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Abstract
In contemporary particle swarm optimization (PSO) algorithms, to efficiently explore global optimum solutions, it is common
practice to set the inertia weight to monotonically decrease over time for stability, while allowing the two acceleration coef-
ficients, representing cognitive and social factors, to adopt decreasing or increasing functions over time, including random
variations. However, there has been little discussion on a unified design approach for these time-varying acceleration coef-
ficients. This paper presents a unified methodology for designing monotonic decreasing or increasing functions to construct
nonlinear time-varying inertia weight and two acceleration coefficients in PSO, along with a control strategy for exploring
global optimum solutions.We first construct time-varying coefficients by linearly amplifying well-posed monotonic functions
that decrease or increase over normalized time. Here, well-posed functions ensure satisfaction of specified conditions at the
initial and terminal points of the search process. However, many of the functions employed thus far only satisfywell-posedness
at either the initial or terminal points of the search time, prompting the proposal of a method to adjust them to virtually meet
specified initial or terminal points. Furthermore, we propose a crossing strategy where the developed cognitive and social
acceleration coefficients intersect within the search time interval, effectively guiding the search process by pre-determining
crossing values and times. The performance of our Nonlinear Crossing Strategy-based Particle Swarm Optimization (NCS-
PSO) is evaluated using the CEC2014 (Congress on Evolutionary Computation in 2014) benchmark functions. Through
comprehensive numerical comparisons and statistical analyses, we demonstrate the superiority of our approach over seven
conventional algorithms. Additionally, we validate our approach, particularly in a drone navigation scenario, through an
example of optimal 3D path planning. These contributions advance the field of PSO optimization techniques, providing a
robust approach to addressing complex optimization problems.

Keywords Nonlinear crossing strategy · Particle swarm optimization · Time-varying acceleration coefficients · Global
optimization · 3D path planning

1 Introduction

Particle Swarm Optimization (PSO) by Kennedy and Eber-
hart [40] has been around 27 years since its first paper was
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published in 1995. Recently, Nayak et al. [56] surveyed
the history of PSO spanning over 25 years, covering more
than 450 literature sources. In their survey paper, PSO is
highlighted as one of the most researched natural-inspired
algorithms, extensively used not only by researchers but
also by practitioners, together with discussing numerous
improved variants and application domains. Furthermore,
they point out that PSO forms the foundation of many recent
metaheuristics.

Due to the simplicity of its structure andhighperformance,
PSO has been applied in various fields:

• Control Engineering: PSO is used for parameter tuning
in control systems [61, 63, 69], solving optimal control
problems, and applications such as robot control [7, 16,
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52], path planning [6, 23, 24], and driver assistance sys-
tems in automobiles [10, 72, 108].

• MachineLearning: PSO is employed for trainingmachine
learning models like neural networks [21, 32, 106],
support vector machines [14, 28, 71, 80], or Bayesian
networks [5, 30, 48]. It is used for tasks such as hyper-
parameter optimization and feature selection.

• Image Processing: PSO finds applications in image seg-
mentation, feature extraction, and image optimization.
Examples include medical image processing [38, 43, 68,
102] and remote sensing [42, 57, 77, 87].

• Combinatorial Optimization: PSO is utilized to solve
combinatorial optimization problems, including the trav-
eling salesmanproblem [62, 81, 104, 105], and placement
problems [26, 31, 51, 76, 96, 100].

• Power Systems: PSO plays a role in power network
planning and control [46, 54, 66, 67, 91], demand
management [41, 53, 99], and optimal placement of
renewable energy sources [2, 20, 49, 55].

• Other Applications: PSO is also used in data mining [9,
78, 85].

The search ability of the algorithm is greatly affected
by three control parameters [29, 64, 97]: inertia weight,
cognitive acceleration coefficient, and social acceleration
coefficient. Early studies argued for stable solutions based
on the assumption that inertia weight and acceleration coef-
ficients should be constant values. Later, Shi and Eberhart
[74] pointed out the effect of a linearly decreasing func-
tion of inertia weights with respect to time (or generation),
although without an expression, and Ratnaweera et al. [65]
extended a similar linear time-varying concept of an iner-
tial weight to acceleration coefficients, and introduced a
“crossing strategy" inwhich amonotonically decreasing cog-
nitive acceleration coefficient and amonotonically increasing
social acceleration coefficient are crossed during exploration
to balance local exploitation and global exploration in explo-
ration. However, the functional expressions of an inertia
weight and acceleration coefficients are not identical, and
the latter uses a simplified expression of the former. Chat-
terjee and Siarry [11] proposed a nonlinear function based
on a linear decreasing function representation due to Shi
and Eberhart [74] for faster solution convergence and better
search accuracy. At about the same time, Zhang et al. [101]
proposed nonlinear inertia weights with a logical switch-
ing rule, and Chen et al. [12] used nonlinear time-varying
inertia weights with the square of the normalized time as a
basic function.Xin et al. [92] proposed amulti-stage linearly-
decreasing inertia weight method to achieve a better balance
between global and local search, using the inertia weight

representation used by Ratnaweera et al. [65]. Thus, various
other nonlinear time-varying functions, exponential func-
tions, and arbitrary adaptive functions have been proposed
(see also a survey paper by Shami et al. [70]).

On the other hand, the cognitive and social acceleration
coefficients were often set to constant values of 1.5 or 2.0
in early studies [15, 40, 73], so that there has been little dis-
cussion on its importance compared to the inertia weight.
However, the time-varying inertia parameters inspired the
proposal of linear time-varying acceleration coefficients [1,
65]. Subsequently, a nonlinear version of those of Rat-
naweera et al. [65] as found in [86], those using various
trigonometric functions [13, 36, 94], those of applying eval-
uation functions or related quantities to construct nonlinear
time-varying acceleration coefficients [75, 90, 93], and even
those using randomacceleration coefficients [17, 34, 89, 107]
have been proposed.

It should be noted, however, that there has been little
systematic discussion on how to design or construct time-
varying acceleration coefficients, including inertia weights.
In this study, we present a unified design method for a non-
linear time-varying inertiaweight or acceleration coefficients
based on several time-related nonlinear functions, which are
scaled linearly while satisfying initial and terminal boundary
values. First, the normalized time is assumed to be the inde-
pendent variable, and the basic functions are assumed to be
monotonically decreasing or monotonically increasing func-
tions that satisfy known initial and terminal values. However,
when the basis function does not satisfy the specified bound-
ary values (i.e., it is ill-posed), we propose to pre-compute
fictitious boundary values for the inertia weight or accelera-
tion coefficients andmodify the inertiaweight or acceleration
coefficients so that they satisfy the actual specified boundary
conditions.

Next, it is shown that in the crossing strategy where the
cognitive acceleration coefficients and social acceleration
coefficients are crossed during the search, if the relationship
between the basic function and the ill-posed or well-posed
boundary value is obtained, the crossing value and crossing
time can be known in advance by using it. In particular, for
asymmetric crossing strategies where the initial and termi-
nal errors of the two acceleration coefficients are different
in magnitude, it is pointed out that the crossing time of the
two acceleration coefficients can be changed according to
the ratio of the initial error. Furthermore, by introducing a
parameter in the basic function that adjusts the shape of the
function, it is possible to shift the crossing time in a sym-
metric crossing strategy where the magnitudes of the initial
and terminal errors of the two acceleration coefficients are
equal by changing this parameter, resulting in the ability to
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adjust the timing of convergence to the global best value. The
results show that the convergence timing to the global best
value can be adjusted by changing this parameter.

The effectiveness of the proposed algorithms (i.e., nonlin-
ear crossing strategy-based PSOs: NCS-PSOs) is evaluated
on CEC2014 (Congress on Evolutionary Computation in
2014) benchmark functions. That is, statistical analysis,
Wilcoxon test, and Friedman test are used to evaluate opti-
mization performance of NCS-PSOs, and the experimental
results are compared with four state-of-the-art metaheuris-
tics, as well as three classical PSO variants. A practical
constraint programming of NCS-PSOs is studied for deal-
ing with a 3D path optimization problem.

The structure of this paper is described below. Section 2
reviews how to design monotonically decreasing time-
varying parameters that satisfy specified initial and terminal
boundary values by linearly amplifying a linear basic func-
tion using monotonically increasing or decreasing functions
with respect to normalized time. The basic functions are
assumed to be well-posed, satisfying both boundary values,
andmonotonicity is guaranteed. InSection3,when extending
this concept to nonlinear basic functions that do not satisfy
the boundary conditions, we show how to introduce fictitious
boundary values. Section 4 derives the relationship between
the basic functions and the boundary values in the crossing-
strategy method for the two acceleration coefficients, so as
to obtain the crossing values and crossing times for basic
functions. Specific crossing times for the 10 selected basic
functions are given in Section 5. In Section 6, the effective-
ness of the proposed algorithm is evaluated on CEC2014
benchmark functions. After explaining a path optimization
problem in Section 7, the effectiveness of the proposed
method is also verified in Section 8 through an example of
an actual optimization problem, in which six different non-
linear time-varying acceleration coefficients are used in 3D
path planning for a drone, one using a series of normalized
time as the basic function and several exponential functions
with Napier’s constant as the base. The conclusion is given
in Section 9.

2 Review of PSO and the designmethod
of inertia weight with a linear time-varying
function

2.1 Review of PSO

PSO is a search algorithm based on a group, and starts in
the initial group of the solution which is called particles and
which occurred at random. Each particle i in PSO is char-
acterized by the position xi (t) = [xi1(t) xi2(t) , . . . , xiN ]T
and the velocity vi (t) = [vi1(t) vi2(t) , . . . , vi N ]T , where
i = 1, . . . , M , M makes the number of particles and N

denotes the number of dimensions of search space. The opti-
mal solution is performed by the following algorithms.

vi (t + 1) = w(t)vi (t) + c1(t)r1i (t) ◦ [ pi (t) − xi (t)]
+c2(t)r2i (t) ◦ [g(t) − xi (t)] (1)

xi (t + 1) = xi (t) + vi (t + 1) (2)

Here, w(t) is the inertia weight, c1(t) and c2(t) are
respectively the cognitive and social coefficients (or accel-
eration coefficients), and r1i (t) and r2i (t) are two random
vectors within [0, 1] taken from a uniform probability dis-
tribution. Moreover, the “◦” sign is an operator denoting
a product for every element between vectors; pi (t) =
[pi1(t) pi2(t) , . . . , piN (t)]T is the past best position vec-
tor of the i th particle; and g(t) = [g1(t) g2(t) , . . . , gN (t)]T
is the best position vector discovered by all the old particles.

2.2 Review of how tomake amonotonically
decreasing function with any known boundary
values

Here, according to a monotonically increasing or decreasing
basic function that includes a time variable, let us review how
to make an inertia weight to be a monotonically decreasing
function with any known initial and terminal values. How-
ever, the time is assumed to be normalized by the maximum
time tmax. For example, consider a linear function about time
t , which is described by

y(t) = t/tmax � f (t, tmax) (3)

Since this function is a monotonically increasing func-
tion whose initial and terminal values fill respectively
f (t0, tmax) = 0 and f (tmax, tmax) = 1 (i.e., it has well-posed
boundary values), if t0 = 0, in order tomake amonotonically
decreasing function, let us transform it into

y(t) = 1 − t/tmax = 1 − f (t, tmax) (4)

Then, this monotonically decreasing function is scaled up
to the function w(t) whose initial constant point is ws and
terminal constant point is we. To this end, multiplying (4) by
(ws − we) gives

y1(t) = (ws − we)[1 − f (t, tmax)] (5)

where this y1(t) becomes ws − we if t = 0, whereas 0 if
t = tmax. In addition, letting y2(t) = y1(t) + we yields that

y2(t) = (ws − we)[1 − f (t, tmax)] + we � w(t) (6)

This clearly becomes ws if t = 0, while we if t = tmax.
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On the other hand, applying a monotonically decreasing
function g(t, tmax)with well-posed boundary values, such as
g(t0, tmax) = 1 and g(tmax, tmax) = 0, to make w(t) like the
previous one, it follows, from the above result, immediately
that

w(t) = (ws − we)g(t, tmax) + we (7)

Note that, from the equation of a line passing through two
points (0, ws) and (tmax, we), (6) can also be derived as

w(t) − ws = (we − ws)

tmax
t (8)

Rewriting the expression that uses a monotonically
increasing function t/tmax in this equation by the expression
that uses a monotonically decreasing function (1 − t/tmax),
i.e.,

w(t) = w1(1 − t/tmax) + w2 (9)

comparing them, it follows readily that w1 = ws − we and
w2 = we.

3 Calculation of fictitious boundary values

Sincew(t), c1(t) and c2(t) are constituted in this paper using
the form of time-varying parameter a(t) which is described
later, consider designing or selecting f (t, tmax) or g(t, tmax)

so that it may serve as a monotonically decreasing function
or a monotonically increasing function.

a(t) = (as − ae)[1 − f (t, tmax)] + ae (10)

= (as − ae)g(t, tmax) + ae (11)

Here, if f (t, tmax) is considered as a monotonically
increasing function with a well-posed boundary value,
it should be satisfied such that f (t0, tmax) = 0 and
f (tmax, tmax) = 1. Similarly, if g(t, tmax) is regarded as a
monotonically decreasing function with a well-posed bound-
ary value, it should be subjected to g(t0, tmax) = 1 and
g(tmax, tmax) = 0. Note here that when the monotonic
increasing function f (t) is considered, if (as − ae) > 0
according to (10), then 1 − f (t) becomes a monotonically
decreasing function, resulting in a monotonically decreas-
ing parameter for a(t), whereas i f (as − ae) < 0, then a(t)
becomes amonotonically increasing parameter instead. Sim-
ilarly, for the monotonic decreasing function g(t), if (as −
ae) > 0 according to (11), then a(t) immediately becomes a
monotonically decreasing parameter, where i f (as−ae) < 0,
it becomes a monotonically increasing parameter instead.

However, in the selection of realistic f (·) or g(·), we often
encounter the case that a terminal boundary value is not ful-
filled though an initial boundary value is generally fulfilled,
or that a terminal boundary value is fulfilled vice versa, but an
initial boundary value is not fulfilled. In that case, the time-
varying parameter in the above form becomes a(t)|t=t0 �= as
or a(t)|t=tmax �= ae, so that the exact estimate or setup of the
parameter value in the starting point or the terminal point can
not be performed. When the basic functions, f (·) and g(·),
are ill-posed which do not fulfill the appointed boundary val-
ues, reset the actual initial boundary value to be specified as
aini or the actual terminal boundary value to be given as ater .
Then, the original as and ae are regarded as a fictitious initial
value or a fictitious termination value, respectively, and they
are only set up as the intermediate variables, i.e., they are just
accompanied to the equation of the parameter a(t).

3.1 For the case of an initially ill-posed boundary
value

When the basic function is to be a monotonically increasing
function f (t, tmax) with f (t0, tmax) �= 0: For this case, it
follows from (10) that

a(t)|t=t0 = (ae − as) f (t0, tmax) + as
�= aini

or

aini = [1 − f (t0, tmax)]as + f (t0, tmax)ae

Given aini , solving it about as yields

as = aini − ae f (t0, tmax)

1 − f (t0, tmax)
(12)

Thus, regarding as as a fictitious initial boundary value, it
can be realized that a(t)|t=t0 = aini .

When the basic function is to be a monotonically decreas-
ing function g(t, tmax) with g(t0, tmax) �= 1: For this case, it
follows from (11) that

a(t)|t=t0 = (as − ae)g(t0, tmax) + ae
�= aini

or

aini = asg(t0, tmax) − ae[g(t0, tmax) − 1]

Given aini , solving it about as yields

as = aini + ae[g(t0, tmax) − 1]
g(t0, tmax)

= aini
g(t0, tmax)

+ ae

(
1 − 1

g(t0, tmax)

)
(13)
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Thus, regarding as as a fictitious initial boundary value,
the given value aini can be assigned as the actual initial value
such that a(t)|t=t0 = aini , instead of using as .

3.2 For the case of a terminally ill-posed boundary
value

When the basic function is to be a monotonically increasing
function f (t, tmax) with f (tmax, tmax) �= 1: For this case, it
follows from (10) that

a(t)|t=tmax = (ae − as) f (tmax, tmax) + as
�= ater

or

ater = [1 − f (tmax, tmax)]as + f (tmax, tmax)ae

Given ater , solving it about ae yields

ae = ater − [1 − f (tmax, tmax)]as
f (tmax, tmax)

= ater
f (tmax, tmax)

+ as

(
1 − 1

f (tmax, tmax)

)
(14)

Thus, regarding ae as a fictitious terminal boundary value,
it can be realized that a(t)|t=tmax = ater .

When the basic function is to be a monotonically decreas-
ing function g(t, tmax) with g(tmax, tmax) �= 0: For this case,
it follows from (11) that

a(t)|t=tmax = (as − ae)g(tmax, tmax) + ae
�= ater

or

ater = asg(tmax, tmax) + ae[1 − g(tmax, tmax)]

Given ater , solving it about ae yields

ae = ater − asg(tmax, tmax)

1 − g(tmax, tmax)
(15)

Thus, regarding ae as a fictitious terminal boundary value,
the given value ater can be assigned as the actual terminal
value such that a(t)|t=tmax = ater , instead of using ae.

3.3 Examples of fictitious boundary values

Some fictitious boundary values are shown in several basic
functions.

3.3.1 G(t, tmax) = tan−1( tmax−t
tmax

)

This function is of used for constitutingw(t) or c1(t) in Jiang
et al. [36], and

tan−1
(
tmax − t

tmax

)∣∣∣∣
t=0

= π

4
, tan−1

(
tmax − t

tmax

)∣∣∣∣
t=tmax

= 0

Since

d
[
tan−1 tmax−t

tmax

]
dt

= − 1

tmax

1

1 +
(
tmax−t
tmax

)2 < 0

it is amonotonically decreasing functionwhose initial bound-
ary value is ill-posed. Thus, it is found from (13) that the
fictitious initial boundary value is reduced to

as = aini
π
4

+ ae

(
1 − 1

π
4

)

= 4

π
(aini − ae) + ae (16)

Note that this function can have a well-posed boundary
value, if it is modified as 4

π
tan−1( tmax−t

tmax
) by visual inspec-

tion.

3.3.2 G(t, tmax) = cos(�t/tmax)

This function is used in Yang et al. [94] to make time-varying
parameters c1(t) and c2(t). Since

d cos(π t/tmax)

dt
= − π

tmax
sin(π t/tmax) < 0

it is found that this function is to be a monotonically decreas-
ing function, but the terminal boundary value is reduced to
be ill-posed:

cos(π t/tmax)|t=0 = 1, cos(π t/tmax)|t=tmax = −1

Thus, from (15), the fictitious terminal boundary value
results in

ae = ater − as(−1)

1 − (−1)
= ater + as

2
(17)

Note that this function can take a well-posed terminal
boundary value, if it is modified as 1

2 [cos(π t/tmax) + 1] by
some rearrangements.
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3.3.3 F(t, tmax) = e−(tmax−t)/tmax

From the fact that

dF(t, tmax)

dt
= 1

tmax
F(t, tmax) > 0

this monotonically increasing function provides F(0, tmax)

= 1/e and F(tmax, tmax) = 1, so that the initial boundary
value is to be ill-posed. Thus, from (12), the fictitious initial
boundary value beomes

as = aini − ae/e

1 − 1/e
=

(
e

e − 1

)
aini − ae

e − 1
(18)

3.3.4 G(t, tmax) = e−tmax/(tmax−t)

Since

dG(t, tmax)

dt
= − 1

tmax(1 − t/tmax)2
G(t, tmax) < 0

this monotonically decreasing function provides G(0, tmax)

= 1/e and G(tmax, tmax) = 0, so that it has an ill-posed
initial boundary value. Therefore, it is found from (13) that
the fictitious initial boundary value results in

as = aini
1/e

+ ae

(
1 − 1

1/e

)
= eaini + ae(1 − e) (19)

3.3.5 G(t, tmax) = e−˛t/tmax

Becuase of

dG(t, tmax)

dt
= − α

tmax
G(t, tmax) < 0

this monotonically decreasing function givesG(0, tmax) = 1
and G(tmax, tmax) = 1/eα , so that the terminal boundary
value is not well-posed. Thus, it is found from (15) that the
fictitious terminal boundary value is reduced to

ae = ater − as/eα

1 − 1/eα
=

(
eα

eα − 1

)
ater − as

eα − 1
(20)

3.3.6 F(t, tmax) = e−˛tmax/t

Since

dF(t, tmax)

dt
= −αtmax

t2
F(t, tmax) > 0

this monotonically increasing function provides F(0, tmax)

= 0 and F(tmax, tmax) = 1/eα , so that the terminal boundary

value is ill-posed. Therefore, from (14), the fictitious terminal
boundary value is found to be

ae = ater
1/eα

+ as

(
1 − 1

1/eα

)
= eαater + as(1 − eα) (21)

4 Relationship between basic function
and boundary values when adopting
the crossing strategy of acceleration
coefficients

In the crossing strategy proposed in this paper using non-
linear time-varying decreasing function c1(t) and increasing
function c2(t) which are acceleration coefficients, the cross-
ing time tcross and crossing value ccross are introduced as
the amount of information in connection with the timing of
intersection. Therefore, the relationship between the basic
function andboundaryvalues is derived in advanceherewhen
adopting a crossing strategy. It is roughly classified into four
cases, depending on whether the basic function to be used
is monotonically increasing or monotonically decreasing, or
whether the initial boundary condition is ill-posed or the ter-
minal boundary condition is ill-posed.

4.1 When the basic function is a monotonically
increasing function with an ill-posed initial
boundary condition

4.1.1 An asymmetric case about a crossing axis

When the acceleration coefficients c1(t) and c2(t) are asym-
metrical about a crossing axis, using a fictitious initial
boundary value in which the basic function is monotonically
increasing with an ill-posed initial boundary condition, i.e.,
f (t0, tmax) �= 0, c1(t) and c2(t) are respectively expressed
as follows:

c1s = c1ini − c1e f (t0, tmax)

1 − f (t0, tmax)
(22)

c1(t) = (c1e − c1s) f (t, tmax) + c1s

=
(
c1e − c1ini − c1e f (t0, tmax)

1 − f (t0, tmax)

)
f (t, tmax) + c1s

=
(

c1e − c1ini
1 − f (t0, tmax)

)
f (t, tmax)

+c1ini − c1e f (t0, tmax)

1 − f (t0, tmax)
(23)

c2s = c2ini − c2e f (t0, tmax)

1 − f (t0, tmax)
(24)
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c2(t) = (c2e − c2s) f (t, tmax) + c2s

=
(
c2e − c2ini − c2e f (t0, tmax)

1 − f (t0, tmax)

)
f (t, tmax) + c2s

=
(

c2e − c2ini
1 − f (t0, tmax)

)
f (t, tmax)

+c2ini − c2e f (t0, tmax)

1 − f (t0, tmax)
(25)

Equating (23) and (25), assuming that f (t0, tmax) �= 0 and
f (t0, tmax) �= 1, it obtains

[(c2e − c1e) + (c1ini − c2ini )] f (t, tmax)

= (c1ini − c2ini ) + (c2e − c1e) f (t0, tmax)

consequently it follows that

f (t, tmax) = β + (1 − β) f (t0, tmax) (26)

Here,

β = c12ini
c21e + c12ini

(27)

in which c12ini denotes the actual initial error between two
acceleration coefficients c1(t) and c2(t), c21e is its terminal
error, which are given by

c12ini = c1ini − c2ini , c21e = c2e − c1e (28)

where c12ini �= 0 and c21e �= 0. Note here that c1(t) and
c2(t) are asymmetrical means also that the initial accelera-
tion coefficient error differs from the termination acceleration
coefficient error. If f (t0, tmax) ≡ 0, i.e., the initial boundary
condition is well-posed, then (26) is reduced to

f (t, tmax) = β (29)

Before discussing the symmetry of the crossing axis for
the coefficients c1(t) and c2(t), we establish the relationship
between the acceleration coefficient errors c12ini at the initial
point and c21e at the terminal point to achieve this symmetry.
In general, for the two time-varying coefficients c1(t) and
c2(t) to be axisymmetric with respect to the time (or genera-
tion) axis for crossing strategies, they must intersect at least
once along the time axis. This intersection should exhibit
the property of symmetric movement, where the symmetry
axis (crossing axis) becomes the perpendicular bisector of
the line connecting corresponding points. The conditions for
ensuring the symmetry of acceleration coefficients when the
initial values are ill-posed can be categorized into three cases,
introducing the ratio of acceleration coefficient errors at the

initial point and the terminal point as:

ηi i = c12ini
c21e

1. Case of ηi i = 1 (i.e., c12ini = c21e): Additionally, the
following conditions are necessary:

c1ini−ccross = ccross−c2ini or c2e−ccross = ccross−c1e

2. Case of ηi i > 1: Further conditions are required:

c1ini−ccross = ccross−c2ini ; c2e−ccross = ccross−c1e

where c1ini > c2e or c1e > c2ini .
3. Case of 0 < ηi i < 1: Additional conditions apply:

c1ini−ccross = ccross−c2ini ; c2e−ccross = ccross−c1e

where c2e > c1ini or c2ini > c1e. In this discussion, we
primarily focus on the case where ηi i = 1. Furthermore,
when the initial values are well-posed, we can design two
axisymmetric acceleration coefficients by setting c1ini = c1s ,
c2ini = c2s , and c12ini = c12s (i.e., c12s = c1s − c2s) in the
above equations.

4.1.2 A symmetric case about a crossing axis

When c1(t) and c2(t) are symmetric about the crossing axis,
or the initial acceleration coefficient error and the terminal
acceleration error are equivalent, it obtains the condition of
c12ini = c21e, so that (26) becomes

f (t, tmax) = 1

2
(1 + f (t0, tmax)) (30)

Moreover, if the initial boundary condition is well-posed,
then it follows that

f (t, tmax) = 1

2
(31)

4.1.3 Crossing value

Here, a crossing value ccross is solved, when using a cross-
ing strategy. Substituting the relationship between the basic
function and the initial boundary value in the asymmetrical
crossing method, i.e., (26) into (23), letting c1(t) at that time
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be ccross , it follows that

ccross = (c1e − c1ini )[β + (1 − β) f (t0, tmax)]
1 − f (t0, tmax)

+c1ini − c1e f (t0, tmax)

1 − f (t0, tmax)

= (c1e − c1ini )β + c1ini
1 − f (t0, tmax)

+[(c1e − c1ini )(1 − β) − c1e] f (t0, tmax)

1 − f (t0, tmax)

Noting that (c1e−c1ini )(1−β)−c1e = −[(c1e−c1ini )β+
c1ini ], the above equation is reduced to

ccross = [(c1e − c1ini )β + c1ini ](1 − f (t0, tmax))

1 − f (t0, tmax)

= (c1e − c1ini )β + c1ini (32)

Since c1ini = c2e and β = 1/2 in a symmetrical crossing
strategy, it follows that

ccross = 1

2
(c1ini + c1e) ≡ 1

2
(c1e + c2e) (33)

or using the fact of c1e = c2ini , it is found that

ccross = 1

2
(c1ini + c2ini ) ≡ 1

2
(c2ini + c2e) (34)

Figure 1 summarizes the fictious initial values as , crossing
time tcross and crossing value ccross when the monotonically
increasing function f (t, tmax) is initially ill-posed. However,
tcross must be obtained after the concrete f (t, tmax) is given.
When f (t, tmax) is initially well-posed, it should take that
f (t0, tmax) ≡ 0. Note also that the symmetric cross strategy
denotes only for the case of c12ini = c21e.

4.2 When the basic function is a monotonically
decreasing function with an ill-posed initial
boundary condition

4.2.1 An asymmetric case about a crossing axis

When the acceleration coefficients c1(t) and c2(t) are asym-
metrical about a crossing axis, using a fictitious initial
boundary value in which the basic function is monotonically
decreasing with an ill-posed initial boundary condition, i.e.,
g(t0, tmax) �= 1 and g(t0, tmax) �= 0, c1(t) and c2(t) are
respectively expressed as follows:

c1s = c1ini
g(t0, tmax)

+ c1e

(
1 − 1

g(t0, tmax)

)
(35)

c1(t) = (c1s − c1e)g(t, tmax) + c1e

=
(

c1ini
g(t0, tmax)

+ c1e − c1e
g(t0, tmax)

− c1e

)

×g(t, tmax) + c1e

= (c1ini − c1e)g(t, tmax)/g(t0, tmax) + c1e (36)

c2s = c2ini
g(t0, tmax)

+ c2e

(
1 − 1

g(t0, tmax)

)
(37)

c2(t) = (c2s − c2e)g(t, tmax) + c2e

=
(

c2ini
g(t0, tmax)

+ c2e − c2e
g(t0, tmax)

− c2e

)

×g(t, tmax) + c2e

= (c2ini − c2e)g(t, tmax)/g(t0, tmax) + c2e (38)

Fig. 1 The fictitious initial
value as , crossing time tcross
and crossing value ccross , when
the monotonic-increasing (MI)
function f (t, tmax) is initially
ill-posed
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Equating (36) and (38), assuming g(t0, tmax) �= 0, it
obtains that

(c1ini − c1e)g(t, tmax)/g(t0, tmax) + c1e

= (c2ini − c2e)g(t, tmax)/g(t0, tmax) + c2e

or

(c1ini − c2ini )g(t, tmax)/g(t0, tmax)

+(c2e − c1e)g(t, tmax)/g(t0, tmax) = c2e − c1e

In the sequel, if c12ini �= 0 and c21e �= 0, then it is found that

g(t, tmax)/g(t0, tmax) = 1 − β (39)

When g(t0, tmax) ≡ 1, i.e., the initial boundary condition
is well-posed, it is easy to find that (39) is reduced to

g(t, tmax) = 1 − β (40)

4.2.2 A symmetric case about a crossing axis

When c1(t) and c2(t) are symmetric about the crossing axis,
or the initial acceleration coefficient error and the terminal
acceleration error are equivalent, i.e., c12ini = c21e, it is easy
to find that (39) becomes

g(t, tmax)/g(t0, tmax) = 1

2
(41)

Additionally, if the initial boundary condition is well-posed,
i.e., g(t0, tmax) ≡ 1, then the above equation is reduced to

g(t, tmax) = 1

2
(42)

4.2.3 Crossing value

Here, the crossing value ccross is derived. Substituting
the relationship between the basic function and the initial

boundary value in the asymmetrical crossing method, i.e.,
(39) into (36), letting c1(t) in that time be ccross , it is obtained
that

ccross = (c1ini − c1e)(1 − β)g(t0, tmax)/g(t0, tmax) + c1e

= c1ini (1 − β) − c1e(1 − β) + c1e

= c1ini (1 − β) + c1eβ

= (c1e − c1ini )β + c1ini (43)

Since c1ini = c2e and β = 1/2 in the symmetrical cross-
ing strategy, it is easy to find that

ccross = 1

2
(c1ini + c1e) ≡ 1

2
(c1e + c2e) (44)

or from the fact of c1e = c2ini that

ccross = 1

2
(c1ini + c2ini ) ≡ 1

2
(c2ini + c2e) (45)

Figure 2 summarizes the fictitious initial values as ,
crossing time tcross and crossing value ccross when themono-
tonically decreasing function g(t, tmax) is initially ill-posed.
However, tcross must be obtained after the concrete g(t, tmax)

is given.When g(t, tmax) is initiallywell-posed, it should take
that g(t0, tmax) ≡ 1.

4.3 When the basic function is a monotonically
decreasing function with an ill-posed terminal
boundary condition

4.3.1 An asymmetric case about a crossing axis

When the acceleration coefficients c1(t) and c2(t) are asym-
metrical about a crossing axis, using a fictitious terminal
boundary value in which the basic function is monotonically
decreasing with an ill-posed terminal boundary condition,
i.e., g(tmax, tmax) �= 0, c1(t) and c2(t) are respectively

Fig. 2 The fictitious initial
value as , crossing time tcross
and crossing value ccross , when
the monotonic-decreasing (MD)
function g(t, tmax) is initially
ill-posed
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expressed as follows:

c1e = c1ter − c1sg(tmax, tmax)

1 − g(tmax, tmax)
(46)

c1(t) = (c1s − c1e)g(t, tmax) + c1e

=
(
c1s − c1ter − c1sg(tmax, tmax)

1 − g(tmax, tmax)

)
g(t, tmax) + c1e

=
(

c1s − c1ter
1 − g(tmax, tmax)

)
g(t, tmax)

+c1ter − c1sg(tmax, tmax)

1 − g(tmax, tmax)
(47)

c2e = c2ter − c2sg(tmax, tmax)

1 − g(tmax, tmax)
(48)

c2(t) = (c2s − c2e)g(t, tmax) + c2e

=
(
c2s − c2ter − c2sg(tmax, tmax)

1 − g(tmax, tmax)

)
g(t, tmax) + c2e

=
(

c2s − c2ter
1 − g(tmax, tmax)

)
g(t, tmax)

+c2ter − c2sg(tmax, tmax)

1 − g(tmax, tmax)
(49)

Equating (47) with (49), assuming that g(tmax, tmax) �= 0
and g(tmax, tmax) �= 1, it follows that

[(c1s − c2s) + (c2ter − c1ter )]g(t, tmax)

= (c2ter − c1ter ) + (c1s − c2s)g(tmax, tmax)

consequently, it results in

g(t, tmax) = (1 − γ ) + γ g(tmax, tmax) (50)

where

γ = c12s
c12s + c21ter

(51)

in which c12s denotes the initial error of two acceleration
coefficients c1(t) and c2(t), and c21ter is its actual terminal
error, which are respectively given by

c12s = c1s − c2s, c21ter = c2ter − c1ter (52)

Here, assume that c12s �= 0 and c21ter �= 0. If
g(tmax, tmax) ≡ 0, i.e., the terminal boundary condition is
well-posed, then (50) becomes

g(t, tmax) = 1 − γ (53)

In amanner similar to the case of ill-posed initial boundary
conditions, we also present analogous conditions to achieve
symmetry for the two acceleration coefficients here. When
the terminal value is ill-posed, three cases can be considered
by introducing the ratio of acceleration coefficient errors at
the initial point and at the terminal point as:

ηti = c12s
c21ter

The following conditions apply for each case:

1. When ηti = 1 (i.e., c12s = c21ter ), the additional require-
ment is:

c1s−ccross = ccross−c2s or c2ter−ccross = ccross−c1ter

2. When ηti > 1, the additional conditions are:

c1s−ccross = ccross−c2s and c2ter−ccross = ccross−c1ter

where c1s > c2ter or c1ter > c2s .
3. When 0 < ηti < 1, the additional conditions are:

c1s−ccross = ccross−c2s and c2ter−ccross = ccross−c1ter

where c2ter > c1s or c2s > c1ter . In this paper, we primarily
focus on the case where ηti = 1.

4.3.2 A symmetric case about a crossing axis

When c1(t) and c2(t) are symmetric about the crossing axis,
or the initial acceleration coefficient error and the terminal
acceleration error are equivalent, i.e., c12s = c21ter , it is easy
to find that (50) becomes

g(t, tmax) = 1

2
(1 + g(tmax, tmax)) (54)

In addition, if the terminal boundary condition is well-
posed, then it is easy to find that

g(t, tmax) = 1

2
(55)

4.3.3 Crossing value

The crossing value in the crossing strategy is derived here.
Directly substituting the relationship between the basic func-
tion and the terminal boundary value in the asymmetric
crossing method, i.e., (50) into (47), letting c1(t) in that time
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be ccross , it follows that

ccross = (c1s − c1ter )[(1 − γ ) + γ g(tmax, tmax)]
1 − g(tmax, tmax)

+c1ter − c1sg(tmax, tmax)

1 − g(tmax, tmax)

= (c1s − c1ter )(1 − γ ) + c1ter
1 − g(tmax, tmax)

+[(c1s − c1ter )γ − c1s]g(tmax, tmax)

1 − g(tmax, tmax)

Here, noting that (c1s−c1ter )γ −c1s = −[(c1s−c1ter )(1−
γ ) + c1ter ], the above equation is reduced to

ccross = [(c1s − c1ter )(1 − γ ) + c1ter ](1 − g(tmax, tmax))

1 − g(tmax, tmax)

= (c1s − c1ter )(1 − γ ) + c1ter

= (c1ter − c1s)γ + c1s (56)

Since c1ter = c2s and γ = 1/2 in the symmetric crossing
strategy, it is easy to find that

ccross = 1

2
(c1ter + c1s) ≡ 1

2
(c1s + c2s) (57)

or from c1s = c2ter that

ccross = 1

2
(c1ter + c2ter ) ≡ 1

2
(c2ter + c2s) (58)

Figure 3 summarizes the fictitious terminal value ae,
crossing time tcross and crossing value ccross when the
monotonically decreasing function g(t, tmax) is terminally
ill-posed. However, tcross must be obtained after the concrete
g(t, tmax) is given. When g(t, tmax) is terminally well-posed,
it should take that g(tmax, tmax) ≡ 0. Note also that the sym-
metric cross strategy denotes only for the case of c12s =
c21ter .

4.4 When the basic function is a monotonically
increasing function with an ill-posed terminal
boundary condition

4.4.1 An asymmetric case about a crossing axis

When the acceleration coefficients c1(t) and c2(t) are asym-
metrical about a crossing axis, using a fictitious terminal
boundary value in which the basic function is monotonically
increasing with an ill-posed terminal boundary condition,
i.e., f (tmax, tmax) �= 1 and f (tmax, tmax) �= 0, c1(t) and
c2(t) are respectively expressed as follows:

c1e = c1ter
f (tmax, tmax)

+ c1s

(
1 − 1

f (tmax, tmax)

)
(59)

c1(t) = (c1e − c1s) f (t, tmax) + c1s

=
(

c1ter
f (tmax, tmax)

+ c1s − c1s
f (tmax, tmax)

− c1s

)

× f (t, tmax) + c1s

= (c1ter − c1s) f (t, tmax)/ f (tmax, tmax) + c1s (60)

c2e = c2ter
f (tmax, tmax)

+ c2s

(
1 − 1

f (tmax, tmax)

)
(61)

c2(t) = (c2e − c2s) f (t, tmax) + c2s

=
(

c2ter
f (tmax, tmax)

+ c2s − c2s
f (tmax, tmax)

− c2s

)

× f (t, tmax) + c2s

= (c2ter − c2s) f (t, tmax)/ f (tmax, tmax) + c2s (62)

Fig. 3 The fictitious terminal
value ae, crossing time tcross
and crossing value ccross , when
the MD function g(t, tmax) is
terminally ill-posed
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Fig. 4 The fictitious terminal value ae, crossing time tcross and crossing value ccross , when the MI function f (t, tmax) is terminally ill-posed

Equating (60) with (62), assuming that f (tmax, tmax) �= 0,
it follows that

(c1ter − c1s) f (t, tmax)/ f (tmax, tmax) + c1s

= (c2ter − c2s) f (t, tmax)/ f (tmax, tmax) + c2s

or

(c2ter − c1ter ) f (t, tmax)/ f (tmax, tmax)

+(c1s − c2s) f (t, tmax)/ f (tmax, tmax) = c1s − c2s

Consequently, setting c12s �= 0 and c21ter �= 0, it is easy
to find that

f (t, tmax)/ f (tmax, tmax) = γ (63)

If f (tmax, tmax) ≡ 1, i.e., the terminal boundary condition
is well-posed, then (63) is simplified to

f (t, tmax) = γ (64)

4.4.2 A symmetric case about a crossing axis

When c1(t) and c2(t) are symmetric about the crossing axis,
or the initial acceleration coefficient error and the terminal
acceleration error are equivalent, i.e., c21ter = c12s , it is easy
to find that (63) becomes

f (t, tmax)/ f (tmax, tmax) = 1

2
(65)

In addition, if the terminal boundary condition is well-
posed, i.e., f (tmax, tmax) ≡ 1, then it is reduced to

f (t, tmax) = 1

2
(66)

4.4.3 Crossing value

Here, the crossing value in the crossing strategy is derived.
Directly substituting the relationship between the basic func-
tion and the terminal boundary value in the asymmetric
crossing method, i.e., (63) into (60), letting c1(t) in that time

Fig. 5 The crossing time tcross and crossing value ccross , when the MI function f (t, tmax) is well-posed at both boundaries
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Fig. 6 The crossing time tcross and crossing value ccross , when the MD function g(t, tmax) is well-posed at both boundaries

Fig. 7 Schematic flowchart of the proposed cross-strategy method, where BF denotes the basic function, Fd is a desired global best cost if it is
known in advance, Gbest is a global best cost, and Pibest denotes a personal best at the i th particle
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be ccross , it follows that

ccross = (c1ter − c1s)γ f (tmax, tmax)/ f (tmax, tmax) + c1s

= (c1ter − c1s)γ + c1s (67)

Since c1ter = c2s and γ = 1/2 in the symmetric crossing
strategy, it is easy to find that

ccross = 1

2
(c1ter + c1s) ≡ 1

2
(c1s + c2s) (68)

or from c1s = c2ter that

ccross = 1

2
(c1ter + c2ter ) ≡ 1

2
(c2ter + c2s) (69)

Figure 4 shows the fictitious terminal value ae, crossing
time tcross , and crossing value ccross when themonotonically
increasing function f (t, tmax) is terminally ill-posed. How-
ever, tcross must be obtained after the concrete f (t, tmax) is
given. When f (t, tmax) is terminally well-posed, it should
take that f (tmax, tmax) ≡ 1.

When the monotonically increasing function f (t, tmax) is
well-posed at both ends, it is a special case of Section 4.1
or Section 4.4, and Fig. 5 summarizes the boundary values
and crossing information values, i.e., crossing time tcross and
crossing value ccross . When the monotonically decreasing
function g(t, tmax) is well-posed at both ends, it is a special
case of Section 4.2 or Section 4.3, and similar results are
summarized in Fig. 6.

Figure 7 shows a schematic flowchart of the cross-
strategy method proposed in this paper. Figures 8 and 9
show the procedure for determining fictitious boundary val-
ues, calculating crossing times and crossing values. Figure 10
shows the monotonically decreasing w(t), c1(t) and mono-
tonically increasing c2(t) formulas for which the monoton-
ically increasing f (t, tmax) and monotonically decreasing
g(t, tmax) basic functions are applied, respectively. Note that
although theoretically there are six possible cases as shown in
Figs. 1 to 6 for determining the fictitious boundary value and
calculating the crossing time and crossing value according to
the characteristics of the basic function, the actual program is
executed only after the basic function is selected in advance
and the symmetry or asymmetry strategy is determined.

5 Crossing time

Here, the crossing times are obtained for asymmetric general
crossing strategies when using 10 monotonically increasing
or monotonically decreasing basic functions.

Fig. 8 Procedures for determining fictitious boundary values, calculat-
ing crossing times and corssing values when the basic function (BF) is
monotonically increasing (MI)

5.1 N(t, tmax) = 1−(t/tmax)
1+s(t/tmax)

,−1 < s < ∞

Since this function was used to represent Sugeno’s fuzzy
complement [79] and is a well-posedmonotonically decreas-
ing function satisfying N (0, tmax) = 1, N (tmax, tmax) = 0
[45] , using the relationship between the basic function and
the well-posed boundary values, tcross satisfies

1 − (tcross/tmax)

1 + s(tcross/tmax)
= 1 − β

Rearranging the above equation to obtain

1 − tcross
tmax

= (1 − β)

(
1 + stcross

tmax

)

or

β = tcross
tmax

[s(1 − β) + 1]

it follows that

tcross = βtmax

1 + s(1 − β)
(70)
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Fig. 9 Procedures for determining fictitious boundary values, calcu-
lating crossing times and corssing values when the basic function is
monotonically decreasing

For a symmetric crossing, i.e., β = 1/2, (70) becomes

tcross = 0.5tmax

1 + 0.5s
(71)

5.2 Ng(t, tmax) = [1 − (t/tmax)
˛]1/˛,−1 < ˛ < ∞

This basic function was used to represent Yager’s fuzzy
complement [44], which is also a monotonically decreas-
ing function satisfying Ng(0, tmax) = 1, Ng(tmax, tmax) = 0.
Therefore, since the crossing time tcross satisfies

[1 − (tcross/tmax)
α]1/α = 1 − β

or

1 −
(
tcross
tmax

)α

= (1 − β)α

it follows that

(tcross/tmax)
α = 1 − (1 − β)α

consequently

tcross = tmax[1 − (1 − β)α]1/α (72)

Fo a symmetric crossing, i.e., β = 1/2, (72) is reduced to

tcross = tmax

(
1 −

(
1

2

)α)1/α

(73)

Fig. 10 Inertia weight and acceleration coefficients with a monotonic-increasing or monotonic-decreasing function as a BF
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5.3 G(t, tmax) = tan−1( tmax−t
tmax

)

Since this function was a monotonically decreasing function
whose initial boundary value was ill-posed in the result of
fictitious boundary values, the crossing time satisfies

tan−1
(
tmax − tcross

tmax

)
= (1 − β)G(t0, tmax)

= (1 − β)π

4

so that

tan

[
(1 − β)π

4

]
= 1 − tcross/tmax

Consequently, it yields that

tcross = tmax

{
1 − tan

[
(1 − β)π

4

]}
(74)

For a symmetric crossing of β = 1/2, (74) results in

tcross = tmax

[
1 − tan

(π

8

)]
(75)

Note that, changing it into a well-posed monotonically
decreasing function such as 4

π
tan−1( tmax−t

tmax
), the similar

result is obtained from 4
π
tan−1( tmax−t

tmax
) = 1 − β.

5.4 G(t, tmax) = cos(� t
tmax

)

This function was a monotonically decreasing function
whose terminal value was ill-posed in the previous result of
fictitious boundary values, so that the crossing time satisfies

cos

(
π
tcross
tmax

)
= (1 − γ ) + γG(tmax, tmax)

= (1 − γ ) − γ = 1 − 2γ

Deforming it such that

π
tcross
tmax

= cos−1(1 − 2γ )

consequently it follows that

tcross = tmax

π
cos−1(1 − 2γ ) (76)

Here, in a symmetric crossing of γ = 1/2, (76) becomes

tcross = tmax

π
cos−1(0) = tmax

2
(77)

Note that if it is slightly modified into a well-posed
monotonically decreasing function such as 1

2 [cos(π t
tmax

) +
1], then the similar result can be obtained directly from
1
2 [cos(π t

tmax
) + 1] = 1 − γ .

5.5 g(t, tmax) = (1 − t/tmax)
n

This function in Chatterjee and Siarry [11] is a well-posed
monotonically decreasing function (i.e., {(1 − t/tmax)

n}′ =
− n

tmax
(1−t/tmax)

n−1 < 0) taking 1 at t = 0 and 0 at t = tmax,
where n denotes a modulation index. Therefore, the crossing
time satisfies

(1 − tcross/tmax)
n = 1 − β

or

(1 − tcross/tmax) = (1 − β)1/n

so that

tcross = tmax[1 − (1 − β)1/n] (78)

Note here that in a symmetric crossing of β = 1/2, (78)
results in

tcross = tmax

[
1 −

(
1

2

)1/n
]

(79)

5.6 f(t, tmax) = (t/tmax)
n

This function in Wang and Liu [86] is a well-posed
monotonically increasing function (i.e., {(t/tmax)

n}′ =
n

tmax
(t/tmax)

n−1 > 0) taking 0 at t = 0 and 1 at t = tmax.
Then, since the crossing time satisfies

(tcross/tmax)
n = β

or

tcross/tmax = (β)1/n

it follows that

tcross = tmax(β)1/n (80)

Note here that in a symmetric crossing of β = 1/2, (80)
becomes

tcross = tmax

(
1

2

)1/n

(81)
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5.7 F(t, tmax) = e−(tmax−t)/tmax

When defining f (t, tmax) = t/tmax and letting the Napier’s
constant be the base, this function uses 1− f (t, tmax) tomake

a function e−[1− f (t,tmax)] = 1
e1− f (t,tmax)

�= F(t, tmax). This
function is monotonically increasing because 1− f (t, tmax)

is monotonically decreasing (i.e., {1 − f (t, tmax)}′ =
−1/tmax < 0). However, F(0, tmax) = 1/e �= 0,
F(tmax, tmax) = 1, which is an ill-posed boundary value.
Therefore, from the relationship between the basic function
and the ill-posed boundary value when the initial bound-
ary condition of the monotonically increasing function is
ill-posed, the crossing time satisfies

e−(tmax−tcross )/tmax = β + (1 − β)F(0, tmax)

= β + (1 − β)/e

= 1

e
[βe + (1 − β)]

and moreover acting on both sides of this equation with log
gives

−(tmax − tcross)/tmax = log

{
1

e
[βe + (1 − β)]

}

= log[βe + (1 − β)] − 1

Thus, from the fact that

tmax − tcross = tmax {1 − log[βe + (1 − β)]}

it yields that

tcross = tmax − tmax {1 − log[βe + (1 − β)]} (82)

Note here that for a symmetric crossing of β = 1/2, (82)
is reduced to

tcross = tmax − tmax

{
1 − log

(
e + 1

2

)}
(83)

5.8 G(t, tmax) = e−tmax/(tmax−t)

When letting f (t, tmax) = t/tmax, this is found to be a

function e−1/[1− f (t,tmax)] = 1
etmax/(tmax−t)

�= G(t, tmax) in
which the Napier’s constant is used as the base, using
(1− f (t, tmax))

−1 that is the reciprocal of 1− f (t, tmax) (see
also Wu et al. [89]). This function is monotonically decreas-
ing, because 1/(1− f (t, tmax)) is monotonically increasing,
whereG(tmax, tmax) = 0 is satisfied, butG(0, tmax) = 1/e �=
1 so that it yields an ill-posed boundary value. Therefore,
using the relationship between the basic function and the
ill-posed boundary when the initial boundary condition is

ill-posed in a monotonically decreasing function, the cross-
ing time satisfies

e−tmax/(tmax−tcross ) = (1 − β)G(0, tmax)

= 1 − β

e

and acting on both sides of this equation with log, it obtains

−tmax/(tmax − tcross) = log(1 − β) − 1

or

1

tmax − tcross
= 1 − log(1 − β)

tmax

As a result, it follows that

tcross = tmax − tmax

1 − log(1 − β)
(84)

where note that in a symmetric crossing of β = 1/2, (84)
results in

tcross = tmax − tmax

1 − log( 12 )
(85)

5.9 GL(t, tmax) = e−˛t/tmax

This function GL(t, tmax) was used for inertial weights in
Lu et al. [50] and is a monotonically decreasing function.
However, this GL(t, tmax) has an ill-posed boundary value
because GL(0, tmax) = 1 and GL(tmax, tmax) = e−α �= 0.
Therefore, when the terminal boundary condition of the
monotonically decreasing function is ill-posed, using the
relationship between the basic function and the ill-posed
boundary value, it is found that the crossing time satisfies

e−αtcross/tmax = (1 − γ ) + γGL(tmax, tmax)

= (1 − γ ) + γ /eα

and acting on both sides of this equation with log gives

−αtcross/tmax = log[(1 − γ ) + γ /eα]

consequently, it yields that

tcross = − tmax

α

{
log[(1 − γ ) + γ /eα]} (86)

Note here that if it takes a symmetric crossing of γ = 1/2,
then (86) becomes

tcross = − tmax

α

(
log

1 + 1/eα

2

)
(87)
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5.10 FL(t, tmax) = e−˛tmax/t

This function FL(t, tmax) has the reciprocal of the expo-
nent t/tmax of the previous GL(t, tmax) and is a mono-
tonically increasing function. However, in this FL(t, tmax),
FL(0, tmax) = 0, but FL(tmax, tmax) = e−α �= 1, so that it
results in an ill-posed boundary value. Therefore, from the
relationship between the fundamental function and the ill-
posed boundary value when the terminal boundary condition
of the monotonically increasing function is ill-posed, it is
found that the crossing time satisfies

e−αtmax/tcross = γ FL(tmax, tmax)

= γ e−α

and acting on both sides of this equation with log yields

−αtmax/tcross = log(γ ) − α

or

tmax/tcross = 1 − log(γ )

α

Consequently, it follows that

tcross = tmax

1 − log(γ )
α

(88)

where for a symmetric crossing of γ = 1/2, it is found that
(88) is reduced to

tcross = tmax

1 − log( 12 )

α

(89)

6 Numerical experiments on CEC2014
bechmark functions

This section is the simulation experiment of the proposed
algorithms. To validate the performance of local exploita-
tion, local extremum avoidance and global exploration, the
statistical analysis was performed on CEC2014 benchmark
functions [47]. For comparing the relative performance of
stochastic optimization algorithms, there are numerous test
beds or benchmark functions [8]. Notably, recent bench-
mark functions include CEC2014 [47], CEC2017 [4], and
CEC2020 [98]. However, focusing on CEC2014, the follow-
ing differences can be observed:

• CEC2017 has a total of 29 functions, which is almost the
same as the 30 functions in CEC2014. However, com-
pared to CEC2014, CEC2017 significantly reduces the

number of multimodal functions and instead increases
the number of hybrid and composition functions. These
benchmark problems emphasize exploring these func-
tions from different perspectives.

• On the other hand, CEC2020 narrows its focus to a selec-
tive or specific set of benchmark problems. It includes
a total of 10 functions derived from CEC2014 and
CEC2017: one unimodal, two multimodal, four hybrid,
and three composition functions.

In this study, we considered the simulation experiments con-
ducted at the time, the available information (specifically, the
MATLAB environment), and the ease of comparison based
on the coherence of experiments and resource availability.
As a result, we opted for a well-balanced set of bench-
mark functions from CEC2014. Three classic PSO variants,
i.e., LDW-PSO [74], LCS-PSO [65], NDW-PSO [11], and
four state-of-the-artmetaheuristics, i.e., CSA [3], PPSO [27],
POA [84], and SHO [103] were compared with our proposed
NCS-PSOs.

6.1 Experimental parameter settings and conditions
on benchmark functions

CEC2014 suite is the general test standard of modern
algorithms, which has strong test suitability for all kinds
of metaheuristic algorithms. Because of the dynamic and
complexity of these benchmark functions, they are more
convincing to validate the optimization performance of the
proposed NCS-PSOs. This test suite includes 30 different
types of functions: unimodal (CEC-1 to CEC-3), simplemul-
timodal (CEC-4 to CEC-16), hybrid (CEC-17 to CEC-22)
and composition functions (CEC-23 to CEC-30). Note that
each optimal value is set as the function’s alignment number
times 100. The mean costs or fitness values of the experi-
ments are recorded. The algorithms are ranked based on the
results of the mean values. Also, we conduct the Wilcoxon
rank-sum test at 0.05 significance level between NCS-PSOs
and other algorithms. The symbol ‘+’ and ‘−’ mean that any
NCS-PSO is significantly better, significantly worse than the
compared algorithm.

The compared algorithms are listed in Table 1, where the
parameter settings are listed in Table 2. Note here that such
design parameters were set, referring to original papers. All
algorithms run 30 times on the CEC 2014 test suite. The
experiments are conducted on the 30-dimensional problems
(i.e., D = 30), though 10, 30, 50 and 100were prepared in the
technical report [47]. The maximum number of fitness eval-
uations, tmax, is set to 500. The population size M is set to be
100 for all the algorithms. The search ranges [−100, 100]D
are defined for all benchmark functions. All current algo-
rithms were coded in MATLAB 2018a and executed on a
computer with Intel(R) Core(TM) i9-9900K CPU @ 3.60
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Table 1 List of the compared algorithms

No. Abbreviation Full name Literature

1 LDW-PSO Linearly decreasing inertia weight PSO Shi and Eberhart (1999) [74]
2 LCS-PSO Linearly crossing strategy PSO Ratnaweera et al. (2004) [65]
3 NDW-PSO Nonlinearly decreasing inertia weight PSO Chatterjee and Siarry (2006) [11]
4 CSA Crow search algorithm Askarzadeh (2016) [3]
5 PPSO Phasor PSO Ghasemi et al. (2019) [27]
6 POA Pelican optimization algorithm Trojovsky and Dehghami (2022) [84]
7 SHO Sea horse optimizer Zhao et al. (2023) [103]

Table 2 Parameter settings for
the classic PSO variants and the
advanced methaheuristics

No. Algorithms Parameter settings

1 LDW-PSO Time-varying inertia weight:

w(t) = (1 − t/tmax)[ws − we] + we, ws = 0.9, we = 0.4;

constant acceleration coefficients, c1 = c2 = 2.0

2 LCS-PSO Linear time-varying inertia weight:

w(t) = (1 − t/tmax)[ws − we] + we, ws = 0.9, we = 0.4;

Linear time-varying acceleration coefficients:

c1(t) = t
tmax

[c1e − c1s ] + c1s , c1s > c1e,

c1s = 2.5, c1e = 0.5;

c2(t) = t
tmax

[c2e − c2s ] + c2s , c2s < c2e,

c2s = 0.5, c2e = 2.5

3 NDW-PSO Nonlinear time-varying inertia weight:

w(t) = (1 − t/tmax)
n[ws − we] + we, modulation index n = 1.2,

ws = 0.9, we = −0.5;

Constant acceleration coefficients, c1 = c2 = 2.0

4 CSA Flight length f l = 2.0; awareness probability AP = 0.1

5 PPSO –

6 POA A constant R = 0.2

7 SHO Levy index λ = 1.5; Brownian scaler l = 0.05;

spiral or Brownian motion probability in N[0, 1], Pr1 = 0.0;

failure probability in capturing food in U[0, 1], Pr2 = 0.1

Table 3 Parameter settings for the proposed NCS-PSOs

No. Basic function ws , we cis , cie n or α Crossing-time

BF-1 MDF: (1 − t/tmax)
n ws = 0.99, we = 0.1 c1s = c2e = 3.0 n = 0.8 tcross = 2901

c1e = c2s = 0.0

BF-2 MIF: (t/tmax)
n ws = 0.99, we = 0.1 c1s = c2e = 3.0 n = 0.8 tcross = 211

c1e = c2s = 0.0

BF-3 MIF: e−(tmax−t )/tmax ws = 0.99, we = 0.1 c1ini = c2e = 3.5 – tcross = 311

c1e = c2ini = 0.0

BF-4 MDF: e−tmax/(tmax−t) ws = 0.99, we = 0.1 c1ini = c2e = 3.5 – tcross = 205

c1e = c2ini = 0.0

BF-5 MDF: e−αt/tmax ws = 0.99, we = 0.1 c1s = c2ter = 3.0 α = 0.1 tcross = 244

c1ter = c2s = 0.0

BF-6 MIF: e−αtmax/t ws = 0.99, we = 0.1 c1s = c2ter = 3.0 α = 0.7 tcross = 252

c1ter = c2s = 0.0

1These values of crossing time were obtained from (79), (81), (83), (85), (87), (89) in the symmetric crossing strategy at tmax = 500, where each
value represents the ceiling value of real number with decimal point
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GHz (+ 16.0 GB of implemented RAM) processor under
the 64-bit Windows 10 Pro operating system. Therefore, the
results were based on double-precision floating-point num-
ber (64-bit) operations using MATLAB, and were managed
using a 5-digit display, including the integer part. The design
parameters of our NCS-PSOs are shown in Table 3. The
selection of the basic functions BF-1 to BF-6 of the proposed
method, the boundary values of each time-varying parameter
as design parameters, and the modulation or time-decay rate
were determined after some trials, considering their use in
the 3-D path planning problem in the later section. It should
be noted that the basic parameter design guideline is based on
the assumption that symmetric crossing of acceleration coef-
ficients is used, with crossing values around 1.5 and crossing
times around 0.5tmax, which is always the case in the linear
case.

6.2 Performance analysis of NCS-PSOs on ECE2014
benchmark functions

Tables 4 and 5 show the test results of NCS-PSOs and seven
comparison algorithms, where the bold entries represent the

best ones among all the algorithms. It can be seen that NCS-
PSOs obtain better average fitness values on 15/30 functions.
In the unimodal functions, the proposed BF-2 and BF-3
achieve the best means for the functions CEC-2 and CEC-3,
with the BF-2 in particular having the best mean and vari-
ance. The conventional PPSO has the best mean and variance
with respect to CEC-1.

For multimodal functions CEC-7, CEC- 8, CEC-9, CEC-
11, CEC-12, CEC-13, CEC-15, and CEC-16, NCS-PSOs
outperform other algorithms with stronger exploration per-
formance. Moreover, BF-1 has the minimum Std result on
function CEC-4. NCS-PSOs also shows less optimization
performance onmost of hybrid functions, except forCEC-22.
The conventional PPSO has the best on functions CEC-
17, CEC-20 and CEC-21. The conventional POA provides
the best on many composition functions CEC-23, CEC-24,
CEC-25, CEC-27, and CEC-28, whereas the proposed BF-
2 and BF-4 can obtain the best on CEC-26 and CEC-29,
respectively. Thus, the test results on CEC2014 benchmark
functions show that the proposed NCS-PSOs are more com-
petitive than other algorithms on unimodal and multimodal
functions.

Fig. 11 Box plot of the proposed NCS-PSO and seven comparison algorithms on CEC2014 benchmark functions

123

7250 K. Watanabe and X. Xu



Ta
bl
e
6

W
ilc
ox
on

ra
nk
-s
um

te
st
re
su
lts

fo
r
B
F-
4
ag
ai
ns
to

th
er

al
go
ri
th
m
s
on

C
E
C
20
14

be
nc
hm

ar
k
fu
nc
tio

ns

Fu
nc
tio

n
B
F-
4
vs
.L

D
W
-P
SO

B
F-
4
vs
.L

C
S-
PS

O
B
F-
4
vs
.N

D
W
-P
SO

B
F-
4
vs
.C

SA
B
F-
4
vs
.P

PS
O

B
F-
4
vs
.P

O
A

B
F-
4
vs
.S

H
O

p
va
lu
e

w
in

p
va
lu
e

w
in

p
va
lu
e

w
in

p
va
lu
e

w
in

p
va
lu
e

w
in

p
va
lu
e

w
in

p
va
lu
e

w
in

C
E
C
-1

1.
15
67
E
-0
7

+
1.
38
32
E
-0
2

+
1.
72
94
E
-0
7

+
3.
19
67
E
-0
9

+
1.
32
72
E
-0
2

+
3.
33
84
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-2

3.
01
99
E
-1
1

+
1.
18
82
E
-0
1

−
1.
76
49
E
-0
2

+
3.
01
99
E
-1
1

+
4.
98
18
E
-0
4

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-3

1.
80
90
E
-0
1

−
5.
26
40
E
-0
4

+
1.
66
87
E
-0
1

−
3.
01
99
E
-1
1

+
3.
77
82
E
-0
2

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-4

2.
32
43
E
-0
2

+
5.
01
14
E
-0
1

−
6.
84
32
E
-0
1

−
2.
25
39
E
-0
4

+
2.
15
44
E
-1
0

+
8.
15
27
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-5

3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
1.
19
37
E
-0
6

+
3.
01
99
E
-1
1

+
1.
32
89
E
-1
0

+

C
E
C
-6

4.
55
30
E
-0
1

−
1.
53
67
E
-0
1

−
5.
39
51
E
-0
1

−
2.
37
15
E
-1
0

+
3.
33
84
E
-1
1

+
3.
68
97
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-7

3.
01
99
E
-1
1

+
9.
70
52
E
-0
1

−
1.
15
67
E
-0
7

+
3.
01
99
E
-1
1

+
1.
20
23
E
-0
8

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-8

3.
84
81
E
-0
3

+
2.
70
86
E
-0
2

+
9.
06
88
E
-0
3

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-9

5.
46
20
E
-0
6

+
1.
25
97
E
-0
1

−
2.
26
58
E
-0
3

+
X
8.
99
34
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-1
0

4.
20
39
E
-0
1

−
4.
42
72
E
-0
3

+
7.
39
40
E
-0
1

−
1.
09
37
E
-1
0

+
8.
99
34
E
-1
1

+
3.
33
84
E
-1
1

+
2.
15
44
E
-1
0

+

C
E
C
-1
1

6.
04
60
E
-0
7

+
2.
00
95
E
-0
1

−
8.
68
44
E
-0
3

+
1.
22
12
E
-0
2

+
8.
19
75
E
-0
7

+
8.
12
00
E
-0
4

+
1.
99
63
E
-0
5

+

C
E
C
-1
2

3.
01
99
E
-1
1

+
3.
25
55
E
-0
7

+
3.
01
99
E
-1
1

+
3.
03
39
E
-0
3

+
4.
11
78
E
-0
6

+
1.
56
38
E
-0
2

+
8.
19
75
E
-0
7

+

C
E
C
-1
3

3.
18
30
E
-0
3

+
1.
00
00
E
+
00

−
1.
02
77
E
-0
6

+
6.
35
60
E
-0
5

+
1.
10
23
E
-0
8

+
3.
68
97
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-1
4

1.
95
79
E
-0
1

−
9.
11
71
E
-0
1

−
2.
39
85
E
-0
1

−
3.
95
27
E
-0
1

−
5.
20
14
E
-0
1

−
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-1
5

1.
17
37
E
-0
9

+
6.
62
73
E
-0
1

−
3.
82
49
E
-0
9

+
6.
06
58
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+
3.
01
99
E
-1
1

+

C
E
C
-1
6

1.
25
41
E
-0
7

+
2.
45
81
E
-0
1

−
1.
10
23
E
-0
8

+
2.
38
00
E
-0
3

+
1.
55
81
E
-0
8

+
7.
29
51
E
-0
4

+
1.
24
77
E
-0
4

+

C
E
C
-1
7

7.
69
73
E
-0
4

+
7.
28
27
E
-0
1

−
2.
75
48
E
-0
3

+
8.
68
44
E
-0
3

+
1.
69
47
E
-0
9

+
7.
17
19
E
-0
1

−
1.
07
02
E
-0
9

+

C
E
C
-1
8

5.
20
14
E
-0
1

−
8.
64
99
E
-0
1

−
9.
82
31
E
-0
1

−
6.
35
60
E
-0
5

+
1.
85
75
E
-0
3

+
3.
82
02
E
-1
0

+
5.
49
41
E
-1
1

+

C
E
C
-1
9

6.
41
42
E
-0
1

−
3.
95
27
E
-0
1

−
3.
79
04
E
-0
1

−
7.
04
30
E
-0
7

+
7.
04
30
E
-0
7

+
1.
25
41
E
-0
7

+
1.
69
47
E
-0
9

+

C
E
C
-2
0

8.
56
41
E
-0
4

+
6.
10
01
E
-0
1

−
4.
11
78
E
-0
6

+
6.
14
52
E
-0
2

−
2.
59
74
E
-0
5

+
6.
28
28
E
-0
6

+
3.
68
97
E
-1
1

+

C
E
C
-2
1

3.
50
12
E
-0
3

+
2.
70
86
E
-0
2

+
8.
88
29
E
-0
6

+
7.
95
90
E
-0
3

+
8.
10
14
E
-1
0

+
9.
58
73
E
-0
1

−
3.
80
53
E
-0
7

+

C
E
C
-2
2

5.
26
50
E
-0
5

+
3.
00
59
E
-0
4

+
8.
66
34
E
-0
5

+
4.
80
11
E
-0
7

+
5.
07
23
E
-1
0

+
5.
59
99
E
-0
7

+
4.
31
06
E
-0
8

+

C
E
C
-2
3

7.
38
03
E
-1
0

+
3.
36
81
E
-0
5

+
6.
62
73
E
-0
1

−
3.
01
99
E
-1
1

+
7.
73
87
E
-0
6

+
1.
72
03
E
-1
2

+
3.
01
99
E
-1
1

+

C
E
C
-2
4

1.
33
45
E
-0
1

−
4.
82
52
E
-0
1

−
7.
95
85
E
-0
1

−
5.
49
41
E
-1
1

+
x

3.
01
99
E
-1
1

+
1.
21
18
E
-1
2

+
3.
01
99
E
-1
1

+

C
E
C
-2
5

1.
62
38
E
-0
1

−
6.
41
42
E
-0
1

−
4.
73
35
E
-0
1

−
1.
77
69
E
-1
0

+
3.
01
99
E
-1
1

+
1.
72
03
E
-1
2

+
1.
40
59
E
-1
1

+

C
E
C
-2
6

4.
67
56
E
-0
2

+
2.
15
06
E
-0
2

+
4.
63
90
E
-0
5

+
9.
04
90
E
-0
2

−
1.
99
63
E
-0
5

+
7.
38
46
E
-1
1

+
2.
91
37
E
-1
1

+

C
E
C
-2
7

1.
46
43
E
-1
0

+
2.
13
27
E
-0
5

+
4.
19
97
E
-1
0

+
1.
17
37
E
-0
9

+
8.
14
65
E
-0
5

+
3.
00
10
E
-1
1

+
6.
69
55
E
-1
1

+

C
E
C
-2
8

1.
09
37
E
-1
0

+
2.
15
06
E
-0
2

+
1.
07
63
E
-0
2

+
3.
01
99
E
-1
1

+
4.
50
43
E
-1
1

+
4.
11
09
E
-1
2

+
3.
01
99
E
-1
1

+

C
E
C
-2
9

1.
62
38
E
-0
1

−
5.
82
82
E
-0
3

+
2.
92
05
E
-0
2

+
4.
97
52
E
-1
1

+
2.
87
16
E
-1
0

+
6.
76
50
E
-0
5

+
3.
01
99
E
-1
1

+

C
E
C
-3
0

5.
79
29
E
-0
1

−
4.
03
30
E
-0
3

+
3.
95
27
E
-0
1

−
4.
19
97
E
-1
0

+
7.
97
82
E
-0
2

−
3.
15
89
E
-1
0

+
5.
49
41
E
-1
1

+

N
o.

of
‘+
’

20
14

19
27

28
28

30

N
o.

of
‘−

’
10

16
11

3
2

2
0

123

7251Nonlinear crossing strategy-based particle swarm...



Figure 11 shows the boxplots for eight algorithms on
CEC2014benchmark functions,whereBF-4was selected out
of six NCS-PSOs because of its superiority to other meth-
ods in NCS-PSOs. If ‘+’ has appeared outside the upper
fence, it implies that the algorithm has a poor search accu-
racy in 30 runs, whereas if ‘+’ was outside the lower fence,
it represents that the algorithm can be fully explored and
exploited to search for the superior precision value. The lin-
ear crossing method LCS-PSO, the nonlinearly decreasing
inertia weight method NDW-PSO and the proposed method
BF-4 have much more ‘+’ from the upper fence than the
other conventional methods, but their medians are lower than
those of the other methods, as can be seen from the visual
inspection of Fig. 11.

The proposed method has the smallest difference between
the upper and lower quartiles forCEC-11,CEC-12, andCEC-
15. On the other hand, for other benchmark functions, there
are several conventional methods with similar quartile dif-
ferences to the proposed method. For example, in CEC-7,
LCS-PSO and the proposed method, in CEC-8, LDW-PSO,
NDW-PSO and the proposed method, and in CEC-9, LCS-
PSO, NDW-PSO and the proposed method obtain similar
differences between quartiles. The boxplots verify that BF-
4, one of NCS-PSOs, has strong robustness and stability.
Thus, BF-4 in NCS-PSOs shows superior optimization per-
formance on CEC2014 benchmark functions.

6.3 Statistical analysis

In order to avoid accidental test results, statistical tests are
performed by using the Wilcoxon rank-sum test statistical
method [88] applying a significance level of 5%. Further this
method is used to evaluate the effectiveness and superiority
of NCS-PSOs. Each BF-i out of NCS-PSOs was used as the
optimization algorithm, and pairwise comparison was made
with the other seven algorithms. If the p value generated by
the two algorithms is less than 5%, it indicates that there is
a significant difference between the two algorithms in sta-
tistical significance. Otherwise, the difference between the
two algorithms is not obvious. The Wilcoxon rank-sum tests
(i.e., Mann-Whitney U tests) of NCS-PSOs were conducted
on CEC2014 benchmark functions. Table 6 is the summary
of test results for BF-4, where ‘+’ represents significant dif-
ference and ‘−’ represents poor significant difference. In this
table, BF-4 conducts 210 (30 × 7) groups of experiments,
among which 166 groups of data (i.e., 79%) shows signif-
icant differences. This result verifies that the optimization
performance of the BF-4 algorithm in NCS-PSOs is better
than the other seven comparison algorithms in the statistical
sense.

Friedman rank test [22] is a nonparametric method that
uses rank to implement significant differences for multi-
ple population distributions. Friedman rank tests of 13 or

eight algorithms were performed on the most challenging
CEC2014 benchmark functions to compare their compre-
hensive average performance. Table 7 shows Friedman test
results of 13 algorithms, whereas Tables 8 and 9 give the
results of eight algorithms, one of which is changed from
BF-1 to BF-6 in NCS-PSOs.

As is shown in Tables 7 to 9, any algorithm in NCS-
PSOs has any rank among one to seven out of 13 ranks,
together with verifying that one of NCS-PSOs acquires 79%
in maximum and 72.4% in minimum in significant differ-
ences. Especially, BF-4 in NCS-PSOs ranked the first and the
remaining algorithms in NCS-PSOs were significantly better
than the other six comparison algorithms, which excluded
LCS-PSO. Thus, Friedman rank tests demonstrate that the
proposed NCS-PSOs are effective and stable.

7 Path optimization problem

In this paper, a 3D path planning for UAVs treated by Phung
and Ha [58] is picked up, and the convergence speed and
accuracy of the best solution are investigated in the difference
between the initial or terminal boundary values in accel-
eration coefficients, and also in the difference between the
crossing values (or crossing times), as well as in the variety
of the basic functions for constituting nonlinear time-varying
inertia weight and acceleration coefficients.

This 3D path planning for UAVs consists of each cost or
constraint condition, which is described below.

7.1 Optimization of path length

Letting the j th path node in the i th particle be denoted by
the coordinate point Pi j , which is corresponded to a way-

Table 7 Friedman rank test results for BF-1 to BF-6 and other algo-
rithms on CEC2014 benchmark functions

Algorithm Friedman rank test Rank

LDW-PSO 8.6667 11

LCS-PSO 5.2333 2

NDW-PSO 8.2333 9

CSA 8.3667 10

PPSO 7.4000 8

POA 8.8333 12

SHO 11.1333 13

BF-1 5.6667 5

BF-2 5.4000 4

BF-3 5.2667 3

BF-4 4.2333 1

BF-5 5.8667 6

BF-6 6.7000 7
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Table 8 Friedman rank test and
Wilcoxon rank-sum test results
for BF-i (i = 1, 2, 3) and other
algorithms on CEC2014
benchmark functions

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-1

Average rank 4.7333 2.8000 4.5667 4.6333 4.6000 4.4000 5.0333 3.1000

Final rank 6 1 5 4 3 7 8 2

+/− 22/8 9/21 17/3 25/5 27/3 26/4 29/1 –

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-2

Average rank 4.7667 2.8000 4.5667 4.6667 4.4333 5.0667 6.7667 2.9333

Final rank 6 1 4 5 3 7 8 2

+/− 23/7 6/24 21/9 25/5 27/3 27/3 29/1 –

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-3

Average rank 4.8333 2.8000 4.6333 4.6333 4.4000 4.9667 6.7000 3.0333

Final rank 6 1 4 5 3 7 8 2

+/− 17/13 9/21 17/13 27/3 28/2 26/4 30/0 –

Table 9 Friedman rank test and
Wilcoxon rank-sum test results
for BF-i (i = 4, 5, 6) and other
algorithms on CEC2014
benchmark functions

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-4

Average rank 4.8333 2.9000 4.7667 4.6667 4.4000 5.0667 6.7667 2.6000

Final rank 6 2 5 4 3 7 8 1

+/− 20/10 14/16 19/11 27/3 28/2 28/2 30/0 –

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-5

Average rank 4.8000 2.7333 4.6667 4.5667 4.4000 5.0333 6.7000 3.1000

Final rank 6 1 5 4 3 7 8 2

+/− 23/7 7/23 19/11 25/5 26/4 26/4 26/4 –

Algorithm LDW-PSO LCS-PSO NDW-PSO CSA PPSO POA SHO BF-6

Average rank 4.7000 2.7000 4.6333 4.5667 4.3667 5.0000 6.6667 3.3667

Final rank 6 1 5 4 3 7 8 2

+/− 24/6 12/18 19/11 26/4 24/6 26/4 25/5 –

Fig. 12 Obstacle model and path vector

Fig. 13 Turning and climbing angles
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point. When defining the Euclidean distance between two
points, Pi j (xi j , yi j , zi j ) and Pi, j+1(xi, j+1, yi, j+1, zi, j+1), as

‖−−−−−→
Pi jPi, j+1‖, the cost related to the total path length F1 is rep-
resented by

F1(Xi ) =
nw−1∑
j=1

‖−−−−−→
Pi jPi, j+1‖ (90)

where Xi denotes the path in the i th particle and nw is the
number of way points to be passed. In this paper, Xi is
expressed by a list of nw way points and the path length is
minimized in total. Instead of using xi , introducing a vector
composed of 3D information, which represents the following
point Pi j (xi j , yi j , zi j ) as the i th particle,

Xi = [xi1 yi1 zi1 xi2 yi2 zi2 · · · xiN yi N zi N ]T

the swarm X is equivalent to a 3N × M matrix such as X =
[X1 X2 · · · XM ]. Note that if the start and terminal points
are fixed in all the paths, then any path with nw way points
is consequently reduced to be 3N dimension, where N =
nw − 2.

7.2 Modelling of obstacle and collision condition

Apart from the optimization of path planning, the planned
path must secure the safety by avoiding the threats caused
with the obstacles which appear in operation space, and
guiding UAVs. Then, assume that there are K threats (i.e.,
obstacles) here, and that each projection is described by
a superellipse which has the center ck , minor-axis ak , and
major-axis bk as shown in Fig. 12. To the obtained path seg-
ment ‖−−−−−→

Pi jPi, j+1‖, the related threat cost is assumed to be
proportional to the distance dk up to the center of an obstacle
Ck . Moreover, letting the maximum diameter of UAVs be D
and the hazarder distance to a collision zone be S, the threat
cost F2 is, for the K obstacles, reduced to

F2(Xi ) =
nw−1∑
j=1

K∑
k=1

Tk(
−−−−−→
Pi jPi, j+1) (91)

with

Tk (
−−−−−−→
Pi jPi, j+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if dk > S + D + bk

(S + D + bk ) − dk if D + bk < dk ≤ S + D + bk

inf if dk ≤ D + bk

(92)

where Tk(
−−−−−→
Pi jPi, j+1) denotes the threat cost between any kth

obstacle and the path segment
−−−−−→
Pi jPi, j+1. Note here that the

diameter D is determined depending on the size of an UAV,

but S is set to from tens of meters to hundreds of meters [58]
according to the variety of obstacles and environments.

7.3 Altitude cost

The flying altitude of UAVs is different from every practical
operational configurations, i.e., every applications, so that it
is often constrained between the maximum and minimum
heights. Now defining the minimum heights and maximum
heights be hmin and hmax respectively, the altitude cost Hi j

related to a waypoint Pi j is calculated by

Hi j =
{∣∣∣hi j − hmax+hmin

2

∣∣∣ if hmin ≤ hi j ≤ hmax

inf otherwise
(93)

where hi j denotes the flight height with respect to the ground
anddiffers from the altitude from the sea level. This Hi j keeps
an average height so as to penalize an outlier. By summing
up Hi j for all waypoints, the total altitude cost is described
by

F3(Xi ) =
nw∑
j=1

Hi j (94)

7.4 Smooth cost

The turning and climbing rates, which are essential to gener-
ate a feasible path, are evaluated as the smooth cost in UAVs
[24, 58]. The turning angle φi j denotes the angle between−−−−−−→
P′

i jP′
i, j+1 and

−−−−−−−−−→
P′

i, j+1P′
i, j+2, which are the projections of

two consecutive path segments
−−−−−→
Pi jPi, j+1 and

−−−−−−−−→
Pi, j+1Pi, j+2

onto the horizontal plane Oxy (see Fig. 13). Therefore, using
a relationship between the inner product of two vectors and
the angle formed by them, it yields [24] that

φi j = cos−1

( −−−−−−→
P′

i jP′
i, j+1 · −−−−−−−−−→

P′
i, j+1P′

i, j+2

‖−−−−−−→
P′

i jP′
i, j+1‖‖−−−−−−−−−→

P′
i, j+1P′

i, j+2‖

)
(95)

Since the magnitude of outer product of two vectors is
known to be reduced to the area of the parallelogram formed
by them, it is also obtained that

φi j = sin−1

(
‖−−−−−−→
P′

i jP′
i, j+1 × −−−−−−−−−→

P′
i, j+1P′

i, j+2‖
‖−−−−−−→
P′

i jP′
i, j+1‖‖−−−−−−−−−→

P′
i, j+1P′

i, j+2‖

)
(96)

Combining them gives the following equation [58]:

φi j = tan−1

(
‖−−−−−−→
P′

i jP′
i, j+1 × −−−−−−−−−→

P′
i, j+1P′

i, j+2‖−−−−−−→
P′

i jP′
i, j+1 · −−−−−−−−−→

P′
i, j+1P′

i, j+2

)
(97)
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Thus, the smooth cost on turning angle is given by

F4(Xi ) =
nw−2∑
j=1

φi j (98)

where

φi j =
{

φi j if φi j > φmax

0 otherwise
(99)

in which φmax is an allowable turning angle.
On the other hand, the climbing angle ψi j is coming from

the angle between the path segment
−−−−−→
Pi jPi, j+1 and the pro-

jection of it onto the horizontal plane, i.e.,
−−−−−−→
P′

i jP′
i, j+1, so that

ψi j = tan−1

(
zi, j+1 − zi, j

‖−−−−−−→
P′

i jP′
i, j+1‖

)
(100)

Thus, if the climbing rate is defined by dψi j
�= |ψi j −

ψi, j+1|, then, using the total climbing rates, the smooth cost
on climbing rate is set to

F5(Xi ) =
nw−1∑
j=1

dψi j (101)

where

dψi j =
{
dψi j if dψi j > dψmax

0 otherwise
(102)

in which dψmax denotes an allowable climbing rate angle.

7.5 Overall cost function

Considering the optimality, safety and feasibility constraints
related to a path Xi , the overall cost function is described by
the following form:

F(Xi ) =
5∑

k=1

ηk Fk(Xi ) (103)

where ηk denotes the weight factor, and Fk(Xi ), k = 1, ..., 5
are the partial cost functions described above.

8 Examples of 3D path planning

8.1 Spherical vector-based PSO for UAV path
planning

Instead of solving directly the waypoint vectors in the Carte-
sian coordinate system, Pi j = (xi j , yi j , zi j ), i = 1, ..., M ,
j = 1, ..., N , N = n − 2, spherical vector-based PSO
(SPSO) solves once three components in the spherical coor-
dinate system, i.e., the magnitude ρ ∈ (0, path_length), the
elevation angleψ ∈ (−π/2, π/2) and the azimuth angle φ ∈
(−π, π), where n denotes the number ofwaypoints including
the initial and terminal values. Then, Ui j = (ρi j , ψi j , φi j ) is
transformed into a waypoint Pi j through the following equa-
tions:

xi j = xi, j−1 + ρi j sinψi j cosφi j (104)

yi j = yi, j−1 + ρi j sinψi j sin φi j (105)

zi j = zi, j−1 + ρi j cosψi j (106)

The scenario used in the following optimization is Sce-
nario 3, in which there exist six obstacles, out of eight
scenarios studied in Phung and Ha [58]. Considering any
cylinders as obstacles, in other words, assuming that each
threat projection is a circle, i.e., ak = bk in previous sec-
tion, the radius Rk [m] and 3D position (xk, yk, zk) [m] are
respectively given by

80; (400, 500, 100) for k = 1

70; (600, 200, 150) for k = 2

80; (500, 350, 150) for k = 3

70; (350, 200, 150) for k = 4

70; (700, 550, 150) for k = 5

80; (650, 750, 150) for k = 6

For the path to be optimized, the initial and terminal posi-
tions are assumed to be provided by (200, 100, 150) [m] and
(800, 800, 150) [m], respectively, and the number of way-
points is fixed to nw = 12 (i.e., the number of line segments
is set to N = 10). The swarm size is set to M = 500, and
the maximum number of iterations is fixed to tmax = 200,
while setting weight factors in the cost function such as
η1 = 5, η2 = η4 = η5 = 1, and η3 = 10. Note here that, for
the penalty in the threat cost to judge the collision with an
obstacle or in the altitude cost, the value of 15, 000 is applied
to represent a finite cost value, instead of using inf. More-
over, the average cost with 20 trials and its standard deviation
are evaluated to compare each other. Additionally, note that
the basic function comprising the algorithm was chosen in
terms of whether it has well-posed boundary conditions and

123

7255Nonlinear crossing strategy-based particle swarm...



Table 10 Two crossing-time
functions: The upper is for
Chatterjee and Siarry [11],
whereas the bottom is for Wang
and Liu [86]

Modulation index n
0.5 0.75 1.0 1.25 1.5 1.75 2.0

tcross = tmax[1 − ( 12 )1/n] 150 121 100 86 75 66 59 1

tcross = tmax(
1
2 )1/n 50 80 100 115 126 135 142

1 Crossing time was calculated through the ceiling function, i.e., �tcross�

Fig. 14 Time history of acceleration coefficients with different modulation indeces n

Table 11 Optimized results of
using a basic function
(1 − t/tmax)

n (Chatterjee and
Siarry [11]), where
c1e = c2s = 0.0

Modulation index n
0.5 0.75 1.0 1.25 1.5 1.75 2.0

(a) A case of c1s = c2e = 2.0, ccross = 1.0
Mean 4684 4742 4710 4711 4754 4752 4736
Std. 4.59 140 105 105 171 170 143
Conv. rate (%) 100 65 90 85 85 85 75

(b) A case of c1s = c2e = 2.5, ccross = 1.25
Mean 4727 4724 4747 4747 4677 4675 4699
Std. 142 145 169 168 5.65 3.78 105
Conv. rate (%) 90 90 85 85 100 100 95

(c) A case of c1s = c2e = 3.0, ccross = 1.5
Mean 4696 4677 4676 4672 4718 4696 4694
Std. 23.5 5.46 4.91 5.13 143 103 103
Conv. rate (%) 80 100 100 100 90 95 95

(d) A case of c1s = c2e = 3.5, ccross = 1.75
Mean 4787 4731 4716 4712 4754 4727 4723
Std. 29.9 131 107 105 178 152 144
Conv. rate (%) 0 50 70 85 80 85 90

(e) A case of c1s = c2e = 4.0, ccross = 2.0
Mean 5088 4968 4852 4833 4812 4870 4777
Std. 122 187 163 149 131 220 113
Conv. rate (%) 0 0 0 15 40 30 60
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Table 12 Optimized results of
using a basic function (t/tmax)

n

(Wang and Liu [86]), where
c1e = c2s = 0.0

Modulation index n
0.5 0.75 1.0 1.25 1.5 1.75 2.0

(a) A case of c1s = c2e = 2.0, ccross = 1.0

Mean 4757 4808 4714 4692 4709 4784 4733

Std. 175 208 103 11.2 103 195 142

Conv. rate (%) 85 60 80 75 85 75 80

(b) A case of c1s = c2e = 2.5, ccross = 1.25

Mean 4816 4726 4749 4703 4725 4681 4728

Std. 217 140 169 104 141 8.45 143

Conv. rate (%) 70 85 85 95 90 95 90

(c) A case of c1s = c2e = 3.0, ccross = 1.5

Mean 4766 4673 4723 4702 4679 4707 4688

Std. 190 4.67 144 103 13.4 108 8.98

Conv. rate (%) 80 100 90 95 95 85 90

(d) A case of c1s = c2e = 3.5, ccross = 1.75

Mean 4774 4751 4716 4722 4722 4729 4763

Std. 197 177 105 103 22.5 31.1 38.5

Conv. rate (%) 75 85 75 60 25 10 0

(e) A case of c1s = c2e = 4.0, ccross = 2.0

Mean 4853 4832 4913 4899 4934 5015 5007

Std. 216 183 162 153 141 161 104

Conv. rate (%) 0 0 0 0 0 0 0

whether it includes additional parameters such as time decay
rate and modulation index.

8.2 Using of well-posed basic functions in symmetric
crossing strategy

Here, let us apply well-posed basic functions to construct
nonlinear time-varying inertiaweight and acceleration coeffi-
cients, and consider the use of two acceleration coefficients in
a symmetric crossing strategy. Therefore, the monotonically
decreasing (1− t/tmax)

n used in Chatterjee and Siarry [11] is
first selected as a basic function, and constitute w(t), c1(t),
and c2(t) by using

a(t) = (as − ae)(1 − t/tmax)
n + ae

where as > ae so as to obtainmonotonically decreasingw(t)
and c1(t), whereas as < ae so as to realize a monotonically
increasing c2(t). In addition, let us select the monotonically
increasing (t/tmax)

n used in Wang and Liu [86] as another
basic function, and constitutew(t), c1(t), and c2(t) by apply-
ing

a(t) = (ae − as)(t/tmax)
n + as

where the same conditions of as and ae as used in above
are required for making w(t) and c1(t) be monotonically
decreasing functions, while reducing c2(t) to a monotoni-
cally increasing function. Note of course that it need not
obtain fictitious initial or terminal values, because these basic
functions satisfy the boundary values well.

Letting the crossing strategy between c1(t) and c2(t) be
symmetric, the duration from t = 150 (n = 0.5) to t = 59

Fig. 15 Timehistory of gbest costwith basic functions due toChatterjee
and Siarry [11] with n = 1.25 and Wang and Liu [86] with n = 0.75,
when using c1s = 3.0, c1e = 0.0
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(n = 2.0) was searched in the basic function due to Chatter-
jee and Siarry [11], as shown in Table 10, where refer to the
previous section on the crossing time. On the other hand, the
duration from t = 50 (n = 0.5) to t = 142 (n = 2.0) was
searched in the basic function due toWang and Liu [86]. The
relationship between n and crossing time shows that tcross
varies inversely with the value of n in the one by Chatterjee
and Siarry [11], while tcross varies in direct proportion to the
value of n in the one by Wang and Liu [86]. Figure 14 shows
the time history of the accelerations in the difference of n for
both methods, where the values of ws = 0.99 and we = 0.1
were set commonly in all cases to the inertia weight. When
setting c1s = 2.0, 2.5, 3.0, 3.5, 4.0, c1e = 0.0, c2s = c1e,
c2e = c1s , their search results are tabulated in Table 11 and
Table 12, respectively, where the bold entries represent the
mean global best costs blow 4700. Note here that the crossing
value is given by ccross = 0.5(c1e + c2e) because of adopt-
ing a symmetric crossing strategy, and the convergence rate
denotes (Nsuc/20)× 100, where Nsuc is defined as the num-
ber in which the global best cost (Gbest) became less than
4700.

It is found from Table 11 that about the basic function of
Chatterjee and Siarry [11], in crossing value ccross = 1.25,
the good result is obtained from tcross = 75 to tcross = 59
in the first half of the search time. Moreover, in crossing
value ccross = 1.5, it turns out that the good result is mostly
obtained in search time all over the districts from tcross = 150
to tcross = 59. However, as for the thing ccross is near 2.0
or 1.0, the convergence accuracy has deteriorated. Although
tabulating the data was omitted, even when crossing value
ccross is the same, it is the tendency for a convergence accu-
racy not to be so good in c1e = c2s �= 0. Similarly, the good
result is obtained also about the basic function of Wang and
Liu [86] in crossing value ccross = 1.25 and ccross = 1.5, Fig. 17 One sample path optimized by using a basic function due to

Chatterjee and Siarry [11]

Fig. 16 Stability bounds with different basic functions when using c1s = 3.0, c1e = 0.0
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Table 13 Optimized results of
using basic functions
e−(tmax−t)/tmax (Method A) and
e−tmax/(tmax−t) (Method B),
where
c1ini = c2e, c2ini = c1e = 0.0 (a
symmetric case)

c1ini
2.0 2.5 3.0 3.5 4.0

(a) Method A: e−(tmax−t)/tmax , where tcross = 125

ccross 1.0 1.25 1.5 1.75 2.0

Mean 4688 4678 4701 4726 4967

Std. 11.4 9.63 106 44.0 185

Conv. rate (%) 85 95 95 30 0

(b) Method B: e−tmax/(tmax−t), where tcross = 82

ccross 1.0 1.25 1.5 1.75 2.0

Mean 4707 4721 4720 4683 4850

Std. 103 143 143 20.0 195

Conv. rate (%) 90 90 90 100 5

but it is not as uniformly good over the time as obtained by
Chatterjee and Siarry [11].

Figure 15 shows that, for the case of c1s = 3.0 and c1e =
0.0, the time history of the global best cost due to Chatterjee
and Siarry [11] with n = 1.25 is compared to one due to
Wang and Liu [86] with n = 0.75, Fig. 16 shows the time
history of stability bounds in the corresponding case (refer
to Appendix on each stability bound equation), and Fig. 17
gives the 3D view, side view and top view that depict the
path search result in one sample when using the method of
Chatterjee and Siarry [11] with n = 1.25 at the same case.
As can be seen from Fig. 16 that in the stability bound due
to Poli [59] and Jiang et al. [35], the method due to Wang
and Liu [86] gives the start of stability bound slightly faster
than that due to Chatterjee and Siarry [11], it is also slightly
faster in the transient search speed of Fig. 15 than Chatterjee
and Siarry [11], but there is no difference at all in the search
ability between both methods after 100 generations.

In the proposed search method based on a crossing strat-
egy in which nonlinear time-varying weight and coefficients,
w(t), c1(t) and c2(t), are available, the criteria due to
Kadirkamanathan et al. [37] and Gazi [25] do not satisfy the
bound condition of stability over the search duration as found
from the later examples, while those due to Trelea [83] and
Yasuda et al. [95] (or Order-1 stability criterion) and Poli [59]
and Jiang et al. [35] (or Order-2 stability criterion) satisfy the
bound condition of stability as shown in Fig. 16. Thus, note
that, although it needs to check the Order-1 stability criterion
and the Order-2 stability criterion after that, the Order-1 sta-
bility criterion is relaxed too much, so that it concentrates on
only the Order-2 criterion in fact.

8.3 Using of basic functions with ill-posed initial
boundary in symmetric crossing strategy

Themonotonically increasing e−(tmax−t)/tmax (MethodA) and
decreasing e−tmax/(tmax−t) (Method B) are here adopted as

Fig. 18 Time history of acceleration coefficients and inertia weight due toMethods A and B, where c1ini = 2.5, c2ini = 0.0 for the former, whereas
c1ini = 3.5, c2ini = 0.0 for the latter
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Fig. 19 Time history of gbest cost with basic functions due to Method
C with α = 1.0 and Method D with α = 0.6, when using c1s =
3.0, c1ter = 0.0

basic functions to constitutew(t) or ci (t). Since these do not
satisfy the initial boundary values well, the fictitious bound-
ary values should be obtained. Note that the latter function
is a basic function that was used to form a deterministic
weight w(t), random adaptive coefficients c1(t) and c2(t),
for improving a PSO-PF (particle swarm optimization parti-
cle filter) in Wu et al. [89], whereas the former function is
of using the reciprocal value of the exponent tmax/(tmax − t)
in the latter function. Applying the fictitious initial bound-
ary values when the initial boundary condition is ill-posed
in the previous section, the inertia weight and acceleration
coefficients for Method A and Method B are constituted
respectively by using the following equations:

as =
(

e

e − 1

)
aini − ae

e − 1

a(t) = (ae − as)e
−(tmax−t)/tmax + as for Method A

Table 14 Crossing-time of c1(t) and c2(t) for a symmetric crossing
strategy, when using e−αt/tmax (Method C) as a basic function

Decay rate α

0.1 0.5 1.0 2.0 3.0 4.0 5.0

tcross = − tmax
α

(ln 1+1/eα

2 ) 96 88 76 57 43 34 28

and

as = eaini + ae(1 − e)

a(t) = (as − ae)e
−tmax/(tmax−t) + ae for Method B

Table 13a shows the result in which a symmetric crossing
search was conducted with the former basic function, under
the condition of c2ini = c1e = 0.0. Fig. 18a shows the time
histories of the inertia weight and acceleration coefficients
when setting c1ini = 2.5. In this method, since the cross-
ing time is given by tcross = tmax − tmax[1 − ln( e+1

2 )], it
results in tcross = 125 uniquely, that is, the global search
strategy is taken later than the mid crossing time. Thus, after
achieving the local search to some extent, it is transferred to
a global search so that the good results are obtained even in
the crossing values of 1.0 and 1.25.

Table 13b shows the result in which a symmetric crossing
search was conducted with the latter basic function, under
the same condition as used in the former function. Fig. 18b
shows the time histories of the inertiaweight and acceleration
coefficients when setting c1ini = 3.5. In this method, since
the crossing time is given by tcross = tmax − tmax

1−ln(0.5) , it
results in tcross = 82 uniquely, that is, the global search
strategy is taken earlier than the mid crossing time. Thus,
since the local search is not achieved sufficiently, the search
ability is inferior at pin points (such as cini = 2.5 and 3.0 ) to
the former, but the convergence rate results better than 90%

Fig. 20 Stability bounds due to Methods A and B, where c1ini = 2.5, c2ini = 0.0 for the former, whereas c1ini = 3.5, c2ini = 0.0 for the latter
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Table 15 Crossing-time of c1(t) and c2(t) for a symmetric crossing
strategy, when using e−αtmax/t (Method D) as a basic function

Decay rate α

0.2 0.4 0.6 0.7 0.8 1.0 1.2

tcross = tmax

1− ln(0.5)
α

45 74 93 101 108 119 127

are obtained at the initial setting regions (cini = 2.0 → 3.5),
which are wider than the former.

Figure 19 shows the time history comparision of the global
best cost in both methods at the same conditon, and Fig. 20
shows the time history of stability bounds in the correspond-
ing case. As can be seen from Fig. 19, it is found that the
convergence speed of the Method B is fast transiently up to
t = 20, but rather, that of theMethod A is fast at from t = 20
to around t = 120.

8.4 Using of basic functions with ill-posed terminal
boundary in symmetric crossing strategy

Here, a monotonically decreasing e−αt/tmax (Method C) due
to Lu et al. [50] and a monotonically increasing e−αtmax/t

(Method D) are adopted as the basic functions that make up
w(t) or ci (t). Since these do not satisfy the terminal boundary
conditions well, a fictitious terminal value has to be found.
However, it should be noted that Method D uses the recip-
rocal of t/tmax in the basic function. As a result, Method
C and Method D use respectively the following coefficient
formulas:

ae =
(

eα

eα − 1

)
ater − as

eα − 1

a(t) = (as − ae)e
−αt/tmax + ae for Method C

ae = eαater + as(1 − eα)

a(t) = (ae − as)e
−αtmax/t + as for Method D

In these examples as well, the crossing strategy for c1(t)
and c2(t) is to be symmetrical crossing search, and the search
using the basic function of Method C was conducted at the
interval of t = 96(α = 0.1) to t = 28(α = 5.0), as shown
in Table 14. On the other hand, it searched for Method D
the interval of t = 45(α = 0.2) to t = 127(α = 1.2)
(see Table 15). It can be seen that tcross in Method C varies
inversely with the value of α, while tcross in Method D varies
in direct proportion to the value of α. Note, however, that
MethodC’s tcross can only handle the restricted crossing time
region of tcross ∈ [0, 1

2 tmax] for α ∈ [0,∞], as will be shown
in the following discussion. Note also that the original study
in Lu et al. [50] did not use e−αt/tmax to make the acceleration
coefficients, just only used it to make a time-varying weight.
Figure 21 shows the acceleration coefficients used at this
time.

Table 16 shows the research results for the case of c1s =
2.0, 2.5, 3.0, 3.5, 4.0, c1ter = 0.0, c2s = c1ter , c2ter = c1s .
In Method C (using the basic function due to Lu et al. [50],
when the decay rate α is α → ∞, the crossing time is
tcross → 0 and tcross → 1

2 tmax if α → 0. Therefore, only
the global convergence strategy before the mid crossing time
can be taken. Looking at the crossing value ccross around 1.5,
most of them are less than α = 2.0 (that is, after tcross = 57)
to obtain good global convergence values. Also, as can be
seen from the value of the convergence rate, the number of
times that a good global convergence value is obtained by
the mid crossing time is very small.

On the other hand, it is found from Table 17 that, for
Method D (using the basic function with the reciprocal of
t/tmax), the goodglobal convergence values are obtained over
thewide range of the decay rate fromα = 0.4(tcross = 75) to
α = 1.2(tcross = 127), at the crossing value ccross = 1.25
or around 1.5 Therefore, it seems that convergence to the

Fig. 21 Time history of acceleration coefficients with different decay rates α
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Table 16 Optimized results of
Method C when using a
symmetric crossing strategy,
where c1ter = c2s = 0.0

Decay rate α

0.1 0.5 1.0 2.0 3.0 4.0 5.0

(a) c1s = c2ter = 2.0, ccross = 1.0

Mean 4687 4731 4708 4713 4829 4756 4802

Std. 8.40 141 106 106 221 172 207

Conv. rate (%) 95 90 95 75 65 85 70

(b) c1s = c2ter = 2.5, ccross = 1.25

Mean 4726 4724 4726 4677 4701 4746 4744

Std. 141 142 151 2.58 102 169 169

Conv. rate (%) 90 90 90 100 95 85 85

(c) c1s = c2ter = 3.0, ccross = 1.5

Mean 4747 4788 4676 4696 4764 4764 4834

Std. 173 206 4.61 103 192 191 229

Conv. rate (%) 80 75 100 95 80 80 65

(d) c1s = c2ter = 3.5, ccross = 1.75

Mean 4744 4767 4731 4674 4770 4791 4767

Std. 143 180 147 6.43 195 208 193

Conv. rate (%) 55 75 90 100 80 75 80

(e) c1s = c2ter = 4.0, ccross = 2.0

Mean 4883 4838 4830 4818 4891 4872 4818

Std. 183 169 165 192 245 227 224

Conv. rate (%) 0 0 0 0 10 15 35

Table 17 Optimized results of
Method D when using a
symmetric crossing strategy,
where c1ter = c2s = 0.0

Decay rate α

0.2 0.4 0.6 0.7 0.8 1.0 1.2

(a) c1s = c2ter = 2.0, ccross = 1.0

Mean 4707 4757 4709 4686 4733 4689 4709

Std. 103 143 104 7.33 144 10.5 105

Conv. rate (%) 95 75 90 95 90 90 85

(b) c1s = c2ter = 2.5, ccross = 1.25

Mean 4861 4700 4724 4794 4701 4701 4680

Std. 233 102 141 205 102 102 8.37

Conv. rate (%) 60 95 85 75 95 95 95

(c) c1s = c2ter = 3.0, ccross = 1.5

Mean 4693 4718 4673 4677 4745 4724 4700

Std. 104 143 4.92 5.81 172 144 103

Conv. rate (%) 95 90 100 100 85 90 95

(d) c1s = c2ter = 3.5, ccross = 1.75

Mean 4767 4678 4736 4689 4716 4735 4740

Std. 195 7.72 152 14.2 106 112 107

Conv. rate (%) 80 100 70 85 70 30 25

(e) c1s = c2ter = 4.0, ccross = 2.0

Mean 4797 4833 4819 4838 4884 4944 4995

Std. 172 181 60.5 74.5 144 174 196

Conv. rate (%) 5 5 0 0 0 0 0
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Fig. 22 Time history of gbest cost with basic functions due to Method
C with α = 1:0 and Method D with α = 0:6, when using c1s = 3:0; c1ter
= 0:0

global best value is more likely to be obtained by adjusting
the decay rate than Method C (using the basis function due
to Lu et al. [50]). Figure 22 shows a comparison of time
histories in Gbest by Method C with α = 1.0 and Method D
with α = 0.6 when c1s = 3.0 and c1ter = 0.0, and a diagram
of each stability bound is shown in Fig. 23. These figures also
confirm that Method C is an early search type, while Method
D is a wide area search type with respect to time.

8.5 Using of basic functions with ill-posed initial
boundary in asymmetric crossing strategy

In the symmetric search in which the basic functions had
ill-posed initial values, as had been discussed already, the
crossing timewas determined uniquely, so that the time trans-
ferred to a global searchwas not controlled in search strategy,
because their basic functions did not have any modulation
index or decay rate parameter. Therefore, setting here that
c1ini and c2e are not equal, or c2ini and c1e are not equal, the
crossing time of c1(t) and c2(t) is moved back and forth from

the one at the symmetry crossing strategy, and as a result,
one can handle an asymmetric crossing strategy, in which
the crossing value ccross can be placed higher and down than
the one at the symmetry crossing strategy. However, in such
an asymmetric crossing strategy, tcross and ccross are respec-
tively as follows:

tcross = tmax − tmax{1 − ln[βe + (1 − β)]}
ccross = (c1e − c1ini )β + c1ini for Method A

tcross = tmax − tmax

1 − ln(1 − β)

ccross = (c1e − c1ini )β + c1ini for Method B

where β is given by

β = c12ini
c21e + c12ini

, c12ini = c1ini − c2ini , c21e = c2e − c1e

In what follows, for the nonlinear time-varying accelera-
tion coefficients as used in Method A and Method B under
a symmetric crossing strategy, the following three cases are
considered:

Case 1: c2ini = c1e = 0
Case 2: c2ini �= 0, c1e = 0
Case 3: c2ini = 0, c1e �= 0

8.5.1 Case 1 results

It is found from Table 18 that good results are obtained
for Method A, when ccross is at 1.27 ∼ 1.62 (tcross is at
98 ∼ 153). Note, however, that with this asymmetric cross-
ing strategy, the same tcross has a different ccross , and the
same ccross has a different tcross . On the other hand, it is
confirmed from Table 19 that in Method B, the search ten-
dency seen in the range of ccross or tcross where good results

Fig. 23 Stability bounds due to Methods C and D, when using c1s = 3.0, c1ter = 0.0
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Table 18 Optimized results of using a basic function e−(tmax−t)/tmax (Method A), when using an asymmetric crossing strategy, where c2ini = c1e =
0.0

(a) A case of c1ini = 2.0

Terminal social accel. coefficient, c2e
2.5 3.0 3.5 3.75 4.0

tcross 114 105 98 94 91
ccross 1.11 1.20 1.27 1.30 1.33
Mean 4749 4701 4698 4721 4821
Std. 168 102 104 145 223
Conv. rate (%) 85 95 95 90 70

(b) A case of c1ini = 2.5
Terminal social accel. coefficient, c2e
2.0 3.0 3.5 3.75 4.0

tcross 135 116 108 105 102
ccross 1.11 1.36 1.46 1.50 1.54
Mean 4757 4699 4702 4684 4813
Std. 168 104 102 8.60 203
Conv. rate (%) 80 95 95 100 40

(c) A case of c1ini = 3.0
Terminal social accel. coefficient, c2e
2.0 2.5 3.5 3.75 4.0

tcross 142 133 117 114 111
ccross 1.20 1.36 1.62 1.67 1.71
Mean 4709 4684 4759 4742 4776
Std. 101 15.1 169 115 118
Conv. rate (%) 90 90 70 30 15

(d) A case of c1ini = 3.5
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.75 4.0

tcross 148 139 132 121 118
ccross 1.27 1.46 1.62 1.81 1.87
Mean 4739 4706 4683 4794 4859
Std. 143 101 8.08 143 129
Conv. rate (%) 75 90 95 10 0

(e) A case of c1ini = 3.75
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 4.0

tcross 151 142 135 128 122
ccross 1.30 1.50 1.67 1.81 1.94
Mean 4711 4682 4716 4755 4897
Std. 102 8.30 104 117 163
Conv. rate (%) 95 100 75 15 0

(f) A case of c1ini = 4.0
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 3.75

tcross 153 145 137 131 127
ccross 1.33 1.54 1.71 1.87 1.94
Mean 4688 4728 4719 4764 4821
Std. 9.14 146 107 106 64.6
Conv. rate (%) 85 90 70 5 0
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Table 19 Optimized results of using a basic function e−tmax/(tmax−t) (Method B), when using an asymmetric crossing strategy, where c2ini = c1e =
0.0

(a) A case of c1ini = 2.0
Terminal social accel. coefficient, c2e
2.5 3.0 3.5 3.75 4.0

tcross 75 68 63 60 58
ccross 1.11 1.20 1.27 1.30 1.33
Mean 4770 4698 4718 4696 4772
Std. 190 105 145 106 197
Conv. rate (%) 80 95 90 95 80

(b) A case of c1ini = 2.5
Terminal social accel. coefficient, c2e
2.0 3.0 3.5 3.75 4.0

tcross 90 76 71 68 66
ccross 1.11 1.36 1.46 1.50 1.54
Mean 4708 4812 4719 4685 4789
Std. 105 218 145 16.8 195
Conv. rate (%) 95 70 90 85 50

(c) A case of c1ini = 3.0
Terminal social accel. coefficient, c2e
2.0 2.5 3.5 3.75 4.0

tcross 96 89 77 75 72
ccross 1.20 1.36 1.62 1.67 1.71
Mean 4732 4674 4699 4685 4738
Std. 140 3.78 105 8.13 105
Conv. rate (%) 80 100 95 95 0

(d) A case of c1ini = 3.5
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.75 4.0

tcross 101 94 88 80 78
ccross 1.27 1.46 1.62 1.81 1.87
Mean 4730 4697 4771 4754 4764
Std. 142 103 198 156 109
Conv. rate (%) 85 95 80 55 20

(e) A case of c1ini = 3.75
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 4.0

tcross 103 96 90 85 80
ccross 1.30 1.50 1.67 1.81 1.94
Mean 4727 4676 4695 4707 4849
Std. 142 5.32 103 115 207
Conv. rate (%) 90 100 95 95 5

(f) A case of c1ini = 4.0
Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 3.75

tcross 105 98 92 87 85
ccross 1.33 1.54 1.71 1.87 1.94
Mean 4684 4699 4673 4715 4778
Std. 9.52 103 4.40 112 161
Conv. rate (%) 95 95 100 75 20
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Fig. 24 Time history of gbest cost due to Methods A and B in an
asymmetric crossing strategy,where c1ini = 3.75, c2e = 2.5 forMethod
A, and c1ini = 4.0, c2e = 3.0 for Method B, but c2ini = c1e = 0 for
both cases

are obtained is roughly similar to Method A. Note, however,
that the range of ccross where better results are obtained with
Method B is somewhat wider, i.e., ccross is 1.2 ∼ 1.71 (or
60 ∼ 105 in tcross). In particular, it can be recognized that
the number of good results in the case of ccross greater than
or equal to 1.5 is much higher than Method A.

Figures 24 and 25 show a comparison of the Gbest time
histories in Method A andMethod B, and the stability bound
diagrams of both methods. However, it shows the case of
c1ini = 3.75 and c2e = 2.5 for Method A, whereas c1ini =
4.0 and c2e = 3.0 for Method B. As can be seen from these
figures, in Method B, convergence to the global value starts
around t = 60, whereas in Method A, the stability bound
condition of the Order-2 stability criterion is not satisfied
until after about t = 80, so that convergence to the global
value begins about 20 generations later than Method B.

8.5.2 Case 2 results

As shown in Tables 20 and 21, the value of ccross is higher
overall when c2ini = 0.5 �= 0.0, resulting in a larger accel-
eration coefficient to the Gbest search in the exploitation
process before the crossing time than when c2ini = 0.0, and
the results are not as good as those in Case 1. In fact, the
Gbest evaluation for the 4600s is not obtained at all except
for c1ini = 3.0, c2e = 3.0 in Method B. Figures 26 and
27 show a comparison of the time histories of Gbest for
Methods A and B and stability bound diagrams for both
methods. For Method A, the time histories are shown for
c1ini = 2.75, c2e = 2.5, whereas for Method B, the time his-
tories are shown for c1ini = 3.0, c2e = 3.0. As these figures
show, Method B begins to converge to global values around
t = 50, while Method A does not satisfy the stability bound
condition of the Order-2 stability criteria until after about
t = 70, which is about 20 generations later than Method B,
convergence to the global value begins about 20 generations
later than Method B.

8.5.3 Case 3 results

As can be seen fromTable 22, more good results are obtained
for Method A than for Case 1 when ccross is relatively high,
due to the effect of c1e = 0.5. On the other hand, for Method
B, the number of good results for relatively high ccross is not
much different from that in Case 1, but the number of good
results for ccross less than 1.50 is about half of that in Case 1,
as shown inTable 23. Figures 28 and 29 showa comparison of
the time histories of Gbest for methods A and B, and the sta-
bility bound diagrams for both methods, respectively, where
for Method A, the case of c1ini = 2.0, c2e = 3.0 is shown,
whereas for Method B, the case of c1ini = 3.5, c2e = 2.75 is
shown. In the stability bound comparison diagram in Fig. 29,
unlike the previous two comparisons, the stability bound con-

Fig. 25 Stability bounds due to Methods A and B in an asymmetric crossing strategy, when using c2ini = c1e = 0.0
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Table 20 Optimized results of using a basic function e−(tmax−t)/tmax (Method A), when using an asymmetric crossing strategy, where c2ini =
0.5, c1e = 0.0

Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 3.75 4.0

(a) A case of c1ini = 2.5
tcross 125 114 105 98 94 91
ccross 1.25 1.39 1.50 1.59 1.63 1.67
Mean 4753 4768 4747 4768 4904 4912
Std. 170 189 172 175 244 243
Conv. rate (%) 80 80 85 55 20 5
(b) A case of c1ini = 2.75
tcross 130 120 111 103 100 97
ccross 1.29 1.45 1.57 1.67 1.72 1.76
Mean 4798 4725 4798 4794 4855 4913
Std. 204 146 208 190 217 228
Conv. rate (%) 70 90 75 35 10 0
(c) A case of c1ini = 3.0
tcross 135 125 116 108 105 102
ccross 1.33 1.50 1.64 1.75 1.80 1.85
Mean 4734 4771 4737 4876 4797 4929
Std. 149 191 151 225 115 243
Conv. rate (%) 85 80 85 10 0 0
(d) A case of c1ini = 3.5
tcross 142 133 125 117 114 111
ccross 1.40 1.59 1.75 1.88 1.94 2.00
Mean 4734 4733 4762 4872 4850 4918
Std. 149 138 171 226 165 198
Conv. rate (%) 95 75 60 10 0 0

Table 21 Optimized results of using a basic function e−tmax/(tmax−t) (Method B), when using an asymmetric crossing strategy, where c2ini =
0.5, c1e = 0.0

Terminal social accel. coefficient, c2e
2.0 2.5 3.0 3.5 3.75 4.0

(a) A case of c1ini = 2.5
tcross 82 75 68 63 60 58
ccross 1.25 1.39 1.50 1.59 1.63 1.67
Mean 4728 4721 4717 4798 4838 4938

Std. 142 143 143 211 237 315
Conv. rate (%) 90 90 90 70 65 15
(b) A case of c1ini = 2.75
tcross 86 79 72 67 64 62
ccross 1.29 1.45 1.57 1.67 1.72 1.76
Mean 4799 4768 4789 4753 4818 4782
Std. 203 193 209 175 213 178
Conv. rate (%) 70 80 75 80 40 20
(c) A casae of c1ini = 3.0
tcross 90 82 76 71 68 66
ccross 1.33 1.50 1.64 1.75 1.80 1.85
Mean 4748 4835 4673 4804 4821 4922
Std. 169 226 7.25 213 231 278
Conv. rate (%) 85 65 100 65 65 10
(d) A case of c1ini = 3.5
tcross 96 89 82 77 75 72
ccross 1.40 1.59 1.75 1.88 1.94 2.00
Mean 4799 4765 4791 4833 4803 4865
Std. 203 190 207 230 263 179
Conv. rate (%) 75 80 75 65 25 0
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Fig. 26 Time history of gbest cost due to Methods A and B in an
asymmetric crossing strategy,where c1ini = 2.75, c2e = 2.5 forMethod
A, and c1ini = 3.0, c2e = 3.0 for Method B, but c2ini = 0.5 �= 0, c1e =
0 for both cases

dition for theOrder-2 stability criteria begins to be satisfied at
around t = 40 for Method A, while the same stability bound
condition is not satisfied until after about t = 50 for Method
B. It can be seen from Fig. 28 that the actual Gbest values of
Method B approach those of Method A in the neighborhood
of 40 generations, but only after 80 generations, about 40
generations later than those of Method A.

8.6 Time cost experiments and ablation studies

In this section, we conduct experiments to compare the time
cost of the examples used to compare the time histories of
the Gbest cost handled in Section 8.2 through Section 8.5.
We also perform so-called ablation studies in which the time-
varying acceleration coefficients are not used and the cross-
strategy is removed.

Table 22 Optimized results of using a basic function e−(tmax−t)/tmax

(MethodA),when using an asymmetric crossing strategy,where c2ini =
0.0, c1e = 0.5

Terminal value, c2e
2.5 2.75 3.0 3.5

(a) A case of c1ini = 2.0
tcross 125 119 114 105
ccross 1.25 1.29 1.33 1.40
Mean 4680 4701 4680 4702
Std. 6.97 103 4.76 103
Conv. rate (%) 100 95 100 95
(b) A case of c1ini = 2.5
tcross 135 129 125 116
ccross 1.39 1.45 1.50 1.59
Mean 4725 4702 4772 4721
Std. 145 104 191 119
Conv. rate (%) 90 95 80 70
(c) A case of c1ini = 3.0
tcross 142 137 133 125
ccross 1.50 1.57 1.64 1.75
Mean 4702 4684 4712 4771
Std. 104 12.4 104 102
Conv. rate (%) 90 95 80 0
(d) A case of c1ini = 3.5
tcross 148 144 139 132
ccross 1.59 1.67 1.75 1.88
Mean 4685 4719 4734 4852
Std. 8.85 99.1 108 128
Conv. rate (%) 90 65 25 0
(e) A case of c1ini = 3.75
tcross 151 146 142 135
ccross 1.63 1.72 1.80 1.94
Mean 4692 4724 4726 4875
Std. 16.8 103 37.3 121
Conv. rate (%) 65 50 35 0
(f) A case of c1ini = 4.0
tcross 153 149 145 137
ccross 1.67 1.76 1.85 2.0
Mean 4691 4726 4762 4928
Std. 12.0 42.1 49.2 185
Conv. rate (%) 80 25 10 0

Fig. 27 Stability bounds due to Methods A and B in an asymmetric crossing strategy, when using c2ini = 0.5 �= 0, c1e = 0.0
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Table 23 Optimized results of using a basic function e−tmax/(tmax−t)

(MethodB), when using an asymmetric crossing strategy,where c2ini =
0.0, c1e = 0.5

Terminal value, c2e
2.5 2.75 3.0 3.5

(a) A case of c1ini = 2.0
tcross 82 78 75 68
ccross 1.25 1.29 1.33 1.40
Mean 4768 4767 4742 4697
Std. 190 191 172 104
Conv. rate (%) 80 80 85 95
(b) A case of c1ini = 2.5
tcross 90 86 82 76
ccross 1.39 1.45 1.50 1.59
Mean 4697 4720 4698 4763
Std. 104 141 105 181
Conv. rate (%) 95 90 95 75
(c) A case of c1ini = 3.0
tcross 96 92 89 82
ccross 1.50 1.57 1.64 1.75
Mean 4698 4720 4727 4715
Std. 103 143 149 27.2
Conv. rate (%) 95 90 85 40
(d) A case of c1ini = 3.5
tcross 101 97 94 88
ccross 1.59 1.67 1.75 1.88
Mean 4699 4673 4676 4777
Std. 105 5.87 5.08 118
Conv. rate (%) 95 100 100 10
(e) A case of c1ini = 3.75
tcross 103 100 96 90
ccross 1.63 1.72 1.80 1.94
Mean 4721 4721 4712 4819
Std. 143 143 109 149
Conv. rate (%) 90 90 85 0
(f) A case of c1ini = 4.0
tcross 105 102 98 92
ccross 1.67 1.76 1.85 2.0
Mean 4675 4721 4711 4794
Std. 5.52 144 103 114
Conv. rate (%) 100 90 85 0

8.6.1 Comparison of time cost

First, Table 24 shows the time required for 20 trials and the
average time per trial for each crossing strategy that incorpo-
rates the six basic functions discussed in Section 8.2 through
Section 8.5. Note that the design parameters selected are
those used in the previous section for the Gbest cost time
history comparison. The counted time is the elapsed time
when the Gbest cost is displayed at each iteration time. On
the other hand, Table 25 shows similar results for the asym-
metric crossing strategy for methods A and B. As can be
seen from these tables, the time elapsed for roughly 20 trials
ranges from 715 to 724 s, with an average time per trial of
about 36 s. There is no significant difference in time cost
between the methods.

Fig. 28 Time history of gbest cost due to Methods A and B in an
asymmetric crossing strategy, where c1ini = 2.0, c2e = 3.0 for Method
A, and c1ini = 3.5, c2e = 2.75 for Method B, but c2ini = 0, c1e =
0.5 �= 0 for both cases

8.6.2 Ablation studies

In this ablation study, we investigate the search performance
and computational cost of five PSO variants that originally
utilize the different basic functions focused on in Section 8.2
through Section 8.5, as shown in Table 26. Ablation condi-
tions for each PSO variant are described below.

First, in the PSO variant of Chatterjee and Siarry [11],
the inertia weight was defined as w(t) = (ws − we)(1 −
t/tmax)

n + we using a monotonically decreasing function
with the basic function of g(t, tmax) = (1− t/tmax)

n . In this
paper, ws = 0.6, we = −0.4 and the recommended value
of n is n = 1.2, while the acceleration coefficients are fixed
values with no crossing, c1 = c2 = 2.0 or c1 = c2 = 1.5.

On the other hand, the PSO variant in the original paper
byWang and Liu [86] used a monotonically increasing basic
function, f (t, tmax) = (t/tmax)

n for allw(t), c1(t) and c2(t),
but ws = 0.9, we = 0.4, c1s = 2.5, c1e = 0.5. However, it
was assumed that n = 1/3, 1/2, 1, 2, 3 can be taken. They
finally concluded that n = 1/3 for c1(t) and n = 1 for
c2(t), in other words, cross-realization before the interme-
diate iteration time. However, w(t) always dealt only with
n = 1. Therefore, for comparison objectives, we fix n = 1
for w(t) and c2(t), and n = 1/3 for c1(t).

The mixed type of these two basic functions at n = 1 is
the PSO variant of Ratnaweera et al. [65]. That is, w(t) with
g(t, tmax) = 1− t/tmax is linearly monotonically decreasing
time-varying weight with ws = 0.9 and we = 0.4, while
c1(t) and c2(t) have f (t, tmax) = t/tmax as a basic function,
and they are linearly monotonically decreasing and mono-
tonically increasing time-varying coefficients, respectively,
in which the acceleration coefficients intersect at exactly
0.5tmax. However, c1s = 2.5 and c1e = 0.5 are used for
comparison.
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Fig. 29 Stability bounds due to Methods A and B in an asymmetric crossing strategy, when using c2ini = 0, c1e = 0.5 �= 0.0

Table 24 Time cost
comparisons among methods
when using a symmetric
crossing strategy

Referred paper Type of BF Parameters Time cost [s]
or method’s name 20 trials Mean

Chatterjee and g(t, tmax) n = 1.25 715.60 35.78

Siarry [11] = (1 − t/tmax)
n c1s = 3.0, c1e = 0.0

Wang and f (t, tmax) n = 0.75 724.14 36.21

Liu [86] = (t/tmax)
n c1s = 3.0, c1e = 0.0

Method A f (t, tmax) c1ini = 2.5, 720.36 36.02

= e−(tmax−t)/tmax c2ini = 0.0

Method B or g(t, tmax) c1ini = 3.5, 718.19 35.91

Wu et al. [89] = e−tmax/(tmax−t) c2ini = 0.0

Method C or g(t, tmax) α = 1.0 721.54 36.08

Lu et al. [50] = e−αt/tmax c1s = 3.0, c1ter = 0.0

Method D f (t, tmax) α = 0.6 723.79 36.19

= e−αtmax/t c1s = 3.0, c1ter = 0.0

Table 25 Time cost
comparisons between methods
A and B when using an
asymmetric crossing strategy

Referred paper Type of BF Parameters Time cost [s]
or method’s name 20 trials Mean

Method A f (t, tmax) c1ini = 3.75, c2e = 2.5 717.07 35.85

= e−(tmax−t)/tmax c2ini = c1e = 0.0

Method B or g(t, tmax) c1ini = 4.0, c2e = 3.0 716.61 35.83

Wu et al. [89] = e−tmax/(tmax−t) c2ini = c1e = 0.0

Method A f (t, tmax) c1ini = 2.75, c2e = 2.5 722.28 36.11

= e−(tmax−t)/tmax c2ini = 0.5 �= 0.0, c1e = 0.0

Method B or g(t, tmax) c1ini = 3.0, c2e = 3.0 717.17 35.86

Wu et al. [89] = e−tmax/(tmax−t) c2ini = 0.5 �= 0.0, c1e = 0.0

Method A f (t, tmax) c1ini = 2.0, c2e = 3.0 724.25 36.21

= e−(tmax−t)/tmax c2ini = 0.0, c1e = 0.5 �= 0.0

Method B or g(t, tmax) c1ini = 3.5, c2e = 2.75 721.74 36.09

Wu et al. [89] = e−tmax/(tmax−t) c2ini = 0.0, c1e = 0.5 �= 0.0
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Table 26 Ablation comparisons, where in those of Chatterjee and Siarry [11], Lu et al. [50], and Phung and Ha [58], the time-varying function of
c1(t), c2(t) is removed, while in Wang and Liu [86] the modulation index n is n = 1 for w(t) and c2(t), and it is set to n = 1 (i.e., linear) for all
w(t), c1(t) and c2(t) in Ratnaweera et al. [65]

PSO variants Gbest cost Conv. Time cost [s] Remarks
Mean Std. rate [%] 20 trials Mean

Chatterjee and 5073.1 272.2 5 710.04 35.50 Time-varying only for w(t) with

Siarry [11] g(t, tmax) = (1 − t/tmax)
n, n = 1.2,

(c1 = c2 = 2.0) but with c1 = c2 = 2.0

Chatterjee and 4956.8 258.4 35 717.24 35.86 Time-varying only for w(t) with

Siarry [11] g(t, tmax) = (1 − t/tmax)
n, n = 1.2,

(c1 = c2 = 1.5) but with c1 = c2 = 1.5

Wang and Liu [86] 4838.4 226.8 65 720.79 36.04 Time-varying for all w(t), c1(t) and c2(t)

with f (t, tmax) = (t/tmax)
n , but n = 1

for w(t) and c2(t), whereas n = 1/3 for c1(t)

Ratnaweera 4845.3 229.9 60 713.39 35.67 g(t, tmax) = 1 − t/tmax for w(t),

et al. [65] f (t, tmax) = t/tmax for c1(t), c2(t)

Lu et al. [50] 4976.5 251.0 25 708.88 35.44 Time-varying only for w(t) with

g(t, tmax) = e−αt/tmax , α = 7.0,

but with c1 = c2 = 2.0

Phung and Ha [58] 4874.6 232.6 50 721.00 36.05 Time-varying only for w(t),

i.e., w(t) = 0.98w(t − 1),

but with c1 = c2 = 1.5

In the PSO variant of Lu et al. [50], only the inertia weight
w(t) is constructed using a monotonically decreasing basic
function, g(t, tmax) = e−αt/tmax . However, ws = 0.9, we =
0.2 and α ∈ [6, 8] were recommended, so that α = 7.0
is used for the comparison here, as well as setting c1(t) =
c2(t) = 2.

The PSO variant of Phung and Ha [58] also has fixed
acceleration coefficients, but only the inertia weight was
time-varying. However, the condition used in the original
3D path planning is that w(t) is in a form that incorpo-
rates the damping coefficient, i.e., w(t) = wdampw(t − 1),
wdamp = 0.98, w(0) = 1.0, and the acceleration coefficients
are c1(t) = c2(t) = 1.5.

These five PSO variants can be broadly divided into cases
where the time-varying function of the acceleration coeffi-
cients is removed and consequently no crossing strategy is
used, and cases where the basic function characteristics are
partially linearly restricted. As can be seen from Table 26,
the ablation-type PSO variants are clearly computationally
less expensive, with a time of 709 to 721 s for 20 trials and
an average time of about 35 to 36 s per trial. However, as
can be seen from Tables 11, 12, 16, and 26, even with an
increase in computational cost of about one second per trial,
the search performance obtained by the proposedPSO,which
incorporates a crossing strategy with nonlinear time-varying
acceleration coefficients, shows significant improvement in
terms of average Gbest cost and convergence rate.

8.7 How dowe choose the basis functions
in the sequel? And how do different basis
functions affect search performance?

It is easier to obtain crossing times and crossing values on
the crossing strategy if the basic functions are well-posed. In
this sense, it is easy to use those of Chatterjee and Siarry [11]
andWang and Liu [86], where the crossing time and crossing
value can be freely changed with the modulation parameter
n. However, even when using ill-posed Napier numbers or
trigonometric functions as basic functions, the crossing time
and crossing value can be adjusted by correcting the accel-
eration coefficient at the beginning or end of the search with
the fictitious boundary value and changing the decay rate α.
Therefore, there is no problem in terms of crossing strategy,
but there is some algorithmic complexity.

Although the effect of differences in basis functions on
search performance cannot be discussed in general terms, a
good convergence region can be predicted in advance from
the pattern of crossing times tcross for different modula-
tion indices of acceleration coefficients and decay rates. For
example, the basic functions ofChatterjee andSiarry [11] and
Wang and Liu [86] are originally linear functions 1− t/tmax

and t/tmax in their components. Figure 14 shows that the
pattern is distributed around 1

2 tmax even when the modula-
tion index n changes. The densely distributed crossing time
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patterns indicate the formation of the first half-dependent
crossing pattern before 1

2 tmax and the second half-dependent
crossing pattern after 1

2 tmax, respectively, those of which are
also supported by the search results in Tables 11 and 12,
which include the convergence rate.

Similarly, Fig. 21 shows that the symmetric crossing pat-
terns of the acceleration coefficients of Methods C and D,
which use Napier numbers with decay rate α as basic func-
tions, are dense around tcross = 30 and 90 for the former
and around tcross = 110 for the latter. The former is found
in α = 2.0 (tcross = 59) from Table 16, and the latter is
found in α = 0.2 ∼ 1.2 (tcross = 45 ∼ 127) from Table 17,
showing good results in a wide range of crossing times.

On the other hand, when the basic functions do not include
modulation index n or decay rate α, improved search perfor-
mance can be expected by adopting asymmetric crossing,
but one key is how to design the asymmetry of the two accel-
eration coefficients. Here, c1ini and c2e were selected and
adjusted experimentally by looking at the values of tcross
and ccross . In the future, there is room for more in-depth
research on asymmetric crossing strategies, including more
systematic selection and adjustment methods.

8.8 Limitations of the proposedmethod

Finally, to demonstrate the limitations of the proposed
method, we compare its advantages with its disadvantages
and constraints.

8.8.1 Necessity of prior information

When selecting basic functions (such as trigonometric func-
tions or theNapier’s constant), it is essential to checkwhether
the chosen function is continuous or contains discontinuities
and non-differentiable points. Additionally, we need to verify
whether the initial and terminal values arewell-posed (i.e., lie
within the range of (0, 1) or (1, 0)). If ill-posed, determining
fictitious initial or terminal values becomes necessary.

8.8.2 Choice of crossing method

Depending on the complexity of the search problem (e.g.,
unimodal or multimodal), different crossing methods should
be considered. For simpler problems, a linear crossing
method may suffice. However, for complex problems or
cases where complexity is unknown, nonlinear symmetric
crossing methods that allow adjustments between local and
global exploration are recommended. Asymmetric crossing
methods should be chosen when basic functions do not
include a modulation parameter or decay rate.

8.8.3 Computational cost and complexity

In general, adjusting crossing values and timing in the pro-
posed method allows for efficient global solution discovery
compared to conventional methods with fixed acceleration
coefficients. Implementation complexity is minimal, involv-
ing only setting fictitious initial or terminal values and adding
one or two lines for time-varying acceleration coefficients.
Although the computational cost increases by approximately
one second per trial compared to conventional methods (as
found in Section 8.6), significant improvements in evaluation
function and convergence rate justify this cost.

8.8.4 Applicability to constraint conditions

We believe that the proposed method can be applied to
various engineering problems, similar to conventional PSO
variants. For instance, applying NCS-PSO to the design of
flexible hinge displacement amplification mechanisms (as
proposed in [33]) could lead to improved machine per-
formance and efficiency by finding optimal magnification
values. Additionally, hybridizing the “Taguchi" method with
NCS-PSO for optimizing process parameters in electrical
discharge machining (EDM) (as explored in [82]) may yield
better results. However, it is crucial to recognize that, unlike
other evolutionary computations (EC) or genetic algorithms
(GA), PSO generally does not employ “arbitrary particle-to-
particle crossovers" or “mutation operations," which means
there is always a risk of converging to local solutions in non-
convex problems.

9 Conclusions

In this paper, we have introduced a unified methodology for
designing nonlinear time-varying inertia weight and accel-
eration coefficients, resulting in the development of Non-
linear Crossing Strategy-based Particle Swarm Optimiza-
tions (NCS-PSOs) for global optimization. We started by
explaining the process of designing monotonically decreas-
ing time-varying parameters, ensuring they meet specified
initial and terminal boundary values by using and ampli-
fying well-posed monotonic functions. Furthermore, we
proposed a method to address ill-posed basic functions
by introducing fictitious boundary values when extending
this concept. Then, our exploration of the crossing strat-
egymethod, wherein acceleration coefficients are intersected
during the PSO search, revealed novel insights into optimiz-
ing the search process. The introduction of crossing values
and times as new information during the search demonstrated
promising avenues for enhancing optimization outcomes.
Comparative evaluations against conventional PSO vari-
ants and contemporary metaheuristics, using the CEC2014
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benchmark functions, showcased the competitive perfor-
mance of our proposed NCS-PSOs.

While our study predominantly focused on the integration
of both cognitive and social acceleration terms, with their
balance dynamically shifting throughout the search process,
we recognize the potential for further refinement. Inspired
by previous works, such as Kennedy’s cognition-only and
social-onlymodels [39], andDuan’s exploration of switching
between these models [18], future research directions could
involve the development of new search algorithms encom-
passing such variations [19]. Additionally, extending our
investigation to encompass periodic and multi-point cross-
ing methods to handle time intersections at multiple points
presents intriguing avenues for future exploration. Finally,
we acknowledge the importance of convergence analysis in
ensuring the efficacy of optimization algorithms. Although
not extensively covered in this paper, the work of Clerc
and Kennedy [15] serves as a foundational reference in this
domain, and future endeavors could delve deeper into conver-
gence analysis to provide robust guarantees of convergence
to global solutions. In summary, our contributions pave the
way for more sophisticated and effective PSO optimiza-
tion techniques, with potential applications spanning various
domains, including but not limited to 3D path planning for
drones.

Appendix

A Stability checks

When performing a PSO search using a specific cross-
ing strategy with a time-varying inertial weight w(t) and
time-varying acceleration coefficients c1(t) and c2(t), some
stability analysis methods or evaluation costs for PSO that
have been derived are here introduced to check if the stability
bounds are satisfied over the iteration interval.

A.1 Condition of Trelea andYasuda et al.

This analysis method is due to Trelea [83] and Yasuda et al.
[95] and is given as follows:

c̄ < 2(w + 1) (107)

where w is |w| < 1 and c̄ = (c1 + c2)/2 > 0. This stability
is also called “Order-1 stability.”

A.2 Condition of Kadirkamanathan et al.

The result of this analysis is given by Kadirkamanathan et al.
[37] as follows:

c <
2(1 − 2|w| + w2)

1 + w
= 2(1 − |w|)2

1 + w
(108)

where assume that |w| < 1, w �= 0, and c
�= c1 + c2. This

original analysis uses a deterministic Lyapunov function and
deals with the Rur’e stabilization problem.

A.3 Condition of Poli and Jiang et al.

The result of this analysis is given below from Poli [59, 60]
or Jiang et al. [35].

c <
24(1 − w2)

7 − 5w
(109)

where let |w| < 1 and c
�= c1 + c2. This stability, also

called “Order-2 stability,”was analyzed by stochastic process
theory in the original analysis.

A.4 Gazi’s condition

The result of this analysis is given by Gazi [25] as follows:

c̄ <
12(1 − 2|w| + w2)

7(1 + w)
= 12(1 − |w|)2

7(1 + w)
(110)

where assume that c̄
�= (c1 + c2)/2 > 0 and |w| < 1.

This original analysis uses a stochastic Lyapunov method to
discuss the positive realness of absolute stability based on
Typkin’s result.

Author Contributions Keigo Watanabe: Conceptualization, Methodol-
ogy, Software, Writing-original draft preparation, review and editing.
Xiongshi Xu: Investigation, Software, Validation, Writing-review and
editing.

Funding Open Access funding provided by Okayama University.

Data Availability The authors declare that the data supporting the find-
ings of this study are available within the paper.

Declarations

Competing interests The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethical and informed consent for data used This article does not con-
tain any studies with human participants or animals performed by any
of the authors.

123

7273Nonlinear crossing strategy-based particle swarm...



Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abd Latiff I, Tokhi MO (2009) Fast convergence strategy for par-
ticle swarm optimization using spread factor. In: Proceeding of
2009 IEEE congress on evolutionary computation (CEC 2009),
pp 2693–2700, https://doi.org/10.1109/CEC.2009.4983280

2. Alvarez-Alvarado MS, Rengifo J, Gallegos-Núñez RM et al
(2022) Particle swarm optimization for optimal frequency
response with high penetration of photovoltaic and wind genera-
tion. Energies 15:8565. https://doi.org/10.3390/en15228565

3. Askarzadeh A (2016) A novel metaheuristic method for solv-
ing constrained engineering optimization problems: crow search
algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.
compstruc.2016.03.001

4. Awad NH, Ali MZ, Liang JJ, et al (2016) Problem definitions and
evaluation criteria for the cec 2017 special session and compe-
tition on single objective real-parameter numerical optimization.
Tech. rep., Nanyang Technological University, Jordan University
of Science and Technology, Zhengzhou University, https://github.
com/P-N-Suganthan/CEC2017-BoundContrained

5. Awla HQ, Kareem SW, Mohammed AS (2023) A comparative
evaluation of bayesian networks structure learning using fal-
con optimization algorithm. Int J Interact Multimed Artif Intell
8(2):81–87. https://doi.org/10.9781/ijimai.2023.01.004

6. Basavanna M, Shivakumar M (2019) An overview of path
planning and obstacle avoidance algorithms in mobile robots.
Int J Eng Technol 8(12):478–482. https://doi.org/10.17577/
IJERTV8IS120252

7. Ben Khoud K, Bouallègue S, Ayadi M (2018) Design and co-
simulation of a fuzzy gain-scheduled pid controller based on
particle swarm optimization algorithms for a quad tilt wing
unmanned aerial vehicle. Trans Inst Meas Control 40(14):3933–
3952. https://doi.org/10.1177/0142331217740947

8. Caraffini F, Iacca G (2020) The sos platform: designing, tuning
and statistically benchmarking optimization algorithms. Mathe-
matics 8(5):785. https://doi.org/10.3390/math8050785

9. Carstensen S, Lin JCW (2024) Tku-pso: an efficient particle
swarm optimization model for top-k high-utility itemset mining.
Int J InteractMultimedArtif Intell. https://doi.org/10.9781/ijimai.
2024.01.002

10. Chai WS, bin Romli MIF, Yaakob SB et al (2022) Regenerative
braking optimization using particle swarm algorithm for elec-
tric vehicle. J Adv Comput Intell Intell Inform 26(6):1022–1030.
https://doi.org/10.20965/jaciii.2022.p1022

11. Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation
for dynamic adaptation in particle swarm optimization. Comput
Oper Res 33(3):859–871. https://doi.org/10.1016/j.cor.2004.08.
012

12. Chen G, Jia J (2006) Han Q (2006 (in Chinese)) Study on the
strategy of decreasing inertia weight in particle swarm optimiza-

tion algorithm. J Xi’an Jiaotong Univ 40(1):53–56. 0253-987X,
01-0053-04

13. Chen S, Cai G, Guo W et al (2007) (in Chinese)) Study on the
nonlinear strategy of acceleration coefficient in particle swarm
optimization (pso) algorithm. J of Yangtze University Sci &
Eng (Nat Sci Ed) 4(4):1–4. https://doi.org/10.16772/j.cnki.1673-
1409.2007.04.047

14. Chong X (2021) Hybrid pso-svm for financial early-warning
model of small and medium-sized enterprises. In: Proceedings
of the 6th International Conference on Financial Innovation and
Economic Development (ICFIED 2021), pp 107–114, https://doi.
org/10.2991/aebmr.k.210319.020

15. Clerc M, Kennedy J (2002) The particle swarm–explosion, sta-
bility, and convergence in a multidimensional complex space.
IEEE Trans Evol Comput 6(1):58–73. https://doi.org/10.1109/
4235.985692

16. Derrouaoui SH, Bouzid Y, Guiatni M (2021) Pso based optimal
gain scheduling backstepping flight controller design for a trans-
formable quadrotor. J Intell Robot Syst 102(3):1–25. https://doi.
org/10.1007/s10846-021-01422-1

17. Du Y, Xu F (2020) A hybrid multi-step probability selection par-
ticle swarm optimization with dynamic chaotic inertial weight
and acceleration coefficients for numerical function optimization.
Symmetry 12(922):1–25. https://doi.org/10.3390/sym12060922

18. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new
swarm intelligence optimizer for air robot path planning. Int
J Intell Comput Cybern 7(1):24–37. https://doi.org/10.1108/
IJICC-02-2014-0005

19. Engelbrecht AP (2007) Computational Intelligence: An Introduc-
tion, 2nd edn. John Wiley and Sons, West Sussex, UK

20. Faria J,Marques C, Pombo J et al (2023) Optimal sizing of renew-
able energy communities: a multiple swarms multi-objective
particle swarm optimization approach. Energies 16:7227. https://
doi.org/10.3390/en16217227

21. Fernandes Junior FE, YenGG (2019) Particle swarm optimization
of deep neural networks architectures for image classification.
Swarm Evol Comput 49:62–74. https://doi.org/10.1016/j.swevo.
2019.05.010

22. Friedman M (1937) The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. J Am Stat Assoc
32(200):675–701. http://www.jstor.org/stable/2279372

23. Fu Y, DingM, Zhou C et al (2009) Path planning for uav based on
quantum-behaved particle swarm optimization. In: Proceeding of
medical imaging, parallel processing of images, and optimization
techniques (MIPPR 2009), https://doi.org/10.1117/12.832476

24. Fu Y, DingM, Zhou C (2012) Phase angle-encoded and quantum-
behavedparticle swarmoptimization applied to three-dimensional
route planning for uav. IEEE Trans Syst Man Cybern Part
A Syst Hum 42(2):511–526. https://doi.org/10.1109/TSMCA.
2011.2159586

25. Gazi V (2012) Stochastic stability analysis of the particle dynam-
ics in the pso algorithm. In: Proceeding of 2012 IEEE int. symp.
on intelligent control (ISIC), Part of 2012 IEEE multi-conference
on systems and control, Dubrovnik, Croatia, pp 708–713, https://
doi.org/10.1109/ISIC.2012.6398264

26. Geng N, Chen Z, Nguyen QA et al (2021) Particle swarm opti-
mization algorithm for the optimization of rescue task allocation
with uncertain time constraints. Complex Intell Syst 7:873–890.
https://doi.org/10.1007/s40747-020-00252-2

27. Ghasemi M, Akbari E, Rahimnejad A et al (2019) Phasor
particle swarm optimization: a simple and efficient variant
of pso. Soft Comput 23:9701–9718. https://doi.org/10.1007/
s00500-018-3536-8

28. He X, Chen Y, Hu K et al (2022) Application of pso-optimized
twin support vector machine in medium and long-term load fore-

123

7274 K. Watanabe and X. Xu

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CEC.2009.4983280
https://doi.org/10.3390/en15228565
https://doi.org/10.1016/j.compstruc.2016.03.001
https://doi.org/10.1016/j.compstruc.2016.03.001
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://doi.org/10.9781/ijimai.2023.01.004
https://doi.org/10.17577/IJERTV8IS120252
https://doi.org/10.17577/IJERTV8IS120252
https://doi.org/10.1177/0142331217740947
https://doi.org/10.3390/math8050785
https://doi.org/10.9781/ijimai.2024.01.002
https://doi.org/10.9781/ijimai.2024.01.002
https://doi.org/10.20965/jaciii.2022.p1022
https://doi.org/10.1016/j.cor.2004.08.012
https://doi.org/10.1016/j.cor.2004.08.012
https://doi.org/10.16772/j.cnki.1673-1409.2007.04.047
https://doi.org/10.16772/j.cnki.1673-1409.2007.04.047
https://doi.org/10.2991/aebmr.k.210319.020
https://doi.org/10.2991/aebmr.k.210319.020
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/4235.985692
https://doi.org/10.1007/s10846-021-01422-1
https://doi.org/10.1007/s10846-021-01422-1
https://doi.org/10.3390/sym12060922
https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.3390/en16217227
https://doi.org/10.3390/en16217227
https://doi.org/10.1016/j.swevo.2019.05.010
https://doi.org/10.1016/j.swevo.2019.05.010
http://www.jstor.org/stable/2279372
https://doi.org/10.1117/12.832476
https://doi.org/10.1109/TSMCA.2011.2159586
https://doi.org/10.1109/TSMCA.2011.2159586
https://doi.org/10.1109/ISIC.2012.6398264
https://doi.org/10.1109/ISIC.2012.6398264
https://doi.org/10.1007/s40747-020-00252-2
https://doi.org/10.1007/s00500-018-3536-8
https://doi.org/10.1007/s00500-018-3536-8


casting under the background of new normal economy. Adv
Multimed 2022:9. https://doi.org/10.1155/2022/2015538

29. Hu M, Wu T, Weir JD (2013) An adaptive particle swarm
optimization with multiple adaptive methods. IEEE Trans
Evol Comput 17(5):705–720. https://doi.org/10.1109/TEVC.
2012.2211025

30. Hu S, Li K (2023) Bayesian network demand-forecasting
model based on modified particle swarm optimization. Appl Sci
13:10088. https://doi.org/10.3390/app131810088

31. Huang Y,Wang X, Chen H (2022) Location selection for regional
logistics center based on particle swarm optimization. Sustain-
ability 14:16409. https://doi.org/10.3390/su142416409

32. Hung CW, Mao WL, Huang HY (2019) Modified pso algorithm
on recurrent fuzzy neural network for system identification. Intell
Autom Soft Comput 25(2):329–341. https://doi.org/10.31209/
2019.100000093

33. Huynh NT, Nguyen TVT, Tam NT et al (2021) Optimizing
magnification ratio for the flexible hinge displacement ampli-
fier mechanism design. In: Long B, Kim Y, Ishizaki K, et al
(eds) Proceedings of the 2nd annual international conference
on Material, Machines and Methods for Sustainable develop-
ment (MMMS2020), p 102, https://doi.org/10.1007/978-3-030-
69610-8_102

34. Innocente MS, Sienz J (2010) Coefficients’ settings in particle
swarm optimization: insight and guidelines. In: Proceeding of
IX argentinean congress on computational mechanics, II South
American Congress on Computational Mechanics, and XXXI
Iberian-Latin-American Congress on Computational Methods in
Engineering, Buenos Aires, Argentina, pp 9253–9269, https://
cimec.org.ar/ojs/index.php/mc/article/view/3666

35. Jiang M, Luo Y, Yang S (2007) Stochastic convergence analysis
and parameter selection of the standard particle swarm optimiza-
tion algorithm. Inf Process Lett 102(1):8–16. https://doi.org/10.
1016/j.ipl.2006.10.005

36. Jiang S, Jiang J, Zheng C et al (2019) An improved pso algorithm
with migration behavior and asynchronous varying acceleration
coefficient. In: Proceeding of 15th int. conference (ICIC 2019),
Nanchang, China, pp 651–659, https://doi.org/10.1007/978-3-
030-26766-7_59

37. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability
analysis of the particle dynamics in particle swarm optimizer.
IEEE Trans Evol Comput 10(3):245–255. https://doi.org/10.
1109/TEVC.2005.857077

38. Kaushal C, IslamMK, Althubiti SA et al (2022) A framework for
interactive medical image segmentation using optimized swarm
intelligence with convolutional neural networks. Comput Intell
Neurosci 2022:1–21. https://doi.org/10.1155/2022/7935346

39. Kennedy J (1997) The particle swarm: social adaptation of knowl-
edge. In: Proceeding of the IEEE int. conf. on evolutionary
computation, pp 303–308, https://doi.org/10.1109/ICEC.1997.
592326

40. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceeding of int. conference neural network (ICNN), pp 1942–
1948, https://doi.org/10.1109/ICNN.1995.488968

41. Kerboua A, Boukli-Hacene F, Mourad KA (2020) Particle swarm
optimization formicro-grid powermanagement and load schedul-
ing. Int J Energy Econ Pol 10(2):71–80. https://doi.org/10.32479/
ijeep.8568

42. Kothandaraman N, Kaliaperumal V (2021) Combined particle
swarmoptimization andmodified bilinearmodel (pso-mbm) algo-
rithm for nonlinearity detection and spectral unmixing of satellite
imageries. Int J Remote Sens 42(13):5190–5209. https://doi.org/
10.1080/01431161.2021.1910369

43. Kumar L, Singh KU, Kumar I et al (2023) Robust medical image
watermarking scheme using pso, lwt, and hessenberg decompo-
sition. Appl Sci 13:7673. https://doi.org/10.3390/app13137673

44. Lee KH (2005) First Course on Fuzzy Theory and Applications.
Springer, Heidelberg, https://link.springer.com/book/10.1007/3-
540-32366-X

45. Lei K, Qiu Y, He Y (2006) A new adaptive well-chosen iner-
tia weight strategy to automatically harmonize global and local
search ability in particle swarm optimization. In: Proceeding of
IEEE 2006 1st int. symp. on systems and control in aerospace
and astronautics, Harbin, China, pp 977–980, https://doi.org/10.
1109/ISSCAA.2006.1627487

46. Li Z, Han X, Yang M et al (2020) Multi-stage power source and
grid coordination planning method considering grid uniformity.
Global Energy Interconnection 3(4):303–312. https://doi.org/10.
1016/j.gloei.2020.10.001

47. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and
evaluation criteria for the cec 2014 special session and compe-
tition on single objective real-parameter numerical optimization.
In: Technical report 201311, computational intelligence labora-
tory, Zhengzhou University, Zhengzhou, China and Technical
Report, Nanyang Technological University, Singapore, https://
www.researchgate.net/publication/271646935

48. Liu K, Cui Y, Ren J et al (2021) An improved particle swarm
optimization algorithm for bayesian network structure learning
via local information constraint. IEEE Access 9:40963–40971.
https://doi.org/10.1109/ACCESS.2021.3065532

49. Liu X, Hou G, Yang L (2023) Combination optimization of green
energy supply in data center based on simulated annealing particle
swarmoptimization algorithm. Front Earth Sci 11. https://doi.org/
10.3389/feart.2023.1134523

50. Lu J, Hu H, Bai Y (2014) Radial basis function neural network
based on an improved exponential decreasing inertia weight-
particle swarm optimization algorithm for aqi prediction. Abstr
ApplAnal 2014(SI11):1–9. https://doi.org/10.1155/2014/178313

51. Marouani H (2021) Optimization for the redundancy allocation
problem of reliability using an improved particle swarm optimiza-
tion algorithm. J Optim 2021:9. https://doi.org/10.1155/2021/
6385713

52. Melo AG, Andrade FAA, Guedes IP et al (2022) Fuzzy gain-
scheduling pid for uav position and altitude controllers. Sensors
22(2173):1–21. https://doi.org/10.3390/s22062173

53. Menos-Aikateriniadis C, Lamprinos I, Georgilakis PS (2022)
Particle swarm optimization in residential demand-side manage-
ment: a review on scheduling and control algorithms for demand
response provision. Energies 15:2211. https://doi.org/10.3390/
en15062211

54. Mourtzis D, Angelopoulos J (2023) Reactive power optimization
based on the application of an improved particle swarm opti-
mization algorithm. Machines 11:724. https://doi.org/10.3390/
machines11070724

55. Mquqwana MA, Krishnamurthy S (2024) Particle swarm opti-
mization for an optimal hybrid renewable energy microgrid
system under uncertainty. Energies 17:422. https://doi.org/10.
3390/en17020422

56. Nayak J, Swapnarekha H, Naik B et al (2023) 25 years of par-
ticle swarm optimization: flourishing voyage of two decades.
Arch Comput Methods Eng 30:1663–1725. https://doi.org/10.
1007/s11831-022-09849-x

57. Nguyen HD, Van CP, Nguyen TG et al (2023) Soil salinity predic-
tion using hybrid machine learning and remote sensing in ben tre
province on vietnam’s mekong river delta. Environ Sci Pollut Res
30:74340–74357. https://doi.org/10.1007/s11356-023-27516-x

58. Phung MD, Ha QP (2021) Safety-enhanced uav path planning
with spherical vector-based particle swarm optimization. Appl
Soft Comput 107(107376):1–15. https://doi.org/10.1016/j.asoc.
2021.107376

59. Poli R (2009) Mean and variance of the sampling distribu-
tion of particle swarm optimizers during stagnation. IEEE Trans

123

7275Nonlinear crossing strategy-based particle swarm...

https://doi.org/10.1155/2022/2015538
https://doi.org/10.1109/TEVC.2012.2211025
https://doi.org/10.1109/TEVC.2012.2211025
https://doi.org/10.3390/app131810088
https://doi.org/10.3390/su142416409
https://doi.org/10.31209/2019.100000093
https://doi.org/10.31209/2019.100000093
https://doi.org/10.1007/978-3-030-69610-8_102
https://doi.org/10.1007/978-3-030-69610-8_102
https://cimec.org.ar/ojs/index.php/mc/article/view/3666
https://cimec.org.ar/ojs/index.php/mc/article/view/3666
https://doi.org/10.1016/j.ipl.2006.10.005
https://doi.org/10.1016/j.ipl.2006.10.005
https://doi.org/10.1007/978-3-030-26766-7_59
https://doi.org/10.1007/978-3-030-26766-7_59
https://doi.org/10.1109/TEVC.2005.857077
https://doi.org/10.1109/TEVC.2005.857077
https://doi.org/10.1155/2022/7935346
https://doi.org/10.1109/ICEC.1997.592326
https://doi.org/10.1109/ICEC.1997.592326
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.32479/ijeep.8568
https://doi.org/10.32479/ijeep.8568
https://doi.org/10.1080/01431161.2021.1910369
https://doi.org/10.1080/01431161.2021.1910369
https://doi.org/10.3390/app13137673
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/3-540-32366-X
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/3-540-32366-X
https://doi.org/10.1109/ISSCAA.2006.1627487
https://doi.org/10.1109/ISSCAA.2006.1627487
https://doi.org/10.1016/j.gloei.2020.10.001
https://doi.org/10.1016/j.gloei.2020.10.001
https://www.researchgate.net/publication/271646935
https://www.researchgate.net/publication/271646935
https://doi.org/10.1109/ACCESS.2021.3065532
https://doi.org/10.3389/feart.2023.1134523
https://doi.org/10.3389/feart.2023.1134523
https://doi.org/10.1155/2014/178313
https://doi.org/10.1155/2021/6385713
https://doi.org/10.1155/2021/6385713
https://doi.org/10.3390/s22062173
https://doi.org/10.3390/en15062211
https://doi.org/10.3390/en15062211
https://doi.org/10.3390/machines11070724
https://doi.org/10.3390/machines11070724
https://doi.org/10.3390/en17020422
https://doi.org/10.3390/en17020422
https://doi.org/10.1007/s11831-022-09849-x
https://doi.org/10.1007/s11831-022-09849-x
https://doi.org/10.1007/s11356-023-27516-x
https://doi.org/10.1016/j.asoc.2021.107376
https://doi.org/10.1016/j.asoc.2021.107376


Evol Comput 13(4):712–721. https://doi.org/10.1109/TEVC.
2008.2011744

60. Poli R, Broomhead D (2007) Exact analysis of the sampling
distribution for the canonical particle swarm optimiser and its
convergence during stagnation. In: Proceeding IEEE int. conf. on
genetic and evolutionary computation conference (GECCO’07),
London, England, pp 134–141, https://doi.org/10.1145/1276958.
1276977

61. Priya BK, Reddy DA, Soliman WG et al (2022) Hybrid stepper
motor: model, open-loop test, traditional pi, optimized pi, and
optimized gain scheduled pi controllers. Int J Control Autom Syst
20(12):3915–922. https://doi.org/10.1007/s12555-021-0371-y

62. Qamar MS, Ali F, Armghan A et al (2021) Improvement of trav-
eling salesman problem solution using hybrid algorithm based on
best-worst ant system and particle swarm optimization. Appl Sci
11:4780. https://doi.org/10.3390/app11114780

63. Qu S, He T, Zhu G (2023) Model-assisted online optimization
of gain-scheduled pid control using nsga-ii iterative genetic algo-
rithm. Appl Sci 13:6444. https://doi.org/10.3390/app13116444

64. Rajania DK, Kumarc V (2020) Impact of controlling parameters
on the performance of mopso algorithm. In: International Confer-
ence on Computational Intelligence and Data Science (ICCIDS
2019), pp 2132–2139, https://doi.org/10.1016/j.procs.2020.03.
272

65. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-
organizing hierarchical particle swarm optimizer with time-
varying acceleration coefficients. IEEE Trans Evol Comput
8(3):240–255. https://doi.org/10.1109/TEVC.2004.826071

66. del Rio A, Barambones O, Uralde J et al (2023) Particle swarm
optimization-based control for maximum power point tracking
implemented in a real time photovoltaic system. Information
14:556. https://doi.org/10.3390/info14100556

67. Roy C, Das DK (2021) A hybrid genetic algorithm (ga)—particle
swarm optimization (pso) algorithm for demand side manage-
ment in smart grid considering wind power for cost optimization.
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