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Abstract
Non-residential buildings are responsible for more than a third of global energy consumption. Estimating building energy
consumption is the first step towards identifying inefficiencies and optimizing energymanagement policies. This paper presents
a study of Deep Learning techniques for time series analysis applied to building energy prediction with real environments.
We collected multisource sensor data from an actual office building under normal operating conditions, pre-processed them,
and performed a comprehensive evaluation of the accuracy of feed-forward and recurrent neural networks to predict energy
consumption. The results show that memory-based architectures (LSTMs) perform better than stateless ones (MLPs) even
without data aggregation (CNNs), although the lack of ample usable data in this type of problem avoids making the most of
recent techniques such as sequence-to-sequence (Seq2Seq).

Keywords Buildings · Energy consumption forecasting · Time series · Deep learning · XGBoost · Multilayer perceptron ·
Recurrent neural networks · Convolutional neural networks · Sequence to sequence networks

1 Introduction

The current unstable situation in Europe has led to a decrease
in the amount of energy supplied to the European continent,
causing an exorbitant increase in prices across the continent.
It is therefore necessary to reduce energy consumption in
general, to prevent inflation from increasing further and the
energy crisis from continuing to grow. Our work focuses on
increasing energy efficiency in office buildings, as this is
one of the most energy intensive areas due to the number of
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hours they are in operation. Reducing energy consumption by
controlling consumption through algorithmic artificial intel-
ligence techniques is one of the goals of our society in the
coming years and our case study.

According to [26], residential, office, and industrial build-
ings account for 20-40% of global energy consumption. In
2010 in the USA, buildings energy consumption accounted
for 41% of their total energy consumption, with 75% of this
energy coming from fossil fuels [17]. Meanwhile, in 2012
in the European Union, buildings consumed approximately
40% of the total energy used [17]. More than two-thirds
of the energy consumed by buildings goes to heating sys-
tems (37%), water heating (12%), air conditioning (10%)
and lighting (9%). Several case studies have shown that the
operational phase is the most energy-consuming stage of
the buildings life cycle, accounting for 90% in conventional
buildings and 50% in low-energy buildings [29].

In the current context in Europe, it is important to reduce
energy consumption due to the high prices being achieved in
the various energy markets. It is not surprising that interest in
improving the energy efficiency of buildings has increased.
According to [6] and [4], this interest is driven by three
factors: rising energy prices, increasingly restrictive environ-
mental regulations and increased environmental awareness
among citizens. All over the world, public policies are being
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developed to increase this efficiency, as reflected in the
Unsustainable Development Goals and the European Green
Deal.

One of the first steps towards improving building energy
efficiency is studying how consumption happens and know-
ing the factors that significantly impact it. In particular,
predicting energy consumption from historical data allows
building operators andmanagers to anticipate peaks in energy
demand, modify building uses to shift this demand and
plan equipment operation appropriately. Likewise, accurate
consumption prediction allows assessing the improvement
in building performance when making improvements or
implementing new energy policies by comparing the actual
consumption with the estimated consumption (or baseline).
Data Science has emerged as an effective tool to address these
objectives [21].

In the literature, there can be found numerous proposals
for estimating energy consumption in buildings through-
out time series prediction. Traditionally, these approaches
were based on numerical regression or moving average mod-
els, which have limitations regarding multivariate series and
series with changing trends. In contrast, modern machine
learningmethods based on neural networks have shownmore
effective in those scenarios [34]. However, the application of
these techniques is often hampered by the noisy and incom-
plete nature of building energy data in real environments [9],
which results in a gap between theoretical and practical
works.

The rationale behind this work is to perform a comprehen-
sive evaluation of neural network methods in a real-world
scenario and to draw conclusions for practical application
in similar contexts. More specifically, this paper studies the
accuracy of several methods for heating consumption predic-
tion, namely XGBoost, MLPs, RNNs, CNNs and Seq2Seq.
The need and impact of preprocessing, which is applied to
remove noisy and missing values and for data reduction, is
also discussed.

The dataset was collected in the ICPE office building
located in Bucharest, one of the pilot buildings considered in
the Energy IN TIME1. Our starting hypothesis is that mod-
ern neural network techniques improve the performance of
other approaches, and within them, memory-based architec-
tures (RNNs, Seq2Seq) are superior. The results show that
the hypothesis holds, despite the risk of overfitting these tech-
niques when applied to not very large datasets.

The remainder of this paper is structured as follows. We
first provide a review of related works on prediction of build-
ing energy consumption (Section 2). Next, we describe the
data used in the study (Section 3), the methodology (Section

1 Energy IN TIMEwas an European project running in 2013-2017. The
aim of the project was to implement a model-predictive control system
to improve the energy efficiency of non-residential buildings [13].

4), and the experimentation (Section 5). At the end of the
paper conclusions and directions for future research work
(Section 6) will be exposed.

2 Related work

Energy consumption forecasting models can be differenti-
ated into categories based on their respective energy end-
uses, such as cooling, heating, space heating, primary, natural
gas, electricity, and steam load consumption [35]. Regarding
the application of the models, [33] identified two primary
categories: (1) model-based control, demand response, and
optimization of energy consumption in buildings; and (2)
design and modernization of building parameters, including
energy planning and assessing the impact of buildings on
climate change.

Also in [33], numerous factors impacting energy con-
sumptionwere also identified, mainly the number and type of
buildings under consideration. The temporal horizon of the
prediction and the resolution of the sensor data are also rele-
vant. Remarkably, natural time-based groupings (i.e., hours,
days, months, and years) were proved superior in [35] to
the more generic short-, medium-, and long-term ranking
schemes proposed in [1].

Many data-driven techniques have proved effective for
estimating building energy consumption, ranging from clas-
sical statistical regression to modern deep learning archi-
tectures. Regarding the former, [15] evaluated four models
incorporating exogenous inputs, specifically autoregressive
moving average models with exogenous inputs (ARMAX).
[10] proposed a system utilizing a seasonal autoregressive
integrated moving average model (SARIMA) and a least
squares support vector regression model based on firefly
metaheuristic algorithms (MetaFA-LSSVR). The prediction
system yielded highly accurate and reliable day-ahead pre-
dictions of building energy consumption, with an overall
error rate of 1.18%.

Another interesting study is [19], which investigated two
stochastic models for short-term time series prediction of
energy consumption, namely the conditional constrained
Boltzmann machine (CRBM) and the factored conditional
constrained Boltzmann machine (FCRBM). In the compar-
ison, the results showed that the FCRBM outperformed
the artificial neural network, support vector machine, recur-
rent neural networks and CRBM. The work was extended
to include a deep belief network with automated feature
extraction for the short-term building energy modeling pro-
cess [20]. Other relevant work applying classical learning
techniques is [24], which used a decision tree method (C4.5).
In addition to obtaining accurate results, this algorithm was
able to identify the factors contributing to building energy
use. A sophisticated regression tree algorithm (Chi-Square
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Automatic Interaction Automatic Detector) was used in [11]
to predict short-term heating and cooling load.

Raza and Khosravi [28] provided a comprehensive review
of artificial intelligence-based load demand forecasting tech-
niques for smart grids and buildings. The authors explored
various machine learning algorithms used in load forecast-
ing, including artificial neural networks, fuzzy logic, genetic
algorithms, and support vector regression. [3] also reviewed
the applications of artificial neural networks (ANNs) and sup-
port vector machines (SVMs) for building electrical energy
consumption forecasting. The authors compared the per-
formance of ANNs and SVMs with traditional statistical
methods used in energy forecasting. [30] explored the dif-
ferent ML algorithms used in the field, including artificial
neural networks, support vector regression, decision trees,
and clustering methods. They also discussed the challenges
associated with accurate data acquisition and modelling and
the limitations of different ML algorithms. More recently,
[14] emphasized that applying machine learning and statisti-
cal analysis techniques can lead to significant energy savings
and cost reductions. [37] examined the advantages and limi-
tations of different ML algorithms, including artificial neural
networks, decision trees, and support vector machines, and
explore their application in different building load predic-
tion scenarios. [27] proposed using deep recurrent neural
networks (DRNNs) for predicting heating, ventilation, and
air conditioning (HVAC) loads in commercial buildings. The
authors describde the architecture and training process of the
DRNN model, which included a combination of convolu-
tional neural networks (CNNs) and long short-term memory
(LSTM) layers.

Finally, other works showed the importance of prepro-
cessing in building energy forecasting, e.g., data cleaning and
feature selection For instance, [2] reviewed the current devel-
opment of machine learning (ML) techniques for predicting
building energy consumption and discussed the challenges
associatedwith data acquisition, feature selection, andmodel
validation.

Table 1 summarises the related works mentioned in this
section.

3 Data

Our data was collected from the ICPE building (Institute
of Technologies for Sustainable Development) in Bucarest
(Romania). This is a three-building, each one divided into
areas. For the experiments, we defined a pilot zone through
a transversely cut of the building covering three areas (D1,
D2, D5/2) of the three floors (see Figs. 1, 2).

The building is equipped with sensors to measure room
temperatures and meters measuring electricity, heating, and
water consumption in distinct zones of the building. We

focused on predicting heating meter values, given the higher
contribution of this subsystem to the total energy consump-
tion.Due to the low temperatures in these countries, buildings
are powered by a system called district heating, which is used
to prevent pipes from freezing outside, and then energy is
consumed inside the building to raise the temperature of the
water before it is distributed to the radiators inside.

We considered as prediction targets the three heating
meters that respectively cover the area D1, D2 and D5/2
from buildings. However, we found a problem with area
D2 data was not available because of errors in sensors, we
only selected zone D1 and zone D5/2 of our building. The
variables that we select for the D1 zone of our building are H-
F123-D1, where all the heating consumption of the D1 zone
in the floor 1, 2, and 3 are grouped, and for the D5/2 zone
are H-F123-D5/2W and H-F123-D5/2E, where the heating
consumption are grouped as the previous one, both for the
West zone and for the East zone.We have other external vari-
ables that are related to our building, these variables are the
outdoor temperature and the building occupancy, which are
crucial for our experiments.

We collected data in 2017 before the implementation of
the new control system. We focused on heating, and only the
cold season (January, February and March) was considered
in the experimentation. We re-sampled all variables at 15-
minute intervals and calculated the cumulative consumption
values. As a result, we obtained a data set with 8640 samples.
The dataset is not publicly available but an excerpt can be
obtained on demand.

4 Methodology

The methodological approach of the experiments followed
the workflow of the Data Science process applied to energy
data presented in [21]. As shown in Fig. 3, we retrieved the
data through an API REST and carried out data preprocess-
ing, including outliers removal, missing value imputation,
normalization and feature selection. Afterwards, we con-
tinued splitting these data by months to apply the learning
algorithms and get the best predictionmodels for each period.
Next, we describe how data is partitioned, as well as the
parameters used to train the models and the evaluation met-
rics.

4.1 Definition of the prediction problem and data
partition

The problem we aim to solve is to predict the energy usage
of a building for the next 12 hours. We need to partition
the original dataset into training and validation samples in
chronological order to train our model. Given the different
energy consumption patterns at the beginning and the end of
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Table 1 Summary of related works

Authors Approach Methods Dataset

Khalil et al. [14] Machine Learning Algorithms Artificial neural networks, deci-
sion trees and SVR

Multiple datasets

Pachauri and Ahn [24] Machine Learning Algorithms Decision tree Japanese residential buildings

Molina-Solana et al. [21] Building operation, Fraud
detection Applications

MPC Sanomatalo Building

Wang and Srinivasan [35] Artificial Intelligence, Artificial
Neuronal Networks

MLR, ANNs, SVR, ensemble
models

Multiple datasets

Zhang et al. [37] Machine Learning MLR, ANNs, SVR Multiple datasets

Arpanahi and Javadi [3] Machine Learning, forecasting
methods

ANNs, SVR, GMDH, LSSVM Multiple datasets

Raza and Khosravi [28] Short term, load forecasting ANNs Multiple datasets

Lago et al. [15] Forecasting SVR with chaotic gravitational
search

Historical electric data from the
Northern China

Chou and Ngo [10] Machine Learning Time Series Analytics Multiple datasets

Mocanu et al. [19] Artificial Neuronal Networks CRBM, FCRBM Multiple datasets

Rahman et al. [27] Artificial Neuronal Networks Multiple algorithms Multiple datasets

Seyedzadeh et al. [30] Machine Learning ANNs, SVM, Gaussian-based
regressions, clustering

Energy benchmarking

Ahmad et al. [2] Building energy modeling
Building optimal control

Agent-Based Model, System
Identification

Building Energy model

Ahmad and Chen [1] Load forecasting, Data mining
based approaches

TB, BoostedT, GPR, NN and
BaggedT

Office building in Beijing,
China

Ezan et al. [11] Energy consumption: Pattern
prediction, Time-series tech-
nique, Metaheuristic optimiza-
tion, Machine learning

ARIMA, SARIMA, LSSVR,
ML, SVR, ANNs, FA

Smart grid infrastructure

Mocanu et al. [20] Reinforcement learning, Deep
Belief Networks, Machine
learning

DBN, SARSA,Q-learning algo-
rithm

Multiple datasets

Tien et al. [33] Machine learning techniques
such as supervised, unsuper-
vised, and reinforcement learn-
ing

Linear regression, decision
trees, random forests, and neu-
ral networks, clustering and
anomaly detection, Q-learning

Multiple datasets

the data collection period, we decided to split the full dataset
into smaller chunks (namely, subproblems) and then make
the training and validation partitions within each one. This
implies that we have a different model trained specifically
for each subproblem, which must be conveniently selected
during the test phase to calculate the predictions depending
on the date of the observations.

To perform the splits, we applied time series decompo-
sition to analyze the evolution of the energy consumption
variables and identify potential cut points, focusing on trend
change. This study,which is explained below, showed thatwe
could safely split the data inmonths since the time series have
consistent behaviour in each of these periods. Furthermore, a
preliminary analysis of the stability of the training, in terms
of errors obtained with slightly different splits, showed that
the differences were not significant. While this is a rough
approximation of a more fine-grained splitting, it has the
advantage of facilitating the selection of the model to be

applied for prediction. It remains for future work to apply a
more sophisticated time series splitting algorithm [18] and a
more comprehensive analysis of the impact of the splitting.

The analysis of the trend change to assess the monthly
splitting was based on the decomposition of the time series
with STL technique (Seasonal-Trend decomposition using
LOESS), which has been previously used for energy demand
time series [25]. Figure 4 depicts the decomposition of the
heating consumption variables into three components: trend,
i.e., long-term evolution of values; seasonality, i.e., repeti-
tions in fixed periods; and irregularity, i.e., random patterns
that remain after removing the other two components. It can
be seen that there is a clear pattern of increasingly high
consumption in January, followed by a steady decline in con-
sumption inFebruary and a plateau inMarch. The irregularity
component throughout the whole series remains quite stable,
meaning that the trend and season components capture quite
well the changes in the series. Therefore, we proceeded to
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Fig. 1 Aerial view

split the dataset in two parts, training and validation. Specifi-
cally, the selected training sampleswere 70%of eachmonth’s
observations (e.g., from 2016-01-05 00:15:00 until 2016-01-
21 23:45:00 in January), while the remaining values were
used for validation.

4.2 Methods

The methods used to build the predictions models are
XGBoost [8] and a selection of neural networks including
CNNs [7], RNNs [31], MLPs [32] and Seq2Seq [12]. The
results with Seq2Seq suggested that other techniques, such
as transformers, would not be very useful given the rela-
tively small size of each partition, in line with the recent
literature [36].

Fig. 2 Pilot zone

Table 2 summarises the configuration of the models
and the hyperparameters probed with each technique. For
XGBoost, we reflect the number of trees, maximum depth,
and learning rate. For CNN, we describe the number of con-
volutional layers, max pooling 1D, and the number of filters.
For MLP, RNN and Seq2Seq, the table lists the number of
hidden layers, dropout layers, and layer size. The best con-
figurations obtained with the training data are highlighted in
section 5.2.

4.3 Metrics

To validate and compare the different results of our exper-
iments, we must define the error metrics to be minimized.
Since we have a regression problem, we use MAE (Mean
Absolute Error), which aggregates at m the absolute differ-
ence between the predictions and the actual values of delay
data points:

MAE(m) =
∑delay−1

i=0 | yi − ŷi |
delay

(1)

We also use the normalized MAE, namely NMAE, which
averages the error for a batch of size N .

NMAE =
∑N−1

m=0 MAE(m)

N
(2)

5 Experiments and results

This section shows the results of the experiments after data
preprocessing and model training and validation with the
algorithms mentioned above: decision trees, XGBoost, and
neural networks (MLPs, CNNs, RNNs and Seq2Seq). The
implementation of the preprocessing and the prediction algo-
rithms was developed with TSxtend [23], our open source
library for batch analysis of sensor data.

5.1 Preprocessing and data preparation

In our experiment, we used processing data techniques
such as aggregation, data modification and removal, data
transformation, outliers detection, missing values detection,
normalization and feature selection. We discarded heating
consumptionwith null values to discard rowswith no heating
consumption.Then,we eliminated the variableswith extreme
values and finally joined the variables measuring the same
consumption type on the same floor.

The variables in the collected dataset store aggregated
values, e.g., summing up new values at each instant. The
transformation of these variables was done with the differ-
ences between each instant of time, thus obtaining the actual
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Fig. 3 Methodology

consumption of each variable at each instant of time. These
variables were used as inputs for the execution of our predic-
tion algorithms.

In the subsequent step, we employed techniques to detect
and remove outliers for each consumption variable. We cal-
culated percentiles for each variable and searched for values
outside this range. Such values were substituted with more
conventional values (mean, median, etc...). This approach,
however, leads to a loss of information. Fortunately, the num-
ber of outliers in our case is limited.

We had in our dataset missing values in February when
the system did not gather data, for which we applied missing
values imputation algorithms. Particularly, we used Interp
to fill gaps by interpolation of known values. Interpolation
techniques are utilized to fill gaps by interpolating knownval-
ues, asmentioned inwork by [22]. Specifically, this approach
involves the utilization of Interp, a commonly employed soft-
ware for performing interpolation. This methodology aims to
accurately estimate values within a given range based on the
available data. The interpolation process involves estimat-
ing each data point’s value by considering its neighbouring
data points. Applying this technique makes the resulting

dataset complete and can be analyzed more effectively for
the intended purpose. Figure 5 depicts data after imputation
for three variables.

Then, we selected the most relevant variables for pre-
dicting energy consumption as Energy Zone D1 and Energy
ZoneD5/2.Wecalculated the cross-correlation betweenpairs
of variables and grouped them by levels according to their
correlation to the prediction target. Figure 6 indicates few
dependencies between the electrical sensors. There is a high
correlationbetween theheating consumptionvariables,while
water consumption does not correlate. In the case of the occu-
pancy variables, there are more correlations, but it is not high
because the values are estimated.We can also observe energy
consumption when the building is empty.

Then we used XGBoost algorithm for the assessment of
variable importance. In Fig. 7, we can see that the most rele-
vant variables for energy consumption are occupancy, outside
temperature and heating consumption (Energy Zone D1 and
Energy Zone D5/2).With this information, we performed the
selection of variables, being themost important ones (not sur-
prisingly) Outside Temperature, Occupation, Energy Zone
D5/2 and Energy Zone D1.
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Fig. 4 Decomposition of the
heating consumption variables
of plants 1, 2, and 3 in the pilot
zone of the ICPE building

The last step in order to preprocess data is to normalize
the dataset. To do this, we calculated the mean and standard
deviation of each variable, and then transformed the values
to the range [0, 1].

5.2 Results and discussion

We experimented with the January, February andMarch data
using the selected algorithms. We applied grid search to

obtain the best configurations and hyperparameter, yielding
the values depicted in Table 3. We can observe that the best
configurations are similar for each subproblem.

The validation errors of the best models are shown in
Tables 4 and 5, while Figs. 8, 9, 10, 11, 12, and 13 depict the
predicted vs the real values. In January, the algorithm that
offered the best results was Seq2Seq, which achieved a val-
idation NMAE of 0.21 for the prediction of consumption in
zone D1 and 0.20 for zone D5/2, significantly improving the
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Table 2 Hyperparameter grids
used to tune the learning
algorithms

Algorithms Parameters Range

Number of trees {50,100,50}

XGBoost Maximum Depth {51,100,50}

Learning Date {0.05,0.001,0.1}

Number of convolutional layers {1,2}

CNN Max pooling 1D {3,5,7}

Number of filters {16,32,64,128}

Number of hidden layers {1,2}

MLP, RNN, Seq2Seq Number of dropout layers {0.15,0.3,0.5}

Number of neurons {16,32,64,128}

Fig. 5 Imputation of missing
values ((end February) with
Interpolate for variables Energy
Zone D1, E-F1-D5/2-C03 and
W-ALL

Fig. 6 Heatmap showing
correlations between variables
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Fig. 7 Ranking of variables by
importance with XGBoost

Table 3 Best configurations and
hyparameters for each algorithm
and subproblem

Algorithms Parameters Month Month Month
January February March

Number of trees {50} {100} {50}

XGBoost Maximum Depth {51} {100} {51}

Learning rate {0.05} {0.001} {0.005}

Number of convulational layers {1} {1} {1}

CNN Max pooling 1D {3} {3} {3}

Number of filters {32} {16} {16}

Number of hidden layers {1} {1} {1}

MLP Number of dropout layers {0.3} {0.15} {0.15}

Number of neurons {128} {128} {128}

Number of hidden layers {1} {1} {1}

RNN Number of dropout layers {0.15} {0.3} {0.5}

Number of neurons {128} {128} {128}

Number of hidden layers {2} {2} {2}

Seq2Seq Number of dropout layers {0.3} {0.3} {0.3}

Number of neurons {64} {64} {64}

Table 4 Performance of the
best models for Energy Zone D1
(best result for each month and
metric in bold font)

Models January February March
NMAE MAE (kw) NMAE MAE (kw) NMAE MAE (kw)

XGBoost 0.48 2.5 1.17 5.88 0.56 2.24

MLPs 0.38 1.97 0.82 4.12 0.53 2.12

RNNs 0.27 1.40 0.43 2.16 0.29 1.16

CNNs 0.34 1.77 0.43 2.16 0.34 1.36

Seq2Seq 0.21 1.09 0.43 2.16 0.39 1.56

Table 5 Performance of the
best models for Energy Zone
D5/2 (best result for each month
and metric in bold font)

Models January February March
NMAE MAE (kw) NMAE MAE (kw) NMAE MAE (kw)

XGBoost 0.56 16.05 1.10 26.125 0.60 8.25

MLPs 0.31 8.88 0.61 14.48 0.64 8.8

RNNs 0.30 8.6 0.31 7.36 0.29 3.98

CNNs 0.36 10.32 0.30 7.12 0.33 4.53

Seq2Seq 0.20 5.73 0.36 8.55 0.37 5.08
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Fig. 8 Prediction of the Validation Values in January with Seq2Seq
Energy Zone D1

performance of the other models. The best model for Febru-
ary in both zones was CNNs. Overfitting was lower than that
with other algorithms, at the cost of having worse validation
metrics —the model tends to ignore or lessen the consump-
tion peaks, as it can be seen in the chart. A second reason
to explain these results is that we had many more missing
values to impute in this period. The best method for March
was RNNs, with an NMAE of 0.29 in both zones, almost
twice better than MLP and XGBoost. Overall, we confirmed
the ability of memory-based models (Seq2Seq and RNN) to
extract characteristics from the input time series and learn
the predictions in more diverse scenarios, while CNNs were
slightly betterwhen therewas a uniform trend and fewer data.
In all cases, the best models’ MAE was around 5 kW, which
is small enough for this type of applications.

Regarding the drawback of having limited data for training
and validation, it resulted in that the more complex mod-
els did not learn the prediction of heating consumption as
well as it could be expected. Hence, we suggest that more
sophisticated techniques (Seq2Seq, but also transformer-
based architectures) might not be necessary in this kind
of problems or under similar circumstances. Instead, RNNs
or CNNs with proper data pre-processing could be precise
enough and less prone to overfitting.

Fig. 9 Prediction of the Validation Values in January with Seq2Seq
Energy Zone D5/2

Fig. 10 Prediction of the Validation Values in February with CNNs
Energy Zone D1

Fig. 11 Prediction of the Validation Values in February with CNNs
Energy Zone D5/2

Fig. 12 Predictionof theValidationValues inMarchwithRNNsEnergy
Zone D1

Fig. 13 Predictionof theValidationValues inMarchwithRNNsEnergy
Zone D5/2
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6 Conclusions and future work

Concluding our discussion, we can see how the XGBoost
model shows worse results, as XGBoost does not extract
the dependencies between the variables it receives as input
to perform the energy consumption prediction. With MLP
models we have shown that they do not provide better results
than other models because they do not allow to follow a
chronological order in our dataset. With respect to the use
of RNNs on our dataset, we have been able to reduce the
NMAE error function by half, as these algorithms remember
the information by processing the data in chronological order.
Furthermore, we have applied Seq2Seq, which has allowed
us to observe that, like RNNs, they obtain good results in
general but do not perform very well on datasets with too
many missing values (i.e., smaller in size). Finally, convo-
lution networks (CNNs) have been found to perform better
thanRNNs andSeq2Seq algorithms on sections of the dataset
with a large number of missing values and steady trends.

One of the problemswehave in this study has been the lim-
ited amount and quality of data, since we have only worked
with the ICPE building sensors for three months including
many missing values. In the future we can take the ICPE
building sensors from other years to have a more extensive
training and validation. Another option may be to generate
artificial valueswith building simulationmodels.We can also
use recurrent neural network models using attention mech-
anisms to improve synthetic data generation and missing
values imputation [5]. Additionally, peak changes could be
addressed with noise reduction techniques to smooth abrupt
oscillations, e.g., as the filter proposed in [16].
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