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Abstract
Video object segmentation (VOS) has made significant progress with matching-based methods, but most approaches still
show two problems. Firstly, they apply a complicated and redundant two-extractor pipeline to use more reference frames for
cues, increasing the models’ parameters and complexity. Secondly, most of these methods neglect the spatial relationships
(inside each frame) and do not fully model the temporal relationships (among different frames), i.e., they need adequate
modeling of spatial-temporal relationships. In this paper, to address the two problems, we propose a unified transformer-
based framework for VOS, a compact and unified single-extractor pipeline with strong spatial and temporal interaction
ability. Specifically, to slim the common-used two-extractor pipeline while keeping the model’s effectiveness and flexibility,
we design a single dynamic feature extractor with an ingenious dynamic input adapter to encode two significant inputs,
i.e., reference sets (historical frames with predicted masks) and query frame (current frame), respectively. Moreover, the
relationships among different frames and inside every frame are crucial for this task. We introduce a vision transformer to
exploit andmodel both the temporal and spatial relationships simultaneously. By the cascaded design of the proposed dynamic
feature extractor, transformer-based relationship module, and target-enhanced segmentation, our model implements a unified
and compact pipeline for VOS. Extensive experiments demonstrate the superiority of our model over state-of-the-art methods
on both DAVIS and YouTube-VOS datasets. We also explore potential solutions, such as sequence organizers, to improve the
model’s efficiency. On DAVIS17 validation, we achieve ∼50% faster inference speed with only a slight 0.2% (J&F) drop in
segmentation quality. Codes are available at https://github.com/sallymmx/TransVOS.git.
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1 Introduction

Video Object Segmentation (VOS), as a fundamental task in
the computer vision community, has attractedmore andmore
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attention in recent years due to its potential application in
autonomous driving, object tracking [3, 12, 13], activity
recognition [55], and video editing, etc. In this paper, we
focus on semi-supervised VOS, which provides the target
objects’ masks in the first frame, and the algorithms should
produce the segmentation masks for those objects in the sub-
sequent frames. Under this setting, VOS remains challenging
due to object occlusion, deformation, appearance variation,
and similar object confusion in video sequences.

When processing videos in sequential order, the natural
idea is to use more reference/historical frames that contain
abundant temporal information. Recently, state-of-the-art
VOS performance has been achieved by matching-based
algorithms [5, 11, 22, 27, 32, 39, 42, 43, 45, 48], while most
ofwhich still show twoproblems like complicated and redun-
dant pipeline and inadequately modeling of spatial-temporal
relationshipswhen referring to historical frames for segment-
ing.
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First, many existing methods [5, 15, 19, 22, 27, 32, 42,
48] usually use a complicated and redundant two-extractor
pipeline, in which the query extractor encodes features
of the current frame and the memory/reference extractor
encodes historical information from reference frames. This
two-extractor pipeline is flexible for encoding reference
sets of different sizes; however, containing many redundant
parameters and increasing the model’s complexity. Siamese
architecture effectively reduces the number of parameters
and simplifies the complicated pipeline, while existing ways
[14, 16, 23, 31, 47] are of limited use and unable to keep
the flexibility and effectiveness. For example, the segmenta-
tionmasks’ abundant edges and contour features are not fully
leveraged by directly concatenating the predictedmasks with
high-level semantic features. In addition, concatenating the
previous frame’s mask with the query frame may bring sig-
nificant displacement shifting errors. However, using optical
flow to warp the mask is time-consuming.

Second, these methods mostly neglect the spatial relation-
ships (inside each frame) and do not fullymodel the temporal
relationships (among different frames). However, the spatial
and temporal relationship is crucial for learning the robust
target appearance across frames and handling practical sce-
narios such as object occlusion, deformation, and appearance
variation. To better depict this point, we define two rela-
tionships in this paper, i.e., temporal relationships (Fig. 1
(b)) and spatial relationships (Fig. 1 (c)). The former is the
relationships among pixels in different frames, representing
the correspondence of target objects among past and cur-
rent frames, which is vital for learning robust global target
object features and helps handle appearance change across
frames. The latter represents the relationships among pixels
in a specific frame, including object appearance informa-
tion for target localization and segmentation, which helps
obtain accurate mask boundaries and is essential for learning
local target object structure as explored in [25]. A group of
matching-based methods [5, 11, 15, 19, 22, 27, 32, 37, 39,
42, 48, 53] provide partial solutions for capturing above cor-

respondence and achieve competitive performance. Among
them, the Space-Time Memory (STM) based approaches [5,
15, 19, 22, 27, 32, 42, 48] have achieved great success. The
basic idea of these methods is to compute the similarities of
target objects between the current and past frames by fea-
ture matching. However, as illustrated in Fig. 1(a), most of
these methods only compute attentions among pixels in the
query frame against pixels in each reference frame, ignor-
ing the temporal dependency among historical frames and
spatial correlations of pixels inside a specific frame. There
are a few methods that pay attention to these issues. For
instance, EGMN [27] proposes a fully-connected graph to
capture cross-frame correlation, effectively exploiting the
temporal relationships. However, EGMN still omits spatial
relationships.

To address the above two problems, in this paper, we pro-
pose a new framework for VOS, which is a compact and
unified single-extractor pipeline and has strong spatial and
temporal interaction ability.

Specifically, to represent the reference sets and query
frames in a unified way, we develop a plain yet effec-
tive feature extractor that has a dynamic input adapter and
accepts the reference sets and the query frames in the mean-
time, significantly simplifying the existing VOS framework
while keeping the effectiveness and flexibility. It is based
on the assumption that the convolution network can be
generic to different inputs of visual patterns. Therefore, we
designed the dynamic input adapter to encode the refer-
ence sets and the query frames to different visual patterns.
And then, a convolution network is used to map these
visual patterns into feature embedding. The dynamic input
adapter uses different layers to encode different inputs in
practice. For reference sets, the RGB image, the mask’s
foreground, and the mask’s background are encoded and
fused to enhance the target appearance. At the same time,
only the RGB image is encoded for the query frames. By
this means, the dynamic feature extractor can encode the
inputs in a unifiedway and keeps the flexibility and effective-

Fig. 1 (a) relationships between
pixels in the query frame and
pixels in reference frames.
Temporal relationships (b) are
relationships among pixels in
different frames, representing
the correspondence of target
objects among reference and
query frames. Spatial
relationships (c) are
relationships among pixels in a
specific frame of reference and
query frames, including object
appearance information for
target localization and
segmentation
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ness of the separate extractors but with a compact architec-
ture.

Moreover, since the dependencies both among different
frames and inside every frame are crucial for this task,
we introduce the vision transformer to jointly capture the
spatial and temporal relationships, generating discriminate
spatial-temporal features for segmenting. Our model takes
the features of the reference sets and the query frame as
the input sequence and exploits the transformers to estab-
lish spatial-temporal dependency simultaneously. Also, we
design a Target Attention Block (TAB) to extract the target’s
mask features from the query frame, helping obtain the target
mask prediction from the outputs of the transformer. Above
all, By the cascaded design of the proposed dynamic feature
extractor, transformer-based relationshipmodule, and target-
enhanced segmentation, our model implements a unified and
compact pipeline for VOS.

Finally, we explore potential solutions, such as sequence
organizers, to improve the model’s efficiency. Since the
computational complexity of the self-attention mechanism
is proportional to the square of the length of the input
sequences. And not all pixels in the reference sets are impor-
tant for the target segmentation of the query frame.Therefore,
we design the sequence organizers to compress the redun-
dant reference representation. By this means, compared to
the vanilla model, we achieve ∼50% faster inference speed
with only a slight 0.2% (J&F) drop in segmentation quality
on DAVIS17 validation, as shown in Section 4.5.

Our main contributions can be summarized as follows:

• We proposed a compact single-extractor framework to
simplify the existing VOS pipeline. Specifically, we
designed a dynamic feature extractor to present the two
kinds of inputs, i.e., reference sets (history frames with
predicted masks) and query frames (current frames), in a
unified way, containing fewer parameters while keeping
the effectiveness and flexibility of the two extractors.

• Considering that the dependencies among different frames
and inside every frame are crucial for this task, we attach
the vision transformer to the dynamic feature extractor,
generating discriminate spatial-temporal features for seg-
menting. Our model is robust for appearance variation,
occlusion, and confusion with sufficient spatial-temporal
interaction.

• We comprehensively evaluate the proposed model on
three benchmark datasets, including DAVIS 2016/2017
[34, 35] andYouTube-VOS [49]. The results demonstrate
the effectiveness and efficiency of our method in compar-
ison with the previous approaches. Also, we do extended
experiments to explore how to improve our model’s effi-
ciency.

2 Related works

2.1 Tracking-basedmethods

These methods [3, 13, 41, 46] integrate object tracking
techniques to indicate target location and spatial area for seg-
mentation. SiamMask [46] adds a mask branch on SiamRPN
[17] to narrow the gap between tracking and segmentation.
FTAN-DTM [13] takes object segmentation as a sub-task
of tracking, introducing the “tracking-by-detection” model
into VOS. SAT [3] fuses object tracking and segmentation
into a truly unified pipeline. It combines SiamFC++ [50]
and proposes an estimation-feedback mechanism to switch
between the mask box and tracking box, making segmenta-
tion and tracking tasks enhance each other. The integration
of the tracker helps improve the inference speed, while the
accuracy of tracking tasks often limits these methods’ per-
formance.

2.2 Matching-basedmethods

Recently, state-of-the-art performance has been achieved by
matching-based methods [2, 11, 22, 27, 30, 32, 37, 39, 42,
43, 45, 48, 56], which perform feature matching to learn tar-
get object appearances offline. VideoMatch [11] measures
similarity by soft matching with foreground and background
features. FEELVOS [39] and CFBI [53] perform the nearest
neighbor matching between the current frame and the first
and previous frames in the feature space. STM [32] intro-
duces an external memory to store past frames’ features and
uses the attention-based matching method to retrieve infor-
mation from memory. KMN [37] applies Query-to-Memory
matching with a kernelized memory read to reduce the non-
locality of the STM. RMNet [48] proposes to replace STM’s
global-to-global matching with local-to-local matching to
alleviate the ambiguity of similar objects. EGMN [27] orga-
nizes thememory network as a fully connected graph to store
frames as nodes and capture cross-frame relationships by
edges. SwiftNet [42] designed Pixel-Adaptive Memory to
compress spatiotemporal redundancy. However, these meth-
ods do not fully utilize the spatial-temporal relationships
among reference sets and query frames. In this paper, we
introduce a vision transformer to model spatial-temporal
dependency, which can help handle large object appearance
changes.

2.3 Transformer-basedmethods

Recently, transformers have achieved great success in vision
tasks like image classification [7], object detection [2],
semantic segmentation [44], object tracking [51, 52], etc.
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Due to the importance of spatial and temporal relationships
for segmenting, we also employ the vision transformer in the
VOS task, which is inspired by DETR [2]. Different from
DETR and MaskFormer [4], which only model spatial rela-
tionships in a specific frame with the transformer, we fully
exert the long-range dependencies modeling power of the
transformer to simultaneously exploit spatial and temporal
relationships among pixels of past frames and the current
frame, which is vital and benefit to the VOS task. In addi-
tion, the proposed dynamic feature extractor and transformer
complement each other and form a unified architecture. The
former adaptively encodes two types of inputs, i.e., query
frames and reference sets, while the latter effectively models
two types of relationships among the input sequences.

There are also some transformer-based methods, SST
[8], JOINT [29] and AOT [54]. SST uses the transformer’s
encoder with sparse attention to capture the spatial-temporal
information among the current and preceding frames. How-
ever, mask representations are not explored in SST. JOINT
combines inductive and transductive learning and extends
the transduction branch to a transformer architecture. Never-
theless, its network structure is complicated. AOT proposed
Identification Embedding that encodes all masks simulta-
neously and a Long Short-Term Transformer that captures
spatial-temporal dependencies. AOT achieves good perfor-
mance with fast inference speed, while short-term attention
implies the temporal smoothness assumption, whichmay not
be robust to fast-moving and small objects. Besides, SST,
JOINT, and AOT did not employ the transformer’s decoder
and could not enjoy its substantial power.

2.4 Feature extractors

Reference sets (history frames with predicted masks) and
query frames (current frames) are essential inputs for semi-
supervised VOS. The former implies historical information,
while the latter contains the appearance of the current target.
Only one extractor was used to encode the inputs in the early
years.MaskTrack [33] concatenated the query framewith the
previous mask prediction as the input of a single ConvNet.
After that, siamese architecture becamepopular for using two
reference frames for cues. RGMP [31] and AGSS-VOS [23]
concatenate the current framewith the previous frame’smask
or warped mask to form a 4-channel input so as the reference
sets. Then a shared extractor with a 4-channel input layer
is used to extract features. For more temporal information,
STM-based methods [5, 22, 27, 32, 42, 48] used two extrac-
tors, .i.e, a 4-channelmemory/reference extractor and a query
extractor to extract features from reference sets and the query
frame, respectively. The two-extractor pipeline is flexible for

encoding reference sets of different sizes while swollen and
containingmany redundant parameters.We argue that amore
compact and flexible pipeline can be implemented with the
proposed dynamic feature extractor.

3 Methods

The overview of our framework is illustrated in Fig. 3. It
mainly consists of a dynamic feature extractor, a vision trans-
former, a target attention block, and a segmentation head.
When segmenting a specific frame,wefirstly use the dynamic
feature extractor to extract the features of the current frame
and reference sets. The outputs of the extractor are fed into
a bottleneck layer to reduce the channel number. Then fea-
tures are flattened before feeding into a vision transformer,
which simultaneously models the temporal and spatial rela-
tionships. Moreover, the target attention block takes both the
transformer’s encoder and decoder’s outputs as input and
then outputs the feature maps, representing the target mask
features. Finally, a segmentation head is attached after the
target attention block to obtain the predicted object mask.

3.1 Dynamic feature extractor

As discussed in Section 1, we need a unified feature extrac-
tor that can effectively extract the features of the reference
sets and the query frame and map them into an embedding
space to be ready for feeding into the following vision trans-
former. In order to utilize more temporal cues, the existing
pipelines mostly use two separate extractors to operate these
two inputs, respectively, which are flexible and effective for
encoding different sizes of reference sets but contain many
redundant parameters and increase the model’s complexity.
Some methods [14, 31] apply siamese architecture to encode
the two types of inputs, which is more lightweight and com-
pact while showing obvious problems like insufficient use of
mask features and significant shifted error caused by con-
catenating the previous mask with the current frame. To
overcome the above issues,we combine both advantages, i.e.,
maintaining the effectiveness and flexibility of two-extractor
pipelines while being more lightweight and compact like
Siamese architecture, and design a dynamic feature extrac-
tor to represent the two types of inputs in a unified way. As
demonstrated by the experiments in Table 4, compared to
the two-extractor pipeline, our model equipped with the pro-
posed dynamic feature extractor has much fewer parameters
(about 20% reduction, “Dynamic" vs. “Independent") while
maintaining effectiveness and flexibility.
Dynamic input adapter Specifically, we design a dynamic
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input adapter to adaptively encode two types of inputs, i.e.,
query frames (RGB frames) and reference sets (the pairs of
RGB frames with corresponding object masks). As shown
in Fig. 2, when taking the RGB frames as input, it will go
through the first path, which has one regular convolution
operation. The second path will be used for reference sets,
containing three convolutions to encode the RGB frame, the
object’s foreground mask, and the background mask. The
output features of the three convolutions are added together
to represent the reference sets. Our method can use arbitrary
convolution networks as the feature extractor by replacing the
first layer with the dynamic input adapter. Here we employ
the first four stages of ResNet [10] as the feature extractor.
After going through the dynamic input adapter, the features
from the query frame and reference sets are first concatenated
along the temporal dimension and then fed into the convolu-
tion network (CNN). Finally, the reference sets and current
frame are mapped to feature maps f ∈ R

(T+1)×C×H×W ,
where H , W , C are the height, width, and channel. T is
the number of reference pairs.

Before feeding into the vision transformer, we use a 1x1
convolution layer to reduce the spatial channel of the fea-
ture maps from C to d (d < C), resulting in new feature
maps f

′ ∈ R
(T+1)×d×H×W . Then, the spatial and temporal

dimensions of f
′
are flattened into one dimension, producing

feature vectors X ∈ R
(T+1)HW×d , which serves as the input

of the transformer encoder.

3.2 Relationshipmodeling

We introduce the vision transformer to model the relation-
ships of the two types of inputs, i.e., reference sets (history
frames with predicted masks) and query frames (current
frames), making the whole pipeline simple and modular-
ized. Transformers have strong capabilities for modeling
spatial-temporal relationships. First, the positional encoding
explicitly introduces space-time position information, which
could help the encoder model spatial-temporal relationships
among pixels in the input frames. Second, the encoder could
learn the target object’s correspondence among the input
frames and model the target object’s structure in a specific
frame. Third, the decoder could predict the spatial positions
of the target objects in the query frame and focus on the most
relevant object, which learns robust target representations for
the target object and empowers our network to handle similar
object confusion better.
Positional encoding The transformer’s core component self-
attention module is permutation invariant. However, both
spatial and temporal positional information is vital for estab-
lishing spatial and temporal relationships and accurate object
segmentation. Equipping with the space-time location infor-
mation in feature maps, the encoder could better capture the
spatial and temporal dependency among all elements in the
input sequences, helping our network handle challenging sit-
uations like object occlusion and deformation. Therefore,

Fig. 2 The overall architecture
of the proposed dynamic feature
extractor. The feature extractor
is used to extract the features of
the current frame and reference
sets in a unified way. "+",
indicates adding operation. For a
better view, we only illustrate
two reference frames
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explicitly embedding space-time position information into
the transformer model is essential. We add sinusoidal posi-
tional encoding PE [38] to the embedded featuresX to form
the inputs Z of the transformer. Mathematically,

Z = X + PE (1)

PE(pos, 2i) = sin(pos/100002i/d) (2)

PE(pos, 2i + 1) = cos(pos/100002i/d) (3)

where pos and i are the spatial-temporal position and the
dimension of the features X, respectively.
Transformer encoder The transformer encoder is used to
model the spatial-temporal relationships among elements
of the input sequences. It takes features Z as input and
outputs encoded features E. The encoder consists of L
encoder layers, each with a standard architecture, includ-
ing a multi-head self-attention module and a fully connected
feed-forward network. The multi-head self-attention module
captures spatial-temporal relationships from different repre-
sentation sub-spaces.
At each encoder layer l, let zl−1

p,t ∈ R
d represents an element

of representation Zl−1(Z0 = Z,ZL = E) encoded by the
preceding encoder layer, where p and t denote the spatial and
temporal position, respectively. For m-th attention head, the
query/key/value vector (ql,mp,t /k

l,m
p,t /v

l,m
p,t ) from the element

zl−1
p,t is computed by:

ql,mp,t = Wl,m
q zl−1

p,t

kl,mp,t = Wl,m
k zl−1

p,t

vl,mp,t = Wl,m
v zl−1

p,t

(4)

The self-attention weights are computed by:

α
l,m
p,t = σ(

ql,mp,t√
dm

·
[
{kl,mp′,t ′ }p′=1,··· ,HW

t ′=1,··· ,T+1

]
) (5)

Then, the multi-head self-attention feature is calculated by

slp,t =
M∑

m=1

Wl,m
o [

T+1∑
t ′=1

HW∑
p′=1

(α
l,m
p,t )p′,t ′ · vl,mp′,t ′ ] (6)

where T represents the number of the reference frames,
Wl,m

q ,Wl,m
k ,Wl,m

v ∈ R
dm×d and Wl,m

o ∈ R
d×dm are learn-

able weights (dm = d/M by default), σ indicates the
so f tmax function. Note that we compute attention along the
spatial-temporal dimension. Thus we can model the spatial
relationships and temporal relationships in the meanwhile.
After the multi-head self-attention module, residual connec-
tions and the layer normalization (LN) are used. Furthermore,

features are further passed through aFFN attachedwith resid-
ual connections and layer normalization to acquire the output
features Zl of encoder layer l.
Transformer decoder The transformer decoder aims to
focus on the most relevant object in the query frame and help
predict the spatial positions of the target. It takes encoded
features E and target query xq as input and output decoded
features xo. We only utilize one target query in the decoder to
query the features of the specific target object. The decoder
also consists of L decoder layers, each including amulti-head
self-attention module, a multi-head cross-attention module,
and a fully connected feed-forward network. The multi-head
self-attentionmodule in ourmodel integrates the target infor-
mation from different representation sub-spaces. Moreover,
the multi-head cross-attention module is mainly leveraged to
retrieve target object features from the encoder.
At each decoder layer l ′, let xl ′−1(x0 = xq , xL = xo) ∈
R
d represents the representation extracted by the preceding

decoder layer. The multi-head self-attention module is simi-
lar to that in the transformer encoder layer. Since there is only
one target query, it calculates the attention weights against
itself. Therefore, the computation of self-attention feature xl

′
s

can be simplified as:

xl
′
s =

M∑
m′=1

Wm′
so (Wm′

sv x
l ′−1) (7)

where m′ indexes the attention head in multi-head self-
attention module, Wm′

sv ∈ R
dm′×d and Wm′

so ∈ R
d×dm′ are

learnable weights (dm′ = d/M by default).
Then features x̂l

′
s are passed through a multi-head cross-

attention module after the residual connections and the layer
normalization (LN):

x̂l
′
s = LN(xl

′
s + xl

′−1) (8)

Let ep,t ∈ R
d represents an element of E, p and t denote the

spatial and temporal position, respectively. For m′-th (m′ ≤
M) attention head in multi-head cross-attention module, the
key and value vectors kl

′,m′
p,t , vl

′,m′
p,t are computed as:

kl
′,m′
p,t = Wl ′,m′

k ep,t

vl
′,m′
p,t = Wl ′,m′

v ep,t
(9)

The cross-attention weights are computed by:

αl ′,m′
s = σ(

Wl ′,m′
q x̂l

′
s√

dm′
·
[
{kl ′,m′

p′,t ′ }p′=1,··· ,HW
t ′=1,··· ,T+1

]
) (10)
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Then the cross-attention feature xl
′
c is calculated by:

xl
′
c =

M∑
m′=1

Wl ′,m′
o [

T+1∑
t=1

HW∑
p=1

(αl ′,m′
s )p,t · vl ′,m′

p,t ] (11)

where T denotes the size of the reference set,Wl ′,m′
q ,Wl ′,m′

k ,

Wl ′,m′
v ∈ R

dm′×d and Wl ′,m′
o ∈ R

d×dm′ are learnable
weights(dm′ = d/M by default). σ indicates the so f tmax
function.
Similar to the encoder layer, residual connections and the
layer normalization (LN) are used after the multi-head cross-
attention module. Moreover, features are further passed
through a FFN attached with residual connections and layer
normalization to acquire the output features xl

′
of decoder

layer l ′.

3.3 Segmentation

Target attention block. To obtain the target mask predic-
tion from the outputs of the transformer, the model needs to
extract the target’s mask features from the query frame. We
design a Target Attention Block (TAB) to achieve this goal.
TAB computes the attentions between the query frame’s fea-
tures EQ in features E, and the output features xo from the
decoder. xo and EQ are fed into a multi-head self-attention
module (with M head) to obtain the attention maps, which
boost the features of foreground and suppress the disturbance
of the background. We concatenate the attention maps with
EQ as the input S of the following segmentation head to
enhance the target features. The above procedure can be for-
mulated as follows:

Attni (xo,EQ) = σ(
(Wi

qxo)
T (Wi

kEQ)√
di

) (12)

S = [EQ, Attn1(xo,EQ), · · · , AttnM (xo,EQ)] (13)

where i indexes the attention head, Wi
q ,W

i
k ∈ R

di×d , are
learnable weights (di = d/M by default).
Segmentation head The features S are fed into a segmen-
tation head which outputs the final mask prediction. Here,
we use the refine module used in [31, 32] as the building
block to construct our segmentation head. It consists of two
blocks, each taking the previous stage’s output and the current
frame’s feature maps from the feature extractor at the corre-
sponding scale through skip connections. The refine module
upscales the compressed feature maps by a factor of two at
a time. Then a 2-channel convolution and a so f tmax opera-
tion are attached behind blocks to attain the predicted mask
in 1/4 scale of the input image. Finally, we use bi-linear inter-
polation to upscale the predicted mask to the original scale.

Multi-object segmentationOur framework can be extended
tomulti-object segmentation easily. Specifically, the network
first predicts the mask for every target object. Then, a soft
aggregation operation is used tomerge all the predictedmaps.
We apply this way during both the training and inference to
keep both stages consistent. For each location l in predicted
mask Mi of object i(i < N ), the probability pl,i after soft
aggression operation can be expressed as:

pl,i = σ(logit( p̂l,i )) = p̂l,i/(1 − p̂l,i )∑N−1
j=0 p̂l, j/(1 − p̂l, j )

(14)

where N is the number of objects. σ and logit represent the
so f tmax and logi t functions, respectively. The probability
of the background is obtained by subtracting from 1 after
computing the output of the merged foreground.

3.4 Training and inference

Training Our proposed model only requires short training
video clips since it has no temporal smoothness assumptions.
Nonetheless, ourmodel can still learn long-term dependency.
Just like most STM-based methods [19, 22, 27, 32, 37], we
synthesize video clips by applying data augmentations (ran-
dom affine, color, flip, resize, and crop) on a static image
of datasets [6, 9, 18, 24]. Then we use the synthetic videos
to pretrain our model. This pre-training procedure helps our
model be robust against various object appearances and cat-
egories. After that, we train our model on real videos. We
randomly select T frames from a video sequence of DAVIS
[34, 35] or YouTube-VOS [49] and apply data augmentation
on those frames to form a training video clip. By doing so,
we can expect ourmodel to learn long-range spatial-temporal
information. We add cross-entropy loss Lcls and mask IoU
loss LI oU as the multi-object training loss L, which can be
expressed as:

L = 1

N

N−1∑
i=0

[Lcls(Mi ,Yi ) + LI oU (Mi ,Yi )] (15)

Lcls(Mi ,Yi ) = − 1

|�|
∑
p∈�

[Yi log(
exp(Mi )∑N−1

j=0 (exp(M j ))
)]p

(16)

LI oU (Mi ,Yi ) = 1 −
∑

p∈� min(Yp
i ,Mp

i )∑
p∈� max(Yp

i ,Mp
i )

(17)

where � denotes the set of all pixels in the object mask,
Mi ,Yi represent the predicted mask and ground truth of
object i , N is the number of objects. Note that N is set to 1
when segmenting a single object.
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Inference Our model uses past frames with corresponding
predicted masks to segment the current frame during the
online reference phase. To balance the inference speed and
accuracy, we do not use external memory to store every past
frame’s features but only use the first framewith ground truth
and the previous frame with its predicted masks as the ref-
erence sets. Because the former always provides the most
reliable information, and the latter is the most similar to the
current frame. Note that our model is flexible and can use
more reference frames to obtain more historical information
for segmenting the current frame.

4 Experiments

In this section, we first introduce the implementation details
of our approach and the datasets, and the evaluation metrics.
Then we perform extensive experiments to demonstrate that
our model consistently outperforms or obtains a comparable
performancewith the state-of-the-artmethods onDAVIS [34,
35] and YouTube-VOS [49] benchmarks. We also give some
qualitative results to show the effectiveness of our model.
Next, we conduct comprehensive ablation studies to analyze
the effect of the individual components of our method and
some configurations. Finally, we explore how to improve
efficiency and strike a balance between segmentation quality
and inference speed.

4.1 Implementation details

We use the first four stages of ResNet50 [10] pretrained on
ImageNet [24] and replace its input layer with the proposed
dynamic input adapter to form our feature extractor. The
number of transformer encoder layers and decoder layers
is set to L = 6. The multi-head attention layers have M = 8
heads, width d = 256, while the feed-forward networks have
hidden units of 2048. Dropout ratio of 0.1 is used. The pro-
posed model is trained with the input resolution of 480p, and
the length T of the training video clip is set to 2. Similar to
[32], the maximum temporal interval of sampling increases
by 5 every 20 training epochs.We freeze all batch normaliza-
tion layers and minimize our loss using AdamW optimizer
(β = (0.9, 0.999), eps = 10−8, and the weight decay is
10−4) with the initial learning rate lr = 10−4. During train-
ing, we adopt a bootstrapping strategy for the cross-entropy
loss, where only the top 40% pixels with maximum training
loss are considered. The model is trained with batchsize 4
for 160 epochs on 4 TITAN RTX GPUs, taking about 1.5
days. Note that our model is flexible for different sizes of the
reference sets. In the inference stage, to balance the accuracy
and efficiency, our model with input resolution 480p only

refers to the first and previous frames to segment the cur-
rent frame. We conduct all inference experiments on a single
TITAN RTX GPU.

4.2 Datasets and evaluationmetrics

We evaluate our approach on DAVIS [34, 35] and YouTube-
VOS [49] benchmarks. Both DAVIS2016 and DAVIS2017
have experimented. DAVIS2016 is an annotated single-
object dataset containing 30 training and 20 validation video
sequences. DAVIS2017 is a multi-objects dataset expanded
from DAVIS2016, including 60 training video sequences,
30 validation video sequences, and 30 test video sequences.
The youTube-VOS dataset is a large-scale VOS dataset with
3471 training videos and 474 validation videos. And each
video contains a maximum of 12 objects. The validation set
includes seen objects from 65 training categories and unseen
objects from 26 categories, appropriate for evaluating algo-
rithms’ generalization performance. We use the evaluation
metrics provided by the DAVIS benchmark to evaluate our
model. J&F evaluates the general quality of the segmenta-
tion results, J evaluates the mask I oU , and F estimates the
quality of contours.

4.3 Comparison with the state-of-the-art

DAVIS We compare the proposed model with the state-
of-the-art methods on DAVIS benchmark [34, 35]. We
also present the results trained with additional data from
YouTube-VOS [49]. The evaluation results on DAVIS16-
val and DAVIS17-val are reported in Table 1. When adding
YouTube-VOS for training, our method achieves state-of-
the-art performance on DAVIS17-val (83.9% in J&F),
outperforming the online-learning methods with a large mar-
gin and having higher performance than the matching-based
methods such as STM, RMNet, and CFBI. Specifically, our
model outperforms transformer-based SST with 1.4% in
J&F , surpasses JOINT with a gap of 0.4% in J&F , and
exceeds AOT-Bwith 1.8% in J&F .When only usingDAVIS
for training, our model achieves better quantitative results
than those with the same configuration and even better than
several methods like FEELVOS and AGAME, which apply
YouTube-VOS for training. On DAVIS16-val, our model
has comparable performance with state-of-the-art methods.
Compared to KMN, our model has the same J&F score with
a higher J score while a slightly lower F score. Since DAVIS
2016 is a single object dataset, segmentation details such as
boundaries play an important role in performance evaluation.
We believe that the Hide-and-Seek training strategy, which
provides more precise boundaries, helps KMN a lot. We also
report the results on the DAVIS17 test-dev in Table 2. Our
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Table 1 Comparison with the state-of-the-art on the DAVIS16 and DAVIS17-val. ‘OL’ indicates the use of online-learning strategy. ‘+YT’ means
the use of YouTube-VOS for training. Runtime of other methods was obtained from the corresponding papers

Methods OL DAVIS16 val DAVIS17 val
FPS J&F(%) J (%) F(%) J&F(%) J (%) F(%)

OSVOS [1] � 0.22 80.2 79.8 80.6 60.3 56.7 63.9

OnAVOS [40] � 0.08 85.5 86.1 84.9 67.9 64.5 71.2

PReMVOS [28] � 0.03 86.8 84.9 88.6 77.8 73.9 81.7

STM-cycle(+YT) [20] � - - - - 72.3 69.3 75.3

FRTM(+YT) [36] � 21.9 83.5 - - 76.7 - -

RGMP [31] 7.7 81.8 81.5 82.0 66.7 64.8 68.6

RaNet [47] 30 85.5 85.5 85.4 65.7 63.2 68.2

AGSS [23] - - - - 66.6 63.4 69.8

GC [19] 25 86.6 87.6 85.7 71.4 69.3 73.5

AFB-URR [22] - - - - 74.6 73.0 76.1

AGAME(+YT) [14] 14.3 82.1 82.0 82.2 70.0 67.2 72.7

FEELVOS(+YT) [39] 2.2 81.7 81.1 82.2 71.5 69.1 74.0

STM(+YT) [32] 6.3 89.3 88.7 89.9 81.8 79.2 84.3

KMN(+YT) [37] 8.3 90.5 89.5 91.50 82.8 80.0 85.6

EGMN(+YT) [27] - - - - 82.8 80.2 85.2

AOT-B(+YT) [54] 22.7 89.9 88.8 90.9 82.1 79.4 84.8

CFBI(+YT) [53] 6 89.4 88.3 90.5 81.9 79.1 84.6

JOINT(+YT) [29] - - - - 83.5 80.8 86.2

SST(+YT) [8] - - - - 82.5 79.9 85.1

RMNet(+YT) [48] 12 88.8 88.9 88.7 83.5 81.0 86.0

SwiftNet(+YT) [42] 25 90.4 90.5 90.3 81.1 78.3 83.9

SITVOS(+YT) [16] 11.8 90.5 89.5 91.4 83.5 80.4 86.5

Ours 6.6 85.8 85.4 86.2 78.1 75.7 80.5

Ours(+YT) 6.6 90.5 89.8 91.2 83.9 81.4 86.4

Table 2 Compare to the state of
the art on the DAVIS17 test-dev
set and YouTube-VOS 2018
validation set. ‘OL’ indicates the
use of online-learning strategy.
The subscripts of J and F on
YouTube-VOS denote seen
objects (s) and unseen objects
(u). The metric overall means
the average of Js ,Ju ,Fs ,Fu

Methods OL DAVIS17 test-dev YouTube-VOS 2018 val
J&F(%) J (%) F(%) Overall Js(%) Ju(%) Fs(%) Fu(%)

OSVOS [1] � 50.9 47.0 54.8 58.8 59.8 54.2 60.5 60.7

OnAVOS [40] � 52.8 49.9 55.7 55.2 60.1 46.6 62.7 51.4

PReMVOS [28] � 71.6 67.5 75.7 - - - - -

STM-cycle [20] � 58.6 55.3 62.0 70.8 72.2 62.8 76.3 71.9

FRTM [36] � - - - 72.1 72.3 65.9 76.2 74.1

RGMP [31] 52.9 51.3 54.4 53.8 59.5 45.2 - -

AGSS [23] - - - 71.3 71.3 65.5 75.2 73.1

AGAME [14] - - - 66.1 67.8 60.8 - -

FEELVOS [39] 57.8 55.2 60.5 - - - - -

RaNet [47] 55.3 53.4 - - - - - -

STM [32] 72.2 69.3 75.2 79.4 79.7 72.8 84.2 80.9

GC [19] - - - 73.2 72.6 68.9 75.6 75.7

CFBI [53] 74.8 71.1 78.5 81.4 81.1 75.3 85.8 83.4

AFB-URR [22] - - - 79.6 78.8 74.1 83.1 82.6

KMN [37] 77.2 74.1 80.3 81.4 81.4 75.3 85.6 83.3

EGMN [27] - - - 80.2 80.7 74.0 85.1 80.9

SST [8] - - - 81.7 81.2 76.0 - -

RMNet [48] 75.0 71.9 78.1 81.5 82.1 75.7 85.7 82.4

SwiftNet [42] - - - 77.8 77.8 72.3 81.8 79.5

Ours 76.9 73.0 80.9 81.8 82.0 75.0 86.7 83.4
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Fig. 3 Overview of our model. The feature extractor is used to extract
the features of the current frame and reference sets. The vision trans-
former is exploited to model the temporal and spatial relationships. The
target attention block (TAB) is used to extract the target mask features.

The segmentation head is designed to obtain the predicted object mask.
"+", "C" indicate adding and concatenating operation, respectively. For
a better view, we only illustrate two reference frames

model outperforms all the online-learning methods. Except
for slightly lower than KMN of 0.3% in J&F , our model
surpasses all the methods in the second part. Note that we
only use simple data augmentationwhen pretraining on static
image datasets, while KMN applies more complicated pre-
training strategies, which helps improve the performance.
YouTube-VOS Table 2 compares with state-of-the-art meth-
ods on YouTube-VOS 2018 validation [49]. On this bench-
mark, our method obtains an overall score of 81.8% and
outperforms all the methods in the first and second parts,
demonstrating that the proposed method is robust and effec-
tive. Specifically, our model surpasses STM by 2.4% in the
overall score. Note that we only refer to the first and previ-

ous frames to segment the current frame,while STMcontains
a large memory bank that saves a new memory frame every
five. Also, our model outperforms KMN and CFBI with gaps
of both 0.4% in the overall score. Besides, it surpasses the
most related transformer-based SST. Our model achieves the
best F scores while not the best for J scores. We explain that
the model may pay more attention to spatial relationships to
obtain more accurate target boundaries and acquire higher
overall scores on YouTube-VOS 2018.
Qualitative results The visualization (Fig. 3) results on
DAVIS17-val are shown in Fig. 4, and the qualitative results
on DAVIS17 test-dev and YouTube-VOS 2018 validation
are shown in Fig. 5. The proposed method handles object
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Fig. 4 Qualitative results on the DAVIS2017-val. The groundtruth is visualized in the first row, and the next three rows show comparisons of our
method with STM [32] and CFBI [53]. Our model handles object occlusion better due to the strong ability of spatial-temporal modeling
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Fig. 5 Qualitative results oDAVIS2017 test-dev andYouTube-VOS2018validation.Compared toSTM, ourmodel performs betterwhen segmenting
highly similar objects and fast-moving objects

occlusion better due to the strong ability of spatial-temporal
modeling. Also, our model performs better when segmenting
highly similar objects and fast-moving objects.

4.4 Ablation study

We conduct all the ablation experiments on DAVIS17 val-
idation [35]. The model used in this section does not do
pre-training on synthetic videos, and the input resolution is
240p unless specified.Moreover, we test the model with only
the first and previous frames referred by default. Here we list
the ablation studies about dynamic feature extractor, mask
utilization, reference sets, transformer structure, backbone,
training strategy, and input resolution.

Dynamic feature extractor In Table 4, we compare our
model equipped with the proposed dynamic feature extractor
with two variants: i) the existing approach of using two inde-
pendent extractors (as in STM [32]; denoted ‘Independent’),
and ii) using a siamese architecture and concatenating the
object mask to the reference frame features (as in AGAME
[14]; denoted as ‘Siamese’). Results showed that our model

employs fewer parameters (about 20% reduction) than i) but
obtains higher performance (+7.8% in J&F score) than ii).

Mask utilization To demonstrate the effectiveness of our
dynamic feature extractor, we implement three typical ways
to utilize the predictedmasks of past frames. (1) the predicted
masks are multiplied with the encoded features of the RGB
frame, denoted as ‘multiply’; (2) the encoded features of the
RGB frame and the predicted mask are multiplied first and
then added to the former, denoted as ‘residual’; (3) the pre-
dictedmasks and the RGB frame are fed into a dynamic input
adapter, denoted as ‘adapter’.As shown inTable 3, compared
to directly multiplying the predicted mask with encoded fea-
tures (line 1) and fusing the mask with residual structure
(line 2), our dynamic input adapter gains 15.1%(J&F) and
8.0%(J&F) improvement.
Reference sets We test how reference sets affect the perfor-
mance of our proposedmodel.We experimentwith four types
of reference set configurations: (1) Only the first frame with
the ground-truth masks; (2) Only the previous frame with its
predicted mask; (3) Both the first and previous frame with
their masks; (4) The reference set is dynamically updated by
appending new frames with the predicted masks every five

Table 3 Ablation studies of mask utilization and reference sets with input resolution 240p on DAVIS 2017 validation set

Mask utilization Reference sets JM (%) JR(%) JD(%) FM (%) FR(%) FD(%) J&F(%) FPS

multiply 1st frame 51.4 59.9 13.4 58.3 63.6 14.4 54.9 -

residual 1st frame 58.5 67.1 17.6 65.5 75.0 18.6 62.0 -

adapter 1st frame 66.5 78.2 13.3 73.6 83.5 15.9 70.0 23.0

adapter previous frame 64.3 74.8 11.7 70.5 81.3 14 67.4 17.6

adapter 1st & previous frames 73.1 86.6 1.8 79.7 91.5 5.3 76.4 17.1

adapter Every 5 frames 70.2 82.2 6.0 77.6 89.0 8.1 73.9 5.1
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Fig. 6 Visualization of attention maps from the transformer
encoder/decoder layers. The first row of each sample ("car", "camel",
and "twirl girl") shows the attention maps from the fourth transformer
encoder layer. We take the center 16x16 patch of the object of the
current frame (t-th frame) as the query to get the attention weights.

The second row is the visualization of the cross-attention weights from
the fourth transformer decoder layers with only one target query. The
decoder layers pay more attention to the target object and can reduce
the interference of the background

Table 4 Impacts of different
types of feature extractors.
Models are tested with the input
resolution of 240p on
DAVIS17-val

Feature extractor J (%) F (%) J&F (%) Parameters (M) FPS

Siamese 64.9 72.4 68.6 35.61 18.1

Independent 72.8 80.3 76.5 43.08 17.0

Dynamic 73.1 79.7 76.4 34.56 17.0
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Table 5 Ablation studies of different components with input resolu-
tion 240p on DAVIS 2017 validation set. ‘TD’ denotes the transformer
decoder

Components JM JR JD FM FR FD J&F
(%) (%) (%) (%) (%) (%) (%)

w/o TD 71.7 83.4 5.2 78.7 89.7 7.5 75.2

w/ TD 73.1 86.6 1.8 79.7 91.5 5.3 76.4

frames. As Table 3 shows, our model could achieve superior
performance evenwith two frames referred. Interestingly, we
find that updating the memory every five frames as STM [32]
for VOS may not be beneficial in all methods because low-
quality segmentation results of historical framesmaymislead
subsequent mask prediction.
Transformer structureWe visualize attention maps from the
transformer encoder/decoder layers in Fig. 6. The attention
maps from the fourth encoder layer show that the encoder
focuses on the target object but is still disturbed by the back-
ground. In contrast, the transformer decoder can eliminate
background influence (Table 4) and pay more attention to the
target object. We also do quantitative experiments to explore
the effectiveness and necessity of the transformer decoder in
Table 5. It can be seen that by equipping with the transformer
decoder, our model obtains 1.2%(J&F) improvement over
removing it. Therefore, it is essential to employ the trans-
former’s decoder.
BackboneWe experiment with different backbones, ResNet18,
ResNet50 [10] and Swin Transformer [26]. As shown in
Table 6, our model with a smaller backbone ResNet18 runs
faster (7 fps improvement) than ResNet50 while the perfor-
mance drops 4.1% (J&F). The model with Swin-small as
backbone gains 0.5% (J&F) than ResNet50 but contains
more parameters and runs slower (5 fps drop). Therefore, we
take ResNet50 as the backbone to achieve a more balanced
performance.
Training strategy We conduct experiments to explore the
effectiveness of pretraining on synthetic videos. As Table 7
shows, our model only drops by 1.5% (J&F) without pre-
training, which means our proposed approach can learn
general and robust target object appearance even trained with
a small dataset.

Table 6 Ablation studies of different backbone with input resolution
240p on DAVIS 2017 validation set

Backbone JM JR JD FM FR FD J&F FPS
(%) (%) (%) (%) (%) (%) (%)

ResNet18 68.8 80.6 7.7 75.9 86.3 9.1 72.3 24.0

ResNet50 73.1 86.6 1.8 79.7 91.5 5.3 76.4 17.0

Swin-small 73.9 87.0 5.2 80.0 93.4 8.5 76.9 12.0

Table 7 Training data analysis on DAVIS 2017 validation set. We do
abaltion studies to explore how the pre-training affects our model’s
performance

Training strategy JM JR JD FM FR FD J&F
(%) (%) (%) (%) (%) (%) (%)

w/o pre-training 73.1 86.6 1.8 79.7 91.5 5.3 76.4

w/ pre-training 74.4 85.6 6.8 81.4 91.3 8.1 77.9

Input resolution We adjust the input resolution of the model
as shown in Table 8, from which we can see that our method
achieves better performance with a larger input size. Our
proposed method with half input resolution runs faster (10.4
fps improvement)while the performance drops 4.0% (J&F).
Therefore, we compare our model with input resolution 480p
to other state-of-the-art methods.

4.5 Exploration of efficiency improvement

This section aims to discuss how to strike a balance between
segmentation accuracy and inference speed. As shown in
Tables 6 and 8, our model can achieve a trade-off between
latency and accuracy by replacing with a light backbone or
reducing the input size to half of the input resolution.Besides,
we observed that the transformer causes a large portion of the
latency. Therefore, another way of improving the efficiency
is to reduce the computation of the transformer. Firstly, we
provide a slim version with only half the number of the orig-
inal model’s transformer encoder/decoder layers. The slim
version achieves 11.1 fps with 82.8% (J&F) on DAVIS17-
val, as shown in Table 9.
Moreover, since the computational complexity of the self-
attention mechanism is proportional to the square of the
length of the input sequences, we further propose to com-
press the redundant reference representations for efficiency
improvement. Inspired by [21, 42], wemodify the PAMmod-
ule in SwiftNet [42] as a sequence organizer to compress
the redundant elements in reference sequences. Note that the
PAM module is originally used to compress redundant pix-
els of the key and value embeddings in the memory bank.
We briefly describe the compression process here based on
SwiftNet. In the online inference phase, if frame It with the
predicted masksMt is chosen as a reference frame, for each

Table 8 Input resolution analysis. We compared models with different
input resolution on DAVIS 2017 validation set

Input JM JR JD FM FR FD J&F FPS
resolution (%) (%) (%) (%) (%) (%) (%)

240p 74.4 85.6 6.8 81.4 91.3 8.1 77.9 17.0

480p 81.4 90.6 7.0 86.4 93.7 8.8 83.9 6.6
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Table 9 Exploration of efficiency improvement. Models are tested on
DAVIS17-val

Variants Parameters (M) J (%) F(%) J&F(%) FPS

Vanilla 34.56 81.4 86.4 83.9 6.6

Slim version 25.88 80.5 85.1 82.8 11.1

+ Sequence
organizer

34.56 81.0 86.3 83.7 10.0

element in the representations Xt of (It ,Mt ), the sequence
organizer finds its most relevant element in representations
XR,t−1 of the reference set at timestamp t−1 via dot-product
and computes the cosine similarity as the feature score. Then
elements in Xt are sorted by the feature scores. Finally, the
top β (β is experimentally set to 10%) percents elements of
Xt is selected and added to the reference set. From Table 9,
we can see that the sequence organizer improves the infer-
ence speed by over 50% with a slight accuracy drop (0.2%
in J&F).

5 Conclusions

This paper proposes a new framework for video object seg-
mentation (VOS), a compact and unified single-extractor
pipeline with robust spatial and temporal interaction abil-
ity using a vision transformer. Specifically, we propose
a dynamic feature extractor to encode the reference sets
and query frames in a unified way, dramatically slimming
the existing VOS framework while maintaining the perfor-
mance and architecture’s flexibility. Moreover, we attach
the vision transformer to the dynamic feature extractor to
model the spatial and temporal relationships among reference
sets and query frames simultaneously, providing discriminat-
ing spatial-temporal features for segmenting. We implement
an effective and modularized framework with the extractor,
transformer, and segmentation head. Moreover, our model
achieves top performance on several benchmarks, demon-
strating its potential and effectiveness. Also, we explore how
to strike a balance between the segmentation quality and
inference speed. In the future, we will further improve our
model’s efficiency by designing a better sequence organizer
and applying it after each transformer encoder layer.
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