
https://doi.org/10.1007/s10489-024-05548-1

Multi-task recommendation based on dynamic knowledge graph

Minwei Wen1 · Hongyan Mei1 ·Wei Wang2 · Xiaorong Xue1 · Xing Zhang1

Accepted: 19 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Introducing knowledge graphs into recommender systems effectively solves sparsity and cold start problems. However,
existing KG recommendation methods such as MKR mostly rely on static knowledge graphs, ignoring that nodes and edges
in the graph dynamically change over time, leading to problems such as insufficient timeliness, inability to describe context
dependencies, data redundancy, and noise. We propose a multi-task learning method for recommendation enhancement
based on dynamic knowledge graphs, MTRDKG, which models the dynamic knowledge graph as a series of continuous
time events. Specifically, after node events (node-level or interactions between nodes) occur, the memory state of the nodes
is updated through a temporal graph network (TGN), and node temporal embeddings are generated to capture the nodes’
attributes, contextual relationships, and dynamic change information. We use the node embeddings generated by TGN in
conjunction with the recommended items as a shared part, aiming to integrate dynamic knowledge graph information into
the recommendation task, thereby improving the recommendation effect. Extensive experiments were conducted with four
real-world datasets and state-of-the-art baseline methods. The results show that MTRDKG outperforms existing methods in
terms of recommendation accuracy and knowledge graph embedding quality, especially in dealing with datasets of different
sparsity levels.

Keywords Recommender systems · Knowledge graphs · Multi-task learning · Temporal graph network

1 Introduction

Recommender systems (RS) are intelligent systems designed
to address information overload and provide personalized
recommendations, whereas collaborative filtering (CF) algo-
rithms are among the most commonly used recommendation
technologies. However, CF algorithms have inherent issues

B Hongyan Mei
liaoning_mhy@126.com

Minwei Wen
w18779721623@163.com

Wei Wang
wangwei03770377@126.com

Xiaorong Xue
xr_986@163.com

Xing Zhang
dr_zhangxing@163.com

1 School of Electronics and Information Engineering, Liaoning
University of Technology, Jinzhou 121001, Liaoning, China

2 School of Electrical Engineering, Liaoning University
of Technology, Jinzhou 121001, Liaoning, China

such as cold starts and sparsity. To address these problems,
some researchers have attempted to introduce side infor-
mation into RS, e.g., social networks, item attributes, and
multimedia. Knowledge graphs (KG) organize entities and
relationships in the real world graphically, capable of effi-
ciently expressing the deep semantic connections between
entities [1]. Moreover, KG introduces semantic relevance
between items, which can capture users’ personalized pref-
erences more accurately by deeply mining the associations
between entities [2]. Therefore, integrating KG into RS has
become a research direction of great interest. Compared
to traditional RS, knowledge graph-based recommender
systems (KGRS) endow the reasoning process with more
excellent usability, making the recommendation mechanism
more transparent and enhancing the explainability of recom-
mendations [3].

Existing KGRS can generally be divided into two cate-
gories: path-based methods and embedding-based methods
[4]. (1) Path-basedmethods enhance recommendation effects
by constructing user-item graphs and utilizing the connection
patterns of entities within the graph. Although path-based
recommendation methods can intuitively use KG, they are

123

/ Published online: 3 June 2024

Applied Intelligence (2024) 54:7151–7169

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05548-1&domain=pdf
http://orcid.org/0009-0005-4067-0150

limited by manually designed meta-paths and cannot auto-
matically discover and reason about potential connection
patterns. (2) Embedding-based methods typically directly
adopt information from KG to enhance the feature repre-
sentations of items or users. This approach is one of the
most commonly used methods in designing KGRS. Effec-
tively integrating KG information relies on knowledge graph
embedding (KGE) techniques, which are aimed at mapping
entities and relationships in KG into a low-dimensional vec-
tor space while preserving the inherent structure of KG.
For example, CKE [5] uses TransR [6] and autoencoders
to encode the structural knowledge and textual features of
items to enrich item representations. Similarly, JointE [7]
utilizes bidirectional convolutional operations to promote
interactions between entities and relationships to fully cap-
ture KG’s potential knowledge, while SAttLE [8] employs
many self-attention heads as the key for query-dependent
projection to capture the interaction information between
entities and relationships. However, they use different scor-
ing functions to measure the plausibility of facts, e.g., CKE
uses a distance-based scoring function to measure the plau-
sibility of a fact based on the distance between two entities,
and JointE and SAttLE uses a similarity-based scoring func-
tion to output the probability of a fact triad through a neural
network using the embeddings of the entities and the relation-
ships as the input [9]. These methods are all built on practical
KGE foundations.However,KGhas incompleteness [10] and
potential errors, and directly applying vectors obtained from
KGE techniques may negatively affect the recommendation
results.

Given the relevance and complementarity between RS
and KGE tasks, some researchers utilize multi-task learning
(MTL) methods to exploit their interrelations fully, utilizing
the useful information in the two related tasks to help improve
the generalization performance of all tasks [11]. For exam-
ple, Wang et al. [12] assist the recommendation task with
the KGE task, optimizing the recommendation task by alter-
nately learning the two tasks through the relevancy between
items in the interaction graph and entities in the knowledge
graph. However, existing methods like MKR introduce a
static knowledge graph (SKG) as side information, leading
to several issues: (1) Insufficient timeliness and inability to
reflect changes in user preferences. (2) Node and relationship
representations depend on context, and SKG cannot dynam-
ically adjust in different contexts. (3) Data redundancy and
noise, increasing the complexity of data processing.

Addressing the issues in previous works, we propose
MTRDKG, a multi-task learning method enhanced by
dynamic knowledge graphs (DKG) for recommendations.
Introducing DKG into RS is a novel and promising research
direction. Notably, various extension methods can bring pos-
itive effects. For instance, in integrated systems [13, 14],
closely combining DKG with recommendation models can

enhance the models’ ability to capture time sensitivity. In
two-stage systems [15], the DKG can provide rich contextual
information to the RS in the first stage, and this information
is used in the second stage to assist in making more accurate
recommendation decisions. However, we choose to imple-
ment DKG under the MTL framework because it can better
adapt to the characteristics between different tasks through
mechanisms such as sharing model parameters, joint train-
ing, and iterative optimization. The novelty of MTRDKG
lies in the introduction of TGN [16] to capture the temporal
changes of DKG. In response to question (1), the memory
structure in TGN can store the historical representations of
nodes and dynamically update over time, effectively captur-
ing the long-term dependencies between nodes. In response
to question (2), the graph neural network (GNN) layer serves
two functions: first, the message-passing function generates
information from the graph’s dynamic interactions, encod-
ing the relationships and interaction characteristics between
nodes. second, the message aggregation function aggregates
this generated information into a comprehensive node repre-
sentation, effectively capturing the graph’s temporal changes
and complexity. In response to question (3), Temporal atten-
tion allocates different weights to messages from different
times, better capturing cross-temporal dependencies. Fur-
thermore, the updater and embedding module in TGN can
integrate messages into the current node representation to
update node embedding representations, which are then used
to replace the entity representations in MKR as the shared
part. Experiments show that exploring the dynamic evolution
patterns of KG can enhance recommendation performance.
Additionally, sharing item knowledge facilitates training in
dynamic knowledge graph embedding (DKGE) tasks.

The main contributions of this paper are as follows:

1. We propose a multi-task learning method enhanced
by dynamic knowledge graphs for recommendations,
MTRDKG,whichmodelsDKGas a series of continuous-
time events, better reflecting the changes in the realworld.
This is the first time DKG has been integrated under the
MTL framework to enhance the performance of recom-
mender systems.

2. We use node embeddings to replace the entities in MKR
as the shared part, which includes the nodes’ features
and encompasses information about the nodes’ temporal-
ity, neighboring nodes, and edge attributes in DKG. This
approach can more comprehensively reflect the char-
acteristics of nodes in DKG, achieving more accurate
recommendations.

3. We conducted experiments on CTR prediction, Top-K
recommendation, and future link prediction on four real
datasets. The experimental results show that MTRDKG
outperforms the most advanced baseline methods in per-
formance.

123

7152 M. Wen et al.

2 Related work

Our proposed method jointly trains recommendation tasks
and DKGE tasks under the MTL framework. Therefore, this
section will briefly review the three most relevant aspects:
DKGE methods, MTL, and MTL-based KGRS.

2.1 Dynamic knowledge graph embeddingmethods

Based on the methods of processing temporal information,
DKGE methods can be divided into two categories: embed-
ding snapshot graphs [17] and modeling temporal evolution
[18].

Embedding snapshot graph methods decompose the
dynamism of KG into a series of static snapshot graphs, then
use KGE techniques to learn the evolutionary knowledge
of snapshot graphs at different time points. For example,
DynamicTriad [19] captures the structural information of
each snapshot graph and the continuity of the neighboring
snapshot graphs’ embedding representations by simulating
the triadic closure process. Dyngraph2vec [20] combines
multi-layer nonlinear networks to analyze the structural fea-
tures of each snapshot and uses recurrent network layers
to reveal the temporal evolution between snapshots. Com-
pared to DynamicTriad, Dyngraph2vec is more effective in
capturing longer-term evolution patterns. However, as the
number of snapshot graphs increases, the scalability of these
twomethods deteriorates. To address scalability issues, some
works attempt to learn the periodic patterns of nodes from
snapshot graphs. For instance, Pikachu [21] uses a tempo-
ral random walk strategy to capture the network topology
andfine-grained temporal information.Although thismethod
performswell in dynamic network anomaly detection, it con-
verges slowly. DySAT [22] combines structural and temporal
self-attention mechanisms, effectively learning DKG’s local
structures and temporal evolution. However, DySAT is sen-
sitive to the time window size setting.

Modeling temporal evolution directly embeds temporal
information in DKG to capture the temporal changes of
nodes and edges dynamically. For example, CTDNE [23] and
LSTM-Node2vec [24] adopt a time-sensitive random walk
strategy to generate continuous and consistent node embed-
dings. They reveal the temporal sequential relationships
between nodes but ignore the temporal evolution process of
specific node neighborhoods. Based on this, HTNE [25] con-
siders the neighborhood sets of nodes at different time points
through theHawkes process and uses an attentionmechanism
to determine the influence of the node’s historical neighbor-
hoods. However, HTNE requires substantial computational
resources. Unlike the methods mentioned above focused on
the temporal evolution of node embeddings, EvolveGCN
[26] focuses on the evolution of the graph model struc-

ture (i.e., network parameters), making it more sensitive to
changes in graph morphology. However, EvolveGCN highly
depends on the quality and granularity of temporal data.
TGAT [27] is an inductive representation learning model
based on temporal graphs, capable of efficiently process-
ing unknown nodes. Nevertheless, TGAT faces the issue of
information loss for exponentially expanded and invisible
neighbors. TGNs [16] is a general model based on transfer
learning. Specifically, TGAT is a particular case of TGNs
when the memory module in TGNs is absent. This paper
selects TGNs as the foundation for DKG, mainly because
TGNs are particularly suitable for handling time-sensitive
data. Secondly, TGNs use an event-driven message-passing
mechanism that can reflect the latest interactions and relation-
ships between nodes. Lastly, TGNs are a general framework
that can be flexibly applied in the recommendation domain.

2.2 Multi-task learning

MTL aims to improve model generalization ability by uti-
lizing domain-specific information in the training signals of
related tasks, with the core idea of leveraging the common-
alities and differences between different tasks to learn more
generalized and robust feature representations [28]. How-
ever, potentially harmful interactions between tasks can lead
to the issue of negative transfer, necessitating the selection of
an appropriate parameter-sharing mechanism based on task
relevance. MTL employs two common sharing mechanisms:
hard parameter sharing and soft parameter sharing [29].
Under hard parameter sharing, lower-level parameters are
fully shared, while the top layers are trained independently
for specific tasks. However, hard sharing is sensitive to task
relevance and unsuitable for improving the performance of
multiple taskswith low relevance [30].On the other hand, soft
sharing establishes independent models for each task, allow-
ing for the sharing of some helpful information between tasks
through relevance weights, such as attention mechanisms.
Compared to hard sharing, soft sharing is unaffected by task
relevance and offers greater flexibility in parameter shar-
ing. The MTRDKG model proposed in this paper adopts a
soft-sharing mechanism. RS and DKGE tasks have indepen-
dent models and parameters, learning high-order interaction
features between tasks through information-sharing units.
Notably, due to differences in data characteristics, goals,
and optimization methods between RS tasks and KGE tasks,
most current MTL-based KGRS research opts for soft shar-
ing mechanisms [31–33].

2.3 MTL-Based KGRSs

InMTL-based KGRS, recommended items and one or multi-
ple nodes inKGare associated, sharing similar neighborhood

123

7153Multi-task recommendation based on dynamic knowledge graph

structures in RS and KGE tasks, which can share similar fea-
tures in a low-level or non-task-specific latent space [12].
However, traditional KGRS methods directly adopt KGE
vectors to represent recommended users and items or asso-
ciate RS tasks with KGE tasks through simple summation
operations. Due to differences between tasks or data, this
approach may impair the effect of recommendation. MKR
[12] designed a cross-compression unit to adaptively extract
shared features between RS and KGE tasks through cross-
modal feature learning, a soft parameter-sharing mechanism
[34]. However, this unit uses an outer product for cross-
multiplication and then a one-dimensional vector parameter
for compression in joint training, leading to insufficient learn-
ing capacity for interaction features. Based on this, CAKR
[35] designed a cross-attention unit that optimizes inter-
actions between items and entities by integrating attention
mechanisms. However, MKR and CAKR share three com-
mon issues: (1) RS tasks cannot fully capture user history
information. (2) KGE tasks cannot effectively utilize deep
multi-relational semantic information. (3) Inability to effec-
tively handle datasets with varying degrees of sparsity. To
address these issues, EMKR[36]made improvements: firstly,
using attention mechanisms in RS tasks to aggregate user
historical behaviors, accurately capturing user interests. Sec-
ondly, relation-aware graph convolutional networks in KGE
tasks are used to capture deep multi-relational domain fea-
tures. Thirdly, a two-stage training strategy should be adopted
to handle datasets with different sparsity levels. However, the
above threemodels only introduceKG as a single type of side
information, reinforcing item attributes but not considering
user relationships. TMKG [37] utilizesMTL to integrate two
types of edge information from trust graphs and KG in an
end-to-end manner, exploring the fine-grained implicit rela-
tionships between external heterogeneous graphs. To address
the issues of generality and robustness in existing meth-
ods, Multi-Rec [38] uses cross units to separately learn
the feature information and structural information of users
and KG, then uses exchange units to learn the association
information between tasks. It should be noted that, unlike
methods [12, 35–38], which introduce SKG as side informa-
tion, MTRDKG will dynamically update KG.

3 Preliminary

Static graph SKG is usually represented by G = (V , E),
where V = {v1, v2, . . . , vn} represents the set of nodes, and
E ∈ V × V is the set of edges. Each node and each edge
have attributes vi and ei j respectively, and i, j = 1, 2, . . . , n.
A graph neural network (GNN) aims to update the current
node’s embedding zi by aggregating the embedding infor-
mation of neighboring nodes, denoting data transfer from

neighborhood node i to node j . The transfer process is sub-
ject to the principle of local consistency.

mi j = MSG(vi , v j , ei j) (1)

zi = AGG(
{
mi j | j ∈ ϕi

}
, vi) (2)

where ϕi = { j : (i, j) ∈ E} denotes the set of neighbour-
hoods of i , MSG (·)and AGG (·) are learnable information
transfer and aggregation functions, respectively.

Dynamic graphs Wemodel theDKGas a collection of events
G = {X(t)|t ∈ (t1, t2, . . . , tn)} based on a sequence of time.
The events reflect the structure and attribute changes of the
KG at time 0 ≤ t1 ≤ t2 ≤, . . . ,≤ tn . They can generally be
divided into two categories: (1) A node-wise event is repre-
sented by vi (t). Here, i and v denote the node’s index and
attribute value. When the event vi (t) has occurred before
time t , it can be deleted or updated; otherwise, it is cre-
ated. (2) Node interaction events are represented by ei j (t),
involving relationships between two or more nodes, such as
edge creation, deletion, and attribute changes. Then the set of
nodes V (T) = {i : ∃vi (t) ∈ G, t ∈ T } and the set of edges
E(T) = {

(i, j) : ∃ei j (t) ∈ G, t ∈ T
}
can be defined accord-

ing to the above, while ϕh
i (T) = { j : (i, j) ∈ E(T), h ∈ Z}

denotes the set of h-hop neighbours of node i in time interval
T = [0, t] and Z denotes the set of positive integers.

Recommendedquestions Given a set of usersU = {u1, u2,
. . . , uM } and a set of items K = {k1, k2, . . . , kN }, where M
denotes the number of users and N denotes the number of
items. The items can be videos, products, information, etc.
The user-item potential interaction matrix is Y ∈ RM×N

when yuk = 1 indicates that the user interacts with items
like clicking, favoriting, buying, etc., while yuk = 0 is
the opposite. In this paper, given the user-item interaction
matrix Y and DKG G, our goal is to train the function
ŷuk = F(u, v|�,Y ,G) to predict the potential interest of
user u in non-interactive item k, where � represents the
parameters of the prediction function, and ŷuk represents the
probability of the user u interacting with item k. Table 1
summarizes the key notations used in this paper for ease of
reference.

4 Proposedmethod

In this section, we first summarize the overall framework
of the MTRDKG model. Next, we detail the design of the
Information Sharing Unit (ISU), Recommendation Unit, and
DKGEUnit. Finally, we discuss the training algorithm of the
MTRDKG model.

123

7154 M. Wen et al.

Table 1 The key notations used
in the paper

Symbol Description

G = {X (t) |t ∈ (t1, t2, . . . , tn)} The set of time-stamped events

vi (t) , ei j (t) Node-wise event, interaction even

T = [0, t] , Z The time interval, the set of positive integers

V (T) = {i : ∃vi (t) ∈ G, t ∈ T } The set of nodes

E (T) = {
(i : j) : ∃ei j (t) ∈ G, t ∈ T

}
The set of edges

ϕh
i (T) = { j : (i, j) ∈ E (T) , h ∈ Z} The set of h-hop neighbors of node i

U = {u1, u2, . . . , uM } The set of users

K = {k1, k2, . . . , kN } The set of items

Y ∈ RM×N Interaction matrix

ŷuk = F (u, v|�, Y ,G) Goal function

→ RS,→ DKGE The latent vectors of items and nodes

M (·) , σ (·) The fully connected network and non-linear activation function

I SU The information sharing unit

si (t) The memory state of node i at time point t

si
(
t−

)
The memory state of node i before time point t

a (i, j) The attention coefficient

mi (t) , Mi (t) The message and the aggregated message

ω The hyperparameter controlling the time window

h(l−1)
i (t) The representation of node i at the l − 1 th layer

ql (t) , Kl (t) , V l (t) The query, keys, values

� (·) The time encoding function

H (l) (t) The concatenated neighborhood representation

h̃(l)
i (t) The neighborhood representation calculated using attention

mechanism

zi (t) = h(l)
i (t) The temporal embedding of node i

Ltotal ,LRS,LDKGE ,LREG The loss function of overall, RS, DKGE, regularization term

4.1 Framework

This paper re-examines the relationships between nodes and
edges in KGs and the relationships between KGs and items.
Due to the strong correlation between items and nodes, the
rich structured information and semantic associations inKGs

can be transmitted to items through nodes, thereby influ-
encing recommendation tasks. Simultaneously, due to this
strong correlation, items will also affect nodes. However,
SKGs lack dynamic information, leading to a series of issues
such as timeliness. For example, Fig. 1 shows an example of
a DKG in theYAGOdataset from time t0 to tn . From t0 → t1,

WashingtonAmerican
capital

England

cooperating

Ashton

make a statement

WashingtonAmerican
capital

England

consult

Japan

make a statement

Chunk

Kerry

consult

WashingtonAmerican
capital

England

consult

Japan

complain

Qatar

China

visit

Sheikh

t0 t1 tn

...

Fig. 1 A simple dynamic knowledge graph in the YAGO dataset

123

7155Multi-task recommendation based on dynamic knowledge graph

nodes like Japan, Kerry, andChunk were added, while the
relationship between node American and node England
changed. It is evident that nodes and their interrelationships
in KGs constantly evolve, but these changes are not reflected
in the KGs for SKGs. Based on this, we designed a multi-
task knowledge-sharing strategy based onDKGs. Thismodel
models DKGs as continuous time-stamped events, updates
attributes and relationships between nodes in real time, and
cross-fuses node embeddings with recommendation items.
Node embeddings contain feature information of domain
nodes, temporal information, and edge feature information,
effectively capturing the spatiotemporal structural features
of DKGs. The overall framework of the MTRDKG is shown
in Fig. 2.

4.2 Information-sharing units

InMTRDKG,we still adopt the cross-compression unit from
MKR. However, unlikeMKR, which learns high-order inter-
action features between items and entities, we use node
embedding representations learned through TGN to replace
entities. Given the item vector k and node embeddings
v = zi (t), we use the L layer ISU to extract their feature

expressions:

[
vl+1, kl+1

] = I SU (vl , kl)

kL = I SU L (v, k) [k]
vL = I SU L (v, k) [v]

(3)

Here, the suffixes [k] and [v] distinguish the output of
the latent feature vectors of recommended items and nodes.
At the l-th layer, we input the node embedding at time t
and the corresponding item vector into the ISU for cross-
compression operation, ultimately obtaining the item and
node vectors for the l-th layer. The calculation expression
for ISU is:

kl+1 = Cl · w1
k + CT

l · w2
k + bk (4)

vl+1 = Cl · w1
v + CT

l · w2
v + bv (5)

WhereCl represents the crossmatrix obtained by the cross
multiplication of the item vector and the node embedding
vector, and CT

l is its transpose matrix. Introducing learnable
parameters such as w1

k , w
1
v , w

2
k , w

2
v , bk , and bv to compress

the high-dimensional matrix into a low-dimensional vector.

Fig. 2 MTRDKG model
structure diagram. (a)
Recommendation unit:
Connects the user vector
processed through multiple
MLP layers with the item vector
fused with node information to
predict user interests. (b) ISU:
Used to generate cross features
of items and nodes and
adaptively control information
transfer. (c) DKGE unit: The
core part is TGN. First, batch
raw messages are passed to the
GNN layer for message passing
and aggregation to update node
states (1, 2). Second, the
updated node states are passed
to the node embedding layer to
compute node embeddings (3,
4), and the node representations
fused with item information are
obtained through the
information sharing unit (ISU)
for future link prediction. Lastly,
interaction information during
this batch process is stored (5)

σ

1Hop=1

Hop=2

t6

Node Embedding

Layer

Raw Message

Store

GNN Layer

Updated

Memory
3

4

5
2

ISU ISU

k k1

v1

kL

vL

......

......

u uL
......

y

, |P i j t

targetpredicted

Recommendation Unit

Information Sharing Unit

DKGE Unit

Users

Items

Batch

l
jh t

ˆuky

123

7156 M. Wen et al.

4.3 RS unit

We utilize an L-layer multi-layer perceptron (MLP) to learn
the user’s latent low-dimensional dense features. Given the
user feature vector u, the MLP operation expression is:

uL = M(M(. . . M(u))) = ML(u) (6)

M(u) = σ(Wu + b) (7)

Where M (·) denotes the fully connected network, and
σ (·) represents the non-linear activation function. W and b
represent the weight matrix and bias, respectively. We then
use the L-layer ISU to fuse the items with the node embed-
dings to introduce valid side information for the RS:

kL = I SU L (v, k) [k] (8)

With the calculation of (3-8), we have obtained the user
and item embedding expressions for layer L . Next, the
expression for the user preference prediction function for
the item is:

ŷuk = fRS(uL, kL) (9)

Where ŷuk denotes the probability value of user u inter-
acting with item k.

4.4 DKGEmodule

Reference [16], theMTRDKGmodel views each node’s rep-
resentation as a time series, generating graph nodes Z (t) =(
z1(t), z2(t), . . . , zn(t)(t)

)
at any given time t . Below, the

core components of the MTRDKG model and the complete
DKGE are introduced.

4.4.1 Core components

Memory As node representations in DKG are constantly
changing, tracking and storing the historical information of
nodes is necessary. The memory at time t consists of the vec-
tors si (t) for all nodes i . When an event related to node i
occurs, the memory for that node is updated. For new nodes
that have not appeared before, a corresponding zero vector is
set up in the memory, and the information for the new nodes
is updated after events involving the new nodes occur.

Raw message store For time t , this module stores the raw
information of the most recent interaction before t for each
node i , which will serve as the input for the GNN layer.

GNN layer GNN Layer. At the time t , assume the existence
of a source node i and a target node j , along with their inter-
action event ei j (t). The role of the GNN layer is to aggregate

the messages iteratively passed from the target node j to the
source node i and update the memory of node i through
bidirectional information flow. Reference [16] uses a sim-
ple concatenation operation for message passing, making it
difficult for the model to differentiate the importance of dif-
ferent nodes and edges. Inspired by the development of graph
convolutional networks (GCN) [39], we designed a novel
recursive embedding propagation method based on the GCN
architecture. This method utilizes graph attention networks,
allowing for different levels of importance to be assigned to
nodes within the neighborhood of each node and generat-
ing attention weights for cascading embedding propagation.
Executing this recursive embedding mechanism allows the
model to learn complex interaction dependencies between
nodes with linear time complexity. The GNN layer includes
two parts: message passing and message aggregation.

The input for the message passing part includes si (t−),
s j (t−), and ei j (t), representing the vectors stored inmemory
for nodes i and j before time t (starting from the time of the
last event involving the nodes, with �t representing the time
difference since the event occurred), as well as the interaction
between the nodes. Therefore, (1) can be expanded as:

mi (t) =
∑

j∈ϕh
i (t)

a (i, j)Concat
(
si

(
t−

)
, s j

(
t−

)
, ei j (t) , �t

)
(10)

Where a (i, j) represents the attention coefficient, used
to indicate the importance of the target node j to the source
node i . Concat (·) denotes the concatenation operation.

Notably, when a node-level event vi (t) occurs, the mes-
sage passing only involves the node itself, with a (i, j) = 1:

mi (t) = Concat(si (t
−), vi (t),�t) (11)

TGN adopts a batch processing mechanism for compu-
tational efficiency, however, multiple events involving node
i may occur at different times. After each event occurs and
generates a message, it is necessary to aggregate the various
messages (such asmi (t1), . . . ,mi (tc), where t1, . . . , tc ≤ t).
To avoid aggregating outdated and irrelevant messages, we
have carefully designed an aggregation function, with the
main steps as follows: (1) Set a time window: an adjustable
hyperparameter ω. (2) Filter messages: traverse all messages
related to node i and their corresponding times, only retain-
ing messages within the time window, which we refer to as
effective messages. (3) Apply the aggregation function: use
the average aggregation method.

Mi (t) = 1

|I |
∑

tc∈T ′
mi (tc) (12)

123

7157Multi-task recommendation based on dynamic knowledge graph

where T ′ = {tc|t − tc ≤ ω,∀t1, . . . , tc} denotes the set of
time of valid messages. I is the number of valid messages.
We set the ω value to 1 (in seconds), indicating that only the
most recentmessages are retained. This is because it has been
shown that the most recent edges often contain the maximum
amount of information.

Memory update module After an event involving a node
occurs, the node’s memory is updated using the gated recur-
rent unit (GRU):

si (t) = GRU (Mi (t), si (t
−)) (13)

Note that (13) only illustrates the node-level events.When
interaction events are involved, it is necessary to update the
memory of the interacting nodes separately.

Node embedding layer To prevent the memory information
of node i from becoming outdated, the attributes of nodes
and edges, along with historical information at different time
steps, are encoded into continuous vectors to generate the
embedding representation zi (t) of node i at any time t :

zi (t) =
∑

j∈ϕh
i ([0,t])

h(si (t), s j (t), ei j , vi (t), v j (t))

Where h (·) is a learnable function. Specifically, different
node embedding functionswill producedifferent approaches.
According to the scenarios listed in [16], we obtain the fol-
lowing variants:

MTRDKG (dir): zi (t) = si (t). Direct embedding
method, which directly defines the embedding of node i at
time t as the node state.

MTRDKG (tf): zi (t) = (1 + w�t) � si (t). The time
projection method defines the node embedding at time t as
a nonlinear combination of the node’s state and the time dif-
ference. Here,� denotes element-wise vectormultiplication,
and w is a learnable parameter.

MTRDKG (sum): Summation method. Calculates the
embedding of a node at time t through the weighted sum
of the node’s historical states:

H̃ (l)
i (t) = RELU (

∑

j∈ϕh
i ([0,t])

W (l)
1 Concat(h(l−1)

j (t), ei j , �(t − t j)))

(14)

h(l)
i (t) = W (l)

2 Concat
(
h(l−1)
i (t), H̃ (l)

i (t)
)

(15)

Where h(l−1)
i (t) represents the representation of node i at

time t at the l−1-th layer. And the initial node representation
is h(0)

i (t) = si (t) + vi (t). �(·) denotes the time encoding
function using the Time2Vec method, which is also used in
[16, 27, 40]. H̃ (l)

i (t) represents aggregated information, and

zi (t) = h(l)
i (t).

MTRDKG Attention mechanism method. It takes the neigh-

borhood representation H =
{
h(l−1)
1 (t1) , . . . , h(l−1)

N (tN)
}

of node i at time t and the corresponding interaction features
{ei1 (t1) , . . . , eiN (tN)} as inputs for TGN:

H (l) (t) = Concat(h(l−1)
1 (t) , ei1 (t1) ,� (�t1) , . . . , h(l−1)

N (t) , eiN (tN) ,� (�tN)) (16)

q(l) (t) = Concat
(
H (l) (t) ,� (0)

)
(17)

K (l) (t) = V (l) (t) = H (l) (t) (18)

h̃(l)
i (t) = Multi Head Atte(l)

(
q(l) (t) , K (l) (t) , V (l) (t)

)

(19)

zi (t) = h(l)
i (t) = MLP(l)

(
Concat

(
h(l−1)
i (t) , h̃(l)

i (t)
))

(20)

Where H (l) (t) represents the concatenated neighborhood
representations. �tN = t − tN denotes the time difference
of interactions. At each layer, we use a multi-head atten-
tion mechanism to compute the neighborhood aggregation
information h̃(l)

i (t), where the query q(l) (t) represents the
target node, and the keys K (l) (t) and values V (l) (t) respec-
tively represent the neighborhood nodes of the target node.
Finally, an MLP is used to compute the aggregated informa-
tion and the target node representation to obtain the target
node embedding. This paper defaults to using the attention
mechanism method.

4.4.2 Complete DKGE

The node embedding representation zi (t) aggregating neigh-
borhood information of nodes is obtained through (16-20).
Unlike MKR, which cascades the head entities and relations
before predicting the tail entity, MTRDKG inputs zi (t) into

123

7158 M. Wen et al.

L layers of ISU to obtain the node vector representation vL
and then uses the Sigmoid function σ (·) for future link pre-
diction:

vL = I SU L(v, k)[v] (21)

P ((i, j) |t) = σ
(
vLWh(l)

j (t)
)

(22)

WhereW is theweightmatrix of the fully connected layer,
and P ((i, j) |t) denotes the probability of an edge occurring
at two nodes at a given time t .

4.5 Training algorithms

The overall loss function Ltotal for the MTRDKG method:

Ltotal = LRS + LDKGE + LREG

LRS =
∑

u∈U ,k∈K
J (

ŷuk, yuk
)

LDKGE =
∑

(vi ,v j ,ti j)∈E(T)

− log
(
σ

(
−vh(l)

j

(
ti j

)))
− QEvq∼Pn(v) log

(
σ

(
vh(l)

q

(
ti j

)))

LREG = λ ‖�‖22

(23)

In (23), LRS represents the loss function for the recom-
mendation task, calculated by the cross-entropy loss function
J . LDKGE represents the loss function for the DKGE task.
Unlike MKR, which calculates the difference in scores of
true and false triples to represent the KGE task loss func-
tion, we use the logarithmic loss function to calculate the
inner product of the representation vectors between observed
edges (interaction between nodes vi and v j at time ti j and
unobserved edges (extracting the number of Q nodes from
the negative sample distribution space Pn (v) and then sum-
ming them up. This encourages the model to learn a more
effective node representation. LREG is the L2 regularization
term used to prevent overfitting, and λ is its weight. We train
MTRDKG using an alternating training strategy, as detailed
inAlgorithm1.A training epoch is denoted by epo, with each
epoch consisting of two phases: the first phase trains the RS
task (lines 3-7), and the second phase trains the DKGE task
(lines 8-9). We set a hyperparameter tim to control the fre-
quency of alternating training of the DKGE task [12]. This
means that after training the RS recommendation tim times,
the DKGE task is trained once. As our goal is to enhance the
performance of the RS task, the DKGE task serves only as a
regularization constraint for the RS task.

Algorithm1Multi-TaskAlternatelyTraining forMTRDKG.
Input: Y - User-Item interaction matrix in the recommendation task;

s ← 0 - initialise memory to zeros;
m_raw ← {} - initialise the raw messages;

Output: zi (t) - node temporal embedding;
si (t) - the memory of a node;
F (u, v|�, Y ,G) - prediction function;

1: Initialize parameters
2: for r=1 to epo do // epo is the number of training times

// train RS task
3: for t=1 to tim do // tim is the number of training iterations
4: Sample iterations from Y;
5: Update parameters of in (3-4), (6-9), (23);
6: end for

// train DKGE task
7: for batch (i , j , ei j , t) do //Sampling a batch from the training

data
8: Update parameters of F (·) in (3), (5), (10)-(23);
9: end for
10: end for

5 Experiments

In this chapter, we will evaluate the performance of the pro-
posed MTRDKG model from the following five aspects:

• RQ1: Does the MTRDKG model perform better than
the state-of-the-art recommendationmethods andDKGE
methods?

• RQ2: Do different embedding methods significantly
affect the MTRDKG model?

• RQ3: Is the training efficiency of the MTRDKG model
superior to other methods?

• RQ4: Does multi-task joint training lead to poorer con-
vergence of the model?

• RQ5: Do model parameters significantly affect the
MTRDKG model?

5.1 Datasets and data preprocessing

To verify the effectiveness of MTRDKG, we conduct exper-
iments on four public datasets: social, encyclopedia, movie,

123

7159Multi-task recommendation based on dynamic knowledge graph

and music. The descriptions of the four datasets are as fol-
lows:

• Reddit dataset1. It containsmanyReddit posts and com-
ments. We use the most active users and subreddit as
graph nodes, while users submitting posts or posting
comments are considered interactions.

• Wikipedia dataset2. It is a dataset with manyWikipedia
articles and edit histories containing information about
user interactions over 30 days. We use users and pages
as graph nodes, with a user editing or creating a page
represented as an interaction.

• MovieLens-1M dataset3. It is a widely used recom-
mender systemdataset containing1000209 rating records
from 6000 users for 4000 movies with a rating range of
1-5. We represent users and movies as nodes, and edges
represent interactions between users and movies, i.e. rat-
ings.

• Last.FM dataset4. Records of the listening history of
users of the online music platform Last.FM over one
month. We selected 1000 users and 1000 most popular
music tracks and represented users and music as graph
nodes, with edges representing users’ listening records
to music.

The Reddit and Wikipedia datasets are bipartite interac-
tion graphs, where we convert textual features such as users’
posts and editing content into 172-dimensional vector rep-
resentations under LIWC categories [41]. Wang et al. [12]
set a threshold of 4 to explicitly convert the explicit feed-
back data in theMovieLens-1M dataset into positive samples
(i.e., ratings above the threshold, marked as 1) and negative
samples (ratings below the threshold, marked as 0). Last.FM
and MovieLens-1M do not use LIWC; therefore, we use
Word2Vec to convert them into 128-dimensional vector rep-
resentations. To adapt to the recommendation task, we treat
the source nodes in KG as the Users set, while the target
nodes are the Items set. Our experimental setup is similar
to [27], dividing the dataset into a training set (70%) - val-
idation set (15%) - test set (15%), but the difference is that
we focus on recommendation performance. More statistical
information can be seen in Table 2.

5.2 Comparable methods

To validate the recommendation performance and DKGE
capability of MTRDKG, we compare it with the following

1 http://snap.stanford.edu/jodie/reddit.csv
2 http://snap.stanford.edu/jodie/wikipedia.csv
3 https://grouplens.org/datasets/movielens/1m/
4 https://grouplens.org/datasets/hetrec-2011/

state-of-the-art methods: recommendation methods (Wide
& Deep, RippleNet, KGCN, MKR, KGARA, EMKR) and
DKGE methods (CTDNE, TGAT, TGNs, AdaNet, DGSR).

• Recommended methods: Wide & Deep [42] is a deep
learning model that combines linear models and deep
neural networks to address RS’s memorization and gen-
eralization issues. RippleNet [43] simulates the multi-
hop reasoning process of users in KGs, automatically
learning the latent representations of items and users
for efficient and interpretable personalized recommen-
dations. KGCN [3] leverages GCNs to capture the
structural information of entities and relationships in
KGs.MKR [12] facilitates mutual enhancement between
knowledge graph-enhanced recommendation tasks and
entity-linking tasks through shared representation learn-
ing and cross-compression units. KGARA [44] combines
semantic information in KGs with user-item interac-
tion data, learning latent representations of users and
items through GNNs and an adaptive relational attention
mechanism. EMKR [36] utilizes attention mechanisms
to discover historical information of MKR users and
employs relation-aware GCNs to mine deep relational
domain features of entities in KGs.

• DKGE Methods: CTDNE [23] is a continuous-time
dynamic network embedding method designed to learn
vector representations of nodes in dynamic networks.
TGAT [27] is an inductive representation learning model
on temporal graphs, aiming to capture dynamic graphs’
structural and temporal characteristics. TGNs [16] is
a deep learning model that learns representations of
nodes in dynamic graphs by integrating KG and tempo-
ral information. The core of AdaNet [45] is a knowledge
adaptation module, which adapts and integrates knowl-
edge learned across different time windows. DGSR [46]
uses dynamic graph neural networks as the base model
to extract user preferences from DKG.

5.3 Parameter settings

The MTRDKG model was implemented using PyCharm as
the IDE platform. The operating system used was Windows
10 Home Chinese Edition, and the programming language
utilizedwas Python 3.8. TheCPUemployedwas i7-7700HQ,
GeForce RTX 2080 Ti, and the PyTorch version utilized was
1.4. In MTRDKG, the recommended score function fRS is
the inner product, and λ = 10e − 6 denotes the regulari-
sation weights. Other hyperparameters are set as shown in
Table 3. Where L is the number of ISU layers used to extract
shared information, t im is the training frequency, epo is
the training epoch, ks and batch are the batch sizes of RS
and DKGE, respectively, and lrrs and lrdkge are the learning

123

7160 M. Wen et al.

Table 2 Statistical information
on the data set used for the
experiment

Reddit Wikipedia Last.FM MovieLens-1M

Users 10000 8227 1000 6000

Items 1000 1000 1000 4000

Nodes 11000 9227 2000 10000

Edges 672447 157474 1293103 1000209

Feature dimension 172 172 128 128

Feature type LIWC category LIWC category Word2Vec Word2Vec

Timespan 30 days 30 days 30 days 34 months

Chronological Split 70%-15%-15% 70%-15%-15% 70%-15%-15% 70%-15%-15%

rates. md denotes the memory dimension, and nd means the
user, item, node embedding, and temporal embedding dimen-
sions. heads represents the number ofmulti-headed attention
mechanism heads, and dr indicates the dropout rate. h rep-
resents the number of TGN layers (hops). To find the most
appropriate parameters, L is taken from {1, 2, 3, 4, 5}, t im
from {1, 2, 3, 4, 5, 6}, heads from {1, 2, 3, 4, 5} and h
from {1, 2, 3}. We conducted comparison experiments in
three scenarios: (1) CTR prediction: using AUC and ACC as
evaluation metrics. (2) Top-K recommendation: using Pre-
cision@K and Recall@K as evaluation metrics. (3) Future
link prediction: using AUC and Average Precision (AP) as
evaluation metrics. Where (1) and (2) are used to assess rec-
ommendation performance, while (3) uses unseen nodes to
derive future links to measure the capability of DKGE. We
will run each dataset 10 times to reduce random errors, and
the final results will be averaged.

5.4 Performance comparison (RQ1)

5.4.1 Recommendation performance

To explore the recommendation performance of our model,
this section conducts comparative experiments under CTR
prediction and Top-K recommendation. Based on the exper-
imental results, we can draw the following conclusions:

From Table 4, it can be observed that Wide & Deep
and RippleNet perform poorly on the Last.FM dataset but
show better performance on MovieLens-1M. This indicates
that these two methods struggle to capture user prefer-
ences when the data is sparse. This is because Last.FM
is sparser, with a data density of only 0.59%, whereas

MovieLens-1M is denser, with a data density of 5.32%.
KGCN performs well in both sparse and dense scenarios.
This may be because KGCN incorporates GNN, enabling it
to explore user interests by mining multi-hop neighborhood
information. KGARA and KGCN have comparable per-
formance in MovieLens-1M, but KGARA performs worse
in Last.FM. EMKR ranks second on both AUC and ACC
metrics in the Last.FM and MovieLens-1M datasets, likely
because EMKR uses attention mechanisms and relation-
aware GCN to mine the structured information of KG fully.
MTRDKG performs the best across all metrics in the two
datasets. Specifically, compared to MKR, the performance
of MTRDKG increases by between 1.6% and 2.9%, indi-
cating that MTRDKG is an effective enhancement of MKR.
In MovieLens-1M, MTRDKG improves the AUC and ACC
values by 1.3% and 0.9%, respectively, compared to the best-
performing baselinemethod. In Last.FM, theAUC, andACC
values of MTRDKG increase by 0.5% and 1.5%, respec-
tively. This is because, compared to these static methods,
MTRDKG uses dynamic techniques such as time aggre-
gation, information propagation, and embedding updates,
allowing for better representation learning in sparse data
scenarios. The standard deviation of MTRDKG is also the
smallest, indicating the method’s stable performance.

Compared to the CTR prediction experiments, we also
conducted comparative experiments in theTop-K recommen-
dation scenario, introducing two additional datasets, Reddit
and Wikipedia. From Figs. 3 and 4 shows that under the Pre-
cision@K metric, MTRDKG significantly outperforms the
other baseline methods. In Recall@K, MTRDKG performs
the best in most cases, on the Last.FM dataset, the perfor-
mance is not the best when the K value is small. This might

Table 3 Parameter setting status DATASETS L tim epo ks batch lrrs lrdkge md nd heads dr h

Reddit 3 5 15 2048 200 0.02 0.001 172 64 2 0.1 1

Wikipedia 3 5 15 4096 200 0.02 0.001 172 64 2 0.1 1

MovieLens-1M 3 2 20 256 200 0.001 0.0001 128 32 2 0.1 1

Last.FM 2 3 10 256 200 0.001 0.0001 128 16 2 0.1 1

123

7161Multi-task recommendation based on dynamic knowledge graph

Table 4 Experimental results of
MTRDKG and baseline
methods in CTR prediction

APPROACHES MovieLens-1M Last.FM
AUC ACC AUC ACC

Wide & Deep Ave 0.898(−4.0%) 0.820(−4.3%) 0.756(−7.0%) 0.688(−10%)

Std / / / /

RippleNet Ave 0.916(−2.1%) 0.842(−1.7%) 0.748(−7.9%) 0.713(−6.7%)

Std 0.001 0.001 0.007 0.006

KGCN Ave 0.901(−3.7%) 0.824(−3.8%) 0.801(−1.4%) 0.729(−4.6%)

Std 0.002 0.002 0.005 0.004

MKR Ave 0.917(−2.0%) 0.843(−1.6%) 0.791(−2.6%) 0.742(−2.9%)

Std 0.001 0.002 0.009 0.013

KGARA Ave 0.901(−3.7%) 0.827(−3.4%) 0.791(−2.6%) 0.715(−6.5%)

Std 0.001 0.001 0.005 0.006

EMKR Ave 0.923(−1.3%) 0.848(−0.9%) 0.808(−0.5%) 0.753(−1.5%)

Std 0.001 0.001 0.002 0.002

MTRDKG Ave 0.935 0.856 0.812 0.764

Std 0.001 0.001 0.001 0.002

Note: (+/-) indicates the degree of lift or drop relative to MTRDKG, with the best value in bold. Ave and Std
represent the average value and standard deviation

be because Last.FM is relatively sparse, making the dynamic
features less pronounced than static features, and some static
models perform better at smaller K values due to their sim-
plified assumptions. When the K value increases, MTRDKG
performs the best, as introducing the timedimension provides
an advantage in capturing dynamic long-term dependencies.
Compared to MKR, MTRDKG performs better under any
condition, proving that our proposed method offers signifi-
cant improvements.

5.4.2 DKGE performance

To explore the impact of information sharingwithin theMTL
framework on real-time updates of DKG, we conducted a
comparative future link prediction experiment. The exper-
imental results are shown in Table 5. CTDNE performs
poorly on Reddit and Wikipedia. For instance, the AUC
value decreases by 58.4% in the Reddit dataset, while the
AP value decreases by 48.4%. In Wikipedia, the AUC and
APvalues decrease by 41.6%and 36.2%, respectively. TGAT
performs better on the Reddit dataset, possibly because Red-
dit’s dynamic data helps capture the time-varying nature of
entities and relationships. TGNs,AdaNet, andDGSRachieve
excellent results. Specifically, AdaNet ranks first in the AP
metric on Reddit, with all other results being second. Mean-
while, TGNs and DGSR take third place in all metrics.
MTRDKG consistently outperforms other methods except
for the AP metric on Reddit, indicating that introducing item
knowledge is beneficial for the adaptive update of DKG.

5.5 Model analysis

5.5.1 Analysis of different MTRDKG variants (RQ2)

To study the impact of different node embedding methods
on the model’s recommendation performance, we compare
MTRDKG with three variants. The variants are represented
in abbreviated form as follows.

From Table 6 and Fig. 5, we can draw the following
conclusions: (1) The tf method performs worse than the
dir method. This is because the tf method captures tem-
poral information through simple non-linear combinations,
unable to effectively handle complex structures and temporal
changes in DKG. Although the dir method does not explic-
itly consider temporal information, it relies on other parts of
the model (such as message passing and memory updates)
to implicitly capture temporal information. (2) The perfor-
mance of tf and dirmethods is inferior to the summethod and
MTRDKG. This is because the sum method and MTRDKG
can access deeper and more critical semantic information,
and they generate embeddings by calculating the historical
information of nodes and information of neighboring nodes,
better reflecting the structural and temporal information in
DKG. (3) MTRDKG performs better than the sum method.
MTRDKG uses a graph attention mechanism to calculate
node embeddings, which allows for adjusting weights based
on the importance of nodes and the state of neighboring
nodes, offering greater flexibility. In contrast, the summethod
calculates node embeddings simply by a weighted sum of

123

7162 M. Wen et al.

Fig. 3 MTRDKG vs baseline methods for Precison@K results in Top-K recommendations

the node’s historical states. However, the only disadvantage
of MTRDKG is that it trains slightly slower than the sum
method. Overall, MTRDKG, based on the attention mecha-
nism, performs the best.

5.5.2 Efficiency comparison(RQ3)

To validate the efficiency of MTRDKG, we compared train-
ing times with the five best-performing baseline methods on
the Last.FM and MovieLens-20M datasets. The purpose of

using MovieLens-20M is to assess the model’s processing
efficiency for large-scale datasets. The results are shown in
Fig. 6.Wide&Deep has the shortest training time, likely due
to its simpler structure. Compared to multitask models like
MKR, EMKR, andMTRDKG, single-taskmethods like Rip-
pleNet and KGCN have longer training times. This indicates
that parameter sharing in the MTL framework can enhance
model efficiency. In Last.FM, MTRDKG has a longer train-
ing time than MKR but a shorter runtime on the large-scale
dataset MovieLens-20M. Although MTRDKG is not the

123

7163Multi-task recommendation based on dynamic knowledge graph

Fig. 4 MTRDKG vs baseline methods for Recall@K results in Top-K recommendations

Table 5 Experimental Results
of MTRDKG and baseline
methods in future link prediction

Reddit Wikipedia
APPROACHES AUC AP AUC AP

CTDNE 0.414(−58.4%) 0.512(−48.4%) 0.579(−41.6%) 0.635(−36.2%)

TGAT 0.975(−2.1%) 0.970(−2.3%) 0.950(−4.2%) 0.947(−4.7%)

TGNs 0.986(−1.0%) 0.987(−0.6%) 0.984(−0.8%) 0.985(−1.0%)

AdaNet 0.993(−0.3%) 0.994(+0.2%) 0.988(−0.4%) 0.989(−0.6%)

DGSR 0.981(−1.5%) 0.977(−3.4%) 0.981(−1.1%) 0.986(−0.8%)

MTRDKG 0.995 0.992 0.991 0.994

123

7164 M. Wen et al.

Table 6 Results of AUC and ACC comparison between MTRDKG and the three variants in CTR prediction

MovieLens-1M Last.FM Reddit Wikipedia
Models AUC ACC AUC ACC AUC ACC AUC ACC

MTRDKG(dir) 0.933 0.853 0.809 0.759 0.985 0.991 0.987 0.994

(−0.2%) (−0.3%) (−0.3%) (−0.6%) (−1.0%) (−0.1%) (−0.4%)

MTRDKG(tf) 0.931 0.850 0.809 0.756 0.983 0.985 0.984 0.989

(−0.4%) (−0.7%) (−0.3%) (−1.0%) (−1.2%) (−0.7%) (−0.7%) (−0.5%)

MTRDKG(sum) 0.935 0.853 0.811 0.766 0.994 0.990 0.989 0.994

(−0.3%) (−0.1%) (+0.3%) (−0.1%) (−0.2%) (−0.2%)

MTRDKG 0.935 0.856 0.812 0.764 0.995 0.992 0.991 0.994

method with the shortest training time, its performance is
the best, making these additional training times acceptable.

5.5.3 Convergence analysis(RQ4)

In this section, we increase the training epochs to extend
the training time on the MovieLens-1M dataset to verify the
trend of MTRDKG’s accuracy over time. Figure 7 shows the

evolution patterns of AUC and ACC under different training
rounds, where (a) and (b) correspond to the training dynam-
ics when using AUC and ACC as test metrics, respectively.
We can observe that MTRDKG converges very quickly.
Specifically, the MTRDKG model begins to converge after
about 15 training rounds. The model’s performance then
fluctuates within a minimal range, demonstrating strong
stability.

Fig. 5 Comparison results of MTRDKG with three variants of Precison@K in Top-K recommendations

123

7165Multi-task recommendation based on dynamic knowledge graph

Fig. 6 The training time of different models in the Last.FM and MovieLens-20M datasets

5.6 Parameter sensitive analysis(RQ5)

5.6.1 Impact of embedded dimensions

We increased the dimension of nd from 4 to 128 to explore
its impact on theMTRDKGmodel. Figure 8 (a) and (b) show
that on the MovieLens-1M dataset, the model’s performance
steadily improves as the dimension of nd increases. Still,
after exceeding a dimension of 32, the ACC value decreases.
Although the AUC value continues to rise, the increase is
minimal. To achieve a balance between the two metrics, we
set the dimension of nd to 32. On the Last.FM dataset, the
best performance is observed when the dimension of nd is
16, with more significant fluctuations in performance upon
further increases. This may be because increasing the dimen-
sion can initially encapsulate more helpful information, but
continued increases incorporate more noise data.

5.6.2 Impact of number of heads and layers

We consider the number of heads from {1, 2, 3, 4, 5} and
the value of h from {1, 2}. Figure 8 (c) and (d) show that
MTRDKG performs best when the value of heads is 2, after
which the performance gradually declines. When h is 1,
MTRDKG shows better performance under the AUC met-
ric. However, the model performs better under the APmetric
when h is 2. We set h to 1 because, with an increase in h, the
performance improvement is not significant, but the number
of neighboring nodes significantly increases, severely affect-
ing computational efficiency.

5.6.3 Impact of ISU layers and training frequency

Weconsider the value of L from{1, 2, 3, 4, 5} and the value of
t im from{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Figure 8 (e) and (f) show

Fig. 7 Performance trend of
MTRDKG at each epoch

123

7166 M. Wen et al.

Fig. 8 Parameter Sensitivity Analysis Results

thatMTRDKGachieves the best performancewhen L is 2, as
too few layers lead to insufficient information fusion. At the
same time, too many layers might integrate some irrelevant
information, causing negative transfer. The optimal training
frequency is 5, possibly because a training frequency that is
too high can cause the objective function value to fluctuate
or oscillate, ultimately leading to model overfitting, while a
low frequency results in slow model convergence.

6 Summary and future work

The proposed MTRDKG model leverages TGN to model
DKG as a series of continuous-time events, allowing the
model to fully utilize the rich semantic information in KG
while better understanding and mining the patterns of nodes
and edges over time. Extensive experiments on four real
datasets show that the MTRDKG model significantly out-
performs the state-of-the-art baseline methods. Additionally,
we observed that the MTRDKG model exhibits excellent
performance in both sparse and large-scale data scenar-
ios, indicating the model’s robustness, generalization ability,
scalability, and efficiency, effectively addressing RS’s spar-
sity and cold start problems. In future work, we will further
optimize and improve the combination of recommended

items and node embeddings to enhance the model’s per-
formance and generalization ability. Moreover, we plan
to explore the potential of combining more sophisticated
dynamic graph models with multitask feature learning meth-
ods to expand the research scope.

Acknowledgements This work was supported by the National Natural
Science Foundation of China (No. 62273170), the Surface Project of
Liaoning Provincial Department of Education (No. JYTMS20230869),
the Scientific Research Project of Liaoning Provincial Department
of Education (Nos. JZL202015404, LJKZ0625), and the Liaoning
Provincial Higher Education Innovation Talent Support Project (No.
LR2019034).

Author Contributions Minwei Wen: Conceptualization, Methodology,
Resources, Validation, Data Curation, Writing- Original Draft, Writing
- Review and Editing. Hongyan Mei: Methodology, Software, Formal
analysis, Data Curation, Writing - Review and Editing. Wei Wang,
Xiaorong Xue and Xing Zhang: Formal analysis, Validation, Writing-
Review and Editing.

Data Availability All links to data generated or analysed in this study
are included in this published article.

Declarations

Conflict of interest We declare that the authors do not have any conflict
of interest related to the content of this article.

123

7167Multi-task recommendation based on dynamic knowledge graph

Ethics approval This article contains no studieswith humanparticipants
or animals performed by authors.

References

1. Wang Q, Mao Z,Wang B, Guo L (2017) Knowledge graph embed-
ding: A survey of approaches and applications. IEEE Trans Knowl
Data Eng 29(12):2724–2743

2. Sang L, Xu M, Qian S, Wu X (2021) Knowledge graph
enhanced neural collaborative recommendation. Expert Syst Appl
164:113992

3. Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph
convolutional networks for recommender systems. In: The world
wide web conference, pp 3307–3313

4. Guo Q, Zhuang F, Qin C, Zhu H, Xie X, Xiong H, He Q (2020)
A survey on knowledge graph-based recommender systems. IEEE
Trans Knowl Data Eng 34(8):3549–3568

5. Zhang F, Yuan NJ, Lian D, Xie X, Ma W-Y (2016) Collaborative
knowledge base embedding for recommender systems. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 353–362

6. Lin Y, Liu Z, SunM, LiuY, Zhu, X (2015) Learning entity and rela-
tion embeddings for knowledge graph completion. In: Proceedings
of the AAAI conference on artificial intelligence, vol 29

7. Zhou Z,WangC, FengY, ChenD (2022) Jointe: Jointly utilizing 1d
and 2d convolution for knowledge graph embedding. Knowl-Based
Syst 240:108100

8. Baghershahi P,HosseiniR,MoradiH (2023)Self-attentionpresents
low-dimensional knowledge graph embeddings for link prediction.
Knowl-Based Syst 260:110124

9. Zhang T, Tian X, Sun X, Yu M, Sun Y, Yu G (2021) Overview
on knowledge graph embedding technology research. J Softw
34(1):277–311

10. Lin Q, Mao R, Liu J, Xu F, Cambria E (2023) Fusing topology
contexts and logical rules in language models for knowledge graph
completion. Inf Fus 90:253–264

11. Zhang Y, Yang Q (2021) A survey on multi-task learning. IEEE
Trans Knowl Data Eng 34(12):5586–5609

12. Wang H, Zhang F, Zhao M, Li W, Xie X, GuoM (2019) Multi-task
feature learning for knowledge graph enhanced recommendation.
In: The world wide web conference, pp 2000–2010

13. Ye Q, Hsieh C-Y, Yang Z, Kang Y, Chen J, Cao D, He S, Hou
T (2021) A unified drug-target interaction prediction framework
based on knowledge graph and recommendation system. Nat Com-
mun 12(1):6775

14. DuY,ZhuX,ChenL, FangZ,GaoY (2022)Metakg:Meta-learning
on knowledge graph for cold-start recommendation. IEEE Trans
Knowl Data Eng

15. Huang Z, Liu Y, Zhan C, Lin C, Cai W, Chen Y (2021) A novel
group recommendation model with two-stage deep learning. IEEE
Trans Syst Man Cybern: Syst 52(9):5853–5864

16. Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein
M (2020) Temporal graph networks for deep learning on dynamic
graphs. Preprint arXiv:2006.10637

17. Qin M, Zhang C, Bai B, Zhang G, Yeung D-Y (2023) High-quality
temporal link prediction forweighted dynamic graphs via inductive
embedding aggregation. IEEE Trans Knowl Data Eng

18. Wu T, Khan A, Yong M, Qi G, Wang M (2022) Efficiently embed-
ding dynamic knowledge graphs. Knowl-Based Syst 250:109124

19. Zhou L, Yang Y, Ren X,Wu F, Zhuang Y (2018) Dynamic network
embedding by modeling triadic closure process. In: Proceedings of
the AAAI conference on artificial intelligence, vol 32

20. Goyal P, Chhetri SR, Canedo A (2020) dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning.
Knowl-Based Syst 187:104816

21. Paudel R, Huang HH (2022) Pikachu: Temporal walk based
dynamic graph embedding for network anomaly detection. In:
NOMS2022-2022 IEEE/IFIPnetworkoperations andmanagement
symposium, pp 1–7. IEEE

22. Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep
neural representation learning on dynamic graphs via self-attention
networks. In: Proceedings of the 13th international conference on
web search and data mining, pp 519–527

23. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018)
Continuous-time dynamic network embeddings. In: Companion
proceedings of the the web conference 2018, pp 969–976

24. Khoshraftar S,Mahdavi S,AnA,HuY,Liu J (2019)Dynamic graph
embedding via lstm history tracking. In: 2019 IEEE international
conference on data science and advanced analytics (DSAA), pp
119–127. IEEE

25. Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding tem-
poral network via neighborhood formation. In: Proceedings of the
24th ACM SIGKDD international conference on knowledge dis-
covery & data mining, pp 2857–2866

26. Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi
H, Kaler T, Schardl T, Leiserson C (2020) Evolvegcn: Evolving
graph convolutional networks for dynamic graphs. In: Proceedings
of the AAAI conference on artificial intelligence, vol 34, pp 5363–
5370

27. Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020) Inductive
representation learning on temporal graphs. In: International con-
ference on learning representations. https://openreview.net/forum?
id=rJeW1yHYwH

28. Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M,
Dai D, Van Gool L (2021) Multi-task learning for dense prediction
tasks: A survey. IEEE Trans Pattern Anal Mach Intell 44(7):3614–
3633

29. Wang Y, DingW, Zhang R, Li H (2020) Boundary-aware multitask
learning for remote sensing imagery. IEEE J Sel Top Appl Earth
Obs Remote Sens 14:951–963

30. YangE, Pan J,WangX,YuH, Shen L, ChenX,Xiao L, Jiang J, Guo
G (2023) Adatask: A task-aware adaptive learning rate approach
to multi-task learning. In: Proceedings of the AAAI conference on
artificial intelligence, vol 37, pp 10745–10753

31. Wang Y, Zhang J, Zhou X, Zhang Y (2022) Hierarchical aggrega-
tion based knowledge graph embedding for multi-task recommen-
dation. In: Asia-Pacific Web (APWeb) and web-age information
management (WAIM) joint international conference on web and
big data, pp 174–181. Springer

32. Hu B, Ye Y, Zhong Y, Pan J, Hu M (2022) Transmkr: Translation-
based knowledge graph enhanced multi-task point-of-interest rec-
ommendation. Neurocomputing 474:107–114

33. Zhu J, Zhang Y, Wang Y, Liao W, Chen R, Yuan M (2023)
Knowledge-enhanced multi-task recommendation in hyperbolic
space. Appl Intell 53(23):28694–28710

34. Zhai H, Zheng W, Ouyang Y, Pan X, Zhang W (2024) Multi-focus
image fusion via interactive transformer and asymmetric soft shar-
ing. Eng Appl Artif Intell 133:107967

35. Huang W, Wu J, Song W, Wang Z (2022) Cross attention fusion
for knowledge graph optimized recommendation. Appl Intell 1–10

36. Gao M, Li J-Y, Chen C-H, Li Y, Zhang J, Zhan Z-H (2023)
Enhanced multi-task learning and knowledge graph-based recom-
mender system. IEEE Trans Knowl Data Eng

37. Zhou Y, Guo J, Song B, Chen C, Chang J, Yu FR (2022) Trust-
aware multi-task knowledge graph for recommendation. IEEE
Trans Knowl Data Eng

123

7168 M. Wen et al.

http://arxiv.org/abs/2006.10637
https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=rJeW1yHYwH

38. ShuH,Huang J (2023)Multi-task feature and structure learning for
user-preference based knowledge-aware recommendation. Neuro-
computing 532:43–55

39. Zeb A, Saif S, Chen J, Haq AU, Gong Z, Zhang D (2022) Com-
plex graph convolutional network for link prediction in knowledge
graphs. Expert Syst Appl 200:116796

40. Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S,
WuS, SmythC, Poupart P, BrubakerM (2020) Time2vec: Learning
a vector representation of time

41. Pennebaker JW, Francis ME, Booth RJ (2001) Linguistic inquiry
and word count: Liwc 2001. Mahway: Lawrence Erlbaum Asso-
ciates 71(2001), p 2001

42. Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H,
Anderson G, Corrado G, Chai W, Ispir M et al (2016) Wide &
deep learning for recommender systems. In: Proceedings of the 1st
workshop on deep learning for recommender systems, pp 7–10

43. Wang H, Zhang F, Wang J, Zhao M, Li W, Xie X, Guo M (2018)
Ripplenet: Propagating user preferences on the knowledge graph
for recommender systems. In: Proceedings of the 27th ACM inter-
national conference on information and knowledge management,
pp 417–426

44. Zhang Y, Yuan M, Zhao C, Chen M, Liu X (2022) Aggregating
knowledge-aware graph neural network and adaptive relational
attention for recommendation. Appl Intell 52(15):17941–17953

45. Li H, Li C, Feng K, Yuan Y, Wang G, Zha H Robust knowl-
edge adaptation for dynamic graph neural networks. Preprint
arXiv:2207.10839

46. ZhangM,WuS,YuX,LiuQ,WangL (2022)Dynamic graph neural
networks for sequential recommendation. IEEE Trans Knowl Data
Eng 35(5):4741–4753

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Minwei Wen is currently pursu-
ing a master’s degree in computer
technology at Liaoning Univer-
sity of Technology. His main
research interests include multi-
task recommendation systems,
knowledge graphs, and data min-
ing.

Hongyan Mei Ph.D., is currently
a full-time professor at Liaoning
University of Technology. Her
main research interests include
peer-to-peer networks and ser-
vices, data mining, and big data
analytics.

Wei Wang received the B.S. degree
and M.S. degrees in control the-
ory and control engineering from
Liaoning University of Technology,
Jinzhou, China, in 2003 and 2006,
respectively, and the Ph.D. degree in
control theory and control engineer-
ing from Dalian Maritime University,
Dalian, China, in 2015. She is cur-
rently an associate Professor with
the School of Electrical Engineering,
Liaoning University of Technology.
Her research focuses on intelligent
control and cooperative control of
multi-agent systems.

Xiaorong Xue Ph.D., is currently
a full-time professor at Liaoning
University of Technology. His main
research interests include image
processing and pattern recognition.

Xing Zhang Ph.D., is currently
a full-time professor at Liaon-
ing University of Technology.
His main research interests
include privacy protection, image
steganography, blockchain, and
information security.

123

7169Multi-task recommendation based on dynamic knowledge graph

http://arxiv.org/abs/2207.10839

	Multi-task recommendation based on dynamic knowledge graph
	Abstract
	1 Introduction
	2 Related work
	2.1 Dynamic knowledge graph embedding methods
	2.2 Multi-task learning
	2.3 MTL-Based KGRSs

	3 Preliminary
	4 Proposed method
	4.1 Framework
	4.2 Information-sharing units
	4.3 RS unit
	4.4 DKGE module
	4.4.1 Core components
	4.4.2 Complete DKGE

	4.5 Training algorithms

	5 Experiments
	5.1 Datasets and data preprocessing
	5.2 Comparable methods
	5.3 Parameter settings
	5.4 Performance comparison (RQ1)
	5.4.1 Recommendation performance
	5.4.2 DKGE performance

	5.5 Model analysis
	5.5.1 Analysis of different MTRDKG variants (RQ2)
	5.5.2 Efficiency comparison(RQ3)
	5.5.3 Convergence analysis(RQ4)

	5.6 Parameter sensitive analysis(RQ5)
	5.6.1 Impact of embedded dimensions
	5.6.2 Impact of number of heads and layers
	5.6.3 Impact of ISU layers and training frequency

	6 Summary and future work
	Acknowledgements
	References

