I) [44, 45]; these losses are
constructed as follows:

L O = −
K×M∑

i=1

I o
i

[
Q̃i log (Qi) +

(
1 − Q̃i

)
log (1 − Qi)

]

− λn I n
i

[
Q̃i log (Qi) +

(
1 − Q̃i

)
log (1 − Qi)

]
,

(3a)

LC L = −
K×M∑

i=1

I o
i

∑

c∈classes

p̃i (c) log (pi (c))

+ (1 − p̃i (c)) log (1 − pi (c)) ,

(3b)

LC I = 1 − I oU + E2 (õ, o)
β2 + αγ, (3c)

where I o/n
i = 1/0 or 0/1 indicates that the i-th predicted

bounding box does or does not contain an object, respec-
tively; Q̃i /Qi and p̃i /pi are the true/estimated objectness and
class scores corresponding to each box, respectively; and λn

is a hyperparameter intended for balancing positive and neg-
ative samples. With regard to CIoU loss, õ and o are the
central points of the prediction (Bp) and ground truth (Bgt)
boxes, respectively; E is the related Euclidean distance; β is
the diagonal distance of the smallest enclosing box covering

Table 3 Conv layers used in the detection subnet of various MTUNets

Layer MTUNet_2× MTUNet_1×
MTMResUNet

Conv1-6 512 (3 × 3) 384 (3 × 3)

Conv7-9 512 (1 × 1) 384 (1 × 1)

Conv10-12 256 (1 × 1) 256 (1 × 1)

Conv13-15 256 (1 × 1) 256 (1 × 1)

Conv16-18 6 (1 × 1) 6 (1 × 1)

Bp and Bgt ; α is a tradeoff hyperparameter; and γ is used to
measure aspect ratio consistency [44].

2.2 The CILQR algorithm

This section first briefly describes the concept behindCILQR
and related approaches based on [20, 21, 46, 47]; it then
presents the lateral/longitudinal CILQR control algorithm
that takes the MTUNet inference and radar data as its inputs
to yield driving decisions using linear dynamics.

2.2.1 Problem formulation

Provided a sequence of states X ≡ {x0, x1, ..., xN } and the
corresponding control sequence U ≡ {u0,u1, ...,uN−1} are
within the preview horizon N , the system’s discrete-time
dynamics f are satisfied, with

xi+1 = f (xi ,ui) (4)

from time i to i + 1. The total cost denoted by J , including
running costsP and the final costP f , is presented as follows:

J (x0,U) =
N−1∑

i=0

P (xi ,ui) + P f (xN). (5)

The optimal control sequence is then written as

U∗ (
x∗) ≡ argmin

U
J (x0,U) (6)

with an optimal trajectory x∗. The partial sum of J from any
time step t to N is represented as

Jt (x,Ut) =
N−1∑

i=t

P (xi ,ui) + P f (xN), (7)

and the optimal value function V at time t starting at x takes
the form

Vt (x) ≡ argmin
Ut

Jt (x,Ut) (8)

with the final time step value function VN (x) ≡ P f (xN).
In practice, the final step value functionVN (x) is obtained

by executing a forward pass using the current control
sequence. Subsequently, local control signal minimizations
are performed in the proceeding backward pass using the
following Bellman equation:

Vi (x) = min
u

[P (x,u) + Vi+1 (f (x,u))
]
. (9)

123

8284 D.H. Lee

To compute the optimal trajectory, the perturbed function
around the i-th state-control pair in (9) is used; this function
is written as follows:

O (δx, δu) =Pi (x + δx,u + δu) − Pi (x,u)

+ Vi+1 (f (x + δx,u+ δu))− Vi+1(f (x,u)) .

(10)

This equation can be approximated to a quadratic function
by employing a second-order Taylor expansion with the fol-
lowing coefficients:

Ox = Px + fTx Vx, (11a)

Ou = Pu + fTu Vx, (11b)

Oxx = Pxx + fTx Vxxfx + Vxfxx, (11c)

Oux = Pux + fTu Vxxfx + Vxfux, (11d)

Ouu = Puu + fTu Vxxfu + Vxfuu. (11e)

The second-order coefficients of the systemdynamics (fxx,
fux, and fuu) are omitted to reduce computational effort [24,
46]. The values of these coefficients are zero for linear sys-
tems [e.g., Eq. (19) and Eq. (25)], leading to fast convergence
in trajectory optimization.

The optimal control signal modification can be obtained
by minimizing the quadratic O (δx, δu):

δu∗ = argmin
δu

O (δx, δu) = k + Kδx, (12)

where

k = −O−1
uuOu, (13a)

K = −O−1
uuOux (13b)

are optimal control gains. If the optimal control indicated in
(12) is plugged into the approximated O (δx, δu) to recover
the quadratic value function, the corresponding coefficients
can be obtained [48]:

Vx = Ox − KTOuuk, (14a)

Vxx = Oxx − KTOuuK. (14b)

Control gains at each state (ki ,Ki) can then be estimated by
recursively computingEqs. (11), (13), and (14) in a backward
process. Finally, themodified control and state sequences can
be evaluated through a renewed forward pass:

ûi = ui + λki + Ki
(
x̂i − xi

)
, (15a)

x̂i+1 = f
(
x̂i , ûi

)
, (15b)

where x̂0 = x0. Here λ is the backtracking parameter for
line search; it is set to 1 in the beginning and designed to

be reduced gradually in the forward-backward propagation
loops until convergence is reached.

If the system has the constraint

C (x, u) < 0, (16)

which can be shaped using an exponential barrier function
[20, 23]

B (C (x, u)) = q1 exp (q2C (x, u)) (17)

or a logarithmic barrier function [21], then

B (C (x, u)) = −1

t
log (−C (x, u)) , (18)

where q1, q2, and t > 0 are parameters. The barrier func-
tion can be added to the cost function as a penalty. Eq. (18)
converges toward the ideal indicator function as t increases
iteratively.

2.2.2 Lateral CILQR controller

The lateral vehicle dynamicmodel [26] is employed for steer-
ing control. The state variable and control input are defined as

x = [
� �̇ θ θ̇

]T
and u = [δ], respectively, where � is the

lateral offset, θ is the angle between the ego vehicle’s head-
ing and the tangent of the road, and δ is the steering angle.
As described in our previous work [28, 29], θ and � can be
obtained from MTUNets and related post-processing meth-
ods, and it is assumed that �̇ = θ̇ = 0. The corresponding
discrete-time dynamic model is written as follows:

xt+1 ≡ f (xt ,ut) = Axt + But , (19)

where

A =

⎡

⎢⎢⎣

α11 α12 0 0
0 α22 α23 α24

0 0 α33 α34

0 α42 α43 α44

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0
β1

0
β2

⎤

⎥⎥⎦ ,

with coefficients

α11 = α33 = 1, α12 = α34 = dt,

α22 = 1 − 2(Cα f +Cαr)dt
mv

, α23 = 2(Cα f +Cαr)dt
m ,

α24 = 2(−Cα f l f +Cαr lr)dt
mv

, α42 = 2(Cα f l f −Cαr lr)dt
Izv

,

α43 = 2(Cα f l f −Cαr lr)dt
Iz

, α44 = 1 − 2
(

Cα f l2f −Cαr l2r
)

dt

Izv
,

β1 = 2Cα f dt
m , β2 = 2Cα f l f dt

Iz
.

Here, v is the ego vehicle’s current speed along the heading
direction and dt is the sampling time. The model parameters
for the experiments are as follows: vehicle mass m = 1150

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8285

kg, cornering stiffness Cα f = 80000 N/rad, Cαr = 80000
N/rad, center of gravity point l f = 1.27 m, lr = 1.37 m, and
moment of inertia Iz = 2000 kgm2.

The objective function (J) containing the iterative linear
quadratic regulator (JI L Q R), barrier (Jb), and end state cost
(J f) terms can be represented as

J = JI L Q R + Jb + J f , (20a)

JI L Q R =
N−1∑

i=0

(xi − xr)
T Q (xi − xr) + uTi Rui , (20b)

Jb =
N−1∑

i=0

B (ui) + B (�i), (20c)

J f = (xN − xr)
T Q (xN − xr) + B (�N) . (20d)

Here, the reference state xr = 0,Q/R is the weighting matrix,
and B (ui) and B (�i) are the corresponding barrier func-
tions:

B (ui) = −1

t
(log (ui − δmin) + log (δmax − ui)) , (21a)

B (�i) =
{
exp (�i − �i−1) for �0 ≥ 0,
exp (�i−1 − �i) for �0 < 0,

(21b)

where B(ui) is used to limit control inputs and the high (low)
steer bound is δmax (δmin) = π/6 (−π/6) rad. The objective
of B (�i) is to control the ego vehicle moving toward the
lane center.

The first element of the optimal steering sequence is then
selected to define the normalized steering commandat a given
time as follows:

SteerCmd = δ∗
0

π/6
. (22)

2.2.3 Longitudinal CILQR controller

In the longitudinal direction, a proportional-integral (PI) con-
troller [49]

P I (v) = kP e + kI

∑

i

ei (23)

is first applied to the ego car for tracking reference speed vr

under cruise conditions, where e = v − vr and kP /kI are
the tracking error and the proportional/integral gain, respec-
tively. The normalized acceleration command is then given
as follows:

AcclCmd = tanh(P I (v)). (24)

When a slower preceding vehicle is encountered, the Accel-
Cmd must be updated to maintain a safe distance from that

vehicle to avoid a collision; for this purpose, we use the fol-
lowing longitudinal CILQR algorithm.

The state variable and control input for longitudinal inter-

vehicle dynamics are defined as x′ = [
D v a

]T
and u′ =

[j], respectively, where a, j = ȧ, and D are the ego vehi-
cle’s acceleration, jerk, and distance to the preceding car,
respectively. The corresponding discrete-time system model
is written as

x′
t+1 ≡ f ′

(
x′

t ,u′
t
) = A′x′

t + B′u′
t + C′w′, (25)

where

A′ =
⎡

⎣
1 −dt − 1

2dt2

0 1 dt
0 0 1

⎤

⎦ , B′ =
⎡

⎣
0
0
dt

⎤

⎦ ,

C′ =
⎡

⎣
0 dt 1

2dt2

0 0 0
0 0 0

⎤

⎦ , w′ =
⎡

⎣
0
vl

al

⎤

⎦ .

Here, vl /al is the preceding car’s speed/acceleration, and w′
is themeasurable disturbance input [50]. The values of D and
vl are measured by the radar; v is known; and a = al = 0
is assumed. Here, MTUNets are used to recognize traffic
objects, and the radar is responsible for providing precise
distance measurements.

The objective function (J ′) for the longitudinal CILQR
controller can be written as,

J ′ = J ′
I L Q R + J ′

b + J ′
f , (26a)

J ′
I L Q R =

N−1∑

i=0

(
x′

i − x′
r
)T Q′ (x′

i − x′
r
) + u′T

i R
′u′

i , (26b)

J ′
b =

N−1∑

i=0

B′ (u′
i

) + B′ (Di) + B′ (ai), (26c)

J ′
f = (

x′
N − x′

r
)T Q′ (x′

N − x′
r
) + B′ (DN)

+B′ (aN) . (26d)

Here, the reference state x′
r = [

Dr vl al
]
, and Dr is the ref-

erence distance for safety.Q′/R′ is the weighting matrix, and
B′ (u′

i

)
, B′ (Di) , and B′ (ai) are related barrier functions:

B′ (u′
i

) = − 1

t ′
(
log

(
u′

i − jmin
) + log

(
jmax − u′

i

))
, (27a)

B′ (Di) = exp (Dr − Di) , (27b)

B′ (ai) = exp (amin − ai) + exp (ai − amax) , (27c)

where B′ (Di) is used for maintaining a safe distance, and
B′(u′

i) and B′(ai) are used to limit the ego vehicle’s jerk and
acceleration to [−1, 1] m/s3 and [−5, 5] m/s2, respectively.

123

8286 D.H. Lee

The first element of the optimal jerk sequence is then cho-
sen to update AccelCmd in the car-following scenario as

AcclCmd = tanh (P I (v)) + j∗0 . (28)

The brake command (BrakeCmd) gradually increases in
value from 0 to 1 when D is smaller than a certain critical
value during emergencies.

2.3 TheVPC algorithm

The problematic scenario for the VPC algorithm is depicted
in Fig. 3, which presents a top-down view of fitted lane
lines produced using our previous method [29]. First, the
detected line segments [Fig. 3(a)] were clustered using
the density-based spatial clustering of applications with
noise (DBSCAN) algorithm. Second, the resulting semantic
lanes were transformed into BEV space by using a per-
spective transformation. Third, the least-squares quadratic
polynomial fitting method was employed to produce parallel
ego-lane lines [Fig. 3(b)]; either of the two polynomials can
be represented as y = f (x). Fourth, the road curvature κ

was computed using the formula

κ = f ′′
(
1 + f ′2)3/2 . (29)

Because the curvature estimate from a single map is noisy,
an average map obtained from eight consecutive frames was
used for curve fitting. The resulting curvature estimates were
then used to determine the correction value for the steering
command in this study.

Fig. 3 Problematic scenario for the VPC algorithm. (a) An example
DNN-output lane-line binarymap at a given time in the egocentric view.
(b) Aerial view of the fitted lane lines. Here, o is the current position of
the ego vehicle and op is the look-ahead point, and p0 and p1 represent
the corresponding lane points at the same x coordinates as o and op ,
respectively. κ and δ are the road curvature and steering angle of the
ego vehicle, respectively. In this paper, the look-ahead distance oop =
10 m is used, which corresponds to a car speed of approximately 72
km/h [26]

As shown in Fig. 3(b), δ at o is the current steering angle.
The desired steering angles at p0 and p1 can be computed
using the local lane curvature [21]:

δ0 = tan−1 (cκ0) , (30a)

δ1 = tan−1 (cκ1) , (30b)

where c is an adjustable parameter. Hence, the predicted
steering angle at a look-ahead point op can be represented as

δp = δ + (δ1 − δ0) ≡ δ + �δ. (31)

Compared with those in existing LQR-based preview con-
trol methods [51, 52], fewer tuning parameters are required
when the VPC algorithm is included in the steering geome-
try model; moreover, the algorithm can be combined with
other path-tracking models. For example, a VPC-CILQR
controller can update the CILQR steering command [Eq.
(22)] as follows:

VPC_SteerCmd

=
{
SteerCmd + |�δ| if SteerCmd ≥ 0,
SteerCmd − |�δ| if SteerCmd < 0.

(32)

In summary, the proposed VPC algorithm uses the future
road curvature at a look-ahead point 10 m in front of the
ego car (Fig. 3) as input to generate the updated steering
inputs. This algorithm is applied before the ego car enters a
curvy road to improve tracking performance. Accurate and
complete future road shape prediction is crucial for develop-
ing preview path-tracking control algorithms [52]. However,
whether the necessary information can be obtained is greatly
dependent on the maximum perception range of lane detec-
tion modules. As demonstrated in Fig. 5, LLAMAS [57]
data are more useful than TORCS [28] or CULane [56]
datasets for developing algorithms with such path-tracking
functionality. A nonlinear MPC approach using high-quality
predicted lane curvature data can achieve better control
performance over the proposed method; however, if com-
putational cost is a concern, such a nonlinear approach may
not necessarily be preferred. The following sections describe
validation experiments where the proposed algorithm was
compared against other control algorithms.

3 Experimental setup

The proposed MTUNets extract local and global contexts
from input images to simultaneously perform segmentation,
detection, and pose tasks. Because the these tasks have differ-
ent learning rates [40, 53, 54], the proposed MTUNets were
trained in a stepwise instead of end-to-end manner to help
the backbone network learn common features. The training
strategy, image data, and validation are described as follows.

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8287

Table 4 Datasets used in the
experiments

Dataset Scenarios No. of images Labels No. of traffic objects Sources

CULane urban, 28368 80437 [56],

highway ego-lane lines, this work

LLAMAS highway 22714 bounding boxes 29442 [57],

this work

TORCS 42747 ego-lane lines, 30189 [28]

bounding boxes,

ego’s heading,

road type

3.1 Network training strategy

The MTUNets were trained in three stages. The pose subnet
was first trained through stochastic gradient descent (SGD)
with a batch size (bs) of 20,momentum (mo) of 0.9, and learn-
ing rate (lr) starting from 10−2 and decreasing by a factor of
0.9 every 5 epochs for a total of 100 epochs. The detection
and pose subnets were then trained jointly with the param-
eters obtained in the first training stage and using the SGD
optimizer with bs = 4, mo = 0.9, and lr = 10−3, 10−4, and
10−5 for the first 60 epochs, the 61st to 80th epochs, and the
last 20 epochs, respectively. All subnets (detection, pose, and
segmentation) were trained together in the last stage with the
pretrainedmodel obtained in the previous stage and using the
Adam optimizer. Bs and mo were set to 1 and 0.9, respec-
tively, and lr was set to 10−4 for the first 75 epochs and 10−5

for the last 25 epochs. The total loss in each stage was a
weighted sum of the corresponding losses [55].

3.2 Image datasets

We conducted experiments on the artificial TORCS [28] and
real-world CULane [56] and LLAMAS [57] datasets. The
summary statistics of the datasets are presented in Table 4.
The customized TORCS dataset has joint labels for all tasks,
whereas the original CULane/LLAMAS dataset only con-
tained lane line labels. Thus, we annotated each CULane and
LLAMAS imagewith traffic object bounding boxes tomimic
the TORCS dataset. Correspondingly, the TORCS, CULane,
andLLAMASdatasets had approximately 30K, 80K, and 29
K labeled traffic objects, respectively. To determine anchor
boxes for the detection task, the k-means algorithm [58] was
applied to partition the ground truth boxes. The CULane and
LLAMAS datasets lack ego vehicle angle labels; therefore,
these datasets could only be used for evaluations in segmen-
tation and detection tasks. The ratio of the number of images
used in the training phase to that used in the test phase was
approximately 10 for all datasets, as in our previous works
[28, 29]. Recall/average precision (AP; IoU was set to 0.5),

recall/F1 score, and accuracy/mean absolute error (MAE)
were used to evaluate model performance in detection, seg-
mentation, and pose tasks, respectively.

3.3 Autonomous driving simulation

The open-source driving environment TORCS provides
sophisticated physics and graphics engines; it is therefore
ideal for not only visual processing but also vehicle dynamics
research [59]. The ego vehicle controlled by our self-driving
framework was driven autonomously on unseen TORCS
roads [e.g., Tracks A and B in Fig. 4] to validate the effec-
tiveness of our approach. All experiments, including both
MTUNet training and testing and driving simulations, were
conducted on a PC equipped with an INTEL i9-9900K CPU,
64 GB of RAM, and an NVIDIA RTX 2080 Ti GPU with
4352CUDAcores and 11GBofGDDRmemory. The control
frequency for the ego vehicle in TORCS was approximately
150 Hz on this computer.

Fig. 4 TracksA (left) andB (right) for dynamically evaluatingproposed
MTUNet and control models. The total length of Track A/B (Track 7/8
in [28]) was 2843/3919 m with lane width 4 m, and the maximum
curvature was approximately 0.03/0.05 1/m, which was curvier than
a typical road [60]. The self-driving car drove in a counterclockwise
direction, and the starting locations are marked by green filled circle
symbols. A self-driving vehicle [31] could not finish a lap on Track A
using the direct perception approach [61]

123

8288 D.H. Lee

Table 5 Performance of trained MTUNets on the test data

Network Dataset Task config. Det Seg Pose
Recall AP (%) Recall F1 score Heading Road type

MAE (rad) accuracy (%)

MTUNet_2× CULane Det + Seg 0.858 65.32 0.694 0.688 − −
MTUNet_1× 0.831 58.67 0.658 0.595 − −
MTMResUNet 0.852 54.28 0.559 0.568 − −
MTUNet_2× LLAMAS Det + Seg 0.942 64.42 0.935 0.827 − −
MTUNet_1× 0.946 59.96 0.936 0.831 − −
MTMResUNet 0.950 57.40 0.736 0.748 − −
MTUNet_2× TORCS Pose − − − − 0.004 90.42

MTUNet_1× − − − − 0.005 90.48

MTMResUNet − − − − 0.006 83.77

MTUNet_2× Det + Seg 0.976 71.51 0.905 0.889 − −
MTUNet_1× 0.974 66.14 0.904 0.894 − −
MTMResUNet 0.968 66.12 0.833 0.869 − −
MTUNet_2× Det + Seg + Pose 0.952 65.83 0.922 0.883 0.005 87.08

MTUNet_1× 0.956 59.25 0.901 0.882 0.004 94.30

MTMResUNet 0.959 51.88 0.830 0.855 0.007 80.46

4 Results and discussions

Table 5 presents the performance results of the MTUNet
models on the testing data for various tasks. Table 6 lists
the number of parameters, computational complexity, and
inference speed of each scheme as a comparison of com-
putational efficiency. As described in Section 2, although
the input size of the MTUNet models was reduced by
the use of padded 3 × 3 Conv layers, model performance
was not affected; MTUNet_2×/MTUNet_1× achieved sim-
ilar results to our previous model in the segmentation and
pose tasks on the TORCS and LLAMAS datasets [28]. For
complex CULane data, the MTUNet model performance

Table 6 Results forMTUNets in terms of parameters (Params),MACs,
and FPS

Network Task config. Params MACs FPS

MTUNet_2× Pose 19.37 M 13.93 G 74.02

MTUNet_1× 4.98 M 3.51 G 122.72

MTMResUNet 5.37 M 2.70 G 99.08

MTUNet_2× Det + Seg 68.62 M 47.36 G 24.44

MTUNet_1× 21.70 M 12.89 G 43.58

MTMResUNet 21.97 M 15.98 G 27.79

MTUNet_2× Det + Seg + Pose 83.31 M 50.55 G 23.28

MTUNet_1× 25.50 M 13.69 G 40.77

MTMResUNet 26.56 M 16.95 G 27.30

performed worse than the SCNN [56], the original state-
of-the-art method for this dataset; however, the SCNN had
lower inference speed because of its higher computational
complexity [10]. TheMTUNet models are designed for real-
time control of self-driving vehicles; the SCNNmodel is not.
Of the three consideredMTUNet variants, MTUNet_2× and
MTUNet_1× outperformedMTMResUNet on all datasets if
eachmodel jointly performed the detection and segmentation
tasks (first, second, and fourth row of Table 5). This result
differs from that of a previous study on a single-segmentation
task for biomedical images [37]. Task gradient interference
can reduce the performance of an MTDNN [62, 63]; in
this case, the MTUNet_2× and MTUNet_1× models out-
performed the complex MTMResUNet network because of
their elegant architecture. When the pose task was included
(last row of Table 5), MTUNet_2× and MTUNet_1× also
outperformed MTMResUNet on all evaluation metrics; the
decreasing AP scores for the detection task are attributable
to an increase in false positive (FP) detections. However, for
all models, the inclusion of the pose task only decreased the
recall scores for the detection taskby approximately 0.02 (last
two rows of Table 5); nearly 95% of the ground truth boxes
were still detected during when the models simultaneously
performedall tasks. Following themethod for efficiency anal-
ysis used in [64] (Sec. V. B. in [64]), this study computed the
densities of the detection AP and road type accuracy scores
using the data in the last row of Tables 5/6. MTUNet_1×
had higher efficiency in terms of parameter utilization than
didMTUNet_2×. MTUNet_1×was 3.26 times smaller than

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8289

Fig. 5 Example traffic object and lane-line detection results for the MTUNet_1× network on CULane (first row), LLAMAS (second row), and
TORCS (third row) images

MTUNet_2× and achieved a 1.75 times faster inference
speed (40.77 FPS); this speed is comparable to that of the
YOLOPmodel [10]. These results indicate thatMTUNet_1×
is the most efficient model for collaborating with controllers
to achieve automated driving. The MTUNet_1× model can
also be run on a low-performance computer with only a
few gigabytes of GDDR memory. For a computer with a
GTX 1050 Max-Q GPU with 640 CUDA cores and 4 GB of
GDDR memory, the MTUNet_1× model achieved an infer-
ence speed of 14.69 FPS for multi-task prediction. Figure 5
presents example MTUNet_1× network outputs for both
traffic objects and lane detection on all datasets.

To objectively evaluate the dynamic performance of
the autonomous driving algorithms, lane-keeping and car-
following maneuvers were performed on the challenging
tracks, Tracks A and B, as shown in Fig. 4. The SQP-based
controllers were implemented using the ACADO toolkit [65]
for comparison with the CILQR-based controllers. All set-
tings for these algorithms were the same as summarized in
Table 7. For the lateral control experiments, autonomous
vehicles were designed to drive at various cruise speeds on
Tracks A and B. The θ and � results for the VPC-CILQR,

CILQR, VPC-SQP, and SQP algorithms are presented in
Figs. 6, 7, 8, 9, 10, 11, 12, and 13. The results of the CILQR
and SQP controllers for the longitudinal control experiments
are presented in Fig. 14. The MAEs for θ , �, v, and D in
Figs. 6–14 are listed in Table 8. Table 9 presents the aver-
age time to arrive at a solution for the VPC, CILQR, and
SQP algorithms. The inference time was shorter for VPC
than MTUNet_1× (24.52 ms). Moreover, the CILQR had a
computation speed thatwas faster than the egovehicle control

Table 7 Dynamic systemmodels and parameters for implementing the
CILQR and SQP controllers

Lateral Longitudinal
CILQR-/SQP-based CILQR/SQP

Dynamic model Eq. (19) Eq. (25)

Sampling time (dt) 0.05 s 0.1 s

Pred. horizon (N) 30 30

Ref. dist. (Dr) − 11 m

Weighting matrixes Q = diag (20, 1, 20, 1) Q′ = diag (20, 20, 1)

R = [1] R′ = [1]

123

8290 D.H. Lee

-0.1

0
0.1

��
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-1

0
1

��
(m

)

Ground Truth
Estimation

-0.1

0
0.1

��
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-1

0
1

��
(m

)

Ground Truth
Estimation

Fig. 6 Dynamic performance of lateral VPC-CILQR algorithm and
MTUNet_1× model for an ego vehicle with heading θ and lateral off-
set � for lane-keeping maneuvers in the central lanes of Tracks A and
B at 76 and 50 km/h, respectively. At the curviest section of Track A
(near 1900 m), the maximal � value was 0.52 m; the ego car controlled
by this model outperformed the ego car controlled by the Stanley con-
troller (Fig. 3 in [28]), MTL-RL [Fig. 11(a) in [31]], or CILQR (Fig. 7)
algorithms

period (6.66 ms); the SQP solvers were slower. Specifically,
the computation time per cycle for the lane-keeping and car-
following tasks, respectively, for the SQP solvers were 16.7
and 21.5 times longer than those of the CILQR solvers. A

-0.1

0
0.1

(r
ad

)

Track A

0 500 1000 1500 2000 2500
-1

0
1

(m
)

Ground Truth
Estimation

-0.1

0
0.1

(r
ad

)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-1

0
1

(m
)

Ground Truth
Estimation

Fig. 7 Dynamic performance of the lateral CILQR algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes
of Tracks A and B at the same speeds as those in Fig. 6. At the curviest
section of Track A (near 1900 m), the maximal � value was 0.71 m,
which is 1.36 times larger than that of the ego car controlled by the
VPC-CILQR algorithm

-0.1

0
0.1

θ
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-1

0
1

Δ
(m

)

Ground Truth
Estimation

-0.2
-0.1

0
0.1
0.2

θ
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-2
-1
0
1
2

Δ
(m

)

Ground Truth
Estimation

Fig. 8 Dynamic performance of the lateral VPC-SQP algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes of
Tracks A and B at the same speeds as those in Fig. 6. For the curviest
sections of Tracks A and B (near 1900 and 2750 m, respectively), the
performance of the VPC-SQP algorithm was inferior to those of the
VPC-CILQR and CILQR algorithms (Figs. 6 and 7). These algorithms
also outperformed the SQP algorithm (Fig. 9), indicating the effective-
ness of the VPC algorithm

discussion of the results for all the tested controllers are pre-
sented as follows.

In Figs. 6–9, all methods, including the MTUNet_1×
model, could effectively guide the ego car to drive along

-0.1

0
0.1

θ
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-1

0
1

Δ
(m

)

Ground Truth
Estimation

-0.2
-0.1

0
0.1
0.2

θ
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-2
-1
0
1
2

Δ
(m

)

Ground Truth
Estimation

Fig. 9 Dynamic performance of the lateral SQP algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes
of Tracks A and B at the same speeds as those in Fig. 6. The model
performance at the curviest section of Tracks A and B (near 1900 and
2750 m, respectively) was inferior to those of all other tested methods

123

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8291

-0.1

0
0.1

θ
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-2
-1
0
1
2

Δ
(m

)

Ground Truth
Estimation

-0.1

0
0.1

θ
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-1

0
1

Δ
(m

)

Ground Truth
Estimation

Fig. 10 Dynamic performance of the lateral VPC-CILQR algorithm
and MTUNet_1× model for an ego vehicle with heading θ and lateral
offset � for lane-keeping maneuvers in the central lanes of Tracks A
and B at 80 and 60 km/h, respectively. At the curviest section of Track
A, the maximal � value was 1.34 m

the lane center to complete one lap at cruise speeds of 76 and
50 km/h on Tracks A and B, respectively. The discrepancy in
the θ between the MTUNet_1× estimation and the ground
truth trajectory was attributable to curvy or shadowy road
segments, which may induce vehicle jittering [31]. Never-
theless, the � values estimated from lane line segmentation
were more robust in difficult scenarios than those obtained
with the end-to-end method [61]. Therefore, these � val-
ues can be used by controllers to effectively correct θ errors

-0.1

0
0.1

θ
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-2
-1
0
1
2

Δ
 (m

)

Ground Truth
Estimation

-0.1

0
0.1

θ
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-1

0
1

Δ
 (m

)

Ground Truth
Estimation

Fig. 11 Dynamic performance of the lateral CILQR algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes
of Tracks A and B at the same speeds as those in Fig. 10. At the curviest
section of Track A, the maximal � value was 1.48 m

-0.2
-0.1

0
0.1
0.2

θ
(r

ad
)

Track A

0 500 1000 1500 2000 2500
-2
-1
0
1
2

Δ
 (m

)

Ground Truth
Estimation

-0.2
-0.1

0
0.1
0.2

θ
(r

ad
)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-2
-1
0
1
2

Δ
 (m

)

Ground Truth
Estimation

Fig. 12 Dynamic performance of the lateral VPC-SQP algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes of
Tracks A and B at the same speeds as those in Fig. 10

and return the ego car to the road’s center. The maximum �

deviations from the ideal zero values on Track A (g-track-3
in [31]) were smaller when the ego car was controlled by the
VPC-CILQR controller (shown in Fig. 6) than when it was
controlled by the CILQR [21] (Fig. 7) or MTL-RL [31] algo-
rithms. Note that the vehicle speed in the MTL-RL control
framework on Track A for that study was 75 km/h, which is
slower than that in this study. This finding indicates that for
curvy roads, the VPC-CILQR algorithm better minimized�

than did the other investigated algorithms. Due to the lower
computation efficiency of the standard SQP solver [21], the

-0.2
-0.1

0
0.1
0.2

(r
ad

)

Track A

0 500 1000 1500 2000 2500
-2
-1
0
1
2

(m
)

Ground Truth
Estimation

-0.2
-0.1

0
0.1
0.2

(r
ad

)

Track B

0 500 1000 1500 2000 2500 3000 3500
Distance traveled (m)

-2
-1
0
1
2

(m
)

Ground Truth
Estimation

Fig. 13 Dynamic performance of the lateral SQP algorithm and
MTUNet_1× model for lane-keeping maneuvers in the central lanes
of Tracks A and B at the same speeds as those in Fig. 10

123

8292 D.H. Lee

SQP-based controllers were less effective for maintaining
the ego vehicle’s stability than the CILQR-based controllers
on the curviest sections of Tracks A and B (Figs. 8 and 9).
Moreover, the VPC-SQP algorithm outperformed the SQP
algorithm alone, further demonstrating the effectiveness of
the VPC algorithm. In terms of MAE, the VPC-CILQR con-
troller outperformed the other methods in terms of �-MAE
on both tracks (data for 76 and 50 km/h in Table 8). How-
ever, θ -MAE was 0.0003 and 0.0005 rad higher on Tracks A
and B, respectively, for the VPC-CILQR controller than the
CILQR controller. This may have been because the optimal-
ity of CILQR solution is losing if the external VPC algorithm
is applied to it. This problem could be solved by apply-
ing standard MPC methods with more general lane-keeping
dynamics, such as the lateral control model presented in [52],
which uses road curvature to describe vehicle states. This
nonlinearMPCdesign is computationally expensive andmay
not meet the requirements for real-time autonomous driving.

In Figs. 10–13, the ego car was guided to drive along
the central lane by the MTUNet_1× model at higher cruise
speeds (80 and 60 km/h onTracksA andB, respectively) than
those in Figs. 6–9. For ego vehicles with the VPC-CILQR
and CILQR controllers (Figs. 10 and 11), the maximum �

deviations were approximately half of the lane width (2 m).
In particular, the ego cars controlled by the SQP-based algo-
rithms unintentionally left the ego-lane at the curviest section
of TrackA (Figs. 12 and 13). Thiswas attributed to the slower
reaction times of SQP-based algorithms (9.70 ms) than of
CILQR-based algorithms (0.58 ms). Therefore, higher con-
troller latency may not only result in ego car instability but
also unsafe driving, particularly when the vehicle enters a
curvy road at high speed.

The car-following maneuver in Fig. 14 was performed on
a section of Track B. The ego vehicle was initially cruising at

0
20
40
60
80

v
(k

m
/h

)

Preceding Car
Ego Car

CILQR

1000 1100 1200 1300 1400 1500
10
12
14

D
 (

m
) Reference

Measurement

0
20
40
60
80

v
(k

m
/h

)

Preceding Car
Ego Car

SQP

1000 1100 1200 1300 1400 1500
Distance traveled (m)

10
12

14

D
 (

m
) Reference

Measurement

Fig. 14 Results for the longitudinal CILQR and SQP algorithms in car-
following scenario after ego car travels 1075 m on Track B; v and D
are speed and intervehicle distance, respectively

76 km/h and approached a slower preceding car with speed
in the range of 63 to 64 km/h. For all ego vehicles with the
CILQR or SQP controllers, the vehicle speed was regulated,
the preceding vehicle was tracked, and the controller main-
tained a safe distance between the vehicles. However, the
uncertainty in the optimal solution led to differences between
the reference and response trajectories [18]. For the longi-
tudinal CILQR and SQP controllers, respectively, v-MAE
was 0.1971 and 0.2629 m/s, and D-MAE was 0.4201 and
0.4930 m (second row of Table 8). Hence, CILQR again out-
performed SQP in this experiment. A supplementary video
featuring the lane-keeping and car-following simulations can
be found at https://youtu.be/Un-IJtCw83Q.

Table 8 Performance of theVPC-CILQR,CILQR,VPC-SQP, and SQP algorithmswithMTUNet_1× in terms of theMAE for the tests in Figs. 6–14

Maneuver Track Speed (km/h) VPC-CILQR CILQR VPC-SQP SQP

Lane-keeping θ (rad) � (m) θ (rad) � (m) θ (rad) � (m) θ (rad) � (m)

A 76 0.0086 0.0980 0.0083 0.1058 0.0122 0.1071 0.0118 0.1187

A 80 0.0099 0.1091 0.0098 0.1097 − − − −
B 50 0.0079 0.0748 0.0074 0.0775 0.0099 0.1286 0.0121 0.1470

B 60 0.0078 0.0779 0.0079 0.0783 0.0099 0.1083 0.0112 0.1147

Car-following v (m/s) D (m) v (m/s) D (m) v (m/s) D (m) v (m/s) D (m)

Ba − − − 0.1971 0.4201 − − 0.2629 0.4930

Related trajectories Figs. 6, 10 Figs. 7, 11, 14 Figs. 8, 12 Figs. 9, 13, 14

aComputation from 1150 to 1550 m

123

https://youtu.be/Un-IJtCw83Q

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8293

Table 9 Average computation time of VPC, CILQR, and SQP algo-
rithms

Task VPC CILQR SQP

Lane-keeping 15.56 ms 0.58 ms 9.70 ms

Car-following − 0.65 ms 14.01 ms

5 Conclusion

In this study, a vision-based self-driving system that
uses a monocular camera and radars to collect sensing data
is proposed; the system comprises an MTUNet network
for environment perception and VPC and CILQR modules
for motion planning. The proposed MTUNet model is an
improvement on our previous model [28]; we have added
a YOLOv4 detector and increased the network’s efficiency
by reducing the network input size for use with TORCS
[28], CULane [56], and LLAMAS [57] data. The most effi-
cient MTUNet model, namely MTUNet_1×, achieved an
inference speed of 40.77 FPS for simultaneous lane line seg-
mentation, ego vehicle pose estimation, and traffic object
detection tasks. For vehicular automation, a lateral VPC-
CILQR controller was designed that can plan vehicle motion
based on the ego vehicle’s heading, lateral offset, and road
curvature as determined by MTUNet_1× and postprocess-
ing methods. The longitudinal CILQR controller is activated
when a slower preceding car is detected. The optimal jerk is
then applied to regulate the ego vehicle’s speed to prevent a
collision. TheMTUNet_1× and VPC-CILQR controller can
collaborate for ego vehicle operation on challenging tracks
in TORCS; this algorithm outperforms methods based on the
CILQR [21] or MTL-RL [31] algorithms for the same path-
tracking task on the same large-curvature roads. Moreover,
the self-driving vehicle with long-latency SQP-based con-
trollers tended to leave the lane on some curvy routes. By
contrast, the short-latency CILQR-based controllers could
drive stably and safely in the same scenarios. In conclusion,
the experiments demonstrated the applicability and feasi-
bility of the proposed system, which comprises perception,
planning, and control algorithms. It is suitable for real-time
autonomous vehicle control and does not require HD maps.
A future study can apply the proposed autonomous driving
system to a real vehicle operating on actual roads.

Funding The author did not receive support from any organization for
the submitted work.

Code Availibility Statement A sample of TORCS dataset containing
500 images with corresponding labels can be found at https://drive.

google.com/file/d/1iAAH5dH2YiAx_LBr4BiOkiwl1HqKL9NU/view
?usp=sharing publicly.

Declarations

Conflicts of interest The author declares that there is no conflict of
interest regarding the publication of this article.

References

1. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey
of deep learning techniques for autonomous driving. J Field Robot
37(3):62–386

2. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A Survey
of Autonomous Driving: Common Practices and Emerging Tech-
nologies. IEEE Access 8:58443–58469

3. Tampuu A, Matiisen T, Semikin M, Fishman D, Muhammad N
(2022) A Survey of End-to-End Driving: Architectures and Train-
ing Methods. IEEE Trans Neural Netw Learn Syst 33(4):1364–
1384

4. Li Y, Ibanez-Guzman J (2020) Lidar for Autonomous Driving:
The Principles, Challenges, and Trends for Automotive Lidar and
Perception Systems. IEEE Signal Process Mag 37(4):50–61

5. (2020)ActiveDrivingAssistanceSystems:TestResults andDesign
Recommendations. Consumer Reports

6. Teichmann M, Weber M, Zöllner M, Cipolla R, Urtasun R (2018)
MultiNet: Real-time Joint Semantic Reasoning for Autonomous
Driving. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1013-
1020

7. Pizzati F,García F (2019)Enhanced free space detection inmultiple
lanes based on single CNN with scene identification. In: IEEE
Intelligent Vehicles Symposium (IV), pp. 2536-2541

8. Qian Y, Dolan JM, Yang M (2020) DLT-Net: Joint Detection of
Drivable Areas, Lane Lines, and Traffic Objects. IEEE Trans Intell
Transp Syst 21(11):4670–4679

9. Lai C-Y, Wu B-X, Shivanna VM, Guo J-I (2021) MTSAN: Multi-
Task Semantic Attention Network for ADAS Applications. IEEE
Access 9:50700–50714

10. Wu D, Liao M, ZhangW,Wang X, Bai X, ChengW, LiuW (2022)
YOLOP: You Only Look Once for Panoptic Driving Perception.
Mach Intell Res 19:550–562

11. Artificial Intelligence & Autopilot. https://www.tesla.com/AI.
Accessed 21 May 2023

12. Paden B, ČápM, Yong SZ, Yershov D, Frazzoli E (2016) A Survey
ofMotionPlanning andControl Techniques for Self-DrivingUrban
Vehicles. IEEE Trans Intell Veh 1(1):33–55

13. LimW, Lee S, SunwooM, Jo K (2021) Hybrid Trajectory Planning
for Autonomous Driving in On-Road Dynamic Scenarios. IEEE
Trans Intell Transp Syst 22(1):341–355

14. Gutjahr B, Gröll L, Werling M (2017) Lateral Vehicle Trajectory
Optimization Using Constrained Linear Time-VaryingMPC. IEEE
Trans Intell Transp Syst 18(6):1586–1595

15. Turri V, Carvalho A, Tseng HE, Johansson KH, Borrelli F (2013)
Linear model predictive control for lane keeping and obstacle
avoidance on low curvature roads. In: 16th International IEEECon-
ference on Intelligent Transportation Systems (ITSC), pp. 378-383

16. Katriniok A, Maschuw JP, Christen F, Eckstein L, Abel D (2013)
Optimal vehicle dynamics control for combined longitudinal and
lateral autonomous vehicle guidance. In: European Control Con-
ference (ECC), pp. 974-979

17. Li SE, Jia Z, Li K, Cheng B (2015) Fast Online Computation of a
Model Predictive Controller and Its Application to Fuel Economy-

123

https://drive.google.com/file/d/1iAAH5dH2YiAx_LBr4BiOkiwl1HqKL9NU/view?usp=sharing
https://drive.google.com/file/d/1iAAH5dH2YiAx_LBr4BiOkiwl1HqKL9NU/view?usp=sharing
https://drive.google.com/file/d/1iAAH5dH2YiAx_LBr4BiOkiwl1HqKL9NU/view?usp=sharing

8294 D.H. Lee

Oriented Adaptive Cruise Control. IEEE Trans Intell Transp Syst
16(3):1199–1209

18. Lim W, Lee S, Yang J, Sunwoo M, Na Y, Jo K (2022) Automatic
Weight Determination in Model Predictive Control for Personal-
ized Car-Following Control. IEEE Access 10:19812–19824

19. Mattingley J, Boyd S (2012) CVXGEN: A code generator for
embedded convex optimization. Optim Eng 13(1):1–27

20. Chen J, ZhanW,TomizukaM (2017)Constrained iterative LQR for
on-road autonomous driving motion planning. In: IEEE 20th Inter-
national Conference on Intelligent Transportation Systems (ITSC),
pp. 1-7

21. Chen J, ZhanW, TomizukaM (2019) Autonomous DrivingMotion
Planning With Constrained Iterative LQR. IEEE Trans Intell Veh
4(2):244–254

22. Jacobson DH, Mayne DQ (1970) Differential Dynamic Program-
ming. Elsevier

23. Pan Y, Lin Q, Shah H, Dolan J M (2020) Safe Planning for
Self-Driving Via Adaptive Constrained ILQR. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
pp. 2377-2383

24. Ma J, Cheng Z, Zhang X, Lin Z, Lewis FL, Lee TH (2023) Local
Learning Enabled Iterative Linear Quadratic Regulator for Con-
strained Trajectory Planning. IEEE Trans Neural Netw Learn Syst
34(9):5354–5365

25. WerlingM,Ziegler J,KammelS,ThrunS (2010)Optimal trajectory
generation for dynamic street scenarios in a Frenét frame. In:IEEE
International Conference on Robotics andAutomation (ICRA), pp.
987-993

26. Lee K, Jeon S, Kim H, KumD (2019) Optimal Path Tracking Con-
trol of Autonomous Vehicle: Adaptive Full-State Linear Quadratic
Gaussian (LQG) Control. IEEE Access 7:109120–109133

27. LeeD-H,ChenK-L,LiouK-H,LiuC-L,Liu J-L (2021)Deep learn-
ing and control algorithms of direct perception for autonomous
driving. Appl Intell 51:237–247

28. Lee D-H, Liu C-L (2021) Multi-task UNet architecture for end-to-
end autonomous driving. arXiv:2112.08967

29. Lee D-H, Liu C-L (2023) End-to-end deep learning of lane detec-
tion and path prediction for real-time autonomous driving. SIViP
17:199–205

30. Thrun S et al (2006) Stanley: The robot that won the DARPA grand
challenge. J Field Robot 23(9):661–692

31. Li D, Zhao D, Zhang Q, Chen Y (2019) Reinforcement learning
and deep learning based lateral control for autonomous driving.
IEEE Comput Intell Mag 14(2):83–98

32. Liu J, Yang Z, Huang Z, Li W, Dang S and Li H (2021) Sim-
ulation Performance Evaluation of Pure Pursuit, Stanley, LQR,
MPC Controller for Autonomous Vehicles. In: IEEE International
Conference on Real-time Computing and Robotics (RCAR), pp.
1444-1449

33. Lu P, Cui C, Xu S, Peng H, Wang F (2021) SUPER: A Novel Lane
Detection System. IEEE Trans Intell Veh 6(3):583–593

34. Wang C-Y, Bochkovskiy A, Mark Liao H-Y (2021) Scaled-
YOLOv4: Scaling Cross Stage Partial Network. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp.
13029-13038

35. Georg J M, Feiler J, Hoffmann S, Diermeyer F (2020) Sensor and
Actuator Latency during Teleoperation of Automated Vehicles. In:
IEEE Intelligent Vehicles Symposium (IV), pp. 760-766

36. Betz J et al (2023) TUM autonomous motorsport: An autonomous
racing software for the Indy Autonomous Challenge. J Field Robot
40:783–809

37. Ibtehaz N, Rahman MS (2020) MultiResUNet: Rethinking the U-
Net architecture for multimodal biomedical image segmentation.
Neural Netw 121:74–87

38. Simonyan K, Zisserman A (2015) Very Deep Convolutional
Networks for Large-Scale Image Recognition. In: International
Conference on Learning Representations (ICLR), pp. 1-14

39. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional
networks for biomedical image segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Springer, pp. 234-241

40. Bruls T,MaddernW,MoryeAA,Newman P (2018)Mark yourself:
Road marking segmentation via weakly supervised annotations
from multimodal data. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 1863-1870

41. Xie S, Tu Z (2015) Holistically-nested edge detection. In IEEE
International Conference on Computer Vision (ICCV), pp. 1395-
1403

42. Zou Q, Jiang H, Dai Q, Yue Y, Chen L, Wang Q (2020) Robust
lane detection from continuous driving scenes using deep neural
networks. IEEE Trans Veh Technol 69(1):41–54

43. Cui H, Radosavljevic V, Chou F-C, Lin T-H, Nguyen T, Huang T-
K, Schneider J, Djuric N (2019) Multimodal trajectory predictions
for autonomous driving using deep convolutional networks. In:
International Conference on Robotics andAutomation (ICRA), pp.
2090-2096

44. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) Distance-
IoU Loss: Faster and better learning for bounding box regression.
In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 12993-13000

45. Choi JI, Tian Q (2022) Adversarial Attack and Defense of YOLO
Detectors in Autonomous Driving Scenarios. In: IEEE Intelligent
Vehicles Symposium (IV), pp. 1011-1017

46. Tassa Y, Erez T, Todorov E (2012) Synthesis and stabilization
of complex behaviors through online trajectory optimization. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 4906-4913

47. Tassa Y, Mansard N, Todorov E (2014) Control-limited differen-
tial dynamic programming. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 1168-1175

48. Plancher B, Manchester Z, Kuindersma S (2017) Constrained
unscented dynamic programming. In: IEEE/RSJ InternationalCon-
ference on Intelligent Robots and Systems (IROS), pp. 5674-5680

49. Samak C V, Samak T V, and Kandhasamy S (2021) Control
Strategies for Autonomous Vehicles. In: Autonomous Driving and
Advanced Driver-Assistance Systems, CRC Press

50. Qiu W, Ting Q, Shuyou Y, Hongyan G, and Hong C (2015)
Autonomous vehicle longitudinal following control based on
model predictive control. In: IEEE 34th Chinese Control Confer-
ence (CCC), pp. 8126-8131

51. Zhang X, ZhuX (2019) Autonomous path tracking control of intel-
ligent electric vehicles based on lane detection and optimal preview
method. Expert Syst Appl 121:38–48

52. Xu S, Peng H, Lu P, Zhu M, Tang Y (2020) Design and Experi-
ments of Safeguard Protected Preview Lane Keeping Control for
Autonomous Vehicles. IEEE Access 8:29944–29953

53. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, Berg A
(2016) SSD: Single Shot MultiBox Detector. In: European Confer-
ence on Computer Vision (ECCV). pp. 21-37

54. Redmon J, Farhadi A (2017) YOLO9000: Better, Faster, Stronger.
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6517-6525

55. Lee S et al (2017) VPGNet: Vanishing Point Guided Network for
Lane andRoadMarkingDetection andRecognition. In: IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 1965-1973

56. Pan X, Shi J, Luo P,WangX, TangX (2018) Spatial as deep: spatial
CNN for traffic scene understanding. In: The Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18), pp. 7276-7283

123

http://arxiv.org/abs/2112.08967

Efficient perception, planning, and control algorithm for vision-based automated vehicles 8295

57. Behrendt K, Soussan R (2019) Unsupervised Labeled Lane Mark-
ers Using Maps. In: IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pp. 832-839

58. MacQueen J et al (1967) Some methods for classification and
analysis of multivariate observations. In: Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
pp. 281-297

59. Bernhard W et al (2014) TORCS: The open racing car simulator.
http://www.torcs.org

60. Fitzpatrick K (1994) Horizontal Curve Design: An Exercise in
Comfort and Appearance. Transp Res Rec 1445:47–53

61. Chen C, Seff A, Kornhauser A, Xiao J (2015) DeepDriving: Learn-
ing affordance for direct perception in autonomous driving. In:
Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 2722-2730

62. Standley T, Zamir A R, Chen D, Guibas L, Malik J, Savarese S
(2020) Which tasks should be learned together in multi-task learn-
ing? In: International Conference on Machine Learning (ICML),
pp. 9120-9132

63. Kokkinos I (2017) UberNet: Training a Universal Convolutional
Neural Network for Low-, Mid-, and High-Level Vision Using
Diverse Datasets and Limited Memory. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5454-5463

64. Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark
Analysis of Representative Deep Neural Network Architectures.
IEEE Access 6:64270–64277

65. Houska B, Ferreau HJ, Diehl M (2011) ACADO toolkit-An open
source framework for automatic control and dynamic optimization.
Optim Control Appl Methods 32(3):298–312

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Der-Hau Lee received his Ph.D. degree in Physics from the Depart-
ment of Electrophysics, National Yang Ming Chiao Tung University,
Taiwan, in 2018. His research interests include machine intelligence
and autonomous driving.

123

http://www.torcs.org

	Efficient perception, planning, and control algorithm for vision-based automated vehicles
	Abstract
	1 Introduction
	2 Methodology
	2.1 MTUNet network
	2.1.1 Backbone and segmentation subnet
	2.1.2 Pose subnet
	2.1.3 Detection subnet

	2.2 The CILQR algorithm
	2.2.1 Problem formulation
	2.2.2 Lateral CILQR controller
	2.2.3 Longitudinal CILQR controller

	2.3 The VPC algorithm

	3 Experimental setup
	3.1 Network training strategy
	3.2 Image datasets
	3.3 Autonomous driving simulation

	4 Results and discussions
	5 Conclusion
	References

