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Abstract
Dempster-Shafer (D-S) evidence theory has extensive applications in the field of data fusion. It uses the mass function
to replace the probability distribution in Bayesian Probability theory, which has the advantages of weak constraints and
representing uncertainty. However, many existing uncertainty measures can not be well applied to the mass function, leading
to many defects in some scenarios. For example, many methods can not fully reflect the relationship between focal elements.
Therefore, how to improve the uncertainty measurement, and make full use of the advantages of the mass function, so
as to further accurately express the system state, is still a hot topic worth studying. To solve this problem, we propose a
Belief Interval Euclidean Distance (BIED) entropy of the mass function. This method combines nonspecificity and discord
measurement of themass function and is suitable for various situations. In this paper, we introduce a large number of numerical
examples to demonstrate the practicality of the BIED entropy. Compared with existing advanced methods, the BIED entropy
can better identify the quantity relationship and similarity relationship between focal elements, and exhibit a linear trend
with the changing cardinality of focal elements. Finally, we implement a BIED entropy-based multi-sensor data fusion on
various kinds of datasets. The experimental results indicate that BIED entropy has relatively high robustness, with the target
recognition accuracy close to 79.33% and the F1-Score close to 77.29%.
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1 Introduction

The sources of information in the real world are always com-
plex and uncertain. In the scientific research of multi-sensor
data fusion, the uncertainty of information always has an
impact on our decision-making. To address this issue, many
theories related to uncertainty measurement have been pro-
posed, such as Bayesian theory [1], rough set theory [2],
fuzzy set theory [3], and D-S evidence theory [4–6]. These
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methods can effectively avoid the adverse effects of informa-
tion redundancy, conflict, and fuzziness on decision-making.

Among these methods, D-S evidence theory is derived
fromBayesian theory, which is simple and feasible, and does
not need to give a prior probability, so it has a wider range of
applications in uncertainty measure. Due to its commutativ-
ity and associativity, it can reduce computational complexity
when faced with large-scale data fusion. The mass function
defined in this theory represents the relationship between
focal elements,which can better describe the uncertainty than
probability theory and other methods. It plays a significant
role in multi-sensor data fusion [7, 8], pattern recognition [9,
10], group decision-making [11, 12], etc. However, when the
mass functions are highly conflicting, usingDempster’s com-
bination rule to fuse mass functions may result in abnormal
results [13]. Therefore, the management of the conflicting
mass function remains an unresolved issue.

The concept of information entropy was first introduced
by Shannon, also known as Shannon entropy, which uses
physical disorder to describe the complexity of informa-
tion systems [14]. However, it is confined to the probability
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distribution and has a narrow applicability. Then how to
improve information entropy and better apply it to D-S
evidence theory has been a highly valued issue in recent
years. The study of entropy in information field can be
divided into two aspects: nonspecificity measurement and
discord measurement. In the early studies, scholars studied
the relationship between focal elements to improve Shannon
entropy, but mostly only considered one aspect separately
[15]. Deng proposed the belief entropy, also called Deng
entropy, which combines nonspecificity and discord mea-
surement, and emphasized the importance of nonspecificity
measurement in the mass function [16]. In contrast to the
probability distribution, the cardinality of focal elements in
the mass function may be greater than 1, so Deng’s uncer-
tainty measure considered the quantity relationship between
focal elements. However, Deng entropy did not reflect the
similarity relationship between focal elements. In subsequent
studies, people used conflict coefficients [17], the negation of
evidence [18], and belief intervals [19, 20] to further deter-
mine the intersection between focal elements. In general, how
to combine nonspecificity measurement and discord mea-
surement to identify the quantity and similarity relationships
between focal elements, making the entropy more applicable
to D-S evidence theory, is an important content of this study.

The belief interval represents the gap between the lower
and upper bounds support of subsets in themass function, and
is an important measure of uncertainty that has been studied
by many scholars [21]. Inspired by Deng’s distance-based
total uncertainty measure [22], in this paper, we combine
belief interval and Euclidean distance to measure the uncer-
tainty. Due to the insufficient application of this uncertainty
measure in mass functions and the lack of related research,
we improve nonspecificity and discord measurement in the
entropy and take into account the quantity and similarity
relationships between focal elements. Then we propose a
Belief Interval Euclidean Distance (BIED) entropy and a
multi-sensor data fusion method based on it. The specific
content can be seen inFig. 1. In this paper,we evaluatedBIED
entropy based onKlir andWierman’s five axioms [23].More-
over, to verify the superior performance of BIED entropy, we
mainly use belief entropy [16], Deng’s distance-based iTU I

method [22], Cui’s improved belief entropy method [24],
Chen’s Renyi entropy-based method [25] and Gao’s Tsallis
entropy-based method [26] to compare with it. According
to a large number of numerical examples and experiments,
we have ultimately demonstrated the robustness of BIED
entropy. The main contributions of this paper can be summa-
rized as follows

(1) We further implement uncertainty measurement in the
mass function by combining belief interval and Euclidean
distance.

(2) We propose BIED entropy, which combines nonspeci-
ficity and discord measurement to measure uncertainty.

(3) We improve the applicability of entropy in mass func-
tions from two aspects of focal elements: quantity and
similarity relationships.

(4) We propose a BIED entropy-based multi-sensor data
fusion method. A large number of numerical examples
show thatBIEDentropyhas advantages in identifying the
quantity relationship and similarity relationship between
focal elements, and exhibits a linear growth trend, mak-
ing it suitable for various scenarios.

The other sections of this paper can be summarized as
follows. In Section 2, we introduced relevant literature and
works. In Section 3,we reviewed the existingmethods related
to this paper. In Section 4, we proposed the BIED entropy,
discussed its properties, and demonstrated its superiority
through a large number of numerical examples. In Section 5, we
proposed the BIED entropy-based multi-sensor data fusion
method and conducted experiments to demonstrate its prac-
ticality. Finally, in Section 6, we summarize our work.

2 Literature review

Scholars have proposed many theories for uncertainty mea-
surement. Firstly, various optimization algorithms related to
machine learning are used to measure uncertainty, such as
discrete particle swarm optimization algorithms [27], failure
mode and effects analysis [28], Bayesian networks [29, 30],
etc. However, these uncertainty measures based on machine
learning algorithms cannot adapt to all scenarios, and the
modification and calculation of them are relatively complex
and difficult. Secondly, many physical uncertainty measures,
such as entropy, have been applied to information systems.
Shannonfirst introduced the concept of entropy into the infor-
mation field, called information entropy, which became the
baselinemethod [14]. The physical concept of entropy is easy
to understand, and has strong flexibility, making it well com-
bined with the existing uncertainty measures. In this paper,
we use the entropy to deal with information decision and
target detection.

In recent years, D-S theory has become popular in uncer-
tainty measurement because of its advantages of simplicity
and unconstrained by prior probability. The main applica-
tions of this theory include Dempster’s combination rule,
which uses the fusion of mass functions to make decisions
in the case of multiple sensors. Because the commutativity
and associativity of D-S theory can reduce the computa-
tional complexity, its effective combination with information
entropy can be helpful to uncertainty measurement. How-
ever, the definition of Shannon entropy is limited to the
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Fig. 1 The overall framework
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probability distribution and cannot measure the uncertainty
of the mass function. Many scholars have made improve-
ments to it. Yager [31] introduced the plausibility function
to describe inconsistency, which preliminarily improved the
application of Shannon entropy. Dubois and Prade [32] pro-
posed Hartley entropy to deal with multiple sets in the mass
function. Subsequently, the interrelationships between focal
elements were also studied to improve information entropy,
such as Klir and Ramer’s method [33], Jousselme’s method
[34], etc. However, the above methods can not fully reflect
the quantity relationship and similarity relationship between
focal elements, and they only use simple linear functions to
represent the cardinality of focal elements.

To improve the previous methods, Deng proposed the
belief entropy [16] and pointed out that the uncertainty
measurement of the mass function should comprehensively
consider total nonspecificity and discord measurement. Total
nonspecificity, also known as fuzziness, is due to the particu-
larity of the mass function. When multiple sets are included,
the uncertainty measure is related to the exponential function
of the cardinality of focal elements. Discord is also known as
conflict or randomness, which continues the idea of entropy
in physics and measures the complexity of the state of evi-
dence. Therefore, many subsequent studies take the belief
entropy as a new baseline method and focus on the above
two main aspects [17].

Although belief entropy is effective in uncertainty mea-
sure, it does not consider the correlation within the mass
function, namely, the similarity relationship between focal
elements. Cui [24] made improvements based on it, but the
similarity evaluation of this method is related to the cardi-
nality of frame of discernment. Therefore, when the frame of
discernment is large, its recognition of the similarity relation-
ship between focal elements will be weak. Recently, various
types of entropy, including Renyi entropy-based method [25,
35], Tsallis entropy-basedmethodwith exponential variables
[26] and other types of entropy [36–38], have been proposed

to make uncertainty measurement more flexible. However,
these methods also exposed disadvantages in some cases.
For example, the exponential changing trend of the Tsal-
lis entropy-based method caused the problem of exponential
type growth for uncertainty measurement. In the case of a
large cardinality of focal elements, a small increase in the
cardinality of focal elements will significantly accelerate
the increase rate of uncertainty. Therefore, this method is
not only inconsistent with the actual situation, but also not
suitable for storage and statistics under a large number of
data. The exploration of uncertainty measures suitable for
D-S evidence theory is still an important work. In addition,
the research process described in this section is provided in
Fig. 2.

In general, the new uncertainty measure will be able to
combine various factors, strengthen its adaptability to the
mass function, and be well applied to a wider range of sys-
tem measurement. We find that the combination of belief
interval and Euclidean distance proposed by Deng [22] is
a good indicator of the differences between focal elements
but could not explain the application of belief interval well.
In our method, we introduce this quantitative indicator and
better combine it with the quantity relationship and similar-
ity relationship of focal elements, to represent nonspecificity
and discord measurement more comprehensively.

3 Preliminaries

In this section, we will review several classic uncertainty
measures.

3.1 Dempster-Shafer evidence theory

Dempster-Shafer evidence theory is also calledD-S evidence
theory, and several important definitions are as follows.
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Fig. 2 The research process of
entropy described in Section 2

The research process of information entropy
Summarize the research process described in the literature review, including the original

Shannon entropy, the initial combination with the mass function, the non-specificity and

discord, and the focal element relationship now studied by scholars.

Physical models Nonspecificity & Discord

Mass functions Relationship of focal
elements

Introduce the concept of entropy into the

field of information.

Shannon entropy

Quantity & Similarity

Use exponential functions to handle multiple sets,

better combination of nonspecificity and discord.

Deng entropy

Explore the various relationships of focal

elements and expand the application range.

D-S evidence theory
Simple combination of information entropy

and mass function.

Definition 1: Frame of discernment Assuming X is a set
containing |X | assumptions that are independent and mutu-
ally exclusive. Then X is called a frame of discernment,
which is defined as follows [4, 5]

X = {
ω1, ω2, . . . , ωi , . . . , ω|X |

}
(1)

The power set of the frame of discernment is defined as

2X = {∅, {ω1} , . . . ,
{
ω|X |

}
, . . . , {ω1, ω2} , . . . ,

{ω1, ω2, . . . , ωi } , . . . , X} (2)

Definition 2: The mass function D-S evidence theory uses
the mass functionm to replace the probability distribution of
Bayesian Probability theory, which is defined as [4, 5]

m : 2X → [0, 1] (3)

For any subset A ∈ 2X , the following condition is satisfied

{ ∑

A∈2X
m (A) = 1

m (∅) = 0
(4)

If A ∈ 2X and m (A) �= 0, then A is called the focal element
of m.

Definition3:Dempster’s combination ruleAssuming there
are two mass functions m1 and m2. In addition, A, B, and
C are all focal elements, and Dempster’s combination rule is
defined as follows [4, 5]

m (A) =
{
0, A = ∅
1

1−K

∑

B∩C=A
m1 (B)m2 (C) , A �= ∅ (5)

where K ∈ [0, 1) is the conflict coefficient between twomass
functions, defined as

K =
∑

B∩C=∅
m1 (B)m2 (C) (6)

Definition 4: Belief function and plausibility function For
any subset A ∈ 2X , its belief function Bel (A) represents the
overall belief in A. The definition is as follows [4, 5]

Bel (A) =
∑

B⊆A

m (B) (7)

In addition, its plausibility function Pl (A) for the subset A
represents the max belief in A. The definition is as follows

Pl (A) =
∑

B∩A �=∅
m (B) (8)

The relationship between them is as follows

Pl (A) = 1 − Bel
(
Ā
) ≥ Bel (A) (9)

To be noticed, Bel (A) and Pl (A) are the upper and lower
limit functions of subset A respectively. [Bel (A) , Pl (A)]
is denoted as the belief interval of subset A.

3.2 Shannon entropy

This entropy can be used to measure the uncertainty of infor-
mation.

Definition5:ShannonentropyAssumingH =(p1, p2, . . . ,
pn) is a probability distribution containing n events, and the
probability of event i occurring is pi . According to the knowl-
edge of probability theory, we know that ∀pi ∈ H |pi ≥ 0 .
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The sum of all probabilities should be 1, represented as fol-
lows

n∑

i=1

pi = 1 (10)

Then, Shannon entropy is defined as [14]

ES = −
n∑

i=1

pi log pi (11)

3.3 Previous uncertainty measures

Since Shannon entropy is only defined in the probability dis-
tribution, it is not applicable to the uncertainty measurement
of mass functions. In these years, many scholars have been
committed to improving Shannon entropy. In the following
equations, X is the frame of discernment, A and B are two
different focal elements, and |A| is the cardinality of focal
element A.

Deng [16] proposed the belief entropy, also called Deng
entropy, which well improved the nonspecificity in the mass
function as follows:

Ed =
∑

A⊆X

m (A) log

(
1

m (A)

)

+
∑

A⊆X

m (A) log
(
2|A| − 1

)
(12)

where
∑

A⊆X
m (A) log

(
2|A| − 1

)
represents the nonspeci-

ficity of the mass function and
∑

A⊆X
m (A) logm (A) repre-

sents the conflict and randomness of the mass function, also
known as discord. To be noticed, when |A| = 1, this belief
entropy degenerates into Shannon entropy. This combination
of non-specificity and discord allows for a more comprehen-
sive management of mass functions. However, according to
(12), belief entropy lacks the similarity relationship between
focal elements and needs improvement.

To reflect the similar relationship between focal elements,
Cui’s improved belief entropy (IBE) [24] is defined as fol-
lows:

Ecui (m) = −
∑

A⊆X

m (A) log

(
m (A)

2|A| − 1
e

∑

A,B⊆X ,A �=B

|A∩B|
2|X |−1

)

(13)

As can be seen from (13), Cui’s method introduces the
intersection between focal elements and the cardinality of
focal elements, and can identify quantity relationship and
similarity relationship. However, the equation contains the

cardinality of frame of discernment |X |, which is not stable
for the recognition of similarity relationship.

There are also some improved methods based on other
related uncertainty theories. For example, Chen’s Renyi
entropy-based method (R) [25] is proposed as follows:

R (m) =
n log

∑

A⊆X

(
m(A)
2n−1

) (
1 +

(
m(A)
2n−1

)n−1 − 1
2n−1

)

1 − n
(14)

where n represents all the cardinalities of focal elements
involved in the calculation.

Analyzing (14), because this method is rewritten in Renyi
entropy, the relationship between exponential coefficient
2n − 1 and linear coefficient n is not completely pro-
cessed, which leads to instability in the quantity relationship.
The similar relationship between focal elements cannot be
reflected in this method.

Moreover, Gao’s Tsallis entropy-based method (T) [26] is
given as follows:

T (m) =
∑

A⊆X

(
2|A| − 1

)
m (A)

(
1 −

(
m(A)

2|A|−1

)|A|−1
)

|A| − 1
(15)

The exponential coefficient 2|A| −1 in (15) can reflect the
quantity relationship, but it leads to the exponential change
trendwhen the cardinality of focal elements increases, which
is not conducive to data analysis. It also fails to show simi-
larity relationship.

3.4 Evidence distance

Deng [22] proposed iTU I method to handle the uncertainty
of the mass function by calculating the distance between
belief intervals.

Definition 7: The iTU I measurement Suppose X is the
frame of discernment, and m is a mass function. Then the
overall uncertainty measurement of m on X is represented
by iTU I , which is defined as

iTU I (m) =
∑

ω∈X

[
1 − d I

E ([Bel (ω) , Pl (ω)] , [0, 1])
]

(16)

where d I
E represents the Euclidean distance, which is defined

as

d I
E ([x1, y1] , [x2, y2]) =

√
(x1 − x2)2 + (y1 − y2)2 (17)
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Equation (16) shows that the greater the difference
between the belief interval [Bel (ω) , Pl (ω)] and [0, 1], the
smaller iTU I (m), indicating a smaller uncertainty in the
mass function. The belief function and plausibility function
in (16) can reflect the relationship between focal elements.
However, since the elements ω in iTU I method are all sin-
gletons, the assigned belief value varies according to the
cardinality of focal elements, but the recognition of similar-
ity relationship could be easily affected. This method could
not combine belief interval with mass function well.

After discussion, we summarize the performance of the
existing methods from the following aspects: (1) Nonspeci-
ficity measurement(NM);(2) Discord measurement(DM);(3)
Identifying quantity relationship between focal elements
(IQR);(4) Identifying similarity relationship between focal
elements(ISR);(5) Stability of similarity recognition(SSR);
(6) Linear growth trend with changing cardinality(LGT);(7)
Reasonable utilization of belief interval(RUBI).We list them
in Table 1, and the work in this paper aims to fill in the gaps
in these approaches.

4 Belief interval euclidean distance entropy

In this section, we will propose a new uncertainty measure-
ment approach. To enhance the readability of subsequent
sections, we provide a notation list in Appendix A.

4.1 BIED entropy

We propose a Belief Interval Euclidean Distance (BIED)
entropy to measure the uncertainty of the mass function,
defined as follows

BI ED (m) = ∑

A⊆X
m (A) log 1

dM (A)

+ ∑

A⊆X
m (A) log

(
2|A| − 1

) (18)

Table 1 Performance comparison of existing methods

Method NM DM IQR ISR SSR LGT RUBI

Deng [16] T T T F F T F

iTU I [22] T T T F F T F

Cui [24] T T T T F T F

Chen [25] T T F F F T F

Gao [26] T T T F F F F

where the combination coefficient dM represents the rela-
tionship between focal elements, defined as follows

dM (A) =
{ ∑

B⊆A
dN (B) ,m (A) ∈ [0, 1)

1,m (A) = 1
(19)

where the redistribution coefficient dN is defined as follows

dN (A) = dE (A)2 − 1

2 (m (A) − 1)
(20)

In Equation (20), inspired by the iTU I method [22], we
propose the improved Euclidean distance dE to measure the
difference between the belief interval of the mass function
and [0,1], defined as follows

dE (A) = d I
E ([Bel (A) , Pl (A)] , [0, 1])

=
√
Bel (A)2 + (Pl (A) − 1)2

(21)

The BIED entropy considers two influencing factors of
uncertainty measure shown in (18), where the former term∑

A⊆X
m (A) log 1

dM (A)
represents discord measurement and

the latter term
∑

A⊆X
m (A) log

(
2|A| − 1

)
performs nonspeci-

ficity.
In terms of nonspecificity measurement, due to the mul-

tiple sets in the mass function, we apply 2|A| − 1 defined
in Deng entropy [16] to measure the fuzziness. In terms of
discordmeasurement, we introduce dE (A) for distancemea-
surement and combine it with the relationship between focal
elements to measure conflict. To help understand, (20) can
also be written as

dN (A) =
Bel(A)−1
m(A)−1 Bel (A)+ Pl(A)−1

m(A)−1 Pl (A)+ Bel(A)−Pl(A)
m(A)−1

2
(22)

We can see from (22) that dN (A) approximately reflects
the redistribution of the probabilities of focal elements based
on distance measurement, except the ignorance. The redistri-
bution probability of focal element is related to the Bel (A),
Pl (A) and the difference between them, shown separately
in (22). Because the iTU I method based on Euclidean dis-
tance does not consider the focal element as a whole, but
only considers the difference between the belief function
and plausibility function of singletons, our definition of
dN (A) eliminates this defect. For themass functionswith the
same probability distribution, if there are more intersections
between focal elements, the values of Bel (A) and Pl (A)

are relatively large, and the uncertainty could be reduced, so
it is necessary to consider the three together.
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In addition, we define dM (A) in (19) to identify the sim-
ilarity relationship between focal elements. By combining
these equations,we know that themore intersections between
focal elements are, the greater dM (A) is, the smaller BIED
will be. To further explain the BIED entropy, we give the
specific content of BIED entropy in Fig. 3 and the specific
workflow of BIED entropy in Fig. 4.

By quantifying the distance between the belief interval of
the given mass function and of the extreme case, combined
with the correlation between focal elements, we have estab-
lished a connection between dE (A) and m (A) to enhance
the practicality of Euclidean distance measures in the mass
function.

Suppose X and Y are two different frames of discernment,
mX and mY are two mass functions. The BIED entropy has
the following properties. The proof of these properties can
be seen in Appendix B.

(1) Non-negativity: BI ED (m) ≥ 0.
(2) Probability Consistency:When themass function degen-

erates into a probability distribution, BIED entropy can
degenerate into Shannon entropy.

(3) Set Inconsistency: There exists a focal element A ⊆ X ,
when m (A) = 1, BI ED (A) �= log |A|.

(4) Nonadditivity: BI ED (mX ⊕ mY ) �= BI ED (mX ) +
BI ED (mY ).

(5) Nonsubadditivity: BI ED (mX )+BI ED (mY )≥ BI ED
(mX ⊕ mY )does not always valid.

We also list the properties of some classic methods for
comparison in Table 2, consistent with Table 1. The reader
can follow the specific equations of the variousmethods given
in Section 3, or find the proofs in the references mentioned
in Table 2.

4.2 Numerical examples

In this subsection,we use numerical examples to demonstrate
the calculation process andperformance of theBIEDentropy.
To verify the research gap filled by BIED entropy, we choose
several classical methods for comparison.

Example 1 Suppose X = {a, b, c} is a frame of discernment.
Given a mass function as follows

m (a) = 1

4
,m (b) = 1

4
,m (c) = 1

4
,m (a, b, c) = 1

4

The calculation process of BIED entropy is as follows

dN (a) = dN (b) = dN (c) = dE (c)2 − 1

2 (m (c) − 1)
= 11

24

dN (a, b, c) = 0, dM (a) = dM (b) = dM (c) = 11

24

dM (a, b, c)=dN (a) + dN (b)+ dN (c)+ dN (a, b, c)= 11

8

BI ED (m) = m (a) log
1

dM (a)
+ m (b) log

1

dM (b)

+m (c) log
1

dM (c)
+ m (a, b, c)

× log
1

dM (a, b, c)

+m (a) log
(
21 − 1

)
+ m (b) log

(
21 − 1

)

+m (c) log
(
21 − 1

)
+ m (a, b, c)

× log
(
23 − 1

)
= 1.4311

In this example, the given mass function assigns the same
probability to each focal element. However, in the calcula-
tion process of the BIED entropy, we found that dM (a, b, c)

Fig. 3 Specific implementation
of BIED entropy
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Fig. 4 Specific workflow of
BIED entropy

Start

import m,X

m(A)=0?

k=1, Arr=[], BIED=0

m(A)=1?

calculate Bel(A) and Pl(A) based on Equation (7) and (8)

• calculate E(A) according to Equation (21)

• calculate N(A) according to Equation (20)

k＜2|X|?
Yes• k=k+1

• add N(A) and A to

Arr

calculate M(A) based on Equation (19) and Arr

make M(A)=1 based on

Equation (19)

No

output BIED

obtain focal element A

calculate BIED(m) according to Equation (18)

End

Yes

No

Yes

No

k=k+1

is greater than dM (a), dM (b) and dM (c). It can be under-
stood that the BIED entropy allocates more probabilities to
the ignorance, which can increase uncertainty. We can know
that the more focal elements in the mass function, the more
complex it is, and the greater the uncertainty.

Example 2 Suppose X = {a, b} is a frame of discernment.
Given two mass functions as follows

m1 (a, b) = 1

m2 (a) = 1

Table 2 Comparison of
properties of existing
uncertainty measures

Method Non-negativity Probability
consistency

Set con-
sistency

Additivity Subadditivity

Deng [16] T T F F F

iTU I [22] T F F F F

Cui [24] T T F F F

Chen [25] T T F F F

Gao [26] T T F F F

Proposed T T F F F

123



A belief interval euclidean distance entropy... 7553

We calculate the uncertainty of two mass functions using
BIED entropy and obtain the following results

BI ED (m1) = m1 (a, b) log
1

dM (a, b)

+m1 (a, b) log
(
22 − 1

)
= 1.5850

BI ED (m2) = m2 (a) log
1

dM (a)
+m2 (a) log

(
21−1

)
=0

Analyzing the results of Example 2, it can be seen that
the mass functionm2 assigns all probabilities to {a}, indicat-
ing that {a} must occur with an uncertainty of 0. However,
m1 assigns all probabilities to multiple subsets {a, b}, and
contains a high uncertainty due to the nonspecificity mea-
surement shown in (18). Therefore, the calculation results of
BIED entropy are in line with common sense.

Example 3 Suppose X = {a, b, c, d} is a frame of discern-
ment. Given two mass functions as follows

m1 (a, b, c, d) = 1
m2 (a) = 1

4 ,m2 (b) = 1
4 ,m2 (c) = 1

4 ,m2 (d) = 1
4

We use several existing methods for comparison, and the
results are recorded in Table 3.

(1) Belief entropy [16]:
We use the belief entropy shown in (12) to calculate.

Ed (m1) = −m1 (a, b, c, d) log

(
m1 (a, b, c, d)

24 − 1

)
= 3.9069

Ed (m2) = −m2 (a) log

(
m2 (a)

21 − 1

)
− m2 (b) log

(
m2 (b)

21 − 1

)

−m2 (c) log

(
m2 (c)

21 − 1

)
−m2 (d) log

(
m2 (d)

21 − 1

)
=2

(2) iTU I method [22]:
We use the iTU I method shown in (16) to calculate.

iTU I (m1) = 4
[
1 − d I

E ([0, 1] , [0, 1])
]
= 4

iTU I (m2) = 4

[
1 − d I

E

([
1

4
,
1

4

]
, [0, 1]

)]
= 0.8377

Table 3 Comparison of calculation results in Example 3

m Ed [16] iTU I [22] IBE [24] R [25] T [26] BIED

m1 3.9069 4 3.9069 5.3413 4.9985 3.9069

m2 2 0.8377 2 2 2 2

(3) IBE method [24]:
We use the IBE method shown in (13) to calculate.

Ecui (m1) = −m1 (a, b, c, d) log

(
m1 (a, b, c, d)

24 − 1
e

0
15

)
= 3.9069

Ecui (m2) = −m2 (a) log

(
m2 (a)

21 − 1
e

0
15

)
−m2 (b) log

(
m2 (b)

21 − 1
e

0
15

)

−m2 (c) log

(
m2 (c)

21 − 1
e

0
15

)
−m2 (d) log

(
m2 (d)

21 − 1
e

0
15

)

= 2

(4) Renyi entropy-based method [25]:
We use the Renyi entropy-based method shown in (14)
to calculate.

R (m1) =
4 log

[(
m1(a,b,c,d)

2|4|−1

) (
1 +

(
m1(a,b,c,d)

24−1

)4−1 − 1
24−1

)]

1 − 4
= 5.3413

R (m2) = −m2 (a) logm2 (a) − m2 (b) logm2 (b) − m2 (c)

× logm2 (c) − m2 (d) logm2 (d) = 2

(5) Tsallis entropy-based method [26]:
We use the Tsallis entropy-based method shown in (15)
to calculate.

T (m1) =
(
24 − 1

)
m1 (a, b, c, d)

(
1−

(
m1(a,b,c,d)

24−1

)4−1
)

4 − 1
=4.9985

T (m2) = −m2 (a) logm2 (a) − m2 (b) logm2 (b) − m2 (c)

× logm2 (c) − m2 (d) logm2 (d) = 2

(6) BIED entropy:
Here we use our proposed method shown in (18) to cal-
culate.

BI ED (m1) = m1 (a, b, c, d) log
1

dM (a, b, c, d)

+m1 (a, b, c, d) log
1

24 − 1
= 3.9069

BI ED (m2) = m2 (a) log
1

dM (a)
+ m2 (b) log

1

dM (b)

+m2 (c) log
1

dM (c)
+ m2 (d) log

1

dM (d)

+m2 (a) log
1

21 − 1
+ m2 (b) log

1

21 − 1

+m2 (c) log
1

21 − 1
+ m2 (d) log

1

21 − 1
= 2

Record the comparison results in Table 3, where Ed is
belief entropy [16], iTU I is the iTU I method [22], IBE
is Cui’s IBE method [24], R is Renyi entropy-based method
[25], T isGao’sTsallis entropy-basedmethod [26], andBIED
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is proposed method. In Example 3, the mass function m1

assigns all probabilities to {a, b, c, d}, representing the total
uncertainty of the ignorance. But m2 shows the total uncer-
tainty of all singletons of X , with equal probabilities for them.
Intuitively,m1 contains less information thanm2. Therefore,
m1 should demonstrate higher uncertainty.

Observing the results in Table 3, we found that among all
methods, m1 has greater uncertainty than m2. Therefore, all
of thesemethods candistinguish ’ignorance’ and ’equal prob-
ability’. Sincem2 degenerates into a probability distribution,
belief entropy, IBE, Tsallis entropy-based method, Renyi
entropy-based method, and the proposed BIED entropy can
degenerate into Shannon entropy in this situation. How-
ever, the uncertainty measure of iTU I for m2 is very small.
Becausem2 assigns equal probabilities to each single set, we
cannot determine which event tends to occur. It is expected
to contain great uncertainty.

Example 4 Suppose X = {a, b, c, d} is a frame of discern-
ment. Given two mass functions as follows

m1 (a, b) = 0.4,m1 (c, d) = 0.6
m2 (a, c) = 0.4,m2 (b, c) = 0.6

We also use several existing methods for comparison in
Table 4.

(1) Belief entropy [16]:

Ed (m1) = −m1 (a, b) log
m1 (a, b)

22 − 1
− m1 (c, d)

× log
m1 (c, d)

22 − 1
= 2.5559

Ed (m2) = −m2 (a, c) log
m2 (a, c)

22 − 1
− m2 (b, c)

× log
m2 (b, c)

22 − 1
= 2.5559

(2) iTU I method [22]:

iTU I (m1) = 2
(
1 −

[
d I
E ([0, 0.4] , [0, 1])

])

+2
(
1 −

[
d I
E ([0, 0.6] , [0, 1])

])
= 2

iTU I (m2) =
[
1 − d I

E ([0, 0.4] , [0, 1])
]

Table 4 Comparison of calculation results in Example 4

m Ed [16] iTU I [22] IBE [24] R [25] T [26] BIED

m1 2.5559 2 2.5559 3.6730 2.4800 2.5559

m2 2.5559 2 2.4997 3.6730 2.4800 1.9839

+
[
1 − d I

E ([0, 0.6] , [0, 1])
]

+
[
1 − d I

E ([0, 1] , [0, 1])
]

+
[
1 − d I

E ([0, 0] , [0, 1])
]

= 2

(3) IBE method [24]:

Ecui (m1)=−m1 (a, b) log

(
m1 (a, b)

22 − 1
e

0
15

)
−m1 (c, d)

× log

(
m1 (c, d)

22 − 1
e

0
15

)
= 2.5559

Ecui (m2)=−m2 (a, c) log

(
m2 (a, c)

22 − 1
e

1
15

)
−m2 (b, c)

× log

(
m2 (b, c)

22 − 1
e

1
15

)
= 2.4597

(4) Renyi entropy-based method [25]:

R (m1) =
2 log

(
m1(a,b)
22−1

) (
1 +

(
m1(a,b)
22−1

)2−1 − 1
22−1

)

1 − 2

+
2 log

(
m1(c,d)

22−1

) (
1 +

(
m1(c,d)

22−1

)2−1 − 1
22−1

)

1 − 2
= 3.6730

R (m2) =
2 log

(
m2(a,c)
22−1

) (
1 +

(
m2(a,c)
22−1

)2−1 − 1
22−1

)

1 − 2

+
2 log

(
m2(b,c)
22−1

) (
1 +

(
m2(b,c)
22−1

)2−1 − 1
22−1

)

1 − 2
= 3.6730

(5) Tsallis entropy-based method [26]:

T (m1) =
(
22 − 1

)
m1 (a, b)

(
1 −

(
m1(a,b)
22−1

)2−1
)

2 − 1

+
(
22 − 1

)
m1 (c, d)

(
1 −

(
m1(c,d)

22−1

)2−1
)

2 − 1
= 2.4800

T (m2) =
(
22 − 1

)
m2 (a, c)

(
1 −

(
m2(a,c)
22−1

)2−1
)

2 − 1

+
(
22 − 1

)
m2 (b, c)

(
1 −

(
m2(b,c)
22−1

)2−1
)

2 − 1
= 2.4800

(6) BIED entropy:

BI ED (m1) = m1 log
1

dM (a, b)
+ m1 log

1

dM (c, d)

+m1 (a, b) log
(
22 − 1

)
+ m1 (c, d)

× log
(
22 − 1

)
= 2.5559
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BI ED (m2) = m2 log
1

dM (a, c)
+ m2 log

1

dM (b, c)

+m2 (a, c) log
(
22 − 1

)
+ m2 (b, c)

× log
(
22 − 1

)
= 1.9839

Example 4 shows that there is no intersection between the
two focal elements of the mass function m1, while the two
focal elements of m2 have an intersection {c}. Therefore,
under the same probability distribution, the mass function
m1 should have greater uncertainty. However, in Table 4,
belief entropy, iTUU , Renyi entropy-based method, and
Tsallis entropy-based method give the same results for the
two mass functions, indicating that they cannot identify the
similarity between focal elements. The IBE method and our
proposed BIED entropy have obtained correct results. And
in Example 5, we conduct a further comparative analysis of
these two methods.

Example 5 Suppose X = {ω1, ω2, . . . , ω22} is a frame of
discernment. Given two mass functions as follows

m1 (At ) = 0.4,m1 (Bt ) = 0.6
m2 (At ) = 0.4,m2 (Ct ) = 0.6

where At , Bt , and Ct are all unknown variables listed in
Table 5.

From Table 5, it can be seen that these three variables
always have the same cardinality in each calculation. In these
10 tests of uncertainty, At has no intersection with Bt , but
always has an intersection {ω1}withCt . Therefore, the uncer-
tainty of m1 should always be greater than m2.

We present the uncertainty measure results obtained by
the IBE and BIED in Fig. 5. In Figure 5a, with the increase
of cardinality of the set, the gap of the uncertainty of the two
mass functions obtained by IBE gradually decreases. When
the cardinality is greater than 5, the uncertainty values of the
two mass functions are almost the same. However, as shown
in Table 5, there is always an intersection {ω1} between At

and Ct , so this result is inaccurate. Observing the results
obtained by BIED in Fig. 5b, the uncertainty ofm1 is always

greater than m2 and maintains a certain gap with m2. As
the cardinality increases, BIED can always distinguish the
uncertainty of the two mass functions.

Then we analyze the results obtained from Example 5.
For IBE, its reflection of the similarity relationship between
focal elements is related to |X | shown in (13). As the value of
|X | increases, the exponential term gradually tends to 1, and
its ability to express the difference in the similarity of focal
elements will weaken. However, the BIED entropy directly
reflects the differences based on the relationship of focal ele-
ments themselves and is less affected by the cardinality of
frame of discernment. Therefore, it has high availability even
when the cardinality of frame of discernment is large.

Example 6 Suppose X = {a, b} is a frame of discernment.
Given two mass functions as follows

m1 (a) = 1
3 ,m1 (b) = 1

3 ,m1 (a, b) = 1
3

m2 (a) = 1
5 ,m2 (b) = 1

5 ,m2 (a, b) = 3
5

We still use the methods in Example 3 for comparative
calculation, and the results are recorded in Table 6.

(1) Belief entropy [16]:

Ed (m1) = −m1 (a) log

(
m1 (a)

21 − 1

)
− m1 (b) log

(
m1 (b)

21 − 1

)

−m1 (a, b) log

(
m1 (a, b)

22 − 1

)
= 2.1133

Ed (m2) = −m2 (a) log

(
m2 (a)

21 − 1

)
− m2 (b) log

(
m2 (b)

21 − 1

)

−m2 (a, b) log

(
m2 (a, b)

22 − 1

)
= 2.3219

(2) iTU I method [22]:

iTU I (m1) =
[
1 − d I

E

([
1

3
,
2

3

]
, [0, 1]

)]

+
[
1 − d I

E

([
1

3
,
2

3

]
, [0, 1]

)]
= 1.0666

Table 5 The values of three
variables in Example 5

t Cardinality of set At Bt Ct

1 2 {ω1, ω2} {ω3, ω4} {ω1, ω4}
2 3 {ω1, ω2, ω3} {ω4, ω5, ω6} {ω1, ω5, ω6}
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i i+1 {ω1, . . . , ωi+1} {ωi+2, . . . , ω2i+2} {ω1, ωi+3, . . . , ω2i+2}
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10 11 {ω1, . . . , ω11} {ω12, . . . , ω22} {ω1, ω13, . . . , ω22}
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Fig. 5 Comparison of results
obtained by IBE and BIED in
Example 5

iTU I (m2) =
[
1 − d I

E

([
1

5
,
4

5

]
, [0, 1]

)]

+
[
1 − d I

E

([
1

5
,
4

5

]
, [0, 1]

)]
= 1.4343

(3) IBE method [24]:

Ecui (m1)=−1

3
log

(
1
3

21 − 1
e
1
3

)

− 1

3
log

(
1
3

21 − 1
e
1
3

)

−1

3
log

(
1
3

22 − 1
e
2
3

)

= 1.4721

Ecui (m2)=−1

5
log

(
1
5

21 − 1
e
1
3

)

− 1

5
log

(
1
5

21 − 1
e
1
3

)

−3

5
log

(
3
5

22 − 1
e
2
3

)

= 1.5525

(4) Renyi entropy-based method [25]:

R (m1) = −m1 (a) logm1 (a) − m1 (b) logm1 (b)

+
2 log

(
m1(a,b)
22−1

)(
1 +

(
m1(a,b)
22−1

)2−1 − 1
22−1

)

1 − 2
=8.1216

R (m2)

= −m2 (a) logm2 (a) − m2 (b) logm2 (b)

+
2 log

(
m2(a,b)
22−1

)(
1 +

(
m2(a,b)
22−1

)2−1 − 1
22−1

)

1 − 2
=5.9855

Table 6 Comparison of calculation results in Example 6

m Ed [16] iTU I [22] IBE [24] R [25] T [26] BIED

m1 2.1133 1.0666 1.4721 8.1216 1.9455 0.9655

m2 2.3219 1.4343 1.5525 5.9855 2.3688 1.1493

(5) Tsallis entropy-based method [26]:

T (m1) = −m1 (a) logm1 (a) − m1 (b) logm1 (b)

+
(
22 − 1

)
m1 (a, b)

(
1 −

(
m1(a,b)
22−1

)2−1
)

2 − 1
= 1.9455

T (m2) = −m2 (a) logm2 (a) − m2 (b) logm2 (b)

+
(
22 − 1

)
m2 (a, b)

(
1 −

(
m2(a,b)
22−1

)2−1
)

2 − 1
= 2.3688

(6) BIED entropy:

BI ED (m1) = m1 (a) log
1

dM (a)
+ m1 (b) log

1

dM (b)

+m1 (a, b) log
1

dM (a, b)
+ m1 (a)

× log
1

21 − 1
+ m1 (b) log

1

21 − 1

+m1 (a, b) log
1

22 − 1
= 0.9655

BI ED (m2) = m2 (a) log
1

dM (a)
+ m2 (b) log

1

dM (b)

+m2 (a, b) log
1

dM (a, b)
+ m2 (a)

× log
1

21 − 1
+ m2 (b) log

1

21 − 1

+m2 (a, b) log
1

22 − 1
= 1.1493

In this example, mass function m1 distributes the probabil-
ity equally among the three subsets, while m2 allocates the
probability according to the cardinality of focal elements,
assigning the maximum probability to {a, b}. Intuitively, m2

is supposed to contain greater uncertainty. Analyzing the
results shown in Table 6, we found that belief entropy, iTU I ,
IBE, Tsallis entropy-based method, and our proposed BIED
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entropy were consistent with the prediction and can identify
the quantity relationship of focal elements, while the uncer-
tainty of m2 calculated by Renyi entropy-based method is
significantly lower than that of m1.

Example 7 Suppose X = {a, b, c, d, e, f , g, h, i, j} and
given a mass function as follows

m (e)=0.05,m (a, b, c)=0.05,m (Y )=0.8,m (X)=0.1

where the focal element Y is an unknown value. We mea-
sure the uncertainty of the mass function with the changing
variable |Y |.

The trend of uncertainty measurement with the increase
of the cardinality of focal elements is an important criterion
to measure the performance of the method. The positive and
linear trend is useful for data storage and statistical analy-
sis. First, the uncertainty measure without a steady growth
trend has aweak ability to identify the change in the cardinal-
ity of focal elements. Second, the method of exponential or
rapid growth trend is not conducive to statistics, andwhen the
cardinality of focal elements is large, the influence of the car-
dinality will be significantly greater than that of the similarity
relationship of focal elements. Simply, the nonspecificitywill
have a much greater impact on the uncertainty measurement
than the discord, which is not logical. The importance of this
property has been discussed in several previous studies [15,
25]. In this example, we use several methods to indicate the
variation trend of the uncertainty. The calculation results are
shown in Fig. 6 and Table 7.

According on the calculation results and variation trends,
it can be seen that among these six methods, the changing

trend of BIED entropy in this paper is linear and consistent
with the belief entropy Ed . Other methods, such as IBE and
iTU I , also exhibit similar trends.

On the contrary, Gao’s Tsallis entropy-based method (T)
[26] shows an exponential trend due to the term of 2|A| −1 in
(15). In the actual analysis process, this changing trend of T
makes the uncertainty of the mass function increase greatly
due to the addition of a few events in a large number of events,
which is unreasonable.

Chen’s Renyi entropy-based method (R) [25] exhibits an
anomaly at |Y | = 3, and in other cases, it also follows a linear
trend. Through analysis, we believe that the reason for this
phenomenon is that when |Y | = 3, only {e}, {a, b, c}, and
X exist in the mass function. However, in this method, the
overall uncertainty is accumulated fromall the focal elements
of each cardinality, as shown in (14), so the value is relatively
small in this case.

Taking into account Examples 3, 4, 5, 6, and 7, we com-
pare the performance from five aspects: (1) Distinguishing
the ’ignorance’ and ’equal probability’; (2) Identifying the
similarity relationship between focal elements; (3)Maintain-
ing good similarity measurement under high cardinality of
frame of discernment; (4) Identifying the quantity relation-
ship between focal elements; (5) Exhibiting a linear trend
with the changing cardinality of focal elements. In Table 8,
it can be seen that our proposed BIED entropy has the best
performance compared to other methods.

Example 8 Suppose X = {a, b, c, d, e, f , g, h, i, j} and
given a mass function as follows

m (b) = α,m (St ) = 1 − α

Fig. 6 The variation trend of
uncertainty with |Y | for different
methods
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Table 7 Uncertainty measure
with |Y | for different methods in
Example 7

|Y | Y Ed [16] iTU I [22] IBE [24] R [25] T [26] BIED

1 {a} 2.1622 1.2470 2.1588 26.3032 12.0153 1.3823

2 {a, b} 3.4301 2.7985 3.4243 30.0585 13.5178 2.6503

3 {a, b, c} 4.0516 3.4485 4.0476 19.8837 14.3462 3.5292

4 {a, b, c, d} 5.2877 4.3985 5.2781 31.8165 15.7571 4.1868

5 {a, . . . , e} 6.1255 5.1793 6.1135 32.6999 17.9578 4.6512

6 {a, . . . , f } 6.9440 5.9793 6.9307 33.6324 21.8378 5.4697

7 {a, . . . , g} 7.7531 6.7793 7.7386 34.5880 28.6911 6.2788

8 {a, . . . , h} 8.5576 7.5793 8.5418 35.5564 40.9006 7.0833

9 {a, . . . , i} 9.3599 8.3792 9.3428 36.5328 62.8576 7.8856

where the probability α and the focal element St are both
changing, with probability α ranging from 0.01 to 0.99, and
values of St being listed in Table 9. Compared to the previous
examples, the situation in Example 8 is more complicated.
We use BIED entropy to calculate the uncertainty of themass
function, and the results are shown in Fig. 7.

In Figure 7a, it can be seen that BI ED ≥ 0, which also
verifies the non-negativity of the method.

In Figure 7b, when St = {a}, BIED shows a parabolic
trend. Since the cardinality of the focal elements in the mass
function is all equal to 1, the mass function degenerates into
a probability distribution, and when α = 0.5, the uncertainty
is maximum. When |St | > 1, in this case, the greater the
probability assigned to St , the greater the uncertainty, and
they are positively linearly correlated.

In Figure 7c, except for the case where |St | = 1, the
uncertainty always shows a positive linear correlation with
|St |, which is consistent with the results in Example 7.

Through the above examples, we verify that BIED entropy
can effectively reflect the uncertainty of the mass function,
identify the quantity and similarity relationships between
various focal elements, and exhibit a linear trend when the
cardinality of focal elements changes. Therefore, it can be
well applied in decision-making.

5 Applications in multi-sensor data fusion

In this section, we apply BIED entropy to multi-sensor data
fusion.

5.1 BIED entropy-basedmulti-sensor data fusion
method

After analyzing the performance of BIED entropy, we pro-
pose a multi-sensor data fusion method based on BIED
entropy. The process is as follows.
Step 1. Assuming that the information source is X , n pieces
of data are collected based on the information source and n
mass functions are generated.
Step 2. Calculate the BIED entropy of each mass function,
and then allocate the weight of each mass function. To be
noticed, the larger the BIED entropy of the mass function,
the greater its uncertainty will be, so it contains more infor-
mation and should be given greater weight. We define the
weight allocation equation as follows

W (mi ) = BI ED (mi )
n∑

i=1
BI ED (mi )

(23)

Step 3. According to (23), the original mass functions are
reconstructed into a new mass function m∗. The reconstruc-
tion calculation equation is as follows

m∗ (A) =
n∑

i=1

W (mi ) × mi (A) (24)

Step 4. Use theDempster’s combination rule to perform n−1
fusion on m∗.

F
(
m∗) = (((

m∗ ⊕ m∗) ⊕ m∗) ⊕ . . .
)
n−1 (25)

Table 8 Performance
comparison between BIED
entropy and other advanced
existing methods

Performance Ed [16] iTU I [22] IBE [24] R [25] T [26] BIED

(1) T T T T T T

(2) F F T F F T

(3) F F F F F T

(4) T T T F T T

(5) T T T F F T
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Table 9 Values of St in Example 8

t St

1 {a}
2 {a, b}
3 {a, b, c}
4 {a, b, c, d}
5 {a, b, c, d, e}
6 {a, b, c, d, e, f }
7 {a, b, c, d, e, f , g}
8 {a, b, c, d, e, f , g, h}
9 {a, b, c, d, e, f , g, h, i}
10 {a, b, c, d, e, f , g, h, i, j}

The process of the multi-sensor data fusion method based
onBIEDentropy is shown in Fig. 8 andAlgorithm1.Because
the BIED entropy does not satisfy the additivity, at the end of
Algorithm 1, we use Dempster’s combination rule to obtain
the fusion result. This property makes BIED entropy unable
to judge the overall state of the system by adding individuals.
It can only reflect the uncertainty of a single mass function.
The set inconsistency and non-subadditivity of BIEDentropy

cannot fully satisfy the five properties of information entropy
proposed by Klir and Wierman [23], which makes it limited
in reflecting entropy change.

5.2 Experiments

In this subsection, we use seven advanced methods: belief
entropy(Ed ) [16], the iTU I method(iTU I ) [22], Cui’s IBE
method(IBE) [24], Renyi entropy-based method(R) [25],
Gao’s Tsallis entropy-based method(T) [26], plausibility
entropy(HPl ) [37] and fractal-based belief entropy(EFB)
[38] for comparison. The data related to these experiments
can be obtained from the UCI machine learning database.
We use six types of datasets from this database to analyze
the performance of these methods. A brief description of the
datasets is provided as follows:

(1) Iris Dataset: The Iris dataset contains 150 samples,
divided into three categories: Setosa, Versicolor, andVir-
ginica. Each category includes 50 samples, each of them
containing 4 attributes, namely sepal length (SL), sepal
width (SW), petal length (PL), and petal width(PW).

(2) Wine Recognition (WR) Dataset: This dataset includes
13 different chemical characteristics measured from

Fig. 7 The relationship between
uncertainty and α − St in
Example 8
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Algorithm 1 BIED entropy-based multi-sensor data fusion
method
Input: M = {m1,m2, . . . ,mn}, 2X = {

A1, A2, . . . , A2|X |
}

Output: F (m∗)
1: for i = 1, i ≤ n do
2: for j = 1, j ≤ 2|X | and mi

(
A j

) �= 0 do
3: if mi = 1 then
4: dM

(
A j

)
= 1.

5: else
6: Calculate Bel

(
A j

)
, Pl

(
A j

)
.

7: dE
(
A j

) =
√
Bel

(
A j

)2 + (
Pl

(
A j

) − 1
)2.

8: dN
(
A j

) = dE (A j )
2−1

2(mi (A j )−1)
.

9: end if
10: end for
11: for j = 1, j ≤ 2|X | and mi

(
A j

) �= 0 do
12: if ∃Ak ⊆ A j and k �= j then
13: dM

(
A j

)
= dM

(
A j

)
+ dN (Ak).

14: end if
15: end for

16: BI ED (mi ) = − ∑

A j⊆X
mi

(
A j

)
log

(
dM(A j )

2|A j |−1

)
.

17: end for
18: for i = 1, i ≤ n do
19: W (mi ) = BI ED(mi )

n∑

i=1
BI ED(mi )

.

20: end for
21: for j = 1, j ≤ 2|X | do
22: m∗ (

A j
) =

n∑

i=1
W (mi ) × mi

(
A j

)
.

23: end for
24: Obtain the fusion reslut F (m∗) using (25).
25: return F (m∗);

three types of wine, including a total of 178 samples.
It has been widely used in classification and clustering
testing.

(3) BostonHousePrice (BHP)Dataset: This dataset contains
506 housing data from the Boston area, each with 13
variables (such as crime rate, property tax rate, number
of rooms, etc.) and one target variable (median housing
price). Tobetter apply to the experiments,wedivide these
samples into three categories according to the median
value of housing prices.

(4) Wheat Seeds (WS) Dataset: This dataset stores the
area, perimeter, compaction, grain length, grain width,
asymmetry coefficient, grain ventral groove length, and
category of different varieties of wheat seeds. It has a
total of 210 records, 7 features, and three categories.

(5) Rice Dataset: This dataset contains 3810 pieces of data
and two rice varieties, Osmancik and Cammeo. Each
grain of rice includes 7 morphological characteristics,
such as area, perimeter, major axis length, minor axis
length, eccentricity, convex area, and extent.

(6) Heart Disease (HD) Dataset: This dataset contains 1025
examples and 13 characteristics such as age, sex, resting

Fig. 8 Flow chart of multi-sensor data fusion algorithm based on BIED
entropy

blood pressure, maximum heart rate, etc. The target
attribute is whether the patient has heart disease.

Before experimenting, for eachdataset,we convert the val-
ues of attributes into mass functions according to the interval
number-based mass function generation method [39]. Then
the fusion of mass functions and robustness measurement are
carried out.

5.2.1 Fusion of mass functions

In this experiment, we calculate the fusion results of different
measures for data sets and compare their target recognition
ability. First, as an example, we randomly selected 80% sam-
ples of Iris data as the training set to construct themodel, with
an equal amount of data extracted for each category. Then we
randomly select a piece of data (SL: 7.3, SW: 2.9, PL: 6.3,
PW: 1.8) as test data, and use the interval number to gener-
ate four mass functions listed in Table 10. In the table, Se
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Table 10 Generated mass function

m (·) SL SW PL PW

Se 0.0878 0.1037 0.0855 0.0941

Ve 0.1348 0.1355 0.1830 0.2424

V i 0.2290 0.1311 0.4529 0.2911

Se, Ve 0.1034 0.1692 0.0000 0.0000

Se, V i 0.1286 0.1340 0.0000 0.0000

Ve, V i 0.1878 0.1574 0.2785 0.3723

Se, Ve, V i 0.1286 0.1692 0.0000 0.0000

represents Setosa, Ve represents Versicolour, and Vi repre-
sents Virginica.

Given that the actual category isVirginica,we compare the
ability of several different uncertainty measures to identify
this target. The fusion results obtained by these methods are
recorded in Table 11.

By analyzing thesemethods, theBIED entropy assigns the
greatest probability 0.6287 to the actual category Virginica,
and the smallest probability of incorrect categories Setosa
and Versicolor, making it the most accurate for target recog-
nition. Moreover, BIED entropy allocates less probability to
multiple sets such as {Se, Ve} and {Se, V i}, which reduces
the difficulty of decision-making.

To make the results more convincing, we use the same
method as the Iris dataset to perform experiments on other
datasets. The experimental process is shown in Algorithm
2. The parameter BPA is the mass function generated by
this data, target Set is the target set of each data set, and
methodSet is different existing methods participating in the
comparison.

After that, we present the values of belief assigned to
the correct target for each dataset using different uncertainty
measures in Fig. 9. For all six datasets, BIED entropy allo-
cates higher belief to the correct target sets, while other
methods such as EFB and R assign lower belief for WR
and WS datasets and are less stable. This can verify the high
recognition capability of BIED entropy.

Algorithm 2 The fusion process of mass functions for each
dataset in section 5.2.1
Input: BPA = {m1,m2, . . . ,mk}, methodSet ={

meth1,meth2, . . . ,meth p
}
, target Set = {

O1, O2, . . . , Oq
}

Output: M∗
1: Suppose the correct target Ocor .
2: for v = 1, v ≤ p do
3: for i = 1, i ≤ k do
4: Calculate BI ED (mi ).
5: end for
6: for i = 1, i ≤ k do
7: Calculate W (mi ) = BI ED(mi )

k∑

i=1
BI ED(mi )

.

8: end for
9: for j = 1, j ≤ 2|q| do

10: m∗
v

(
A j

) =
k∑

i=1
W (mi ) × mi

(
A j

)
.

11: end for
12: Obtain the fusion reslut F

(
m∗

v

)
using (25), and letm∗

v = F
(
m∗

v

)
.

13: h = argmax1≤ j≤2|q|
{
m∗

v

(
A j

)}
.

14: if Ah = Ocor then
15: Append m∗

v (Ah) to Set of M∗.
16: end if
17: end for
18: return M∗;

5.2.2 Robustness measurement

In thismeasurement,we take the proportion of training sets as
the experimental variable, ranging from 20% to 80%, to test
the stability and availability of BIED entropy under differ-
ent conditions. We still compare BIED entropy with several
existing methods. First, we calculate the recognition accu-
racy of several methods in the test set and provide details of
the target recognition performance in different data sets. Sec-
ond, we add F1-Score as a new metric, and for each dataset
and each method, the average F1-Score values across all test
sets are provided. Finally, we collect the total results of these
two metrics to prove the robustness of BIED entropy.

The specific process of different measurement methods in
a data set can be seen in Algorithm 3. As an explanation,
the parameter test Set is the test set data, correct Set is the
correct category in each test set data, target Set is the target

Table 11 Using different
methods to fuse the generated
mass function in Iris data

m (·) Ed [16] iTU I [22] IBE [24] R [25] T [26] HPl [37] EFB [38] BIED

Se 0.0469 0.0433 0.0372 0.0531 0.0373 0.0462 0.0399 0.0223

Ve 0.3267 0.3287 0.3222 0.3200 0.3235 0.3265 0.3229 0.3093

V i 0.5832 0.5849 0.5988 0.5836 0.5973 0.5841 0.5951 0.6287

Se, Ve 0.0032 0.0029 0.0023 0.0038 0.0023 0.0031 0.0025 0.0011

Se, V i 0.0029 0.0026 0.0020 0.0035 0.0021 0.0028 0.0023 0.0010

Ve, V i 0.0369 0.0374 0.0372 0.0358 0.0374 0.0368 0.0371 0.0376

Se, Ve, V i 0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0000
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Algorithm 3 The experimental process of robustness mea-
surement for each dataset
Input: test Set = {BPA1, BPA2, . . . , BPAk}, correct Set =

{Cor1,Cor2, . . . ,Cork}, target Set = {
O1, O2, . . . , Oq

}
,

methodSet = {
meth1,meth2, . . . ,meth p

}
, Proportion =

{p1, p2, . . . , px }
Output: Results∗
1: for v = 1, v ≤ p do
2: for t = 1, t ≤ x do
3: k∗ = 0, Accuracy rate Acct = 0.
4: for i = 1, i ≤ k do
5: Obtain the fusion reslut F

(
m∗

i

)
in the sameway as in Algo-

rithm 2, and let m∗
i = F

(
m∗

i

)
.

6: h = argmax1≤ j≤2|q|
{
m∗

i

(
A j

)}
.

7: if Ah = Cori then
8: k∗ = k∗ + 1.
9: end if
10: end for
11: Acct = k∗

k .
12: Append Acct to Set of Accuracy∗.
13: Calculate the Precision rate Prt and Recall rate Rrt .
14: Get the F1-Score FSt = 2Prt Rrt

Prt+Rrt
.

15: Append FSt to Set of F1 − Score∗.
16: end for
17: According to Accuracy∗, calculate the average accuracy Accv

of methv .
18: Append Accv to Set of Acc

∗
.

19: According to F1− Score∗, calculate the average F1-Score FSv

of methv .
20: Append FSv to Set of FS

∗
.

21: end for
22: Append Accuracy∗, F1 − Score∗, Acc

∗
and FS

∗
to Set of

Results∗.
23: return Results∗;

set identified by themethod,methodSet is different methods
for comparison, and Proportion is the proportion of the
training set.

Metric of accuracy: First, we provide the accuracy
obtained by different methods in Fig. 10, with the propor-
tion of training sets as the variable. Specifically, for a data

set, if 20% of the data is the training set, the remaining 80%
is the test set. It can be seen that excluding the WS dataset,
BIED entropy has a relatively superior performance in dif-
ferent datasets. In Figure10a, the BIED entropy consistently
maintains the highest accuracy. In Figure 10b, although it
does not perform well in the low training set proportion, it
shows higher accuracy than other methods when the propor-
tion increases. In Figure 10c, e, and f, there is a relatively
small difference between the results obtained by different
measures. Although some methods, such as R and HPl , have
high accuracy in Fig. 10d, they have large fluctuations inWR
and Rice datasets and have less stability.

Second,we take the average of all the test sets and show the
details of the recognition accuracy of each data set in Fig. 11,
where the targets for Iris dataset, WR dataset, BHP dataset,
and WS dataset are marked as O1, O2, and O3 respectively,
and the targets for Rice dataset and HD dataset are repre-
sented by O1 and O2 respectively.

The proposed BIED entropy shows high accuracy in both
Fig. 11a and b. In Figure 11d, although the accuracy of BIED
entropy in theWS dataset decreases, it still maintains around
0.85. The method based on Renyi entropy [25] exhibits the
highest accuracy in the recognition of O2 and O3, but its
recognition accuracy of O1 is the lowest, and has the largest
variation range in the WS dataset. It also has less accuracy
in the Iris, WR, and Rice datasets. Other methods such as
iTU I and Ed are also unstable. In Figure 11c, e and f, the
BIED entropy also shows relatively high accuracy compared
to other methods, staying above the medium level.

Metric of F1-Score: According to Algorithm 3, we ana-
lyze the calculation results of F1-Score here. The F1-Score
combines Recall rate(Rr) and precision rate(Pr), and the
closer the value is to 1, the better the model is. In Figure 12,
we clearly list the average F1-Score values across all test
sets for different methods and different data sets, i.e., FS

∗

in Algorithm 3. It can be seen that BIED entropy still has

Fig. 9 Fusion results of six
types of datasets using different
methods
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Fig. 10 Accuracy at different
training sets in each dataset

good stability, with high values in Iris and WR datasets.
Although its result in the WS dataset is relatively low, the
difference with other methods is slight. In the BHP, Rice and
HD datasets, the results of all methods are similar. It is worth
noting that the BHP dataset has overall low values in these
experiments, which may be related to the conversion of its
continuous data into categorical data.

At this point, we have completed the experiment on the
two metrics of accuracy and F1-Score. In Table 12, for each
dataset and each method, we present specific values for the
average accuracy and average F1-Score across all test sets,
Acc

∗
and FS

∗
in Algorithm 3 respectively. For eachmethod,

we calculate the means of the twometrics and list them at the
end of the table. Obviously, the BIED entropy exhibits the
highest mean in both accuracy and F1-Score, 0.7933 and
0.7729 respectively. Although its performance in the WS
dataset is not prominent, it maintains a good recognition in
the other datasets and wins in the overall average. Through
the above experiments, we have verified the robustness of
BIED entropy, which can maintain high accuracy and sta-
bility in a large number of tests, and is suitable for practical
target recognition.

6 Conclusion

The D-S evidence theory can effectively fuse information in
several scenarios, however, the uncertainty measure of the
mass function still needs to be studied. In this paper, we pro-
pose a Belief Interval Euclidean Distance (BIED) entropy.
This method includes two main factors of uncertainty mea-
sure, namely nonspecificity and discord, and can identify
the quantity and similarity relationships between different
focal elements. It shows outstanding performance in various
numerical examples and experiments of multi-sensor data
fusion.With the increase of the cardinality of focal elements,
the uncertainty measure of BIED entropy exhibits a positive
linear correlation similar to Deng entropy, which is avail-
able in the practical application of data fusion. Some topics
related to this method are discussed as follows:

(1) Computational complexity and applicability
Similar to someexistingmethods,BIEDentropydoes not
satisfy the additivity and subadditivity, and the fusion of
mass functions relies on Dempster’s combination rule.
The calculation process of BIED entropy is compli-
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Fig. 11 Average accuracy for
each target in each dataset
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Fig. 12 F1-Score of six types of
dataset

cated and involves many variables, which is caused by
fully reflecting the relationship between focal elements.
With the increase of cardinality of focal elements, the
similarity relationship will be more complex, and the
computational complexity may increase exponentially,
which is a problem that these existing methods have not
solved. Therefore, BIED entropy is more suitable for
data sets with small and medium-sized target sets, and
more sensitive to mass functions with similar cardinality
of focal elements. It is also useful in distinguishing sev-
eralmass functionswith different similarity relationships
of focal elements. When the difference of cardinality is
large but the similarity relationship is small, relatively
simple methods such as Deng entropy can be used.

(2) Physical property of BIED entropy

Since BIED entropy is based on belief interval and
Euclidean distance, how to reasonably use the belief
function and plausibility function to measure the gap
from the extreme case [0, 1] is a physical property.
Similar methods, such as the iTU I , have a relatively
one-sided definition of this distance, and in some cases,
the results are contrary to common sense. The dN and
dM proposed in this paper make entropy applicable to
more scenes, but it is limited to a simple accumulation
of focal elements with similar relations. Moreover, a rea-
sonable physical explanation does not involve too much
machine learning knowledge, which can more vividly
describe the characteristics of the method and point out
the research gaps for subsequent research.

(3) Future research direction

Table 12 The results of two metrics in each dataset of experiment 5.2.2

Metric Dataset Ed [16] iTU I [22] IBE [24] R [25] T [26] HPl [37] EFB [38] BIED

Accuracy Iris 0.9349 0.9343 0.9376 0.9200 0.9376 0.9376 0.9376 0.9388

WR 0.8491 0.8429 0.8595 0.8403 0.8535 0.8456 0.8567 0.8794

BHP 0.5537 0.5508 0.5546 0.5562 0.5538 0.5511 0.5537 0.5553

WS 0.8767 0.8715 0.8721 0.8880 0.8717 0.8755 0.8756 0.8659

Rice 0.9046 0.9047 0.9046 0.9031 0.9049 0.9048 0.9046 0.9048

HD 0.6153 0.6150 0.6151 0.6149 0.6161 0.6158 0.6163 0.6154

Mean 0.7891 0.7865 0.7906 0.7871 0.7896 0.7884 0.7908 0.7933

F1-Score Iris 0.9255 0.9232 0.9278 0.9121 0.9278 0.9278 0.9278 0.9291

WR 0.8116 0.8037 0.8291 0.7944 0.8203 0.8073 0.8243 0.8593

BHP 0.4896 0.4879 0.4901 0.4910 0.4895 0.4881 0.4895 0.4901

WS 0.8770 0.8720 0.8729 0.8869 0.8725 0.8759 0.8762 0.8672

Rice 0.9048 0.9050 0.9047 0.9028 0.9051 0.9050 0.9048 0.9049

HD 0.5870 0.5867 0.5857 0.5845 0.5879 0.5876 0.5874 0.5865

Mean 0.7659 0.7631 0.7684 0.7620 0.7672 0.7653 0.7683 0.7729
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Since fuzzy sets can reflect multiple decision attributes,
in future work, we will study the distance measure based
on pythagorean hesitate fuzzy sets to further improve
the nonspecificity and discord measurement of the mass
function, and improve the accuracy and efficiency of
uncertainty measure.

Appendix A

Some commonly used notations in this article are provided
in Table 13 to help readers understand.

Table 13 Notation list

Notation Definition

Ed Belief entropy

iTU I iTU I method

I BE Cui’s improved belief entropy

R Chen’s Renyi entropy-based method

T Gao’s Tsallis entropy-based method

Hpl Plausibility entropy

EFB Fractal-based belief entropy

Bel (A) Belief function

Pl (A) Plausibility function

d I
E Euclidean distance

dE Improved Euclidean distance

dN Redistribution coefficient

dM Combination coefficient

BI ED (m) BIED entropy

W (m) The assigned weight

F (m∗) The fusion result

Appendix B

1. Non-negativity. This property means BI ED (m) ≥ 0.

Proof Suppose X is a frame of discernment, there exists a
focal element A ⊆ X ,
If m (A) = 1, then

dM (A) = 1 ⇒ m (A) log
1

dM (A)
= 0

We know that

BI ED (m) =
∑

A⊆X

m (A) log
(
2|A| − 1

)
≥ 0

If m (A) < 1,
Equation (18) can be written as

BI ED (m) = −
∑

A⊆X

m (A) log

(
dM (A)

2|A| − 1

)

For any subset B ⊆ A, we know that

{
Bel (B) ≥ m (B)

Pl (B) = 1 − Bel
(
B̄

) ≥ Bel (B)

First,

dM (A) =
∑

B⊆A

dN (B) =
∑

B⊆A

dE (B)2 − 1

2 (m (B) − 1)

=
∑

B⊆A

Bel (B)2 + (Pl (B) − 1)2 − 1

2 (m (B) − 1)

≤
∑

B⊆A

m (B)2 − 1

2 (m (B) − 1)
=

∑

B⊆A

m (B) + 1

2

Because

m (B) ∈ [0, 1) ⇒ m(B)+1
2 ∈ [ 1

2 , 1
)

It is easy to know that

dM (A) ≤ 2|A|−1
2

Second,

dE (B)2 = Bel (B)2 + (Pl (B) − 1)2

= Bel (B)2 + Bel
(
B̄

)2 ≤ Bel (B) + Bel
(
B̄

) ≤ 1

so

dN (B) = dE (B)2 − 1

2 (m (B) − 1)
≥ 0 ⇒ dM (A) > 0

Therefore,

0 <
dM (A)

2|A| − 1
≤ 1

2

Then

BI ED (m) = −
∑

A⊆X

m (A) log

(
dM (A)

2|A| − 1

)
> 0

In summary, BI ED (m) ≥ 0. Therefore, BIED entropy has
non-negativity. ��
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2. Probability Consistency. In the frame of discernment X ,
when the cardinality of all focal elements in the mass
function is 1, BIED entropywill degenerate into Shannon
entropy.

Proof If ∀A ⊆ X ||A| = 1 , and m (A) �= 1

dE (A) =
√
Bel (A)2 + (Pl (A) − 1)2

=
√
m (A)2 + (m (A) − 1)2

and

dN (A) = dE (A)2 − 1

2 (m (A) − 1)
= 2m (A)2 − 2m (A) + 1 − 1

2 (m (A) − 1)
= m (A)

Then, Equation (18) can be written as

BI ED (m) = −
∑

A⊆X

m (A) logm (A)

This form is consistent with Shannon entropy.
Specifically, when m (A) = 1, BI ED (m) = 0, shows the
same value as Shannon entropy. Therefore, BIED entropy
can degenerate into Shannon entropy. ��

3. Set Inconsistency. There exists a focal element A ⊆ X ,
and when m (A) = 1, BI ED (A) �= log |A|, so it does
not meet Hartley measurement requirements.

Proof For m (A) = 1,

dM (A) = 1 ⇒ m (A) log
1

dM (A)
= 0

then

BI ED = log
(
2|A| − 1

)

It’s obvious that only when |A| = 1, BI ED = log |A|. For
|A| > 1, 2|A| − 1 > |A|, BI ED (A) �= log |A|.
Therefore, it does not satisfy set consistency. ��

4. Nonadditivity. Suppose X and Y are two different frames
of discernment, mX and mY are two mass functions
respectively. This property means BI ED (mX ⊕ mY ) �=
BI ED (mX ) + BI ED (mY ).

Proof According to the thought of proof by contradiction, if
it satisfies additivity, then

m (C) = mX (A)mY (B)

BI ED (C) = BI ED (mX ⊕ mY )

=
∑

C⊆X×Y

m (C) log
dM (C)

2|C| − 1

where

dM (C) =
∑

(x,y)∈{A×B}
dN (x, y) = dM (A × B)

=
∑

(x,y)∈{A×B}

dE (x, y)2 − 1

2 (mX (A)mY (B) − 1)

=
∑

(x,y)∈{A×B}

Bel (x)2 Bel (y)2+Pl (x) Pl (y) (Pl (x) Pl (y)−2)

2 (mX (A)mY (B)−1)

And

dM (A) = ∑

x∈A

Bel(x)2+(Pl(x)−1)2

2(mX (x)−1)

dM (B) = ∑

y∈B
Bel(y)2+(Pl(y)−1)2

2(mY (y)−1)

Then, we can know that

BI ED (mX ) + BI ED (mY ) =
∑

A⊆X

mX (A) log
dM (A)

2|A| − 1

+
∑

B⊆Y

mY (B) log
dM (B)

2|B| − 1
�= BI ED (C)

Therefore,

BI ED (mX ⊕ mY ) �= BI ED (mX ) + BI ED (mY )

��

5. Nonsubadditivity. Suppose X and Y are two different
frames of discernment, mX and mY are two mass func-
tions respectively.This property indicates that BI ED (mX )

+BI ED (mY ) ≥ BI ED (mX ⊕ mY ) does not always
valid.

Proof Suppose X = {x1, x2} and Y = {y1, y2} are two
frames of discernment. Given two mass functions as follows

mX (X) = 1
mY (Y ) = 0.5,mY (y1) = 0.3,mY (y2) = 0.2
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Then, the synthesized mass function m (X × Y )is repre-
sented as follows

m (x1y1, x2y1) = 0.3
m (x1y2, x2y2) = 0.2
m (XY ) = 0.5

Using BIED entropy to calculate its uncertainty, the results
are as follows

BI ED (mX ) = 1.5850
BI ED (mX ) = 1.0639
BI ED (mX ⊕ mY ) = 3.5300

Because

BI ED (mX )+BI ED (mY )=2.6489< BI ED (mX ⊕ mY )

BIED entropy does not have nonsubadditivity. ��
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