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Abstract
Many existing Visual Question Answering (VQA) methods use traditional attention mechanisms to focus on each region of
the input image and each word of the input question and achieve well performance. However, the most obvious limitation of
traditional attention mechanisms is that the module always generates a weighted average based on a specific query. When all
regions and words are unsatisfied with the query, the generated vectors, which are noisy information, may lead to incorrect
predictions. In this paper, we propose an Improved Modular Co-attention Network (IMCN) by incorporating the Attention
on Attention (AoA) module into the self-attention module and the co-attention module to solve this problem. AoA adds
another attention process by using element-wise multiplication on the information vector and the attention gate, which are
both generated from the attention result and the current context. With AoA, the attended information obtained by the model
is more useful. We also introduce an Improved Multimodal Fusion Network (IMFN), which leverages various branches
to achieve hierarchical fusion, to fuse visual features and textual features for further improvements. We conduct extensive
experiments on the VQA-v2 dataset to verify the effectiveness of the proposed modules and experimental results demonstrate
our model outperforms the existing methods.

Keywords Co-attention · Multimodal · Self-attention · Visual question answering

1 Introduction

As a type of multimodal learning, VQA [3] which needs
both computer vision (CV) and natural language process-
ing (NLP) [4] technologies, has attracted many researchers’
interest. TheVQA task is to give the correct linguistic answer
based on the given image and the natural language ques-
tion about the image [5]. It is one of the most challenging
multimodal tasks since it requires a fine-grained semantic
understanding of the input image and the corresponding
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question. As the attention mechanism continues to evolve,
VQA has also made great progress. The attention mecha-
nism, an integral part of most VQA models, has emerged
since the continuous development of deep learning architec-
ture. It is designed to enable themodel to focus on the specific
regions in the image and question and was first utilized in
visual question answering by [6]. Nowadays, attentionmech-
anisms can be seen in almost all the VQA architectures. And
related research has proven that learning co-attention for the
visual and textual modalities simultaneously can facilitate
fine-grained representations of images and questions, thus
leading to more accurate predictions [7, 8].

However, the deficiency of these co-attention models
is that they learn only coarse interactions of multimodal
instances. As for the correlation between every image region
and every question word, the models don’t concern. To solve
this problem, bilinear attention networks (BAN) [9] and
dense co-attention networks (DCN) [10] which consist of
a stack of dense co-attention layers that can be cascaded in
depth were proposed to model dense interactions between
each image region and each question word. However, these
models simultaneously lack modeling self-attention within
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each modality, leading to poor performance along with an
increase in model depth. Yu et al. [11] proposed modular
co-attention networks (MCAN) to overcome it. MCAN is an
improvement on the previous model by adding self-attention
within each co-attention layer and gets better performance on
VQA tasks. Specifically, the main part of theMCAN is made
up of multipleModular Co-Attention (MCA) layers. And the
MCA layer is formed by combining two types of attention
units: self-attention (SA) and guided attention (GA), which
are used to capture intra-modal interactions (e.g., region-to-
region) and cross-modal interactions (e.g., region-to-word)
respectively.

Advanced attention mechanisms benefit VQA. Unfortu-
nately, the traditional attention mechanism applied in the
MCAN still has some limitations. One prominent of them
is that the output is always a weighted combination of value
pairs that the model is attending to [1]. It may be problem-
atic when there is no closely related context for the model to
attend to (e.g., a word with no associated contextual word
or image region). In this case, the attention mechanism may
result in noisy or even distracting output vectors that can
negatively impact the performance. Inspired by [12], in this
paper, we propose an IMCN that utilizes the AoA module
to refine the original model to solve this problem. AoA is
an extension of the traditional attention mechanism, and its
essence is to add a designed attention process to the tradi-
tional attention. The structure of AoA is shown in Fig. 1.
We have labeled the second attention process with a blue
dashed box. Initially, AoA generates an information vector
(I ) and an attention gate (G) through two linear transforma-
tions. Specifically, I is obtained from the present context
(i .e., the query) and the attention results through a lin-
ear transformation. It stores the information of the present
context together with the newly acquired information that
comes from the attention result. And G is obtained from
the query and the attention result through another linear
transformation followed by sigmoid activation. The value of
each channel of G represents the relevance of the informa-
tion on the corresponding channel in the information vector.
Through element-wise multiplication to I and G, we ulti-
mately acquire the attended information, which establishes a
connection between multiple attention heads and preserves
only the most pertinent while discarding all unrelated atten-
tion results. We use AoA to refine the SA and GA modules
inMCAN and further construct three ImprovedModular Co-
attention (IMC)variantswhich are improvements on the three
variants of MCA in MCAN. Finally, IMCN is acquired by
cascading several IMC layers.

Moreover, the key point of method used in MCAN is
leveraging attention networks to concentrate on key objects
in images and keywords in questions. However, the distri-
bution of attention in these prior attempts tends to localize
similar regions, resulting in a lack of ability to derive impor-

A tte nti on

C
oncat

Linear
Lin ear

Sig m
oid

M
ulti plyK

Q

V V
I

I

G

information vector

attention gate

Fig. 1 Illustration of Attention onAttention. Q, K , V denote the query,
key, and value respectively. ˜V represents the first attention result. In
addition, I ,G denote the information vector and attention gate. And ˜I
represents the second attention result, which is the attended information

tant entities. From the perspective of the multimodal fusion
module, the performance of MCAN is still limited by the
fact that a significant amount of information may be lost
during the multimodal interaction and fusion of two modal-
ities. To solve this, we introduce a novel multimodal fusion
module IMFN, which is capable of performing hierarchi-
cal multimodal fusion through multiple branches to capture
fine-grained and intricate relationships across multiple lev-
els: region, word, and their interaction. In addition, it is able
to capture the distinct distribution of attention to the many
different visual and textual components that are crucial for
inferring answers.

To summarize, the main contributions of this paper are:

• We propose the IMCN, which is capable of filtering the
attention results of interactions between image regions
and question words that are irrelevant to the prediction of
the correct answer, and retaining only the useful attention
results.

• We introduce an IMFN with different branches, which
can hierarchically fuse visual and textual features through
multiple stages and further enhance the model perfor-
mance.

• We conduct extensive experiments on the VQA-v2
dataset. The experimental results outperform the baseline
and prove the effectiveness of the proposed modules.

The rest of this paper is organized as follows: Section 2
introduces the related work of VQA in three parts. Section 3
introduces the overall framework of our model and the tech-
nical details used in them. Section 4 describes the dataset
used, the specific experimental settings and the experimental
results. Section 5 analyses the limitation of our method, and
in Section 6, we conclude our work.
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2 Related work

In this section, we will briefly introduce some research work
related to this paper in two parts, visual question answering
(Section 2.1) and attention mechanisms (Section 2.2).

2.1 Visual question answering

As a popular research direction, VQA has attracted more and
more attention in recent years. It was first proposed by [5].
The approach used bymost VQAmodels can be summarized
as follows: firstly, extracting visual features and textual fea-
tures from the given image and question; secondly, fusing
the extracted features to predict the answer. To obtain visual
and textual features, most VQAmodels leverage an attention
mechanism to select useful information and reduce unrelated
information. For example, to localize relevant image objects,
Lee et al. [13] and Teney et al. [14] model visual attention
mechanisms using different networks based on convolutional
neural networks.Moreover, Nam et al. [15] and Fan et al. [16]
proposed methods that both consider image-guided ques-
tion attention and question-guided visual attention. Gurunlu
et al. [17] proposed a novelty block-based image detection
method. And Le et al. [18] applied explicit linguistic-visual
grounding to guide the cross-attention.

In addition, in recent years, a number of challenging
datasets that require reasoning were designed, such as OK-
VQA [19], A-OKVQA [20], and WebQA [21]. Specifically,
given an image-question pair, the model is not only required
to localize the object in the image, but also needs to reason
with external knowledge to give an accurate answer. And
there has been a lot of work on commonsense VQA. Ravi et
al. [22] proposed theVision-Language-CommonsenseBERT
(VLC-BERT) which uses the commonsense transformer to
incorporate contextualized knowledge. Garcia et al. [23]
analysed the impact of efficient knowledge injection applied
via E-BERT on the performance of vision-language models
on relatively unexplored knowledge-based VQA tasks. Ding
et al. [24] proposed the Multimodal Knowledge Extraction
andAccumulation framework (MuKEA),which uses explicit
triples that associate visual objects and factual answers with
implicit relations to represent multimodal knowledge. Gao et
al. [25] proposed a new paradigm for VQA task, which con-
verts images into plain text, thus realizing knowledge passage
retrieval and generative question-answering.

Apart from the above research, there has also been a boom
in research on solving VQA tasks using large language mod-
els recently. For example, Yang et al. [26] proposed to use
images to generate captions and introduce in-context exam-
ples to prompt GPT-3 to generate answers. Tiong et al. [27]
proposed Plug-and-Play VQA (PNP-VQA) that leverages
off-the-shelf pretrained models for VQA without additional
training. And Guo et al. [28] further introduced question-

answer pairs to construct a new prompt for large language
models.

These methods have achieved superior performance on
commonsense-based VQA datasets. Nevertheless, the per-
formance of these methods in regular VQA datasets such as
VQA-v2 is general. In addition, the computation overhead
becomes large due to the large number of model parameters.

2.2 Attentionmechanisms

The attention mechanism was proposed by [29]. It was
designed to imitate the way humans see and has been used in
many works on visual question answering. Early studies pri-
marily adopted question-guided attention on image regions.
Yang et al. [30] proposed a stacked attention network SAN
that uses multiple layers of attention to query the image sev-
eral times to predict the final answer progressively. Kim et
al. [31] improved this by introducing residual learning to get
better attention to information. Chen et al. [32] proposed a
structured visual attention mechanism to capture the seman-
tic structure of an image according to the question.

After that, image-guided attention to questions began to be
adopted to achieve better performance. Lu et al. [7] proposed
a refinedmodel that uses a co-attention mechanism.With co-
attentionmodel can capture features fromdifferent regions of
an image and different segments of a question. Yu et al. [33]
proposed amulti-level attentionnetwork that candecrease the
semantic gap with semantic attention and help fine-grained
spatial inference with visual attention. To solve the problem
of limited interaction between image regions and question
words, Nguyen et al. [10] proposed DCN and Yu et al. [11]
proposedMCANwhichboth consist of a stackof co-attention
layers that can performmultiple image-question interactions.

With the use and success of pre-training in NLP, it has
become a new trend to use pre-training to improve the per-
formance of VQA models [34]. Moreover, some researchers
think it vital to leverage visual and textual features in the
VQA task. Therefore, these models focus on how to improve
the existing attention mechanisms. For example, Zhou et
al. [35] proposed TRAR which can select the corresponding
attention dynamically according to the result of the previous
inference step. Guo et al. [36] proposed SCAVQAN which
can filter out useful features by setting thresholds for atten-
tion scores. Shen et al. [3] proposed LSAT which uses local
windows of visual features to model intra-window and inter-
window attention.

In addition, attention mechanisms were also applied in
tasks other than VQA. For example, Cheng et al. [37] pro-
posed a masked-attention mask transformer (Mask2Former)
which uses masked attention to extract localized features in
an image segmentation task. Liu et al. [38] proposed to use
partial class activation attention to remove the intra-class
inconsistency in the semantic segmentation task. Liang et
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al. [39] proposed a recurrent video restoration transformer
(RVRT) to achieve long-range dependency modelling ability
in video restoration. Song et al. [40] proposed a global-local
attention module (GLAM) which consists of four kinds of
attention to obtain local and global contextual information
in image retrieval. To make the self-attention module con-
centrate on related regions, Xia et al. [41] chose to select the
key and value pairs of self-attention in a data-dependent way.
And Zhang et al. [42] proposed patch attention (PAT) which
can capture the global shape context to solve the problem of
high computational costs in point cloud learning.

We point out that the traditional attentionmechanism used
in the above work suffers from the flaw that we have men-
tioned. Therefore, in this paper, we experiment by replacing
the traditional attention mechanism with a more advanced
one (i .e., AoA). Our results are improved compared to the
baseline, thus validating the superiority of AoA over the tra-
ditional attention mechanism.

3 Method

In this section, we describe the IMCN and IMFN in detail.
The overall framework of our method is shown in Fig. 2,
which is stacked bymultiple ImprovedModular Co-attention
(IMC) layers. In the following part, we introduce the method
of extraction of image features and question features first
and then explain the components of IMCN. Finally, after
obtaining attended visual and textual features, the IMFN is
introduced to fuse them and then we obtain the prediction
answer eventually.

3.1 Notations

Before describing our method, we give the key mathematical
notations and their descriptions of this paper, which are listed
in Table 1.

3.2 Extraction of image features and question
features

IMCN uses a group of regional visual features, which are
extracted from Fast-RCNN that is pretrained on the Visual
Genome dataset, to represent the input image. In order to
ensure the quality of visual features, we set a confidence
threshold and only select image regions with detection prob-
ability exceeding it. Thus, we obtain a dynamic number of
regional image features which can be represented by amatrix
X ∈ R

m×dx , where m ∈ [10, 100] is the number of selected
image regions. And xi ∈ R

dx represents the i-th image
region.

For the question feature representation, following previ-
ous works [9, 14], we first tokenize the input question into a
set of words and limit the maximum number of words to
14. The extra words of questions whose number exceeds
14 are discarded to keep consistency with other questions.
After that, the 300-dimensionalGloVeword embeddings [29]
which are pretrained on a large-scale corpus is used to fur-
ther transform each word into a vector. Therefore, we can get
the n × 300 word embedding sequences, where n ∈ [1, 14]
denotes the number of words of the input question. Then we
apply a one layer LSTMnetwork with dy hidden units to pro-
cess theword embeddings and thus obtain a question features
matrix Y ∈ R

n×dy .When the number of image regions or the
number of question words is less than the maximum size
(i.e., m=100, n=14), we leverage zero-padding to fill their
corresponding feature matrices to their maximum sizes.

3.3 Improvedmodular co-attention networks

IMCN is stacked by a set of IMC layers which consist of two
basic attention units, i.e., the Improved Self-Attention (ISA)
unit and the ImprovedGuided-Attention (IGA) unit. Through
the combination of them in differentways,we further develop
three variants of IMC. And we select the best one as the

How many giraffes
are there?

X

Y

M
u lti m

o dal
F eatu res

Fu sion

Answer

ISA IGA

ISA

... ISA IGA

... ISA

X(L)

Y(L)

Q

Faster-
R
cnn

G
loVe+
LSTM

Extraction of multimodal features IMFNIMCN

Fig. 2 Overall framework of the proposed model
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Table 1 Key Notations and
Descriptions

Notation Description

R the set of real numbers

X the image features

Y the question features

m the number of selected image regions

n the number of words of the input question

I the information vector

G the attention gate
˜I the final attended information

l the location of the IMC layer

L the total number of the IMC layers

X (l), Y (l) the output of image features and question features of the l-th IMC layer

α, β the attention weight matrices of image features and question features

I the identity matrix

||.||F the squared frobenius norm

x̂, ŷ the final image features and question features

s the vector of final prediction answer

component of our model. The details are described in the
following.

3.3.1 ISA and IGA units

ISA and IGA can be viewed as two extensions of self-
attention and guided-attention proposed in [11] which use
“scale dot-product attention” [29]. The scaled dot-product
attention uses Q, K and V as inputs and outputs weighted
combination of values. Specifically, it firstly computes the
dot product of the Q and the K and divides by

√
d, where d

is the dimension of K. The results is normalized with a soft-
max function to acquire the attention weights of V . Then the
attended features F can be obtained by applying weighted
summation to attention weights and V :

F = att(Q, K , V ) = so f tmax

(

QKT

√
d

)

V . (1)

To enhance the model’s representation capacity further,
themulti-head attentionmechanism, which consists of h par-
allel heads, is introduced in [29]. Then the attended features
can be described as following formulas:

headi = att(QWQ
i , KWK

i , VWV
i ), (2)

and

F = mha(Q, K , V ) = [head1; head2; ...; headh]Wo, (3)

where WQ
i ,WK

i ,WV
i represent the projection matrices for

each head, headi represents the computation of each head

and “[ ; ]” refers to the operation of concatenation. When
nothing satisfies the given query, the multi-head attention
module still generates a vector that is unrelated to the query,
thus leading to generating a wrong answer for the VQA task.
Therefore, we leverage the AoA proposed in [12] to improve
the traditionalmulti-head attentionmodule,whichmeans that
another attention function is used after obtaining the result
of multi-head attention. The process of the second attention
function can be described as follows:

I = WQ
I Q + WV

I
˜V + bI , (4)

G = σ(WQ
G Q + WV

G
˜V + bG), (5)

˜I = G � I , (6)

where WQ
I ,WV

I ,WQ
G ,WV

G ∈ R
d×d , bI , bG ∈ R

d , ˜V =
att(Q, K , V ),� represents the element-wisemultiplication,
and I ,G, ˜I represent the information vector, the attention
gate and the final attended information respectively.

ISA also applies a feed-forward layer which uses two fully
connected layers to perform ReLU activation and Dropout.
Furthermore, to promote optimization, residual connection
and layer normalization are used after the AoA and the feed-
forward layer. The structure of the ISAunit is shown in Fig. 3.
IGA is similar to ISA, the difference between them is that
IGA takes visual features X and textual features Y as input
where X is guided by Y , while ISA takes X or Y as input.
And the structure of the IGA unit is shown in Fig. 4.

On the basis of ISA and IGA units, we develop three
kinds of IMC layers which can be cascaded (see Fig. 5)
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Fig. 3 Frame diagram of ISA unit

same as [11]. It means that the output from the last IMC
layer is directly fed into the next IMC layer, and the num-
ber of features and the dimensionality of each feature remain
unchanged.

• IGA(X,Y)-ID(Y): The IGA(X,Y)-ID(Y) (Fig. 5(a)) is
the simplest unit that the input question features are
straightly ouput. And the attended image features are
obtained with an IGA unit by modeling the inter-modal
interaction between each object xi ∈ X and each word
yi ∈ Y .

• IGA(X,Y)-ISA(Y): In comparison to IGA(X,Y)-ID(Y),
the IGA(X,Y)-ISA(Y) (Fig. 5(b)) adds an ISA unit that
models the intra-model interaction of all word pairs
(yi , y j ) ∈ Y .

• ISGA(X,Y)-ISA(Y): ISGA(X,Y)-ISA(Y) (Fig. 5(c))
adds an ISA unit to model the intra-model interaction of
all objects (xi , x j ) ∈ X based on the IGA(X,Y)-ISA(Y).

It should be noted that the three IMC layers above do not
cover all cases. We have also experimented with other IMC
variants such as ISGA(X,Y)-ID(Y), IGA(X,Y)-IGA(Y,X)
and ISGA(X,Y)-ISGA(Y,X). Nevertheless, we do not report
these variants in the following since their performance is not
comparative.

3.3.2 Cascade of IMC layers

By cascading, three aforementioned IMC variants are used to
form the deep co-attention learning module. We denote the
l-th IMC layer as IMC(l), where l ∈ [1, L], L represents the
total number of IMC layers. The output of visual features and
textual features from the last IMC layer is directly inputted to
the next IMC layer, which can be seen as a recursive process.

Let X (l−1), Y (l−1) and X (l), Y (l) represent the input features
and output features of the l-th IMC layer respectively. This
process can be formalized as:

[X (l),Y (l)] = I MC (l)([X (l−1),Y (l−1)]). (7)

For IMC(1), the input features are set as: X (0) = X and
Y (0) = Y , where X ,Y come from the Section 3.2.

We take the ISGA(X,Y)-ISA(Y) layer as an example to
construct two kinds of co-attention models (Fig. 6) same
as [11]. The stacking model (Fig. 6(a)) just simply stacks
the L IMC layers together, while the encoder-decoder model
(Fig. 6(b)) substitutes the input textual features Y (l) of the
IGA unit of each IMC(l) to the textual features Y (L) which
come from the final IMC layer. There is a special case that
the two models are equivalent when L = 1.

3.4 Improvedmultimodal fusion networks

After obtaining the image features X (L) ∈ R
m×d and

the question features Y (L) ∈ R
n×d , an Improved Multi-

modal Fusion Network (IMFN) (Fig. 7) is introduced to fuse
them [2].

Specifically, the image and question features are first
passed through the multilayer perceptron (MLP) to calculate
different attentionweights overmultiple heads. Let hm repre-
sents the number of heads, and this process can be described
as follows:

α = so f tmax(MLP(X (L))), (8)

β = so f tmax(MLP(Y (L))), (9)
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whereα ∈ R
hm×m ,β ∈ R

hm×n . Then the attended image fea-
tures ˜X and the question features ˜Y are acquired by applying
a weighted summation:

˜X =
m

∑

i=1

αi xi , (10)

˜Y =
n

∑

i=1

βi yi , (11)

where ˜X , ˜Y ∈ R
hm×d , αi is each column vector in α, and

βi is each column vector in β. Furthermore, to obtain com-
plementary information between visual modality and textual
modality, we use cross attention which firstly computes a
similarity matrix of two modalities. After that, the attention
weights are acquired with a softmax function. By leveraging
weighted summation and sum pooling, we get two vectors
x̂, ŷ, which represent the final visual and textual features
respectively. Then, they are combined together followed by
a LayerNorm layer. Finally, we use a fully connected layer
to predict the answer:

s̃ = sigmoid(Linear(Layer Norm(WT
x x̂ +WT

y ŷ))), (12)

where s̃ ∈ R
N , N is the number of themost common answers

of the training set. We leverage binary cross-entropy same
as [29] as loss function (LossBCE ):

LossBCE = −
M

∑

i

N
∑

j

si j log (̃si j ) − (1 − si j ) log (1 − s̃i j ),

(13)

where M, N represent the number of training questions and
candidate answers, si j , s̃i j represent the ground truth and
prediction answer. To solve the redundancy problem that
attention may focus on similar regions, motivated by [43],
we add a diversity regularization loss (LossDR):

LossDR = ||(ααT − I)||2F + ||(ββT − I)||2F , (14)

where α, β representing the attention weight matrices are
from (8) and (9). I ∈ R

hm×hm is the identity matrix. And
“||.||F” denotes the squaredFrobenius norm. Finally, the total
loss is described as follows:

Losstotal = LossBCE + λLossDR, (15)

where λ represents a coefficient.

4 Experiments

We conduct a series of experiments on VQA-v2 [44] and
GQA [45] to validate the effectiveness of our proposed
model. In this section, we first describe the dataset used in
our experiments and the specific experimental setup. Thenwe
perform some ablation studies to compare the performance
of different variants of our model with MCAN. Finally, we
provide a visualization of our model and compare the perfor-
mance of our model with other existing VQA methods.

4.1 Dataset

VQA-v2, which consists of images and question-answer
pairs annotated byhumans, is one of themost commonly used
VQA benchmark dataset [44]. The images used are from the
MS-COCO dataset and can be classified into two parts: real
images and abstract images. For each image, there are three
questions with 10 answers to each question. The VQA-v2
dataset is divided into three parts: train set, val set, and test
set. They include 80k, 40k, 80k images and 444k, 214k, 448k
question answer pairs respectively. Moreover, the test set is
further divided into the test-dev set and the test-std set. And
the experiment results are classified into three types: Yes/No,
Number, and Other, according to the types of questions. In
this paper, for VQAv2 dataset, we use the standard accuracy
and MRR to evaluate our method.
GQA, is a VQA dataset that aims to eliminate language
priors. Compared to VQA-v2, the answer of the GQA [45]
dataset tends to be acquired from the image itself. Therefore,
the questions in GQA do not concern external knowledge.
However, many GQA questions require multi-step inference
and understanding of spatial, thus are more challenging than
VQAv2. These questions are categorized into two kinds:
Binary andOpen. In addition, the dataset uses multiple eval-
uation metrics other than accuracy, such as consistency and
validity. In this paper, forGQAdataset, we use accuracy, con-
sistency, validity, and distribution to evaluate our method.

4.2 Experimental settings

Following the settings proposed in [11], the dimensions of
input image features and input question features denoted by
dx , dy are 2048, 512. The latent dimension d is 512, and the
number of attention heads is 8.

We leverage the Adam solver to train our IMCN model,
and set β1, β2 to 0.9 and 0.98. Moreover, we use a coefficient
λ to adjust the proportion of two different loss functions and
λ is 0.1. The models are trained for 13 epochs. From the first
epoch, the learning rate is set to 2.5e−5 and during training of
the first ten epochs, it changes as min(2.5te−5, 1e−4), where
t represents the number of iterations currently starting with
1. After 10 epochs the learning rate decays by 1/5 on the
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Table 2 Comparative experimental results of the three variants of MCA and IMC with different layers

L=1 L=2 L=4 L=6
Model MCA IMC MCA IMC MCA IMC MCA IMC

IGA(X,Y)-ID(Y) 64.80% 64.80% 65.30% 65.50% 65.60% 65.80% 65.70% 66.00%

IGA(X,Y)-ISA(Y) 65.20% 65.30% 65.70% 66.30% 66.30% 66.90% 66.50% 67.20%

ISGA(X,Y)-ISA(Y) 65.40% 65.70% 66.30% 66.80% 66.90% 67.70% 67.30% 68.10%

Both MCA and IMC are cascaded in an encoder-decoder manner. The results are acquired on the val split

11-th and the last epochs. When experimenting to verify the
validity of the IMCNmodule, we use (13) as a loss function.
And when verifying the validity of the IMFN module, we
use (15).

4.3 Ablation studies

We conduct a series of experiments to verify the effective-
ness of the IMCN proposed by us. To verify which IMC
variant works better, we conduct experiments by combining
three IMC variants at different numbers of layers. To verify
which stacking method is more effective, we compare the
experimental results of the two methods. Moreover, we also
conduct experiments with and without the IMFN module to
verify its effectiveness of it.

Different variants of IMC
We perform experiments with different IMC variants at
different number of layers to validate the effectiveness of
introducing the AoA module. Our method develops three
variants of IMC, i.e., IGA(X,Y)-ID(Y), IGA(X,Y)-ISA(Y),
ISGA(X,Y)-ISA(Y), are improvements to the three vari-
ants of MCA proposed in MCAN [11], which corresponds
to GA(X,Y)-ID(Y), GA(X,Y)-SA(Y), SGA(X,Y)-SA(Y)
respectively (For convenience, we name each MCA variant
and the corresponding IMC variant uniformly in Table 2).

From Table 2, we can see that almost all of our pro-
posed variants outperform the corresponding variants in
MCAN [11] whatever the number of layers, which verifies
the effectiveness of introducing the AoA module.

Fig. 8 Each type and overall
accuracy of the IMCNed − L
model. The results are acquired
on the val split
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Table 3 Ablation experimental results of stacking and encoder-decoder
with different layers

Model L=2 L=4 L=6 L=8

IMCNsk 66.50% 67.30% 67.60% 67.50%

IMCNed 66.70% 67.70% 68.10% 67.90%

The results are acquired on the val split

In addition, we also show the accuracy of different IMC
variants on different types of questions in Fig. 8 to verify
which IMC variant works better. From Fig. 8, it can be seen
that IGA(X,Y)-ISA(Y) outperforms IGA(X,Y)-ID(Y) and
ISGA(X,Y)-ISA(Y) outperforms IGA(X,Y)-ISA(Y) when
the number of layers is equal. This conclusion is same as [11],
revealing that modeling self-attention for visual features
and textual features is useful. Thus, ISGA(X,Y)-ISA(Y) is
selected as our default IMC in the experiments below.

Different stacking methods
Toverifywhich stackingmethodworks better,we experiment
with two different stacking methods with different number
of layers. From Table 3, we can see that the stacking model
underperforms the encoder-decoder model at all layers. It
can be explained that the self-attention to questions learned
from the early ISA(Y) unit is not enough compared to the
last ISA(Y) unit. Moreover, with the increase of L , we can
see that both models perform better than before. And this
phenomenon disappears when L > 6 due to the unstable
gradients that cause optimization difficulty. The best results
of the two models are obtained when L = 6, which is also
the same as [11]. Therefore, we choose encoder-decoder as
the default stacking method and L = 6 as the default number
of layers in the following experiments.

Effectiveness of IMCN and IMFN
The improved part of our proposed model over MCAN
mainly consists of two components: IMCN and IMFN. To
verify the effectiveness of each component, we compare
the results of IMCN and IMCN+IMFN with MCAN. From
Tables 4 and 5, we can see that IMCN which consists of ISA
units and IGA units outperforms the MCAN. In addition, we
think it is necessary to adopt a more complex method to fuse
visual and textual features to further improve performance.
The results of the third row in Tables 4 and 5 verify the effec-
tiveness of the IMFN module. For the results on VQAv2, it
can be seen that IMCN achieves a 0.23% improvement in
accuracy compared to MCAN, and IMCN+IMFN achieves a
0.09% improvement compared to IMCN. Moreover, for the
results on GQA, IMCN achieves a 0.15% improvement in
accuracy compared to MCAN, and IMCN+IMFN achieves
a 0.16% improvement compared to IMCN.

Table 4 Ablation experimental results of IMCN and IMFN

Model Yes/No Number Other All MRR

MCAN 86.82% 53.26% 60.72% 70.63% 64.83%

IMCN 87.02% 53.68% 60.89% 70.86% 64.91%

IMCN+IMFN 87.10% 53.74% 61.02% 70.95% 65.08%

The results are acquired on the test-dev split of VQA-v2

4.4 Comparison with existingVQAmethods

We evaluate our model against the state-of-the-art mod-
els for VQA on VQA-v2 dataset and GQA dataset. For
VQA-v2, these methods can be classified to what based on
fusion, attention and reasoning. For example, the models
of MCB [46] and ResNet-3000 [47] are based on fusion.
We also compare our model with other models based on
attention. HAN [48] leverages generated attention maps to
supervise during training.UpDn [49] uses the object features
which are extracted from Faster RCNN.Moreover, There are
some methods based on reasoning such as Dual-MFA [50]
and Counting [51]. In addition, Img2LLM175B [28] and
PNP-VQA11B [27] are two methods that use large language
models for VQA. For GQA, apart from MCAN [11], we
also compare our model with some previous methods that
have achieved the state-of-the-art, such as BUTD [14] and
MAC [52]. The results of our model compared with others
are shown in Tables 6 and 7.

According to the experimental results in Tables 6 and 7,
we get the following meaningful conclusions:

• For VQAv2, compared with attention-based models such
as SCAVQAN [36], while maintaining the same level
of performance on test-std, IMCN+IMFN achieves a
0.13% improvement on Test-dev. Moreover, compared
to MCAN [11] used as our improved original model, our
model achieves a 0.32% enhancement on Test-dev and a
0.28% enhancement on Test-std.

• Especially for more complex questions such as “Num-
ber”, our model has a significant 0.48% improvement
compared to MCAN, which reveals that our model per-
forms better on complex questions. In addition, we also
compare our method with Img2LLM175B and PNP-
VQA11B . The results in Table 6 show that our method
still has a large advantage in terms of accuracy.

• For GQA, the results in Table 7 show that our method
maintains a similar consistency to MCAN while gain-
ing improvements in all other metrics. The experimental
results above demonstrate the effectiveness and the gen-
eralizability of our model.
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Table 5 Ablation experimental
results of IMCN and IMFN

Methods Binary Open Accuracy↑ Consistency↑ Validity↑ Distribution↓
MCAN 75.56% 40.38% 56.84% 87.19% 96.85% 1.31

IMCN 75.65% 40.59% 56.99% 87.07% 96.83% 1.22

IMCN+IMFN 75.68% 40.86% 57.15% 87.18% 96.88% 1.18

The results are acquired on the test-dev split of GQA

Table 6 Results of our model compared with the state-of-the-art models on VQA-v2

Model Test-dev Test-std
Yes/No Number Other All Yes/No Number Other All

MCB [46] - - - - 78.82% 38.28% 53.36% 62.27%

HAN [48] 78.54% 37.94% 53.38% 61.99% - - - -

ReNet-3000 [47] - - - - 79.20% 39.50% 52.60% 62.10%

UpDn [49] 81.82% 44.21% 56.05% 65.32% - - - 65.67%

Dual-MFA [50] 83.59% 40.18% 56.84% 66.01% 83.37% 40.39% 56.89% 66.09%

DCN [10] 84.48% 41.66% 57.44% 66.83% 84.61% 41.27% 56.83% 66.66%

Counting [51] 83.14% 51.62% 58.97% 68.09% 83.56% 51.39% 59.11% 68.41%

CoR-3 [53] 85.22% 47.95% 59.15% 68.62% 85.76% 48.40% 59.43% 69.14%

MFH [8] 84.27% 49.56% 59.89% 68.76% - - - -

BAN [9] 85.31% 50.93% 60.26% 69.52% - - - -

BAN+Counter [9] 85.42% 54.04% 60.52% 70.04% - - - 70.35%

MCAN [11] 86.82% 53.26% 60.72% 70.63% - - - 70.90%

SCAVQAN [36] 86.96% 53.49% 60.95% 70.82% - - - 71.14%

Img2LLM175B [28] - - - 61.90% - - - -

PNP-VQA11B [27] - - - 64.80% - - - -

IMCN+IMFN(Ours) 87.10% 53.74% 61.02% 70.95% 87.32% 53.48% 61.29% 71.18%

Table 7 Results of our model
compared with the
state-of-the-art models on GQA

Model Binary Open Accuracy↑ Consistency↑ Validity↑ Distribution↓
CNN+LSTM 63.26% 31.80% 46.55% 74.57% 96.02% 7.46

BUTD [14] 66.64% 34.83% 49.74% 78.71% 96.18% 5.98

MAC [52] 71.23% 38.91% 54.06% 81.59% 96.16% 5.34

MCAN [11] 75.56% 40.38% 56.84% 87.19% 96.85% 1.31

SCAVQAN [36] 74.97% 41.18% 56.99% 87.16% 96.67% 1.25

IMCN+IMFN(Ours) 75.68% 40.86% 57.15% 87.18% 96.94% 1.16
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Fig. 9 Textual self-attention maps of MCAN and IMCN

Fig. 10 Visual self-attention maps of MCAN and IMCN

Fig. 11 Visual question-guided attention maps of MCAN and IMCN
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4.5 Attention visualization

To verify the interpretability of our model, the visualization
of the learned attention results of our model and MCAN are
shown in Figs. 9, 10 and 11.

• Figure 9 shows the learned self-attention of textual fea-
tures. For the input question: What color are the spots
on the animal?, we can see that compared to the MCAN,
IMCN focuses more on the keywords “color”, “spots”
and “animal”, and weakens the focus on other irrelevant
words.

• Figure 10 shows the learned self-attention of image fea-
tures. For the question “Are all of the cats the same color”,
both MCAN and IMCN obtain high values on the key
objects 3, 6, and 8 (three cats). However, IMCN is able

to filter objects 12 and 15 that are not related to predicting
the final answer.

• Figure 11 shows the learned question-guided visual atten-
tion results. For question: “How many people are there
?”, it can be seen that bothMCANand IMCNcan find the
keyword “people”. However, for the input image, there
are multiple image objects related to the question key-
word “people”, and IMCN pays more attention to these
image objects that facilitate answering the question cor-
rectly.

4.6 Qualitative analysis

Wealso show somequalitative results of ourmodel in Fig. 12.
The brightness of each word represents the level of attention
of it, which means the word in bold is the most meaningful

Fig. 12 Illustration of some results of our method on test-dev split
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word. The first row and the second row show instances of cor-
rectly answered questions, and the third row shows instances
of incorrectly answered questions. For successful instances,
the keywords of the question and the key objects correspond-
ing to the question are accurately attended. As for instances
of failures, it can be concluded to two reasons. The first is
that the model is unable to distinguish the keywords in ques-
tion or key objects in the image. As shown in the third row
of Fig. 12, the first instance fails to distinguish the keyword
“baby” and the second instance fails to distinguish all the key
objects “clocks”. And the other reason is that the model still
can’t predict the true answer despite the extracted visual and
textual features already most related, which is common in
attention-based models. Taking the third picture as an exam-
ple, though the keyword “helmet” is attended, the model still
gives a wrong answer due to the lack of commonsense of
what helmet is used for.

5 Limitation and discussion

One limitation of our proposed approach, which we have
shown the example above, is the inability to correctly answer
the question requiring commonsense. It is a common prob-
lem with models based on the attention mechanisms, since
thesemethods only acquire information through input images
and questions. Apart from this limitation, another one is
the incapability of mitigating the bias caused by the incon-
sistent distribution of the datasets. For example, for the
question“what colour is the apple?”, when the number of
answers in the training dataset that are red is much more
than the number of answers that are green, then the model
still tends to answer the “red” even though the apple in the
picture is green when testing.

6 Conclusion

In this paper, we propose an ImprovedModular Co-attention
Network which consists of a cascade of Improved Modular
Co-attention layers to solve the problem of visual ques-
tion answering. To further improve the performance, we
also introduce an Improved Multimodal Fusion Network.
Our proposed model outperforms the existing methods on
the VQA benchmark dataset. Extensive experiments which
include ablation studies, attention visualization and quali-
tative analysis verify that our model is capable of filtering
out irrelevant visual and textual features. Moreover, we also
demonstrate that using AoA to replace the traditional atten-
tion mechanism in VQA task effectively improves the model
performance.Compared toMCAN, ourmethod requires only
about 30% additional computing overhead. AoA is a more

advanced attention module that can be used to improve other
models that employ the traditional attention mechanism for
VQA apart fromMCAN.We hypothesize that adopting AoA
on other tasks will also yield improved results since we have
not validated it on other tasks. However, our model still has
some limitations, which have been mentioned in Section 5.
For commonsense questions, it may be solved by combin-
ing the model with the knowledge base or using the large
language model. To debias, using causal attention and data
augmentation are two approaches that deserve trying. And
these are what we will further explore during future research.

Acknowledgements We thank the anonymous reviewers for their valu-
able comments. This work was supported by the Program of Natural
Science Foundation of Shanghai (No. 23ZR1422800).

Author Contributions Cheng Liu: Writing - Original Draft, Writing -
Editing, Software, Data curation.
Chao Wang: Writing - Editing, Investigation.
Yan Peng: Writing - Review, Editing.

Data Availability Data will be available upon request.

Code Availability The code for reproducing the results provided in the
manuscript will be made public upon acceptance.

Declarations

Competing interests The authors have no relevant financial or nonfi-
nancial interests to disclose other than the aforementioned funding.

References

1. Rahman T, Chou S-H, Sigal L, Carenini G (2021) An improved
attention for visual question answering. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 1653–1662

2. Zhang H, Li R, Liu L (2022) Multi-head attention fusion network
for visual question answering. 2022 IEEE International Conference
on Multimedia and Expo (ICME), pp 1–6

3. Shen X, Han D, Guo Z, Chen C, Hua J, Luo G (2022) Local self-
attention in transformer for visual question answering. Appl Intell
1–18

4. Khurana D, Koli A, Khatter K, Singh S (2023) Natural language
processing: State of the art, current trends and challenges. Mul-
timed Tools Appl 82(3):3713–3744

5. Antol S, Agrawal A, Lu J, Mitchell M, Batra D, Zitnick CL, Parikh
D (2015) Vqa: Visual question answering. In: Proceedings of the
IEEE international conference on computer vision, pp 2425–2433

6. ShihKJ, Singh S,HoiemD (2016)Where to look: Focus regions for
visual question answering. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 4613–4621

7. Lu J,Yang J, BatraD, ParikhD (2016)Hierarchical question-image
co-attention for visual question answering. Adv Neural Inf Process
Syst 29

8. Yu Z, Yu J, Xiang C, Fan J, TaoD (2018) Beyond bilinear: General-
ized multimodal factorized high-order pooling for visual question
answering. IEEETransNeural NetwLearn Syst 29(12):5947–5959

123



IMCN: Improved modular co-attention... 5181

9. Kim J-H, Jun J, Zhang B-T (2018) Bilinear attention networks.
Adv Neural Inf Process Syst 31

10. Nguyen D-K, Okatani T (2018) Improved fusion of visual and lan-
guage representations by dense symmetric co-attention for visual
question answering. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 6087–6096

11. Yu Z, Yu J, Cui Y, Tao D, Tian Q (2019) Deepmodular co-attention
networks for visual question answering. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 6281–6290

12. Huang L, WangW, Chen J, Wei X-Y (2019) Attention on attention
for image captioning. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp 4634–4643

13. Lee K-H, Chen X, Hua G, Hu H, He X (2018) Stacked cross
attention for image-text matching. In: Proceedings of the European
conference on computer vision (ECCV), pp 201–216

14. Teney D, Anderson P, He X, Van Den Hengel A (2018) Tips and
tricks for visual question answering: Learnings from the 2017 chal-
lenge. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 4223–4232

15. Nam H, Ha J-W, Kim J (2017) Dual attention networks for mul-
timodal reasoning and matching. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 299–
307

16. Fan H, Zhou J (2018) Stacked latent attention for multimodal rea-
soning. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 1072–1080

17. Gurunlu B, Ozturk S (2022) Efficient approach for block-based
copy-move forgery detection. In: Smart trends in computing and
communications: proceedings of SmartCom 2021, pp 167–174.
Springer

18. Le TM, Le V, Gupta S, Venkatesh S, Tran T (2023) Guiding visual
question answering with attention priors. In: Proceedings of the
IEEE/CVF winter conference on applications of computer vision,
pp 4381–4390

19. Marino K, Rastegari M, Farhadi A, Mottaghi R (2019) Ok-vqa:
A visual question answering benchmark requiring external knowl-
edge. In: Proceedings of the IEEE/cvf conference on computer
vision and pattern recognition, pp 3195–3204

20. SchwenkD, Khandelwal A, Clark C,Marino K,Mottaghi R (2022)
A-okvqa: A benchmark for visual question answering using world
knowledge. In: European conference on computer vision, pp 146–
162. Springer

21. ChangY,NarangM,SuzukiH,CaoG,Gao J,BiskY (2022)Webqa:
Multihop and multimodal qa. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 16495–
16504

22. Ravi S, Chinchure A, Sigal L, Liao R, Shwartz V (2023) Vlc-
bert: Visual question answering with contextualized commonsense
knowledge. In: Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pp 1155–1165

23. Garcia-Olano D, Onoe Y, Ghosh J (2022) Improving and diag-
nosing knowledge-based visual question answering via entity
enhancedknowledge injection.CompanionProceedings of theWeb
Conference 2022:705–715

24. Ding Y, Yu J, Liu B, Hu Y, Cui M, Wu Q (2022) Mukea: Mul-
timodal knowledge extraction and accumulation for knowledge-
based visual question answering. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 5089–
5098

25. Gao F, Ping Q, Thattai G, Reganti A, Wu YN, Natarajan
P (2022) Transform-retrieve-generate: Natural language-centric
outside-knowledge visual question answering. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recog-
nition, pp 5067–5077

26. Yang Z, Gan Z, Wang J, Hu X, Lu Y, Liu Z, Wang L (2022)
An empirical study of gpt-3 for few-shot knowledge-based vqa.
Proceedings of the AAAI conference on artificial intelligence
36:3081–3089

27. Tiong AMH, Li J, Li B, Savarese S, Hoi SC (2022) Plug-and-play
vqa: Zero-shot vqa by conjoining large pretrainedmodels with zero
training. Findings of the Association for Computational Linguis-
tics: EMNLP 2022:951–967

28. Guo J, Li J, Li D, Tiong AMH, Li B, Tao D, Hoi S (2023)
From images to textual prompts: Zero-shot visual question answer-
ing with frozen large language models. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 10867–10877

29. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv
Neural Inf Process Syst 30

30. Yang Z, He X, Gao J, Deng L, Smola A (2016) Stacked attention
networks for image question answering. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
21–29

31. Kim J-H, Lee S-W, Kwak D, HeoM-O, Kim J, Ha J-W, Zhang B-T
(2016) Multimodal residual learning for visual qa. Adv Neural Inf
Process Syst 29

32. Zhu C, Zhao Y, Huang S, Tu K, Ma Y (2017) Structured atten-
tions for visual question answering. In: Proceedings of the IEEE
international conference on computer vision, pp 1291–1300

33. Yu D, Fu J, Mei T, Rui Y (2017) Multi-level attention networks for
visual question answering. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 4709–4717

34. Zhou L, Palangi H, Zhang L, Hu H, Corso J, Gao J (2020) Uni-
fied vision-language pre-training for image captioning and vqa.
Proceedings of the AAAI conference on artificial intelligence
34:13041–13049

35. Zhou Y, Ren T, Zhu C, Sun X, Liu J, Ding X, Xu M, Ji R (2021)
Trar: Routing the attention spans in transformer for visual question
answering. In: Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp 2074–2084

36. GuoZ,HanD (2023) Sparse co-attention visual question answering
networks based on thresholds. Appl Intell 53(1):586–600

37. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R (2022)
Masked-attention mask transformer for universal image segmen-
tation. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 1290–1299

38. Liu S-A, Xie H, Xu H, Zhang Y, Tian Q (2022) Partial class acti-
vation attention for semantic segmentation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 16836–16845

39. Liang J, Fan Y, Xiang X, Ranjan R, Ilg E, Green S, Cao J, Zhang K,
TimofteR,GoolLV (2022)Recurrent video restoration transformer
with guided deformable attention. Adv Neural Inf Process Syst
35:378–393

40. Song CH, Han HJ, Avrithis Y (2022) All the attention you need:
Global-local, spatial-channel attention for image retrieval. In: Pro-
ceedings of the IEEE/CVF winter conference on applications of
computer vision, pp 2754–2763

41. Xia Z, Pan X, Song S, Li LE, Huang G (2022) Vision transformer
with deformable attention. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp 4794–4803

42. Zhang C, Wan H, Shen X, Wu Z (2022) Patchformer: An effi-
cient point transformer with patch attention. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 11799–11808

43. Park G, Han C, Yoon W, Kim D (2020) Mhsan: multi-head self-
attention network for visual semantic embedding. In: Proceedings
of the IEEE/CVF winter conference on applications of computer
vision, pp 1518–1526

123



5182 C. Liu et al.

44. Goyal Y, Khot T, Summers-Stay D, Batra D, Parikh D (2017)Mak-
ing the v in vqamatter: Elevating the role of image understanding in
visual question answering. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 6904–6913

45. Hudson DA, Manning CD (2019) Gqa: A new dataset for real-
world visual reasoning and compositional question answering. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 6700–6709

46. Fukui A, Park DH, Yang D, Rohrbach A, Darrell T, Rohrbach
M (2016) Multimodal compact bilinear pooling for visual ques-
tion answering and visual grounding. In: Proceedings of the 2016
conference on empirical methods in natural language processing.
Assoc Comput Linguist

47. Ma C, Shen C, Dick A, Wu Q, Wang P, van den Hengel A, Reid
I (2018) Visual question answering with memory-augmented net-
works. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 6975–6984

48. QiaoT,Dong J,XuD (2018) Exploring human-like attention super-
vision in visual question answering. In: Proceedings of the AAAI
conference on artificial intelligence, vol 32

49. AndersonP,HeX,BuehlerC, TeneyD, JohnsonM,Gould S, Zhang
L (2018) Bottom-up and top-down attention for image captioning
and visual question answering. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 6077–6086

50. Lu P, Li H, Zhang W, Wang J, Wang X (2018) Co-attending
free-form regions and detections with multi-modal multiplicative
feature embedding for visual question answering. In: Proceedings
of the AAAI conference on artificial intelligence, vol 32

51. ZhangY,Hare J, Prügel-BennettA (2018)Learning to count objects
in natural images for visual question answering. In: International
conference on learning representations

52. Hudson DA, Manning CD (2018) Compositional attention net-
works for machine reasoning. In: International conference on
learning representations

53. WuC, Liu J,WangX, Dong X (2018) Chain of reasoning for visual
question answering. Adv Neural Inf Process Syst 31

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Cheng Liu received the B.S.
degree from the School of Archi-
tecture and Planning, Anhui
Jianzhu University, China, in
2019. He is currently pursuing
the Master degree at the School
of Future Technology, Shanghai
University, China. His research
interests include visual question
answering and large language
models.

Chao Wang received his Ph.D.
degree from the School of Com-
puter Science, Fudan University
in 2022. He is a lecturer at the
School of Future Technology,
Shanghai University. His research
interests include natural language
processing, knowledge bases, and
causal inference.

Yan Peng received her Ph.D.
degree in pattern recognition
and intelligent systems from the
Shenyang Institute of Automa-
tion, Chinese Academy of Sci-
ences, Shenyang, China, in 2009.
She is currently the Dean of the
School of Future Technology at
Shanghai University, Shanghai,
China. Her current research inter-
ests include multi-modal machine
learning, modeling and control of
energy harvesting, unmanned sur-
face vehicles, field robotics, and
locomotion systems.

123


	IMCN: Improved modular co-attention networks for visual question answering
	Abstract
	1 Introduction
	2 Related work
	2.1 Visual question answering
	2.2 Attention mechanisms

	3 Method
	3.1 Notations
	3.2 Extraction of image features and question features
	3.3 Improved modular co-attention networks
	3.3.1 ISA and IGA units
	3.3.2 Cascade of IMC layers

	3.4 Improved multimodal fusion networks

	4 Experiments
	4.1 Dataset
	4.2 Experimental settings
	4.3 Ablation studies
	4.4 Comparison with existing VQA methods
	4.5 Attention visualization
	4.6 Qualitative analysis

	5 Limitation and discussion
	6 Conclusion
	Acknowledgements
	References


