
Applied Intelligence (2024) 54:8092–8107
https://doi.org/10.1007/s10489-024-05601-z

Multi-headmulti-order graph attention networks

Jie Ben1 ·Qiguo Sun1 · Keyu Liu2 · Xibei Yang1 · Fengjun Zhang1

Accepted: 8 June 2024 / Published online: 20 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The Graph Attention Network (GAT) is a type of graph neural network (GNN) that uses attention mechanisms to weigh the
importance of nodes’ neighbors, demonstrating flexibility and power in representation learning. However, GAT and its variants
still face common challenges in GNNs, such as over-smoothing and over-squashing. To address this, we propose Multi-Head
Multi-Order Graph Attention Networks (MHMOGAT) as an enhanced GAT layer. MHMOGAT is built based on multi-head
attention and adjacency matrices of different orders, aiming to expand the receptive field of GAT to effectively capture long-
distance dependencies. Moreover, Bayesian optimization is employed to determine optimal hyperparameter combinations for
different datasets. Experimental results on six prevailing datasets demonstrate that MHMOGAT improves GAT accuracy by
approximately 2-5% across various datasets with different label rates, indicating its effectiveness. Additionally, MHMOGAT
exhibits potential in handling large and complex graphs with low label rates.

Keywords Semi-supervised learning · Graph convolutional network · Attention mechanism · Multi-order information

1 Introduction

Graph data [1] is a natural representation of many com-
plex systems in the real world, such as social networks
[2], recommendation systems, biological networks, trans-
portation networks, and more [3–6]. However, in many
applications of graph data, label information about nodes
is often scarce [7, 8], which limits the applicability and
effectiveness of traditional supervised learning approaches.
As such, semi-supervised learning methods [9–11] have

B Qiguo Sun
sunqiguo1992@gmail.com

Jie Ben
benjjie@foxmail.com

Keyu Liu
keyu_liu@my.swjtu.edu.cn

Xibei Yang
jsjxy_yxb@just.edu.cn

Fengjun Zhang
jszhfj@foxmail.com

1 School of Computer, Jiangsu University of Science and
Technology, Zhenjiang 212100, Jiangsu, China

2 School of Computing and Artificial Intelligence, Southwest
Jiaotong University Chengdu, Chengdu 611756, Sichuan,
China

emerged as powerful tools for these scenarios by leveraging
information from unlabeled nodes to enhance model per-
formance. Semi-supervised learning is a machine learning
paradigm [12, 13] and there are various methods, including
the use of generative models [14, 15], semi-supervised sup-
port vector machines [16, 17], graph models [18, 19], and
so on. Through these methods, semi-supervised learning can
better cope with the incomplete data in the real world and
improve the generalization ability of the model.

On the other hand, graph convolutional networks (GCNs)
[18] have achieved significant advancements in semi-super-
vised learning. These networks facilitate information trans-
mission based on the topology between nodes, effectively
capturing relational data within graph structures. GCNs
demonstrated their potency across various downstream tasks
[20–22]. The message passing mechanism in GCNs, while
useful for utilizing graph structure information by adding
more layers to have an extensive receptive field, can lead to
the over-smoothing problem when combined with increased
depth [23, 24].

Although GCNs have significant potential for model-
ing graph-structured data, it has been revealed that they
encounter the issues of over-smoothing and over-squashing
[25, 26]. over-smoothing occurs as node features become
increasingly similar with the increase in convolutional lay-
ers, while over-squashing arises from significant information

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05601-z&domain=pdf

Multi-head multi-order graph attention networks 8093

compression via bottleneck edges. Various methods have
been proposed to tackle these challenges [25–29]. Specifically,
Graph Attention Networks [27] utilize attention mecha-
nisms to learn discriminative features, thus reducing the
over-smoothing problem. Building upon this, [28] further
developed a high-order graph attention network that effec-
tively integrates multi-hop neighbor information for node
representation. Moreover, [29] developed DropEdge, which
uniformly drops out a certain number of edges during model
training to relieve the over-smoothing problem. However,
these methods cannot effectively address the over-squashing
problem, especially for graphs with large diameters and
long-range dependencies between nodes. [30] pointed out
that GNNs struggle to transmit messages effectively from
distant nodes and demonstrate degraded performance when
taskedwith predictions relying on interactions spanning long
distances. They formally introduced the over-squashing phe-
nomenon of GNNs but did not present a new architecture to
solve the problem. Later, [31] employed the Stochastic Jost
and Liu Curvature Rewiring algorithm to perform edge addi-
tion and removal during GNN training, achieving a suitable
compromise between over-smoothing and over-squashing.

To mitigate the over-smoothing and over-squashing prob-
lems and increaseGCNs’ expressiveness, this paper proposes
a method called multi-head multi-order graph attention net-
works(MHMOGAT). We integrated multi-head attention
with varying neighborhood orders, resulting in a model that
incorporates both multi-order and cross-order multi-head
attentions. In themulti-head attentionmodel, each head focus
on learning information from different neighborhood orders.
This allows for learning at an expanded perception field and
capturing relationships within the graph more accurately. In
our cross-order setup, we use multiple channels with var-
ious neighborhood orders to achieve a cross-order effects.
This approach enhances generalization ability of the model
by capturingmultiple hop’s information. Allowing themodel
to solve different challenging classification tasks. Our model
defines a novel self-attention mechanism that evaluates the
influence of both immediate neighbors and long-distance
nodes, while assigning heterogeneous multi-head attention
to enhance feature extraction across different layers. In addi-
tion, Bayesian optimization is integrated into the model for
hyperparameter optimization.

The main contributions of this paper can be summarized
as follows:

• Develop new multi-head multi-order GCN layers which
improveGATperformance significantly on various semi-
supervised classification datasets.

• Tackle the limitation of GAT in capturing multi-hop
information and expand its perception field.

• Show potential in dealing with large and complex graphs
with very low label rates.

The remaining structure of this article is as follows:
Section 2 covers the related work in this field. In Section 3,
we provide an overview of the network architectures of GAT
andMOGCN, alongwith highlighting someof the challenges
they face. Our proposed model MHMOGAT is introduced,
and its two implementation approaches are described in Sec-
tion 4. In Section 5, our model will be compared with some
other state-of-the-art models to demonstrate its effectiveness.
Finally, Section 6 presents the conclusions of this study and
discusses future work.

2 Related work

2.1 High-Order Graph Convolutional Networks

Recent works have focused on encoding high-order neigh-
borhood information from target nodes to improve per-
formance. MOGCN [32] constructs multiple simple GCN
learners withmulti-order adjacencymatrices to capture high-
order connectivity among the nodes. MixHop [33] mixes
powers of the adjacency matrix, which can mix feature
representations of neighbors at various distances to learn
neighborhood mixing relationships. HCNP [34] can simulta-
neously aggregate information from various neighborhoods
by constructing high-order convolutions. Additionally, simi-
lar to our model, both HGRN [28] and MulStepNET [35]
combine the attention mechanism with high-order neigh-
borhoods to improve the model’s learning ability. However,
HGRN and MulStepNET simply combine the attention
mechanism with higher-order information without consider-
ing the effective combination of multi-head and multi-order
information to make the model more flexible and efficient.

2.2 Over-smoothing and over-squashing

In the realm of GNNs, over-smoothing and over-squashing
stand out as significant limitations. To address these chal-
lenges, numerous strategies have been devised. For instance,
Huang et al. [29] proposed a methodology centered on
the removal of graph edges during GNN training, while
Zhao et al. [36] and Zhou et al. [37] introduced novel
normalization techniques tailored to directly counteract over-
smoothing effects. Additionally, Chien et al. [38] developed
a novel graph convolutional filter aimed at circumventing
over-smoothing phenomena. In tackling the over-squashing
issue, Topping et al. [31] employed the Stochastic Jost and
Liu Curvature Rewiring algorithm to facilitate edge addi-
tion and removal during GNN training. Moreover, recent
advancements have seen the utilization of state-of-the-art
large language models in addressing graph-related tasks,
exemplified by the Graphllm [39] and Graphgpt [40] models,

123

8094 J. Ben et al.

offering an alternative approach to mitigating both over-
smoothing and over-squashing concerns.

2.3 Attentionmechanism

Graph Attention Networks (GAT) [27] utilize self-attention
mechanisms to compute the contribution weights of each
neighboring node to update the central node’s features, fol-
lowed by a weighted summation to obtain new node features.
GAT also uses multi-head attention, allowing the model to
focus on the features of different neighbor nodes in parallel
to better capture relationships and features in the graph data.
HAN [41] introduces multiple layers of attention mecha-
nisms, enabling themodel to assignweights differently based
on node types and relationships, facilitating better capturing
of associations between nodes in heterogeneous graphs. In
addition, other models such as GGAN-DGC [42], GA-GNN
[43], SGATs [44] also incorporate attention mechanisms
into their architectures, enhancing the model’s capabilities.
HGRN [28] incorporates multi-hop neighbor information to
enhance the node representation ability of the original GAT,
effectively addressing the over-smoothing problem. How-
ever, none of the previous research combined multi-head and
multi-order information. Additionally, few studies focused
on evaluating model performance at scarce label rates for
semi-classification tasks.

Overall, the original GAT model may encounter the over-
squashing issue in certain datasets. HGRN addresses this
problem by incorporating high-order augmentation graphs.
However, this approach might lead to an over-smoothing
issue by introducing a large number of new edges. This con-
cern forms the primary motivation for our work: we aim
to combine multi-order and multi-head approaches to add
heterogeneous paths for different-order augmented graphs,
thereby solving both over-smoothing and over-squashing
issues. In addition, considering the increase of the dimension
of hyperparameter space, a more advanced hyperparameter
optimization method should be investigated.

3 Preliminary

3.1 Graph attention networks(GAT)

A Graph Attention Network (GAT) is a type of graph neu-
ral network that uses an attention mechanism to capture the
most important relationships between nodes in the graphs
to enhance prediction or classification performances. The
weights of edges can be calculated by the following formula:

αi j =
exp

(
LeakyReLU

(
�aT

[
W�hi ||W�h j

]))

∑
k∈Ni

exp
(
LeakyReLU

(
�aT

[
W�hi ||W�hk

])) , (1)

where αi j is the weight between the i-th and j-th nodes, W
is a trainable weight matrix for node feature transformation,
�hi and �h j are the feature vectors of the i-th node and the j-th
node, �a is a vector of weights, T represents transposition,Ni

is the immediate neighborhood of the i-th node in the graph.
The feature information is processed by combining with the
weighted neighbor information from the attention adjacency
matrix and then transformed through a nonlinear function,
which is described by

�h′
i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

αk
i jW

k �h j

⎞
⎠ , (2)

where K is the number of multi-heads. σ denotes the final
nonlinear function (usually a softmax). Finally, a prediction
is to be made using the output of the final layer.

3.2 Mixed-order graph convolutional
networks(MOGCN)

Mixed-order graph convolutional networks (MOGCN) [32]
is a novel end-to-end ensemble framework. MOGCN com-
bines the results of multiple GCN learners that are trained
on adjacency matrices of various orders to boost the perfor-
manceof semi-supervisednode classification tasks.MOGCN
can directly capture the dependencies between nodes at dif-
ferent distances, which enhances its information acquisition
capability. Firstly, it constructs several similar GCN learn-
ers and assigns them adjacency matrices of different order
in order to learn the information relationship between neigh-
bors of different orders. Let’s denote a finite set ofmulti-order
adjacency matrices as

{
A1, · · · ,Ak

}
. Then, we can formally

define the GCN learners with respect to this set as follows,

f1 = softmax
(
Ã1
sReLU

(
Ã1
sXW

1
0

)
W1

1

)
,

f2 = softmax
(
Ã2
sReLU

(
Ã2
sXW

2
0

)
W2

1

)
, (3)

...

fk = softmax
(
Ãk
sReLU

(
Ãk
sXW

k
0

)
Wk

1

)
,

where Ãk
s = D̃k− 1

2 ÃkD̃k− 1
2 , and Ãk = Ak + I, and the

associated degree matrix is D̃(k) = D(k) + I, I is a diagonal
matrix, X is the node feature matrix, Wk

0 and Wk
1 are the

trainable weight matrices in the k-th learner fk .
For the obtained k learners { f1, · · · , fk} finally combined

through an ensemble module [45]:

fens (X) = 1

m

m∑
k=1

fk (X) (4)

123

Multi-head multi-order graph attention networks 8095

In Eq. (4), the outputs of fens are the predicting label
matrix based on the k-th learner.

Despite both GAT and MOGCN achieve state-of-the-art
performance on various datasets, there still exist limitations.
GAT can only transfer and aggregate information in the first-
order neighborhood of the target node, and it cannot take into
account nodes that are far away, thus ignoring the important
information implied in them. While MOGCN can consider
nodes inmulti-order neighborhoods, it is unable to adaptively
assign weights to individual neighbors, treating all nodes as
having the same importance. Based on these problems, we
propose a newmodel that can combinemulti-order neighbor-
hood information and adaptively assign weights to neighbor
nodes.

4 The proposedmethod

In this section, we detail our method in two parts: the indi-
vidual MHMOGAT layer and two distinct architectures.
Our approach leverages a mix of multi-head attention and
adjacency matrices of different orders, building upon the
foundation established by HGRN [28]. HGRN incorporates
multi-hop neighbor information to enhance node represen-
tation, addressing the over-smoothing problem. Extending
upon this framework, our proposed model integrates multi-
head and multi-order information, enhancing adaptability
and efficiency across various tasks. Additionally, we employ
Bayesian optimization to determine optimal hyperparameter
combinations for different datasets. We propose two specific
implementation methods through a reasonable combination
of multi-head attention and adjacency matrices of different
orders.

4.1 Attention layer

We start with the individual graph attention layer ofMHMO-
GAT. The input to the attention layer of each graph is a set
of node features, which we represent as a set of vectors:

h =
{�h1, �h2, . . . , �hZ

}
, (5)

where �hi ∈ R
F , F is the number of features for each node,

and Z is the number of nodes. The layer produces a new set
of node features (of potentially different cardinality F ′),h′ ={ �h′

1, �h′
2, . . . , �h′

Z

}
, �h′

i ∈ R
F ′
, as its output. Let’s denote a

finite set ofmulti-order adjacencymatrices as
{
A1, · · · ,An

}
,

where

An = An−1A1, (6)

In order to convert the primary features into a more
advanced feature representation and improve the capabili-
ties of the model, we perform the following processing on
the data:

ei j = a
(
W�hi ,W�h j

)
, (7)

whereW is a trainable weight matrix and a is a shared atten-
tion mechanism, ei j represents the importance of the j-th
node to the i-th node.

In the initial processing step, a linear transformation is
applied on the nodes like original GAT model to learn
the structures and patterns of data. Subsequently, the pro-
posed model defines a novel self-attention mechanism that
evaluates the influence of both immediate neighbors and
long-distance nodes, while assigning heterogeneous multi-
head attention to enhance feature extraction across different
layers. This multi-level feature extraction facilitates the
model’s ability to handle complex features andmanage long-
distance dependencies effectively.

The modified attention coefficient is defined as follows:

αk
i j = softmax j

(
eki j

)
=

exp
(
eki j

)
∑

m∈Ni
exp

(
ekim

) , (8)

αk
i j =

exp
(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hnj

]))

∑
m∈N n

i
exp

(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hnm

])) ,(9)

where αk
i j represents the weight between i-th and j-th nodes

in the k-th attention head,Wk is a trainable weight matrix, �hi
and �hnj represent the features of the i-th node and n-th order
neighbor node j of i-th node, �a ∈ R

2F ′
is a vector of weights,

Ni is the n-th order neighborhood of the i-th node in the
graph. After calculating the attention coefficient according
to Eq.(9), it is used to compute a linear combination of the
features corresponding to them, to serve as the final output
features for every node.

�h′
i = σ

⎛
⎝ ∑

j∈N n
i

αk
i jWk �hnj

⎞
⎠ , (10)

where αk
i j is the attention coefficient calculated by the k-th

attention head, �h′
i is the new node representation aggregated

by multiple different order attention heads.

4.2 General framework

In this subsection, we describe the implementation details of
the two distinct architectures of MHMOGAT: the multi-head

123

8096 J. Ben et al.

different orders attention architecture and the cross-order
multi-head attention architecture.

4.2.1 MHMOGAT with multi-head different orders attention

In this architecture, in order to improve the performance
capability of the model and to enable the model to learn the
weights in neighbor relationships at different scales, we use
adjacency matrices of different orders in each attention head
for information aggregation.

Firstly, we assign different order adjacency matrices to
each attention head based on Eq.(7)-(9) to obtain the k-th
attention head as follows:(Figs. 1 and 2)

α1
i j =

exp
(
LeakyReLU

(
�aT

[
W1�hi ||W1�h1j

]))

∑
m∈N 1

i
exp

(
LeakyReLU

(
�aT

[
W1�hi ||W1�h1m

])) ,

α2
i j =

exp
(
LeakyReLU

(
�aT

[
W2 �hi ||W2 �h2j

]))

∑
m∈N 2

i
exp

(
LeakyReLU

(
�aT

[
W2 �hi ||W2 �h2m

])) ,

(11)

...

αk
i j =

exp
(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hkj

]))

∑
m∈N k

i
exp

(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hkm

])) ,

After obtaining the attention coefficients of different
orders of each head, we design an information aggrega-
tion method as follows. The K attention heads execute
the transformation of Eq.(10), and then their features are
concatenated, resulting in the following output feature rep-
resentation.

�h′
i = K||

k=1
σ

⎛
⎜⎝

∑

j∈N k
i

αk
i jWk �hkj

⎞
⎟⎠ , (12)

where || represents concatenation, K is the number of atten-
tion heads, αk

i j is the attention coefficient calculated by the

k-th attention head,Wk is a trainable weight matrix, and �h′
i

is a new node representation aggregated bymultiple different
order attention heads.

Specifically, if we perform multi-head attention on the
final layer of the network, for efficient implementation of
multi-head attention, we replace concatenation with averag-
ing and apply a nonlinear activation function to generate the

a

k
ij

j
so
ft
m
a
x

The attention mechanism Multi-head different orders attention (with K
= 3 heads)

3

19

1h 2h

6h

9h

8h

3h

5h

4h

7h2

17

2

18

2

16
1

12

1

13

2

15

1

14

1

11

concate/avg

1
'h

Third-order neighborhood

Second-order neighborhood

First-order neighborhood

Arbitrary central node

First Head

Second Head

Third Head

ik hW k
jk hW

Fig. 1 The message aggregation in the Multi-Head Multi-Order Graph
Attention Network (MHMOGAT) framework is illustrated. The red
node represents an arbitrary central node, while the other nodes rep-
resent the neighbors of the central node at different orders. Initially,
the attention coefficients are computed based on current node repre-
sentations. This is followed by executing a multi-head different orders

attention graph convolution on multi-hop nodes (where blue nodes rep-
resent 1-hop neighbors, green for 2-hop neighbors and yellow for 3-hop
neighbors). The three differently colored arrows signify various levels
of attention heads. Ultimately, to obtain �h′

1, the embedding from these
heads are averaged

123

Multi-head multi-order graph attention networks 8097

1h 2h

6h

9h

8h

3h

5h

4h

7h

)1(1

14

1
1
'hconcate/avg

)1(1

13

)1(1

12

)1(1

15
5h

)1(2

15

)1(2

12)1(2

13

)1(2

14

)1(2

11

)1(3

14

)1(3

13

)1(3

12

)1(3

15

)1(3

11

1h 2h

6h

9h

8h

3h

5h

4h

7h

)2(1

16
)2(1

17

)2(1

18

5h
)2(2

18

)2(2

17

)2(2

16

)2(3

16

)2(3

17

)2(3

18

2
1
'hconcate/avg

)1(1

11

channel 1

channel 2

2
1
'h

3
1
'h

Nh 1
'

1
'h

1
1
'h ensemble

Third-order neighborhood

Second-order neighborhood

First-order neighborhood

Arbitrary central node

First Head

Second Head

Third Head

Cross-order multi-head attention (with K = 3 heads) and ensemble moduleThe attention mechanism

a

n
jk hW

)(nk
ij

j
so
ft
m
ax

ik hW

Fig. 2 The message aggregation in the Multi-Head Multi-Order Graph
Attention Network (MHMOGAT) framework is illustrated. The red
node represents an arbitrary central node, while the other nodes rep-
resent the neighbors of the central node at different orders. Initially, the
attention coefficients are computed based on current node representa-
tions. This is followed by executing across-order multi-head attention

graph convolution on multi-hop nodes. In channel 1, the current node
executes across-order multi-head attention graph convolution on 1-hop
neighbors; in channel 2, the node executes across-order multi-head
attention graph convolution on 2-hop neighbors. The process contin-
ues until it reaches the predefined channel number N . Ultimately, the
�h′1
i ,..., �h′n

i are averaged to generate the final node embedding

high-level node embedding.

�h′
i = σ

⎛
⎜⎝ 1

K

K∑
k=1

∑

j∈N k
i

αk
i jWk �hkj

⎞
⎟⎠ . (13)

Overall, the implementation of the MHMOGAT with
multi-head different orders attention is described in Algo-
rithm 1.

4.2.2 MHMOGAT with cross-order multi-head attention

In this section, we introduce another specific implementation
method with cross-order multi-head attention.

Different from the first way, the MHMOGAT with cross-
order multi-head attention introduces multiple attention
heads across different orders. Therefore each attention head
can aggregate information from different orders of adjacency
matrix.

Firstly, several channels are established, each containing
K attention heads. For the n-th channel, the n-th order adja-
cency matrix is applied to K attention heads following Eq.
(7)-(9):

α1
i j (n)=

exp
(
LeakyReLU

(
�aT

[
W1�hi ||W1�hnj

]))

∑
m∈N n

i
exp

(
LeakyReLU

(
�aT

[
W1�hi ||W1�hnm

])) ,

... (14)

123

8098 J. Ben et al.

Algorithm 1 : MHMOGAT with multi-head different orders
attention.

Input:Node features h, 1st-order adjacency matrixA(1), number of
attention heads K , and maximum number of iterations max_i ter .
Output: Final prediction result of the unlabeled nodes with Eq.(13).

1: Construct higher-order adjacency matrices sets{
A(1),A(2), ...,A(k)

}
via Eq.(6) and initialize the weight vec-

tor �a;
2: for i ter = 1 → max_i ter do
3: for k = 1 → K do
4: Initialize the weight matrix Wk ;
5: Calculate the graph attention layer of the k-th attention head

αk
i j via Eq.(11);

6: end for
7: if perform multi-head attention on the final (prediction) layer

then
8: Average the K results via Eq.(13);
9: else
10: Concatenate K results via Eq.(12);
11: end if
12: Calculate the cross-entropy loss function L;
13: Train model with cross-entropy loss function L;
14: end for

αk
i j (n)=

exp
(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hnj

]))

∑
m∈N n

i
exp

(
LeakyReLU

(
�aT

[
Wk �hi ||Wk �hnm

])) .

where αk
i j (n) is the attention coefficient calculated by the k-

th attention head in the n-th channel. Eq.(14) allows for the
calculation of the attention coefficient, as determined by K
attention heads for each channel.

Subsequently, these K attention coefficients per channel
are aggregated as follows:

�h′n
i = K||

k=1
σ

⎛
⎝ ∑

j∈N n
i

αk
i j (n)Wk �hnj

⎞
⎠ , (15)

Specially, when multi-head attention is implemented on the
final layer of the network, the tensor has been aggregated
along the n-th channel, which can be expressed as,

�h′n
i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈N n

i

αk
i j (n)Wk �hnj

⎞
⎠ , (16)

where �h′n
i is the new node representation formed by cross-

order aggregation of K attention heads in the n-th channel.
Finally, we integrate the results obtained by N channels

through an integration module, which is defined as follows:

�h′
i = 1

N

N∑
n=1

�h′n
i . (17)

Algorithm 2 : MHMOGAT with cross-order multi-head
attention.

Input:Node features h, 1st-order adjacency matrixA(1), number of
orders and channels N , number of attention heads K , and maximum
number of iterations max_i ter .
Output: Final prediction result of the unlabeled nodes with Eq.(17).

1: Construct higher-order adjacency matrices sets{
A(1),A(2), ...,A(n)

}
via Eq.(6), and initialize weight vector

�a;
2: for k = 1 → K do
3: Initialize the weight matrixWk ;
4: end for
5: for i ter = 1 → max_i ter do
6: for n = 1 → N do
7: for k = 1 → K do
8: Calculate the graph attention layer of the k-th attention head

αk
i j via Eq.(14);

9: end for
10: if performmulti-head attention on the final (prediction) layer

then
11: Average the K results via Eq.(16);
12: else
13: Concatenate K results via Eq.(15);
14: end if
15: end for
16: Integrate the results obtained by N channels via Eq.(17);
17: Calculate the cross-entropy loss function L;
18: Train model with cross-entropy loss function L .
19: end for

Overall, this approach incorporates multiple attention
heads across various orders, enabling each head to learn and
balance information propagation at different scales: from
first-order neighbors to higher-order ones. Consequently,
each attention head can identify useful features within dif-
ferent orders of information and subsequently integrate these
features. The implementation details of this method are
shown in Algorithm 2.

5 Experiments

In this section, the proposed model is compared with several
prevailingGCNsacross six general semi-supervised datasets.

5.1 Datasets

Table 1 presents the datasets used in the experiment, namely
Cora, Citeseer, Pubmed, ACM, Chameleon and Actor. Cora,
Citeseer and Pubmed are three citation networks, the nodes
represent publications, the edges represent citation links, the
feature of each node is the bag-of-word representation of the
corresponding publication, and the class is the number of
clusters. ACM is a paper network, and the nodes represent
papers. If two papers are written by the same author, then
there is an edge between the two papers. The feature is the
bag-of-words representation of keywords. Papers are divided

123

Multi-head multi-order graph attention networks 8099

Table 1 The statistics of the datasets

Datasets Nodes Edges Features Classes labeled per class Label Rate

Cora 2708 5429 1433 7 2/4/8/12/16/20 0.5%/1%/2%/3%/4%/5%

Citeseer 3327 4732 3703 6 3/6/12/18/24/30 0.5%/1%/2%/3%/4%/5%

Pubmed 19717 44338 500 3 2/3/7 0.03%/0.05%/0.1%

ACM 3025 13128 1870 3 1/2/3/4/5 0.1%/0.2%/0.3%/0.4%/0.5%

Chameleon 2277 36101 2325 5 2/23/46/69 0.5%/5%/10%/15%

Actor 7600 33544 931 5 8/15/30/45 0.5%/1%/2%/3%

into three categories according to research fields. Chameleon
is a web page dataset where nodes are web pages on a spe-
cific topic and edges are hyperlinks between them. Actor is
a dataset where nodes are actors and edges mean two actors
co-occurring on the same Wikipedia page.

5.2 Comparison with state-of-the-art methods

5.2.1 Baseline methods

To evaluate the performance of the proposed MHMOGAT,
we compare it with the following methods:

1. GCN [18]: GCN is a graph convolutional network used
to learn the representation of nodes in graph data. It updates
the representation of a node by aggregating information from
each node’s neighbor nodes.

2. GAT [27]: GAT is an improved graph convolutional net-
work that introduces an attention mechanism to dynamically
adjust the weights of neighbor nodes. GAT allows nodes to
assigndifferentweights to their neighbor nodes,whichmakes
the model more flexible to learn the relationship between
nodes.

3. MOGCN [32]: a graph convolutional neural network
improved on the basis of GCN. It is finally integrated by
applying a hybrid high-order adjacency matrix to multiple
GCN modules.

4. GCNII [46]: a simple and deep graph convolutional
networkmodel, which effectively solves the problemof over-
smoothing through initial residuals and unit mappings.

5. KGCN [47]: KGCN is a graph convolutional network
specifically designed for knowledge graphs. KGCN is used
to learn embeddings between entities and relationships to
support various reasoning and prediction tasks on knowledge
graphs.

6. SGC [48]: SGC is a simplified graph convolutional net-
work that reduces the complexity of the model by subjecting
the features of all neighbor nodes to the same linear transfor-
mation.

7. GFNN [49]: a simple and deep graph convolutional
networkmodel, which effectively solves the problemof over-
smoothing through initial residuals and unit mappings.

8. SJLR [31]: SJLR introduces the Stochastic Jost and Liu
Curvature Rewiring (SJLR) algorithm, which adjusts edges
during training to effectively solve over-smoothing and over-
squeezing issues while maintaining efficiency and reliability.

9. DropEdge (DE) [29]: DE is an operation-based approach
that developed a method for dropping edges to overcome the
over-smoothing issue in deep GCNs.

10. GRAND [50]: GRAND approaches deep learning on
graphs as a continuous diffusion process and treats Graph
Neural Networks (GNNs) as discretizations of an underlying
PDE.

5.2.2 Parameter settings

All experiments are conducted in a semi-supervised setting.
Themaximum iteration number (max_i ter) is set to 500, and
the method utilizes a hidden layer with 8 neurons. We train
our model by using the full batch in each training epoch and
implement our algorithm in Pytorch [51], and we optimize
it with the Adam [52] algorithm. Additionally, learning rate
and dropout rate are set at 0.005 and 0.6 respectively. Fol-
lowing [53, 54], we conduct experiments on the following
label rates: 0.5%, 1%, 2%, 3%, 4% and 5% on Citeseer and
Cora datasets, and 0.03%, 0.05%, and 0.1% on the Pubmed
dataset, and 0.5%, 1%, 2% and 3% onActor dataset. Further-
more, we set the label rates to 0.1%, 0.2%, 0.3%, 0.4% and
0.5% on the ACM dataset and 0.5%, 5%, 10% and 15% on
the Chameleon dataset and then conduct experiments. The
mean classification accuracy (ACC) on test nodes is reported
after running our method over specified data splits twenty
times. The number of attention heads is set to 8. In MHMO-
GAT based on different orders of multi-head attention, the
number of different order n is selected among {1, 2, 3}. In
MHMOGAT based on cross-order multi-head attention, the
number of different order n is selected among {1, 2, ..., 6}.

5.2.3 Results

The semi-supervised node classification results of the base-
line methods and two variations of MHMOGAT under opti-
mal hyperparameters n are reported in Tables 2, 3, 4 and 5.

123

8100 J. Ben et al.

Ta
bl
e
2

C
om

pa
ri
so
n
re
su
lts

of
th
e
pr
op
os
ed

M
H
M
O
G
A
T-
1
an
d
M
H
M
O
G
A
T-
2
al
go
ri
th
m
s
w
ith

se
ve
ra
ls
ta
te
-o
f-
th
e-
ar
tm

et
ho
ds
(%

)

D
at
as
et

M
et
ri
cs

L
ab
el
R
at
e

G
A
T

M
O
G
C
N

G
C
N

D
E

G
C
N
II

K
G
C
N

SG
C

G
FN

N
SJ
L
R

G
R
A
N
D

M
H
M
O

M
H
M
O

G
A
T-
1

G
A
T-
2

C
or
a

A
C
C

0.
5%

57
.8

54
.0

48
.2

51
.2

50
.6

54
.1

52
.0

37
.3

56
.8

56
.6

61
.4

60
.0

1%
65
.9

63
.0

59
.4

60
.5

56
.7

64
.5

61
.2

44
.3

64
.8

66
.1

68
.5

68
.1

2%
73
.1

71
.9

70
.5

71
.1

68
.4

73
.0

69
.4

52
.1

72
.7

74
.3

73
.6

74
.2

3%
76
.9

74
.9

74
.4

74
.7

73
.1

77
.3

72
.6

56
.0

76
.4

76
.8

78
.0

78
.0

4%
78
.3

77
.1

76
.5

76
.9

72
.3

78
.0

73
.9

57
.7

78
.4

78
.7

78
.8

79
.0

5%
79
.9

79
.5

78
.4

78
.9

74
.3

79
.9

75
.3

59
.0

80
.8

81
.1

80
.4

80
.6

F1
0.
5%

55
.8

52
.6

47
.8

49
.8

47
.1

50
.9

49
.3

35
.2

54
.3

51
.9

60
.1

58
.4

1%
65
.4

62
.5

59
.2

60
.3

56
.2

63
.6

59
.9

43
.4

64
.1

65
.0

67
.0

67
.6

2%
72
.1

71
.0

69
.6

70
.1

67
.6

71
.7

68
.1

51
.0

72
.0

73
.0

72
.6

73
.1

3%
75
.6

73
.9

73
.2

73
.7

71
.6

75
.9

71
.2

54
.8

75
.7

76
.0

76
.8

76
.4

4%
77
.2

75
.9

75
.4

75
.5

71
.1

76
.6

72
.7

56
.5

77
.5

77
.3

77
.5

77
.9

5%
78
.5

78
.1

77
.0

77
.5

72
.4

78
.7

74
.1

57
.8

79
.3

79
.9

78
.9

79
.2

C
ite
se
er

A
C
C

0.
5%

49
.5

45
.5

41
.4

45
.7

38
.2

45
.1

44
.2

32
.9

45
.3

54
.4

50
.6

51
.3

1%
58
,8

57
.9

55
.4

58
.1

53
.8

56
.9

57
.0

41
.2

58
.3

61
.3

58
.1

60
.0

2%
64
.8

64
.2

63
.1

64
.3

61
.0

64
.0

63
.8

46
.8

64
.3

69
.7

65
.8

65
.8

3%
66
.9

66
.3

65
.6

66
.5

62
.7

66
.2

66
.6

48
.2

66
.4

70
.8

67
.2

67
.5

4%
68
.7

68
.3

67
.1

68
.4

64
.7

68
.7

68
.1

52
.0

68
.2

72
.5

69
.3

69
.0

5%
69
.1

68
.8

68
.2

69
.0

66
.3

69
.1

68
.8

51
.7

68
.8

73
.0

69
.6

69
.3

F1
0.
5%

43
.3

38
.4

35
.1

38
.7

31
.3

37
.9

38
.0

25
.5

37
.5

46
.9

43
.3

44
.8

1%
54
.0

53
.1

51
.2

52
.1

48
.9

52
.3

52
.8

37
.1

51
.6

55
.1

53
.0

55
.2

2%
61
.1

60
.8

59
.9

61
.0

57
.1

60
.5

60
.0

44
.0

60
.3

64
.1

61
.8

62
.0

3%
63
.3

62
.7

62
.5

63
.0

59
.0

63
.0

62
.5

45
.8

62
.4

65
.8

63
.4

63
.8

4%
65
.2

64
.5

63
.9

64
.9

60
.8

65
.3

64
.9

50
.0

64
.6

67
.0

65
.6

65
.4

5%
66
.5

66
.2

65
.6

65
.8

66
.3

65
.7

65
.6

50
.1

65
.3

67
.2

67
.2

66
.3

Pu
bm

ed
A
C
C

0.
03
%

61
.6

60
.9

58
.4

59
.4

54
.3

54
.4

56
.2

46
.5

61
.2

54
.3

65
.3

64
.3

0.
05
%

66
.4

65
.2

61
.5

63
.6

62
.6

62
.1

63
.8

57
.3

66
.8

59
.8

68
.7

69
.1

0.
1%

71
.0

70
.4

63
.6

65
.7

66
.0

65
.8

67
.2

62
.1

71
.4

66
.0

72
.8

71
.2

F1
0.
03
%

58
.6

57
.5

54
.9

56
.1

51
.2

50
.7

53
.1

42
.5

57
.8

50
.9

62
.7

61
.3

0.
05
%

65
.2

64
.4

60
.3

62
.4

61
.8

61
.1

62
.1

56
.2

65
.3

57
.7

67
.5

68
.2

0.
1%

70
.4

69
.5

62
.9

65
.1

65
.2

64
.9

66
.7

61
.7

70
.2

64
.9

71
.1

70
.5

123

Multi-head multi-order graph attention networks 8101

Ta
bl
e
2

co
nt
in
ue
d

D
at
as
et

M
et
ri
cs

L
ab
el
R
at
e

G
A
T

M
O
G
C
N

G
C
N

D
E

G
C
N
II

K
G
C
N

SG
C

G
FN

N
SJ
L
R

G
R
A
N
D

M
H
M
O

M
H
M
O

G
A
T-
1

G
A
T-
2

A
C
M

A
C
C

0.
1%

50
.8

55
.2

55
.1

53
.1

46
.6

54
.6

52
.7

52
.9

52
.4

–
61
.1

59
.8

0.
2%

68
.5

65
.8

64
.0

65
.0

50
.9

65
.0

60
.6

60
.1

64
.5

–
70
.5

72
.5

0.
3%

74
.4

72
.4

71
.9

72
.6

54
.7

71
.0

67
.4

62
.8

73
.3

–
77
.3

76
.4

0.
4%

79
.8

78
.1

77
.2

78
.7

57
.3

77
.9

74
.4

69
.9

78
.8

–
79
.7

83
.9

0.
5%

82
.7

80
.6

79
.4

80
.6

60
.7

79
.7

78
.8

73
.3

81
.0

–
81
.6

84
.1

F1
0.
1%

42
.6

48
.3

48
.4

46
.1

37
.6

47
.7

44
.7

49
.5

45
.2

–
55
.4

54
.3

0.
2%

65
.1

61
.8

60
.2

61
.0

43
.4

62
.0

55
.9

57
.2

60
.8

–
67
.9

70
.7

0.
3%

73
.7

70
.9

69
.8

70
.1

48
.7

69
.6

65
.5

61
.4

72
.5

–
76
.1

74
.9

0.
4%

79
.0

77
.5

76
.8

77
.3

51
.9

77
.6

73
.5

69
.1

78
.1

–
79
.3

83
.8

0.
5%

82
.4

80
.3

79
.2

80
.4

56
.1

79
.3

78
.3

73
.0

80
.7

–
81
.0

83
.9

C
ha
m
el
eo
n

A
C
C

0.
5%

33
.3

32
.5

33
.0

30
.4

26
.9

32
.4

26
.9

31
.4

30
.6

27
.5

31
.3

33
.6

5%
49
.4

47
.1

50
.5

41
.8

27
.1

50
.7

32
.9

45
.0

41
.8

38
.3

45
.7

49
.1

10
%

54
.6

51
.0

54
.2

46
.7

29
.2

53
.9

34
.8

48
.1

46
.4

39
.5

49
.6

54
.9

15
%

55
.3

52
.7

55
.2

48
.4

32
.6

54
.9

35
.5

49
.6

48
.0

41
.5

51
.9

55
.9

F1
0.
5%

31
.6

30
.9

31
.2

28
.2

20
.5

30
.8

24
.5

29
.7

28
.1

21
.0

29
.6

31
.7

5%
49
.0

46
.3

50
.1

41
.3

20
.4

50
.6

32
.0

44
.8

41
.0

36
.8

44
.1

48
.2

10
%

54
.1

50
.3

53
.5

46
.7

23
.6

53
.7

34
.2

47
.8

46
.1

38
.0

48
.0

54
.3

15
%

55
.1

52
.2

55
.1

48
.1

27
.4

54
.2

34
.7

49
.4

47
.6

40
.3

50
.7

55
.4

A
ct
or

A
C
C

0.
5%

19
.8

19
.4

19
,8

19
.9

15
.6

19
.4

19
.9

19
.2

20
.1

21
.0

21
.1

20
.5

1%
19
.7

19
.9

20
.3

20
.1

15
.7

19
.8

20
.5

20
.4

20
.6

22
.2

21
.6

20
.9

2%
20
.0

20
.6

21
.9

21
.1

20
.5

20
.6

21
.2

20
.5

21
.0

24
.0

22
.0

21
.4

3%
20
.4

20
.9

22
.3

22
.0

21
.6

20
.9

21
.3

21
.4

21
.8

25
.2

22
.5

21
.4

F1
0.
5%

18
.6

18
.0

19
.8

18
.7

15
.0

18
.7

19
.6

18
.7

19
.4

20
.5

20
.7

19
.7

1%
19
.0

18
.8

19
.8

19
.5

15
.2

19
.4

20
.2

19
.7

19
.9

21
.4

21
.2

20
.0

2%
19
.5

20
.5

21
.2

20
.4

20
.0

20
.0

20
.7

20
.0

20
.6

23
.5

21
.6

20
.5

3%
20
.3

20
.7

22
.1

21
.6

21
.2

20
.7

21
.2

21
.2

20
.8

24
.5

22
.1

20
.6

N
ot
e:
T
he

be
st
an
d
se
co
nd

be
st
pe
rf
or
m
in
g
m
et
ho
ds

fo
r
ea
ch

da
ta
se
ta
td

if
fe
re
nt

la
be
lr
at
es

ar
e
sh
ow

n
in

re
d
an
d
bl
ue

,r
es
pe
ct
iv
el
y

123

8102 J. Ben et al.

Table 3 Experimental results of the order-number

Method Cora Citeseer Pubmed

0.5% 1% 2% 3% 4% 5% 0.5% 1% 2% 3% 4% 5% 0.03% 0.05% 0.1%

2nd-order 58.7 67.3 73.1 77.6 78.8 80.1 49.6 57.7 65.0 66.8 68.7 69.4 62.9 67.2 70.7

3rd-order 61.1 67.5 72.8 77.3 78.4 79.5 50.3 57.8 65.2 67.0 68.2 69.0 63.1 67.5 70.1

4th-order 60.2 67.2 72.2 77.1 78.0 79.4 50.1 57.5 65.0 66.7 68.0 68.8 − − −
5th-order 59.8 66.8 71.5 76.8 77.5 79.1 49.7 57.1 64.8 66.3 67.8 68.6 − − −
6th-order 59.4 66.4 70.1 76.2 77.1 78.9 49.3 56.8 64.3 65.9 67.4 68.1 − − −
Method ACM Chameleon Actor

0.1% 0.2% 0.3% 0.4% 0.5% 0.5% 5% 10% 15% 0.5% 1% 2% 3%

2nd-order 55.5 65.5 74.3 76.2 78.8 28.9 43.8 48.0 50.3 19.2 19.1 19.2 19.5

3rd-order 50.0 65.0 75.7 77.7 80.3 28.3 39.8 45.2 46.2 20.5 21.1 21.3 21.1

4th-order 50.0 63.2 71.0 75.3 76.7 28.2 38.8 43.5 44.4 21.8 21.0 22.9 21.9

5th-order 46.8 63.9 66.5 65.8 76.6 28.1 38.5 40.6 44.0 20.4 20.2 22.4 21.3

6th-order 49.6 59.7 63.4 68.8 75.1 27.6 38.2 40.7 42.6 19.7 20.2 21.7 21.9

Note: In some cases it cannot be run on some datasets due to memory limitations, as indicated by "-"

Specifically, MHMOGAT-1 indicates MHMOGATwith cross-
order multi-head attention and MHMOGAT-2 indicates
MHMOGAT with multi-head different orders attention. We
obtain the following observations:

In comparison to all the baseline methods, MHMOGAT-
1 and MHMOGAT-2 achieve superior performance across
various label rates on the six datasets. The GRAND model
outperforms our model at most label rates on Citeseer and
Actor datasets, but underperforms on Cora, Pubmed and
Chameleon datasets. Furthermore, our model’s performance
is almost in the top two at each label rate across all datasets.
TheGCNmodel shows lowaccuracy because it only employs
a uniform neighbor aggregation strategy without an atten-
tion mechanism. Although GAT incorporates an attention
mechanism, its performance is limited as it only captures
information from first-order neighbors and is thus potentially
missing important information from distant nodes. In con-
trast, through unique combinations of multi-head attention
and varying order adjacency matrices, our models exhibit
excellent node classification capabilities.

Table 4 Adjacency matrix combination results

Order adj adj2 adj3

Combination 1 4 4 0

Combination 2 4 0 4

Combination 3 0 4 4

Combination 4 3 3 2

Combination 5 3 2 3

Combination 6 2 3 3

The proposed method shows excellent performance even
at low label rates. For example, at a label rate of 0.5%,
the classification accuracy of GCN and GCNII on the Cora
dataset is only about 48% and 50%, but the accuracy of
MHMOGAT-1 reaches 61%. The accuracy ofMHMOGAT-2
is approximately 60%, exceeding the performance of other
methods. Despite the extremely low label rate of 0.03% on
the Pubmed dataset, both MHMOGAT-1 and MHMOGAT-2
still achieve classification accuracy of 65% and 64%, respec-
tively, surpassing other methods.

Figure 3 illustrates the impact of high-order GATs and
MHMO on a graph with bottleneck issues. Initially, there
were only two paths between the left and right clusters,
leading to an over-squashing problem. High-order GAT [28]
introduces high-order information, which increases paths
between clusters homogeneously and effectively curbs the
over-squashing issue. In contrast, the proposed MHMO
framework adds heterogeneous paths (2 attention heads for
1st order and 1 attention head for 2nd order) and designs a
novel attention mechanism to assign weights to each path,
thereby enhancing the model’s expressiveness and reducing
potential over-smoothing issues.

5.3 Ablation study

To understand the impacts of the components of MHMO-
GAT on its performance, we conduct an ablation study in
this section. Here, we consider two variants of our model:

• (1) MHMOGAT-1-SO: MHMOGAT-1 uses a single
order adjacencymatrix ({1, 2, ..., 6}) for training, instead

123

Multi-head multi-order graph attention networks 8103

Table 5 Experimental results of the combinations

Method Cora Citeseer Pubmed

0.5% 1% 2% 3% 4% 5% 0.5% 1% 2% 3% 4% 5% 0.03% 0.05% 0.1%

Combination 1 58.3 67.5 73.8 77.6 78.7 80.2 50.7 59.7 65.1 67.5 69.0 69.3 62.7 67.0 71.5

Combination 2 59.4 67.7 73.5 77.3 78.3 79.6 51.3 60.0 65.8 67.0 68.6 69.0 63.1 66.8 71.8

Combination 3 59.0 65.1 69.9 73.1 73.7 78.3 50.5 58.8 64.3 66.3 67.8 68.4 62.5 65.7 70.2

Combination 4 59.1 66.3 73.1 76.2 77.0 78.9 50.0 58.8 65.3 67.0 68.7 69.0 61.9 65.6 71.2

Combination 5 58.7 65.2 70.1 72.7 73.6 78.0 50.6 58.1 64.4 66.2 67.9 68.6 61.3 65.3 70.8

Combination 6 58.8 65.1 69.7 73.0 73.8 78.6 50.6 58.2 64.4 66.2 67.9 68.8 61.6 65.5 70.6

Method ACM Chameleon Actor

0.1% 0.2% 0.3% 0.4% 0.5% 0.5% 5% 10% 15% 0.5% 1% 2% 3%

Combination 1 59.2 71.1 76.4 83.9 84.0 33.6 49.1 54.9 55.2 20.5 20.1 20.6 21.2

Combination 2 54.4 72.5 75.4 81.4 84.1 31.8 46.7 51.6 55.9 20.2 20.6 20.1 21.1

Combination 3 48.4 55.9 61.0 62.4 73.3 23.8 28.6 31.4 32.9 19.4 20.2 20.9 21.3

Combination 4 51.4 60.8 71.3 70.4 81.3 23.0 32.9 37.6 37.8 19.3 19.0 19.8 21.1

Combination 5 49.4 54.6 68.0 64.1 77.8 24.5 30.0 33.4 35.0 19.8 20.9 21.4 21.4

Combination 6 47.7 59.4 64.1 63.1 79.6 22.4 31.7 35.7 36.5 19.6 20.4 20.7 21.1

of different order matrices. The best result among the sin-
gle order setups is reported.

• (2) MHMOGAT-2-SO: MHMOGAT-2 uses a single
order adjacencymatrix ({1, 2, ..., 6}) for training, instead
of different order matrices. The best result among the sin-
gle order setups is reported.

Figure 4 illustrates the comparison results ofMHMOGAT
and its variants. MHMOGAT-1-SO and MHMOGAT-2-SO
all perform worse than the proposed MHMOGAT-1 and
MHMOGAT-2 models on the six datasets. This is because
the two single-order variants cannot capture the rich relation
information in the graph, while MHMOGAT can capture
multi-order neighbor information using multi-order adja-
cency matrices and thus achieve significant performance.
In addition, by utilizing multi-order adjacency matrices,

hierarchical feature representation of nodes is achieved,
which adapts to more complex graph structures and inte-
grates information at multiple levels, thereby enhancing the
model’s performance.

5.4 Parameter sensitivity

In MHMOGAT, the hyperparameter n, which determines
the number of adjacency matrices of different orders, can
influence themodel performance significantly. Therefore, we
conducted an analysis to examine its sensitivity.

The 2nd to the 6th high-order matrices are considered
in MHMOGAT-1 and the results are presented in Table 3.
We found that MHMOGAT-1 with 2nd and 3rd-order matri-
ces provides comparably satisfactory performance on Cora,
Citeseer, Pubmed, ACM and Chameleon. This means that it
is suitable to incorporate low-order relations to enhance the

Fig. 3 Integrating Multi-head,
Multi-order relations to
overcome over-smoothing and
over-squashing Issues. The two
red lines represent the original
paths connecting the two
clusters

123

8104 J. Ben et al.

Fig. 4 Illustration of the performances of variants of MHMOGAT at various label rates

123

Multi-head multi-order graph attention networks 8105

effectiveness of GAT on these datasets. In contrast, on the
Actors dataset, MHMOGAT-1 with 3rd-order and 4th-order
performs better. This indicates that high-order information
is crucial on the Actors dataset. However, it is found that
further increasing the order of matrices results in the decline
of classification performance.

InMHMOGAT-2, the number of different orders, denoted
as n, is selected from the set {1, 2, 3}. We combine these
three adjacency matrices and then place the resulting eight
combinations into the eight attention heads sequentially. The
combined results are shown in Table 4.

Specifically, ’adj’, ’adj2’, and ’adj3’ indicate the first-
order, second-order, and third-order adjacency matrices,
respectively. For example, combination 1 consists of 4 first-
order adjacency matrices and 4 second-order adjacency
matrices. Then, we conduct experiments on six datasets, and
the results are as shown in Table 5.

The performance of MHMOGAT-2 is more complex,
which is related to the combination of two hyperparame-
ters as shown in Table 4. It is found that MHMOGAT-2
with hyperparameters of combination 1 and combination 2
performs well on the Cora, Citeseer, Pubmed, ACM, and
Chameleon datasets. This is because under these settings,
the model can effectively learn at various scales and cap-
ture relationships within the graph more accurately. On the
Actors dataset, using hyperparameters of combination 5 per-
forms better because the nodes in the Actors dataset are more
sensitive to high-order information.

6 Conclusions and future work

In the realm of Graph Neural Networks (GNNs), signifi-
cant limitations such as over-smoothing and over-squashing
have been observed. To address these deficiencies, this work
introduces theMulti-HeadMulti-OrderGraphAttentionNet-
work (MHMOGAT) architecture. By leveraging multi-head
attention mechanisms, over-smoothing is mitigated, while
the incorporation of multi-order adjacency matrices tackles
over-squashing arising from bottlenecks in the graph data.
Furthermore, Bayesian optimization is employed to identify
optimal hyperparameter combinations tailored to different
datasets. The proposed MHMOGAT framework offers two
distinct implementations, each combining multi-head atten-
tion with adjacency matrices of varying orders. Through
extensive experimentation across six datasets, our approach
demonstrates state-of-the-art performance and shows effec-
tiveness in handling large and complex graphs with low label
rates.

In future studies we plan to improve this work in three
ways: 1) validate our model using more diverse datasets; 2)

compare it against state-of-the-art deep GCN models; and
finally 3) test the effectiveness of our model when applied to
regression problems.

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China (Nos. 62076111, 62006099).

Author Contributions Jie Ben: Investigation,Resources,DataCuration,
Writing - Review& Editing. Qiguo Sun: Conceptualization, Method-
ology, Formal analysis. Keyu Liu: Investigation,Writing - Original
Draft,Writing - Review& Editing. Xibei Yang: Investigation, Project
administration, Resources. Fengjun Zhang: Data Curation.

Funding This work is supported by National Natural Science Founda-
tion of China (Nos. 62076111, 62006099).

Data Availability The authors do not have permission to share data.

Declarations

Conflicts of interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethical and informed consent The data used in this study were sourced
from public databases, which are openly accessible and do not contain
anypersonally identifiable information.Therefore, the issue of informed
consent does not arise. All data handling procedures adhered to ethical
guidelines for research.

References

1. Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L (2021)
Structured graph learning for clustering and semi-supervised clas-
sification. Pattern Recognit 110:107627

2. Maltseva D, Batagelj V (2021) Journals publishing social network
analysis. Scientometrics 126(4):3593–3620

3. Sun Q, Wei X, Yang X (2024) Graphsage with deep reinforce-
ment learning for financial portfolio optimization. Expert SystAppl
238:122027122027

4. Wang X, Yang X, Wang P, Yu H, Xu T (2023) Ssgcn: a sampling
sequential guided graph convolutional network. Int J Mach Learn
Cybern 1–16

5. Guo Q, Yang X, Zhang F, Xu T (2024) Perturbation-augmented
graph convolutional networks: A graph contrastive learning archi-
tecture for effective node classification tasks. Eng Appl Artif Intell
129:107616

6. Sun Q, Wei X, Yang X (2024) Graphsage with deep reinforce-
ment learning for financial portfolio optimization. Expert SystAppl
238:122027

7. Zhou Z-H, Zhan D-C, Yang Q (2007) Semi-supervised learning
with very few labeled training examples. In: AAAI, vol 7, pp 675–
680

8. Li Y, Yin J, Chen L (2023) Informative pseudo-labeling for
graph neural networks with few labels. Data Min Knowl Discov
37(1):228–254

9. Van Engelen JE, Hoos HH (2020) A survey on semi-supervised
learning. Mach Learn 109(2):373–440

123

8106 J. Ben et al.

10. Gao C, Zhou J, Miao D, Wen J, Yue X (2021) Three-way decision
with co-training for partially labeled data. Inf Sci 544:500–518

11. Kim D, Seo D, Cho S, Kang P (2019) Multi-co-training for docu-
ment classification using various document representations: Tf-idf,
lda, and doc2vec. Inf Sci 477:15–29

12. Jordan MI, Mitchell TM (2015) Machine learning: Trends, per-
spectives, and prospects. Science 349(6245):255–260

13. Cozman FG, Cohen I, CireloM (2002) Unlabeled data can degrade
classification performance of generative classifiers. In: Flairs con-
ference, pp 327–331

14. Kingma DP, Mohamed S, Jimenez Rezende D, Welling M (2014)
Semi-supervised learning with deep generative models. Adv Neu-
ral Inf Process Syst 27

15. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial
networks. Commun ACM 63(11):139–144

16. Dong H, Yang L, Wang X (2021) Robust semi-supervised sup-
port vector machines with laplace kernel-induced correntropy loss
functions. Appl Intell 51:819–833

17. CalmaA, Reitmaier T, Sick B (2018) Semi-supervised active learn-
ing for support vector machines: A novel approach that exploits
structure information in data. Inf Sci 456:13–33

18. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. arXiv:1609.02907

19. SalujaA,AwadallaHH, ToutanovaK,QuirkC (2014)Graph-based
semi-supervised learning of translation models from monolingual
data. In: Proceedings of the 52nd annual meeting of the association
for computational linguistics (Volume 1: LongPapers), pp 676–686

20. Wang J, Chen Q, Gong H (2020) Stmag: A spatial-temporal mixed
attention graph-based convolutionmodel for multi-data flow safety
prediction. Inf Sci 525:16–36

21. Wang B, Sun Y, Chu Y, Min C, Yang Z, Lin H (2023) Local dis-
criminative graph convolutional networks for text classification.
Multimed Syst 1–11

22. Huang H, Song Y, Wu Y, Shi J, Xie X, Jin H (2020) Multitask rep-
resentation learning with multiview graph convolutional networks.
IEEE Trans Neural Netw Learn Syst 33(3):983–995

23. Dai M, Guo W, Feng X (2020) Over-smoothing algorithm and its
application to gcn semi-supervised classification. In: Data science:
6th international conference of pioneering computer scientists,
engineers and educators, ICPCSEE 2020, Taiyuan, China, Septem-
ber 18-21, 2020, Proceedings, Part II 6, pp 197–215. Springer

24. Yang R, Dai W, Li C, Zou J, Xiong H (2023) Tackling over-
smoothing in graph convolutional networks with em-based joint
topology optimization and node classification. IEEE Trans Signal
Inf Process Netw 9:123–139

25. OonoK, Suzuki T (2020)Graph neural networks exponentially lose
expressive power for node classification. In: International confer-
ence on learning representations

26. Topping J,DiGiovanni F, ChamberlainBP,DongX,BronsteinMM
(2022) Understanding over-squashing and bottlenecks on graphs
via curvature. In: International conference on learning representa-
tions

27. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio
Y et al (2017) Graph attention networks. Stat 1050(20):10–48550

28. He L, Bai L, Yang X, Du H, Liang J (2023) High-order graph
attention network. Inf Sci 630:222–234

29. Rong Y, HuangW, Xu T, Huang J (2020) Dropedge: Towards deep
graph convolutional networks on node classification. In: Interna-
tional conference on learning representations

30. Alon U, Yahav E (2021) On the bottleneck of graph neural net-
works and its practical implications. In: International conference
on learning representations

31. Giraldo JH, Skianis K, Bouwmans T, Malliaros FD (2023) On
the trade-off between over-smoothing and over-squashing in deep
graph neural networks. In: Proceedings of the 32nd ACM interna-
tional conference on information and knowledge management, pp
566–576

32. Wang J, Liang J, Cui J, Liang J (2021) Semi-supervised learning
with mixed-order graph convolutional networks. Inf Sci 573:171–
181

33. Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K,
Harutyunyan H, Ver Steeg G, Galstyan A (2019) Mixhop: Higher-
order graph convolutional architectures via sparsified neighbor-
hood mixing. In: International Conference on Machine Learning,
pp 21–29. PMLR

34. Liu X, Xia G, Lei F, Zhang Y, Chang S (2021) Higher-order graph
convolutional networks with multi-scale neighborhood pooling for
semi-supervised node classification. IEEE Access 9:31268–31275

35. Liu X, Lei F, Xia G (2023) Mulstepnet: stronger multi-step graph
convolutional networks via multi-power adjacency matrix combi-
nation. J Ambient Intell Humaniz Comput 14(2):1017–1026

36. Zhao L, Akoglu L (2020) Pairnorm: Tackling oversmoothing in
gnns. In: International conference on learning representations

37. Zhou K, Huang X, Li Y, Zha D, Chen R, Hu X (2020) Towards
deeper graph neural networks with differentiable group normaliza-
tion. Adv Neural Inf Process Syst 33:4917–4928

38. Chien E, Peng J, Li P, Milenkovic O (2021) Adaptive universal
generalized pagerank graph neural network. In: International con-
ference on learning representations

39. Chai Z, Zhang T, Wu L, Han K, Hu X, Huang X, Yang Y (2023)
Graphllm: Boosting graph reasoning ability of large language
model. arXiv:2310.05845

40. Tang J, Yang Y, Wei W, Shi L, Su L, Cheng S, Yin D, Huang
C (2023) Graphgpt: Graph instruction tuning for large language
models. arXiv:2310.13023

41. Wang X, Ji H, Shi C,Wang B, Ye Y, Cui P, Yu PS (2019) Heteroge-
neous graph attention network. In: Theworldwideweb conference,
pp 2022–2032

42. Yu R,Wang L, Xin Y, Qian J, Dong, Y (2023) A gated graph atten-
tion network based on dual graph convolution for node embedding.
Appl Intell, 1–14

43. Chen J, Fang C, Zhang X (2023) Global attention-based graph
neural networks for node classification. Neural Process Lett
55(4):4127–4150

44. Ye Y, Ji S (2021) Sparse graph attention networks. IEEE Trans
Knowl Data Eng 35(1):905–916

45. Krogh A, Vedelsby J (1994) Neural network ensembles, cross val-
idation, and active learning. Adv Neural Inf Process Syst 7

46. Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and
deep graph convolutional networks. In: International conference
on machine learning, pp 1725–1735. PMLR

47. Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph
convolutional networks for recommender systems. In: The world
wide web conference, pp 3307–3313

48. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019) Sim-
plifying graph convolutional networks. In: International conference
on machine learning, pp 6861–6871. PMLR

49. Nt H, Maehara T (2019) Revisiting graph neural networks: All we
have is low-pass filters. arXiv:1905.09550

50. Chamberlain B, Rowbottom J, Gorinova MI, Bronstein M, Webb
S, Rossi E (2021) Grand: Graph neural diffusion. In: International
conference on machine learning, pp 1407–1418. PMLR

51. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch:
An imperative style, high-performance deep learning library. Adv
Neural Inf Process Syst 32

123

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2310.05845
http://arxiv.org/abs/2310.13023
http://arxiv.org/abs/1905.09550

Multi-head multi-order graph attention networks 8107

52. Kingma DP, Ba J (2014) Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980

53. Li Q, Han Z, Wu X-M (2018) Deeper insights into graph convo-
lutional networks for semi-supervised learning. In: Proceedings of
the AAAI conference on artificial intelligence, vol 32

54. SunK,LinZ, ZhuZ (2020)Multi-stage self-supervised learning for
graph convolutional networks on graphs with few labeled nodes.
In: Proceedings of the AAAI conference on artificial intelligence,
vol 34, pp 5892–5899

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1412.6980

	Multi-head multi-order graph attention networks
	Abstract
	1 Introduction
	2 Related work
	2.1 High-Order Graph Convolutional Networks
	2.2 Over-smoothing and over-squashing
	2.3 Attention mechanism

	3 Preliminary
	3.1 Graph attention networks(GAT)
	3.2 Mixed-order graph convolutional networks(MOGCN)

	4 The proposed method
	4.1 Attention layer
	4.2 General framework
	4.2.1 MHMOGAT with multi-head different orders attention
	4.2.2 MHMOGAT with cross-order multi-head attention

	5 Experiments
	5.1 Datasets
	5.2 Comparison with state-of-the-art methods
	5.2.1 Baseline methods
	5.2.2 Parameter settings
	5.2.3 Results

	5.3 Ablation study
	5.4 Parameter sensitivity

	6 Conclusions and future work
	Acknowledgements
	References

