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Abstract
Image classification, the primary domain where deep neural networks significantly contribute to image analysis, requires a
substantial amount of computer memory to train. This is particularly true in the fully connected layer, which accounts for
90% of the total memory. Moreover, the flattening operation could potentially result in the loss of the multi-linear structure
of the image data. The tensor regression network, however, minimally impacts the performance of the neural network while
achieving a high compression rate. This effectively mitigates the issue of large memory occupation in the neural network
model. The DenseNet model, in particular, can alleviate the vanishing-gradient problem and strengthen feature propagation
and outperform other existing networks. This article proposes a novel tensor network model that embeds the tensor regression
layer into the DenseNet model. The framework of this tensor DenseNet model has been established, and its estimation
procedure is developed. Tensor network model is applied to the classification of the following datasets: Fruits 360, 100 Sports
Image, ASL Alphabet, and Mini-ImageNet. The experimental results indicate that the combination of the DenseNet model
with the tensor regression layer not only conserves a significant amount of memory but also maintains a high accuracy of
classification, compared with existing tensor network models.

Keywords Tensor decomposition · Tensor regression layer · Tensor Networks · Densely connected convolutional network ·
Image classification

1 Introduction

Over the last decade, there has been a growing interest in
applying tensor methods in machine learning. In various
scientific fields such as image analysis, signal processing,
and space-time analysis, tensors have demonstrated their
capability to represent data with a multi-modal structure
while preserving the original data structure. Unlike tradi-
tionalmachine learning approaches that often convert natural
data into vector form, which can result in information loss
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regarding the natural data structure, tensor-based machine
learning methods have become essential for preserving and
utilizing the inherent structures of the data [1].

With the development of tensor learning methods, deep
neural networks have demonstrated advanced performance in
various large-scale machine learning tasks, including com-
puter vision, speech recognition, and text processing. For
instance, the convolutional neural network (CNN) [2, 3] has
shown significant advantages in image classification tasks.
These networkmodels consist of thousands of nodes andmil-
lions of learnable parameters, and are trained using millions
of images on powerful graphics processing units (GPUs)
[4]. However, the expensive hardware requirements and long
training time limit the widespread utilization of these mod-
els on traditional desktop computers and portable devices.
Consequently, researchers have conducted extensive research
to explore various methods for reducing hardware require-
ments, memory consumption, and training time.

The fully connected layer is one of the most com-
monly used layers in convolutional networks, responsible
for performing linear transformations fromhigh-dimensional
input data to high-dimensional output data. The traditional
approach employs matrices to define this transformation. For
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example, in a typical CNN, the dimensions of the input and
output data of the fully connected layer are both in the thou-
sands, resulting in millions of parameters. This complexity
hinders the simplicity of the model structure. However, since
the input and output of the convolutional layer are tensor data,
it is natural to introduce tensor methods into convolutional
networks to optimize the overall model structure, which has
become an important research issue.

The main idea of this paper is to apply tensor decompo-
sition to deep learning and then reparameterize the existing
layers of deep convolutional networks to accelerate compu-
tation or reduce the number of parameters. Several studies
have explored tensor decomposition in deep convolutional
networks. Lebedev [5] proposed using tensor CANDE-
COMP/PARAFAC (CP) [6, 7] decomposition to accelerate
feature extraction in convolutional layers. Similarly, Tai [8]
introduced a new algorithm for computing low-rank ten-
sor decomposition to eliminate redundancy in convolutional
kernels. Kim [9] used the pre-trained network, applied ten-
sor Tucker decomposition on the convolution kernels and
finally fine-tuned the resulting network. Yang [10] proposed
weight sharing in multi-task representation learning frame-
work to learn cross-task sharing structure at every layer in
a deep network. Chen[11] proposed sharing the remaining
units and proposed a new architecture, Collective Residual
Unit (CRU), to improve the parameter efficiency of deep neu-
ral networks through collective tensor factorization. Novikov
[12] used Tensor-Train (TT) decomposition to apply the low
rank tensor structure to the weight of the fully connected
layer such that the number of parameters is reduced and at
the same time the expressive power of the layer is preserved.
However, these studies still retain the full connection layer
of the network such that these models have a large number
of parameters to be trained and optimized. In addition, the
deformation of high order data can not maintain the multi-
linear structure of data.

Additionally, the flattening operation used in higher-order
data dimension cannot preserve the multi-linear structure of
the data. In contrast, Kossaifi [13] proposed the tensor regres-
sion layer to replace the vectorization operation and fully
connected layer in CNN with high-order multiple regres-
sion. This layer is embedded into popular models such as
visual geometry group (VGG, [3]) and residual network
(ResNet, [14]). The advantage of this replacement is the abil-
ity to compress the model while preserving the multi-modal
information of the dataset. Vectorization of high-dimensional
datasets leads to the loss of the multi-modal information. For
example, applying a flattening operation to a color image (a
third-order tensor) eliminates the relationship between chan-
nels. The tensor regression layer can address this problem by
performing a multi-linear regression task between the output
of the final convolutional layer and the classification layer,
enabling the capture of multi-modal information.

To further enhance the performance of tensor networks,
Gao [15] proposed a quantized tensor neural network
(QTNN) that combines the powerful learning ability of neu-
ral networks with the simplicity of tensor networks. QTNN
is a generalized multi-layer nonlinear tensor network that
effectively extracts low-dimensional features fromdatawhile
preserving the original structural information. While tensor
methods have been widely employed in supervised learning,
researchers have also turned their attention to unsupervised
learning. For example, Oldfield [16] used tensor regression
to address the problem of finding interpretable directions
in the potential space of pre-trained Generative Adversarial
Networks (GANs), promoting controllable image synthesis.
[17] proposed auto-weighted multiple kernel tensor cluster-
ing (AMKTC) to capture the essential high-order correlations
between multiple base kernels by leveraging tensor-singular
value decomposition (t-SVD)-based tensor nuclear norm
constraint on a 3-order graph tensor.

Other researchershaveuncovered valuable insights through
exploration of 3D convolutional neural network (CNN)mod-
els and 3D filtering CNNs [18–20], as well as deep CNNs
for image classification. Additionally, there are other rele-
vant studies, such as the multi-objective deep CNN model
proposed by Lu [21], among others [22–26].

The densely connected convolutional network (DenseNet),
introduced by Huang [27], stands as a prevalent deep neural
network architecture adopted across diverse fields. DenseNet
ensures maximum information transmission between net-
work layers by establishing connection relationships among
different layers. It explicitly distinguishes between the infor-
mation added to the network and the information retained.
The primary of this paper focus on embedding the tensor
regression layer into the densely connected convolutional
network for learning purposes. This unique connection
method effectively alleviates the issue of gradient disap-
pearance during model training. The integration of this
convolutional network with the tensor regression layer offers
several advantages:

(1) The tensor regression layer replaces the fully connected
layer to optimize the model structure, which can signif-
icantly reduce the number of parameters that need to be
trained, minimize memory consumption and lessen the
hardware requirements for model training while main-
taining performance.

(2) The fully connected layer is replaced by a tensor regres-
sion layer, which is a special type of regression layer
structure designed to handle tensor-formatted data.
When processing image data, it can extract multiple
features simultaneously and conduct regression predic-
tion. This layer takes the outputs tensors from previous
layers as input and is able to preserve the spatial struc-
tural features of the data.
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(3) The special connection mode of the DenseNet strength-
ens feature propagation, which leads to alleviate gradi-
ent disappearance during training of the network model
embedded with the tensor regression layer.

(4) Our proposed tensor network can achieve high classi-
fication accuracy while significantly reducing memory
usage and computation time.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces tensor algebra, including the basics and
CP decomposition of tensors, as well as the tensor regres-
sion layer. Section 3 describes the DenseNet architecture
and the tensor network. In Section 4, experiments are con-
ducted to verify the superior performance of our proposed
method compared to existing models. Finally, Section 5 pro-
vides some conclusions and discussion.

2 Preliminaries

In this Section, some basic concepts and properties of tensors
will be mentioned firstly, and then some preliminaries about
the tensor regression layer will be provided.

2.1 Tensor algebra

Vectors, also known as first-order tensors, are represented
in boldface lowercase letters, e.g., a. Matrices, also known
as second-order tensors, are represented in boldface capital
letters, e.g., A. Higher-order tensors are represented in bold-
face Euler script letters, e.g., X . Scalars are represented in
lowercase letters, e.g., a. The i th element of the vector a is
represented as ai . The (i, j)th element of the matrix A is
represented as ai j . The (i, j, k)th element of the 3rd-order
tensor X is represented as xi jk .

The inner product of two tensors A,B ∈ R
I1×I2×···×IM

with the same dimension is the sum of the products of their
corresponding elements:

〈A,B〉 =
I1∑

i1=1

I2∑

i2=1

· · ·
IM∑

im=1

ai1i2···im bi1i2···im . (1)

If A = B, it can get 〈A,A〉 = ‖A‖2F , where ‖A‖F =√∑I1
i1=1

∑I2
i2=1 · · · ∑IM

im=1 a
2
i1i2···im denotes the Frobenius

norm of a tensor. A tensor T ∈ R
I1×I2×···×IM is called

rank-one if it can be written as the outer product of M vec-
tors: T = a(1) ◦ a(2) ◦ · · · ◦ a(M). The n-mode product of
a tensor M ∈ R

I1×I2×···×IM and a matrix U ∈ R
J×In is

expressed as M ×n U. The result is still a tensor and its
dimension is I1 × · · · × In−1 × J × In+1 · · · × IM given
as (M ×n U)i1···in−1 j in+1···iM = ∑IM

im=1 xi1i2···im u jim . Then
Y = M ×n U ⇔ Y(n) = UM(n).

2.2 Tensor decomposition

The CANDECOMP/PARAFAC decomposition of tensors
expresses a tensor as the sum of tensors of a finite number of
rank-1 tensors. Figure 1 shows the process of CP decompo-
sition of a tensor.

Given a third-order tensorX ∈ R
I×J×K , it can be approx-

imated by a sum of tensors as follows:

X ≈
R∑

r=1

ar ◦ br ◦ cr , (2)

with R being a positive integer, and ar ∈ R
I , br ∈ R

J , cr ∈
R

K , for r = 1, . . . , R. The factor matrix is a combination of
these vectors, i.e., A = [a1, a2, · · · , aR], and likewise for B
and C. According to this definition, the following equations
hold:

X(1) ≈ A(C	B)
, X(2) ≈ B(C	A)
, X(3) ≈ C(B	A)
. (3)

Thus, the CP model can be concisely expressed as

X ≈ �A,B,C� ≡
R∑

r=1

ar ◦ br ◦ cr . (4)

Due to the intuitive nature of CP decomposition, it can be
easily extended to higher-order tensors. The more detailed
theories of tensors can be found in [28].

2.3 Tensor regression layer

Tensor regression layer is a differentiable neural network
layer. The full connection layer parameters of CNN account
for the majority of the total parameters of the model. In addi-
tion to such a large consumption of computing resources,

Fig. 1 CP decomposition of a
three-way array
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data flattening also leads to the loss of rich spatial structure
information in the final convolution layer. Tensor regression
layer uses multi-linear mapping instead of flattening and full
connection layer in the model.

Given X ∈ R
I1×I2×···×IN and W ∈ R

I1×I2×···×IN×IN+1

with IN+1 being the number of categories in the dataset, the
function f can be defined as:

f (X ) = W(N+1) vec(X ) + b, (5)

where b ∈ R
IN+1 is the bais vector.

In the past, tensor regressionwas trained as an independent
model. It is a generalization of the least squares regres-
sion problem in tensor space, and is often combined with
some feature extraction methods. However, tensor regres-
sion model is difficult to undertake the task of large-scale
data analysis. This tensor structure can be embed into the
convolutional network as a trainable neural network layer.
Figure 2 shows the visualization structure of the tensor net-
work layer. The main idea behind the tensor regression layer
is to implement a low tensor rank structure on W to reduce
memory usage and utilize the multi-linear structure of input
X .

By applying CP decomposition to the weight tensor of the
function and considering the properties of tensor decompo-
sition, equation (5) can be rewritten as:

f (X ) = �A(1),A(2), · · · ,A(N+1)�(N+1) vec(X ) + b

= A(N+1)
(
A(N ) 	 · · · 	 A(1)

)

vec(X ) + b. (6)

In order to achieve end-to-end system training, instead
of optimizing model (6) as a separate tensor regression, the
back propagation method is used to optimize the model. The
partial derivatives required for gradient based optimization
methods according to equation (6) can be obtained as follows,

∂ f (X )i

∂
(
A(n)

)
jk

=
(
∂A(N+1)

(
A(N ) 	 · · · 	 A(1)

)T
vec(X )

)

i

∂
(
A(n)

)
jk

, (7)

Fig. 2 Visualization of tensor regression layer in tensor networks

where n = 1, 2, · · · , N+1. In addition, for a givenmode n, it
can naturally arrange these partial derivatives into third-order
tensors ∂ f (X )/∂A(n), and use tensor expansion to obtain
their expressions:

(
∂ f

∂A(n)

)

(2)
= (X )(n)

(
A(N ) 	 · · · 	 A(n+1) 	 A(n−1)

	 · · · 	 A(1)
) (

A(N+1) 	 IR
)T

, (8)

for n = 1, 2, · · · , N , and when n = N + 1, it becomes

(
∂ f

∂A(N+1)

)

(1)
= IIN+1 ⊗

(
vec(X )T

(
A(N ) 	 · · · 	 A(1)

))
. (9)

3 Tensor network

After introducing the basic theory of tensor and tensor
regression layer, A mainstream deep convolution neural
network model should be introduced: Densely connected
convolutional network (DenseNet). In order to optimize the
model structure, the tensor regression layer is embedded into
DenseNet to reconstruct a new networkmodel, and study and
analyze the new model structure.

3.1 DenseNet

In the field of computer vision, CNN has become the most
mainstream method, with architectures like VGG-16/19,
GoogLenet [29]. As CNN becomes deeper and deeper, a new
research problem arises: when information about input or
gradient passes through many layers, it may disappear when
it reaches the end (or beginning) of the network. A milestone
in the history of CNN is the emergence of ResNet. ResNet
can train a deeper CNN model to achieve higher accuracy.
The core of ResNet model is to establish a “short circuit con-
nection" between the earlier layer and the later layer, which
is helpful for the back propagation of the gradient during
the training process and prevents the gradient from disap-
pearing during the propagation process. Such a connection
structure can lead to train a deeper CNN network. Building
upon ResNet, [27] put forward densely connected convolu-
tional networks. Its basic idea is the same as ResNet, but
it establishes a dense connection between all the previous
layers and the subsequent layers. DenseNet excels in feature
reuse through channel-wise feature concatenation, enabling
better performance than ResNet with fewer parameters and
computational costs.
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Fig. 3 Short circuit connection
mechanism of ResNet (“+"
represents feature addition
operation)

3.1.1 Structure of DenseNet

Compared with ResNet, DenseNet proposes a more radical
dense connection mechanism: it connects all layers. Specif-
ically, each layer will accept all the preceding layers as its
additional input. As shown in Fig. 3, the figure depicts the
connection mechanism of ResNet. In contrast, Fig. 4 shows
the dense connectionmechanismofDenseNet. ResNet estab-
lishes a short circuit connection between each layer and the
previous layer. The connection method is feature addition. In
DenseNet, each layer will be concatenated with all the pre-
vious layers in the channel dimension and used as the input
of the next layer. For an L-layer network, DenseNet contains
a total of L(L+1)

2 connections. Compared with ResNet, this
is a dense connection. Furthermore, DenseNet directly con-
nects feature maps from different layers, which can realize
feature reuse and improve efficiency. This feature is the main
difference between DenseNet and ResNet. Denote XL−1 as
the output of layer L − 1 of the model, then the output of the
traditional deep neural network at layer L can be expressed as:

XL = H (XL−1) . (10)

For ResNet, the features of the input from the upper layer are
added. The output from layer L is:

XL = H (XL−1) + XL−1. (11)

In DenseNet, the features of all previous layers will be con-
nected. The output of layer L is:

XL = H
([
X0, · · ·XL−1

])
, (12)

where H represents the nonlinear transformation function.
This combined operation includes a series of normalization,
activation, pooling, and convolution operations.

3.1.2 Composition of DenseNet

Dense blocksDeep convolutional networks generally reduce
the size of feature maps through pooling or convolution lay-
ers, but dense connection mode requires that the size of feature
maps to be consistent. To solve this problem, DenseBlock is
defined. In the dense block, the featuremap of each layer is con-
sistent in size and connected on the channel. Assuming that
the number of channels in the input feature map is K0, the num-
ber of channels in layer L is K0+(L−1)K with K being the
growth rate, which is a hyperparameter. As shown in Fig. 5,
it is a dense block with 4 layers and the growth rate is 4.

Transition layerThe transition layermainly connects two
adjacent DenseBlocks and reduces the size of the feature
map. The transition layer consists of a 1 × 1 convolution
kernel and a 2 × 2 global average pooling layer, which can
compress the model.

Bottleneck layer although each layer only generates k
output feature maps, the input sample volume of the model
is large. Before each convolution operation, we introduce a
convolution of size 1×1 as the Bottleneck layer to reduce the
number of input featuremaps and improve the computational
efficiency. The design of the bottleneck layer is particularly
effective for DenseNet, called DenseNet-B.

It can be seen from the network structure of DenseNet that
it defines dense blocks based on residual neural network,
which strengthens the propagation of features and encour-
ages the reuse of features. At the same time, the existence

Fig. 4 Dense connection
mechanism of DenseNet (“c"
represents channel connection
operation)
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Fig. 5 A dense block with 4
layers and a growth rate of 4

of transition layer and bottleneck layer can make the model
simpler, greatly reduce the number of parameters and speed
up the training of the model. As shown in Fig. 6, this is a
DenseNet with 3 dense blocks.

3.2 Tensor network based on DenseNet

The original DenseNet structure employs global average
pooling and fully connected layers for classifying image data
after feature extraction, which may compromise the spatial
structure information of features. Additionally, the result-
ing fully connected layer entails a large number of trainable
parameters, posing challenges for model training. To address
these concerns, we propose optimizing the DenseNet struc-
ture by embedding a tensor regression layer as a trainable
layer into the network, facilitating joint learning of features
for data classification.

To achieve this, we directly substitute the global average
pooling and fully connected layers of the original network
with the tensor regression layer, while imposing low-rank
constraints on the regression weights. Intuitively, the tensor
regression layer offers the advantage of effectively utilizing
spatial structure information from the data and significantly
reducing the model’s training parameters.

Figure 7 illustrates the tensor network structure based on
DenseNet, showcasing the integration of the tensor regres-
sion layer into the network architecture. This optimized
structure aims to enhance feature learning and classification
accuracy while mitigating the issues associated with tradi-
tional classification layers.

3.3 Analysis of themodel

The network model uses a simple tensor regression structure
to undertake the classification tasks in the model, and can
also use gradient back propagation algorithm to optimize the
parameters of the model. According to the structure of ten-
sor regression layer, one only need to train a few parameters.

Consider the output tensor X ∈ R
I0×I1×···×IN of convolu-

tion layer, and assume that the rank of tensor regression layer
weight is R, with R ≤ Ik . The output is an n-dimensional
array. For a fully connected layer with only 1-layer, the train-
ing parameters required are:

nFC = n ×
N∏

k=0

Ik . (13)

In comparison, the number of parameters to be trained in
tensor regression layer is only:

nTRL =
N∑

k=0

R × Ik + R × n. (14)

As a result, the memory consumption of the computer is
greatly reduced together with greatly reducing the number
of parameters. The promising performance of our proposed
tensor network model will be examined by experiments in
the next Section.

4 Experiments and discussion

In this Section, extensive comparative experiments are con-
ducted to verify the feasibility of the model. To ensure the
fairness of the experiment, DenseNet-121, DenseNet-169,
DenseNet-201, and DenseNet-264 are utilized as the exper-
imental objects. Subsequently, the tensor regression layer is
embedded into each model. The computer memory used for
training each model is observed, and the training results of the
model are analyzed.All the experiments are carried out under
the Linux system, with GPU model GTX-1650 being used,
and the program is written based on the Python language.

4.1 Data description

1© Fruits 360 is a comprehensive dataset containing 131
types of fruits and vegetables. It comprises approximately

Fig. 6 DenseNet with 3 dense
blocks
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Fig. 7 Tensor network based on DenseNet

90000 images. Existing literature has positioned fruits and
vegetables in the shaft of a common motor, recorded a
20-second short film, and then captured the fruits using a
camera. As illustrated in Fig. 8, it portrays a fraction of
the dataset. It can be observed that the background of all
images is white, and the fruits predominantly occupy the
images. This aids in better extraction of the characteris-
tics of each type of fruit or vegetable, and simplifies the
model training process. This dataset can be accessed at
“https://www.kaggle.com/datasets/moltean/fruits".

2© 100 Sports Image is a dataset containing 100 differ-
ent sports types. It consists of approximately 13000 images.
The data was collected from the internet, and then orga-
nized all the images to obtain a high-quality clean dataset
free from duplicate or poor-quality images. As shown in
Fig. 9, it displays a portion of the dataset. It can be
observed that despite the complex background of each
image, each sport type has a symbolic feature. This indi-
cates that the model can accurately extract the main features
of each image, and then classify them. This dataset is avail-
able at “https://www.kaggle.com/datasets/gpiosenka/sports-
classification".

3©ASLAlphabet is a dataset for alphabets in theAmerican
Sign Language. It comprises 29 classes, with 26 dedicated
to the letters A-Z and 3 classes for SPACE, DELETE, and
NOTHING.The trainingdataset contains 87,000 imageswith
dimensions of 200 × 200 pixels. As depicted in Fig. 10, the

background of this dataset is relatively simple, which greatly
aids model training. This dataset can be accessed at “https://
www.kaggle.com/datasets/grassknoted/asl-alphabet".

4© In this study, the Mini-ImageNet dataset is utilized to
assess the performance of the proposed model. It consists of
thousands of images spanning 100 different object classes.
With dimensions of 84 × 84 pixels, each image is associ-
ated with a specific label indicating its class category. The
dataset is partitioned into three subsets: train set, validation
set and test set. The training set is used to train the model,
while the validation set aids in hyperparameter tuning and
model selection. Lastly, the test set is employed to evalu-
ate the overall accuracy and generalization capability of the
model. This dataset is available at “https://www.kaggle.com/
datasets/arjunashok33/miniimagenet".

4.2 Experimental results

This Section presents the performance of eight models on
two datasets, as depicted in Tables 2 and 3. The Tables
4, 5, 6 and 7 report the test set accuracy, the number of
parameters required for model training, and the size of the
computer memory band (MB) necessary for training. The
percentages highlighted in red indicate a decrease when
comparing the tensor regression layer-based method to the
existing vectorization-based DenseNet method.

Fig. 8 Fruits 360
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Fig. 9 100 Sports Image

In this experiment, all networks were optimized using
the adaptive moment estimation (Adam) method. Adam is
an adaptive learning rate optimization algorithm that com-
bines momentum method and adaptive gradient method. It
adjusts the learning rate by estimating the first-order moment
(the mean) and the second-order moment (the uncentered
variance) of the gradient, and adaptively updates parame-
ters during the training process. This adaptive adjustment of
learning rates helps improve convergence and training effi-
ciency, making Adam a popular choice for optimizing deep
neural networks.

For the Fruits 360 dataset, a batch size of 30was employed
and a total of 30 training cycles were conducted. Given the
relative simplicity of this dataset, with clear foreground and
background images, image enhancement techniqueswere not
applied. The input image size was set to 50×50, determined
through observations of the dataset’s optimal input size. The
initial learning rate was set to 0.0001, which allowed the
model to convergewithin a reasonable timeframe and achieve

solid performance. Learning rate decay was not applied due
to the dataset’s simplicity, yet the model still yielded satis-
factory results. In networks featuring fully connected layers,
the number of fully connected layers was set to 2, based on
experimental observations indicating that this configuration
achieved the best performance. This setup ensures efficient
feature learning and classification for the Fruits 360 dataset.

For the 100 Sports Image dataset, a batch size of 50 was
utilized, and a total of 150 training epochs were conducted
to train the model comprehensively. Given the complexity of
this dataset’s background and its relatively small size, data
augmentation techniqueswere employed.Data augmentation
involves generating new training samples by transforming
original images (e.g., through rotation, scaling, cropping),
effectively enlarging the training set and improving the
model’s generalization ability. The input image sizewas set to
264×264based onobservations of the dataset’s optimal input
size. The initial learning rate was set to 0.001, enabling the
model to converge effectively within a reasonable timeframe

Fig. 10 ASL Alphabet
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Table 1 Experimental results of
Fruits 360

Model Accuracy Numbers Of Parameters Memory

DenseNet-121 0.9824 7,543,811 30.23

DenseNet-121-TRL 0.9799(-0.25%) 6,951,808 (-7.85%) 27.97(-7.48%)

DenseNet-169 0.9876 13,400,835 52.60

DenseNet-169-TRL 0.9871(-0.05%) 12,481,152(-6.86%) 49.09(-6.67%)

DenseNet-201 0.9902 19,139,843 74.55

DenseNet-201-TRL 0.9899(-0.03%) 18,089,088(-5.49%) 70.56(-5.35%)

DenseNet-264 0.9912 32,087,299 123.99

DenseNet-264-TRL 0.9899(-0.13%) 30,643,328(-4.50%) 118.48(-4.44%)

while achieving good performance. Similar to the Fruits 360
dataset, learning rate decaywas not applied for the 100Sports
Image dataset due to its manageable complexity.Despite the
dataset’s challenges, such as complex backgrounds and a rel-
atively small size, the model achieved satisfactory results
through a combination of data augmentation techniques and
an appropriate network structure. In networks featuring fully
connected layers, the number of fully connected layers was
set to 3, as experimental observations indicated that this con-
figuration yielded optimal performance. This setup ensures
that the model can effectively learn and classify features rel-
evant to the 100 Sports Image dataset.

As shown in Tables 1 and 2, the proposed method
demonstrates obvious advantages compared to other exist-
ing methods. Specifically, the results in the first row of
Table 3 show that our proposed method reduced the num-
ber of parameters by 88.20% and memory usage by 78.15%,
with only a 2.92% decrease in accuracy. Furthermore, the
proposed method has the advantage of yielding greater gains
with more complex image backgrounds. This indicates that
themethod has stronger handling capabilities for imageswith
complex backgrounds, which is critical for many real-world
applications.

The robustness and reliability of the proposed method
are further demonstrated by its ability to maintain consis-
tently high performance across various initialization schemes
and hyperparameter settings. Extensive tuning of hyper-
parameters, including learning rate, batch size, number of

training cycles, and the architecture of fully connected lay-
ers, was conducted to ensure optimal performance. The
model’s stability and reliability were confirmed through
multiple runs with different random initializations, all of
which consistently yielded high performance. This consis-
tency underscores the effectiveness and generalizability of
the proposed approach, enhancing confidence in its applica-
bility to real-world scenarios.

Overall, the proposed method provides an efficient, effec-
tive, and robust solution for image classification tasks,
especially in scenes with complex image backgrounds. Its
superior performance, coupled with its efficiency in parame-
ter usage and memory consumption, suggests that the model
is meaningful.

To further evaluate tensor networks, comparisons are
made between the performance of DenseNet with tensor
regression layer and some currently popular network mod-
els. VGG16 and VGG19 are classes of deep networks with
smaller convolutional kernels. The proposed network model
illustrates that small and deep networks have more advan-
tages than large and shallow ones. ResNet50 and ResNet101
establish connections between layers to realize residual
learning. This aids in preventing the gradient from disap-
pearing during propagation, enabling the training of deeper
CNN networks. EfficientNet [30] balances the three crucial
dimensions of network depth, network width, and image
resolution for optimizing network performance. ResNet50-
TRL [13] is the ResNet embedded with a tensor regression

Table 2 Experimental results of
100 Sports Image

Model Accuracy Numbers Of Parameters Memory

DenseNet-121 0.7526 58,909,156 253.64

DenseNet-121-TRL 0.7234(-2.92%) 6,951,808(-88.20%) 55.42(-78.15%)

DenseNet-169 0.773 96,551,140 397.80

DenseNet-169-TRL 0.7428(-3.90%) 12,481,152(-87.07%) 77.09(-80.62%)

DenseNet-201 0.7928 115,004,132 496.34

DenseNet-201-TRL 0.7643(-3.39%) 18,089,088(-84.27%) 99.63(-79.93%)

DenseNet-264 0.8016 116,093,540 665.38

DenseNet-264-TRL 0.7952(-0.64%) 36,643,328(-68.44%) 148.67(-77.66%)
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Table 3 Fruits 360 dataset
classification results comparison

Model Accuracy Macro_P Macro_R Macro_F1-Score

DenseNet-264-TRL 0.9899 0.9858 0.9901 0.9879

VGG16 [3] 0.9741 0.9763 0.9735 0.9749

VGG19 [3] 0.9706 0.9700 0.9680 0.9690

ResNet50 [14] 0.9862 0.9860 0.9860 0.9860

ResNet101 [14] 0.9941 0.9925 0.9945 0.9935

EfficientNetB0 [30] 0.9967 0.9982 0.9975 0.9978

ResNet50-TRL [13] 0.9726 0.9713 0.9706 0.9709

CRU-NET-56 [11] 0.9858 0.9875 0.9863 0.9869

layer. Unlike this study, the tensor decomposition of this
model uses Tucker decomposition. Table 3 presents the accu-
racy, macro-averaged precision, macro-averaged recall and
macro-averaged F1-score of these models, and the calcula-
tion formulas for metrics are as follows:

Macro_P (macro-averaged precision)

= 1

N

N∑

i=1

T Pi
T Pi + FPi

, (15)

Macro_R (macro-averaged recall)

= 1

N

N∑

i=1

T Pi
T Pi + FNi

, (16)

Macro_F1-Score (macro-averaged F1-score))

= 2 × Macro_P × Macro_R

Macro_P + Macro_R
, (17)

where N is the number of categories, T Pi is the number
of samples belonging to the i-th category and correctly pre-
dicted, FPi is the sample that was erroneously predicted as
the i-th category, while FNi is the number of samples that

belong to the i-th category but were erroneously predicted as
other categories (Fig. 11).

Additionally, the change chart of accuracy and loss of
DenseNet-264-TRL in the training process on the Fruits 360
are provided in Fig. 12.

From the above figures, it can be clearly seen that: (1) On
the whole, the Tensor Network Model based on DenseNet
performs well on four datasets. It performs better on the rel-
atively simple Fruits 360 dataset, and the best network can
achieve 98.99% accuracy in 30 training cycles. However,
for the tensor network based on DenseNet-264, although the
depth of the model has increased, the classification accuracy
of the model for data has not been significantly improved.
On the 100 Sports Image dataset, the tensor network model
has more obvious advantages in the number of parameters,
but the accuracy of the model is also slightly lower than that
of the network model with the full connection layer, and
the highest accuracy of 79.52%. This is also an acceptable
result. Similarly, for the ASL Alphabet dataset, the accuracy
ofmodel can reach 89.48%, and it has an accuracy of 77.90%
on Mini-ImageNet dataset. (2) Compared with the popular
network models, the performance of our proposed model is
slightly better than, or at least comparable to, existing meth-
ods. (3) According to the results of our experiment, it is not

Fig. 11 Mini-ImageNet
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Fig. 12 The changes in
accuracy (a) and loss (b) of
DenseNet-264-TRL during
training on dataset Fruits 360

Table 4 100 Sports Image
dataset classification results
comparison

Model Accuracy Macro_P Macro_R Macro_F1-Score

DenseNet-264-TRL 0.7952 0.7864 0.7926 0.7895

VGG16 [3] 0.7530 0.7628 0.7260 0.7444

VGG19 [3] 0.7671 0.7642 0.7568 0.7605

ResNet50 [14] 0.8030 0.7955 0.8100 0.8027

ResNet101 [14] 0.8274 0.8150 0.8234 0.8192

EfficientNetB0 [30] 0.8795 0.8802 0.8764 0.8783

ResNet50-TRL [13] 0.7901 0.7953 0.7826 0.7889

CRU-NET-56 [11] 0.7968 0.7842 0.7964 0.7903

Table 5 ASL Alphabet dataset
classification results comparison

Model Accuracy Macro_P Macro_R Macro_F1-Score

DenseNet-264-TRL 0.8948 0.8924 0.8823 0.8874

VGG16 [3] 0.8492 0.8376 0.8538 0.8457

VGG19 [3] 0.8685 0.8625 0.8518 0.8571

ResNet50 [14] 0.8786 0.8700 0.8725 0.8713

ResNet101 [14] 0.9116 0.9203 0.9087 0.9145

EfficientNetB0 [30] 0.9472 0.9424 0.9360 0.9392

ResNet50-TRL [13] 0.8565 0.8382 0.8418 0.8400

CRU-NET-56 [11] 0.8804 0.8754 0.8680 0.8717

Table 6 Mini-ImageNet dataset
classification results comparison

Model Accuracy Macro_P Macro_R Macro_F1-Score

DenseNet-264-TRL 0.7790 0.7823 0.7684 0.7753

VGG16 [3] 0.7342 0.7451 0.7386 0.7386

VGG19 [3] 0.7536 0.7584 0.7360 0.7473

ResNet50 [14] 0.7867 0.7862 0.7859 0.7860

ResNet101 [14] 0.8046 0.8140 0.8183 0.8169

EfficientNetB0 [30] 0.8119 0.8024 0.8200 0.8109

ResNet50-TRL [13] 0.7231 0.7205 0.7310 0.7242

CRU-NET-56 [11] 0.7748 0.7804 0.7765 0.7771
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difficult to see that the accuracy of the tensor network model
in data is slightly lower than that of the network model using
the full connection layer. However, the number of parameters
of tensor network model is relatively small, and the memory
occupied by the computer becomes smaller. As expected,
the tensor network model can reduce the number of model
parameters with less precision cost.

According to the experimental results, the reduction of
parameters has a little loss on the classification accuracy of
the model, but such a small impact can be accepted. Tensor
network model based on DenseNet can greatly reduce the
number of model parameters under the condition of small
loss of accuracy. Embedding the tensor regression layer into
the mainstream DenseNet model can optimize the structure
of the model and ensure the performance of the model.

4.3 Ablation study

To further validate the effectiveness of the proposed model,
an ablation study is conducted on theMini-ImageNet dataset.
This experiment aims to evaluate the contribution of different
components in the proposed model.

The ablation study compared the performance of differ-
ent variations of the DenseNet-264 model. The full model,
DenseNet-264-TRL, achieved an accuracy of 77.90%, with
precision, recall, and F1 score at 78.23%, 76.84%, and
0.7753, respectively. This indicates that the proposed model
performed reasonably well on the given task. When the Ten-
sor Regression Layer was removed in the DenseNet-264-FC
model, the accuracy slightly improved to 79.5%, with preci-
sion and recall at 79.0% and 79.2%, and an F1 score of 0.791.
This suggests that replacing TRLwith fully connected layers
may lead to marginal improvements in model performance,
although not significantly. Conversely, when DenseNet was
excluded in the DenseNet-264-TRL model, the accuracy
dropped to 73.2%, along with decreases in precision, recall,
and F1 score to 73.5%, 73.0%, and 0.733, respectively.
This indicates that DenseNet has a positive impact on the
model’s performance, and its removal resulted in a noticeable
decrease in performance. These findings imply that the incre-
ment of fully connected layers may have a positive impact
on the model’s performance, while the removal of residual
learning has a detrimental effect. It is essential to consider
these insights for further optimizing themodel and enhancing
its performance. Additional experiments involving different

architectural variations could further validate these obser-
vations and provide a deeper understanding of the model’s
behavior.

4.4 Discussion

It is interesting to embed the tensor regression layer intomore
robust network models. The structure of the model is opti-
mized through the tensor regression layer, which uses less
computer memory and trains fewer parameters, but delivers
the same performance as the original model. However, there
are still some problems/issues need to be addressed. First,
to alleviate model over-fitting, the Dropout method can be
applied to the tensor layer to suppress model over-fitting
[31]. Second, for different types of datases, how to select
suitable optimizers and hyperparameter tuning. Third, divide
and conquer and block based modular network/hybridized
block modular mode/block combined CNN/evolutionary
deep CNN/ also be applied to image classification [32].
Fourth, in our updatingmodel, sensitivity analysis for feature
selection and sensitivity analysis of neural networks should
be investigated.

5 Conclusion

By integrating the tensor regression layer and DenseNet net-
work organically, this paper proposes a new tensor network
DenseNet model. The flattening operation and full connec-
tion layer are replaced by a tensor regression network with
low rank structure, enabling it to directly receive tensor data.
Instead of discarding the spatial information structure of fea-
tures extracted by the network in the convolution layer, it
retains and utilizes the multi-linear structure of data while
reducing a significant number of parameters. Experiments
reveal that the tensor network model can essentially accom-
plish image classification. The performance of the proposed
model is acceptable for both simple datasets and those with
relatively complex backgrounds. Compared with the fully
connected layer network model, our proposed model can
achieve the goal of image data classification with fewer
parameters and less computer memory. Numerical exam-
ples demonstrate that the higher computational efficiency
of the DenseNet tensor network is desirable over the fully
connected layer network model.

Table 7 Ablation Study Results Model Accuracy Macro_P Macro_R Macro_F1-Score

DenseNet-264-TRL (Full Model) 0.7790 0.7823 0.7684 0.7753

DenseNet-264-FC (Without TRL) 0.7950 0.7900 0.7920 0.7910

CNN-TRL (Without DenseNet) 0.7325 0.7350 0.7300 0.7330
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