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Abstract
Document-level Relation Extraction (DocRE) aims to extract relations from multiple sentences simultaneously. Existing
graph-based methods adopt static graphs to represent the document structure, which is unable to capture complex interactions.
Besides, they take all sentences in the document as the scope of relation extraction (RE) while introducing noise by irrelevant
sentences. Furthermore, they do not explicitly model the reasoning chain, leading to a lack of explainability in the reasoning
results. These limitations may significantly hinder their performance in practical applications. In this paper, we propose a
model based on selective attention and path reasoning for DocRE. Firstly, we adopt hierarchical heterogeneous graph neural
networks and recurrent neural networks to realize document modeling and capture complex interactions in the document.
Secondly, we adopt selective attention to select sentences related to the entity pair to generate document subgraphs as the
scope of RE. Lastly, we adopt path reasoning to explicitly model the reasoning chain betweenmultiple entities in the document
subgraph, infer the relations between entities and provide corresponding supporting evidence. Extensive experiment results on
three benchmark datasets show that the proposed framework is effective and achieves superior performance compared to most
methods. Further analysis demonstrates that selective attention and path reasoning can discover more accurate inter-sentence
relations and supporting evidence.

Keywords Graph neural network · Selective attention · Path reasoning · Document-level relation extraction · Supporting
evidence

1 Introduction

Relation extraction (RE) aims to identify semantic relations
between entities in text. It plays an important role in many
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natural language processing applications, such as knowledge
graph construction [1] and automatic question answering [2].
Previous studies mainly focused on sentence-level RE [3–9],
which requires a sentence to contain two entities. However,
sentence-levelREmodels suffer froman inevitable limitation
– they fail to recognize relations between entities across sen-
tences. Hence, recent studies have been moving towards the
more realistic setting of document-level relation extraction
(DocRE).

DocRE requires reading and reasoning over multiple sen-
tences in a document, aiming to extract all possible relation
instances from a document and provide supporting evidence
for them. As shown in Fig. 1, the task is to extract the relation
between “Riddarhuset” and “Sweden”.Wemust first identify
that “Riddarhuset” is located in “Stockholm” from sentence
4, and then identify that “Stockholm” is the capital of “Swe-
den” from sentence 1. From the reasoning chain “located in
– capital” of the entity pair (Riddarhuset, Sweden), it can
also be predicted that the sovereign state of “Riddarhuset” is
“Sweden”. Sentences 1 and 4 provide supporting evidence
for this relation. Other sentences do not mention two entities,
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[1] Kungliga Hovkapellet (The Royal Court Orchestra)

is a Swedish orchestra, originally part of the Royal Court

in  Sweden's capi tal Stockholm. [2] The orchest ra

originally consisted of both musicians and singers. [3] It

had only male mebers until 1727, when Sophia Schroder

and Judith Fischer were employed as vocalists; in the

1850s, the harpist Marie Pauline Ahman became the first

female instrumentalist. [4] From 1731, public concerts

were performed at Riddarhuset in Stockholm.

Subject: Riddarhuset

Object: Sweden

Relation:country      Supporting Evidence:1,4

Riddarhuset Sweden

Stockholm

country

located in captial

Fig. 1 An example excerpted from the DocRED dataset, in which the
head and tail entity pair spans multiple sentences. Red represents the
head and tail entities, and blue represents the bridge entity required for
logical reasoning

it is irrelevant to the relation prediction. Sometimes including
such irrelevant sentences in the input might introduce noise
to the model.

Among the techniques available in the literature, a sim-
ple way is the sequence-based methods. Concretely, entity
embeddings are obtained by encoding the entire document
and involving a bilinear classifier to predict the relation. Such
as CNN[10], LSTM[11], BiLSTM[12], Context-aware[13]
etc. Another popular strand of this field uses mentions, enti-
ties, and sentences as nodes to construct the document graph,
and explicitly learn the associations between entities through
graph propagation, thereby realizing the relational reason-
ing between entities [14–19]. Recently, some works [20–24]
relies on the transformer architecture tomodel cross-sentence
relations since transformers can implicitly capture long-
distance dependencies. Suchmodels do not need to introduce
the document graph, and can automatically learn the edges of
dependency structures and coreference structures. However,
there are three limitations of the existing DocRE methods.
Firstly, existing graph-based methods utilize static graphs
to represent the structure of the entire document, which is
unable to capture complex interactions in the document. Sec-
ondly, existingmethods utilize the entire document sentences
for RE, and the noise problem brought by irrelevant sen-
tences is not addressed. Lastly, there are very few works that
explicitly model the reasoning chain, resulting in a lack of
explainability in the extraction results.

Based on the above observations, we propose a DocRE
model to overcome the challenges, which automatically
extracts relation and evidence in three stages. In the first
stage, we adopt hierarchical heterogeneous graph neural
networks to construct the document graph for document rep-
resentation and then apply recurrent neural networks (RNN)
to capture local and non-local interactions in the document.
In the second stage, we adopt selective attention to select
sentences related to the entity pair from the document graph
and aggregate all related sentences to generate document
subgraphs. In the last stage, we adopt a path reasoning
mechanism to explicitly model the reasoning chain between
multiple entities in the document subgraph, thus inferring the
multi-hop relation and providing supporting evidence.

We conduct extensive experiments on three public widely
used DocRE datasets. Experiment results show that our
model outperforms most baseline models. Besides, we pro-
vide a detailed analysis demonstrating that selective attention
and path reasoning can discovermore accurate inter-sentence
relations and supporting evidence. The advantages of our
method are summarized as follows:

• We combine hierarchical heterogeneous graph neural
networks and recurrent neural networks into the docu-
ment learning framework, which allows the models to
construct the document graph and capture complex inter-
actions in the document.

• We propose a selective attention subgraph module for
select sentences related to the entity pair, which reduces
the interference of irrelevant sentences.

• We propose a path reasoning module to model the
reasoning chain between multiple entities in the sub-
graph,which increases the explainability of the extraction
results.

The rest of the paper is organized as follows. In Section 2,
we review related works. The proposed model is described
in Section 3. In Section 4, we introduce the relevant content
of the experiments. In Section 5, we analyze and discuss the
experiment results from different perspectives. The conclu-
sions of the paper are drawn in Section 6.

2 Related work

Early studies [25–27] confined DocRE to short text spans
(e.g., three consecutive sentences) while ignoring the rela-
tional reasoning in the document. Recent work has expanded
this range to the entire document of the biomedical domain
[14, 15, 24, 28]. Zhang et al. [28] present a novel graph-
based approach for DocRE with a Dual-tier Heterogeneous
Graph (DHG), to achieve document modeling and multi-hop
reasoning in proper order. Xiao et al. [24] proposed to explic-
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itly teach the model to capture textual contexts and entity
types by Supervising and Augmenting Intermediate Steps
(SAIS). However, the datasets used in these methods con-
tain very limited relations and entity types. Owing to the
introduction of large-scale document-level datasets, some
researchers began to study large-scale DocRE. These DocRE
methods can be grouped into Sequence-based, Graph-based,
and Transformer-based methods.

Sequence-based methods Sequence-based methods ob-
tain entity embeddings by encoding the entire document and
then adopt a bilinear classifier to predict the relation between
entity pairs [10–13]. However, thesemethods do not consider
the coreference relation of multiple mentions in the docu-
ment and do not perform any reasoning, which affects the
extraction performance of inter-sentence relations.

Graph-based methods Graph-based methods use men-
tions, entities, and sentences as nodes to construct the doc-
ument graph, and explicitly learn the associations between
entities through graph propagation, thereby realizing the rela-
tional reasoning between entities [14–19]. Wang et al. [16]
proposed a Gobal-to-Local neural network for document-
level RE (GLRE) that encodes the document information
in terms of entity global and local representations as well
as context relation representations. GLRE is particularly
effective in extracting relations between entities of long
distance and having multiple mentions. Nan et al. [18] pro-
posed Latent Structure Refinement (LSR) generates latent
document graphs, while further developing an optimization
strategy that enables the model to gradually aggregate rel-
evant information for multi-hop reasoning. LSR placed the
mention node and the entity node within the same graph and
conducted reasoning implicitly using a GCN, which can dis-
cover more accurate inter-sentence relations. However, the
results inferred by LSR lacked explainability. Zeng et al.
[19] proposed Graph Aggregation and Inference Network
(GAIN). GAIN first constructs both a mention-level graph
and an entity-level graph and then perform multi-hop rea-
soning on both graphs. However, the complicated operations
on the graphs lower the efficiency of these methods.

Transformer-based methods Different from the above
methods, Transformer-based methods do not need to intro-
duce the document graph, and can automatically learn edges
of dependency structures and coreference structures by Pre-
trained Language Models (PLM)[20–24]. Tang et al. [20]
proposed a Hierarchical Inference Network (HIN) that fully
exploits the abundant information from the entity, sentence,
and document levels to perform relational reasoning. How-
ever, HIN is unable to capture the structural dependencies
between entities. Zhou et al. [21] proposed Adaptive Thresh-
olding and Localized Context Pooling (ATLOP) that solve
multi-label and multi-entity problems. However, ATLOP
neglected the interdependencies among the multiple rela-
tions. Xu et al. [22] proposed a Structured Self-attention

Network (SSAN) that incorporates the structural dependen-
cies within the standard self-attention mechanism and the
overall encoding stage. SSAN performs contextual reason-
ing and structural reasoning simultaneously and interactively,
which substantially improves the performance of RE tasks.
Zhang et al. [23] views DocRE as a semantic segmenta-
tion task. However, these studies focus on the extraction of
relational facts in the document and have not extended to
supporting evidence extraction.

In this paper, we propose a novel DocRE model that uti-
lizes the advantages of selective attention and path reasoning
to guide theRE.Compared to other graph-basedmethods, our
architecture featuresmany different designs. Firstly, theways
of document graph construction are different. We adopt hier-
archical heterogeneous graph neural networks to construct
the document graph, then adopts RNN to capture complex
interactions in the document. While other methods adopt
static graphs to represent the document structure, which is
unable to capture complex interactions. Secondly, computa-
tional complexity is different. Other methods (e.g., GAIN)
take all sentences in the document as the scope ofRE. Instead,
we adopt selective attention to select the key sentence for
RE while reducing the noise impact of irrelevant sentences.
Finally, the process of path reasoning is different.Othermeth-
ods do not explicitly model the reasoning chain. Instead, we
adopt path reasoning to model the reasoning chain explicitly
without extra overhead, and the sentences appearing on the
reasoning path serve as supporting evidence, thus providing
explainability for the extraction results.

3 The proposedmethod

3.1 Model formulation

We formulate the DocRE task as follows. Given an annotated
document D= {sl}Ll=1, its entity set V

e= {ei }nei=1, and the set
of relations R, where sl={xk}Ck=1 denotes the l-th sentence

with C words and ei= {mk}neik=1 is the i-th entity with nei
entity mentions. The DocRE task does not require giving
a head entity and a tail entity, the model needs to predict
all intra- and inter-sentence relations between different enti-
ties in V e, namely {(ei , ri j , e j )|ei , e j ∈ V e, ri j ∈ R, i �= j},
along with the evidence sentences Eri, j= {sk}mk=1 that are
supporting these relation instances.

3.2 Model architecture

The framework of SAPR-GNN contains three modules:
GNN–RNN module (Section 3.2.1), Selective attention sub-
graph module (Section 3.2.2) and Path reasoning module
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(Section 3.2.3). An illustration of our framework is shown in
Fig. 2.

The main workflow comprises three steps:
Step 1: The GNN–RNNmodule hierarchically constructs

intra-sentence and inter-sentence relation graphs. It utilizes
GNN as the encode to enhance the vector representation of
mentions and sentences. On this basis, it uses RNN to cap-
ture the local and non-local information interaction in the
document.

Step 2: The selective attention subgraph module utilizes
selective attention to select sentences related to the entity pair
and generate document subgraphs as the scope of RE.

Step 3: The path reasoning module explicitly models the
reasoning chain in the document subgraph, and predicts the
probability of each relation in a given relation path, thereby
realizing the extraction of relation instances and supporting
evidence.

As shown in Fig. 2, the document graph captures various
types of dependencies through different types of nodes and
edges. The node is composed of three parts: mention, entity,
and sentence. The five types of edges are shown in Table 1.

3.2.1 GNN–RNNmodule

The GNN–RNN module constructs a two-layer hetero-
geneous graph G = (

{
G1(l)

}L
l=1 ,G2) to represent the

intra-sentence and inter-sentence information in the docu-
ment. The input of this module is the documentD, the entity
V e, and its corresponding mention V x , and the output is the
document graph G and the final representation Hl of each
sentence. The main workflow contains three steps:

Step 1: The intra-sentence relation graphG1 is comprised
of entity mentions of each sentence, and it outputs the men-
tion vector representation hi .

Step 2: The inter-sentence relation graphG2 is comprised
of sentences in the document, and it outputs the sentence
vector representation gl .

Step 3:AggregatingG1 andG2 to form a document graph
G, and outputing the final representation Hl of each sentence,
whose value is comprised of the mention vector represen-
tation and the sentence vector representation. Through the
recurrent state transition process of RNN, Hl can capture the
information for the entire document.

r1 r2

r1

r2

r3

(c) Path Reasoning
Module 

(b) Selective Attention
Subgraph Module

(a) GNN-RNN Module

G

logsumexp

Mention Node Sentence Node Entity Node

Mention-Mention Edge Mention-Sentence Edge Sentence-Sentence Edge

x2x0 x1 x3 x4

G1

s0 s1 s2 s3 s4

G2

r3

[1] Kungliga Hovkapellet (The Royal Court Orchestra) is a Swedish orchestra, originally part of the Royal Court in Sweden's capital Stockholm.
[2] The orchestra originally consisted of both musicians and singers.

[3] It had only male mebers until 1727, when Sophia Schroder and Judith Fischer were employed as vocalists; in the 1850s, the harpist Marie Pauline
Ahman became the first female instrumentalist.

[4] From 1731, public concerts were performed at Riddarhuset in Stockholm.

[5] Since 1773, when the Royal Swedish Opera was founded by Gustav III of Sweden, the Kungliga Hovkapellet has been part of the opera's company.

Mention-Entity Edge Entity-Sentence Edge

Fig. 2 The Overview of our proposed method. The model takes the
entire document as input, and first applies the GNN–RNN module to
generate a document graph, and then applies the selective attention
module to generate document subgraphs. Finally, applies the path rea-

soningmodule to identify semantic relations and supporting evidence in
the document subgraph. The yellow nodes represent sentences, and the
nodes in other colors represent entities and their corresponding men-
tions
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Table 1 Different types of
edges in the document graph

Edge Describtion

Mention-Mention Edge An edge is established between two mention nodes if
they appear together in a sentence.

Mention-Sentence Edge An edge is established between a mention node and
a sentence node if the mention node appears in the
sentence.

Mention-Entity Edge An edge is established between a mention node and
an entity node If the mention refers to the entity.

Entity-Sentence Edge An edge is established between an entity node and a
sentence node If the mention of the entity appears
in the sentence.

Sentence-Sentence Edge Build connections for any two sentence nodes to
model sequential and non-sequential information.

An example of the document graph construct process is
shown in Fig. 3. Firstly, three intra-sentence relation graph
is constructed with mention nodes of each sentence. Then,
an inter-sentence relation graph is constructed with sentence
nodes in the same document. Finally, the above graphs are
aggregated together to generate the document graph.

(1) Intra-sentence relation graph

We construct a fully connected intra-sentence relation
graph G1 = (V x , Ex ), where V x denotes the set of men-
tions in the sentence, and each edge (hi , h j ) ∈ Ex denotes
the relation between the mention pair. In this section, we will
introduce how to construct G1.

Context-enhance word representation The context-
enhance word representation embeds both semantic and
augmented information of words into their word represen-
tations. To be more specific, we use wording embedding as
a basic feature to capture meaningful semantic regularities.
Meanwhile, coreference, entity type, sentence number, and
word position embeddings are also used to augment the rep-

resentation. We directly use nn.embedding to initialize the
embedding matrix of augmented information. Specifically,
torch.nn.init.xavier_uniform_ is used to fill each position in
the embedding matrix with a xavier_uniform initialization
value, and these values are subject to a uniform distribution.

E(xi, jk ) = [wk; ck; tk; nk; ui, jk ], (1)

wherewk , ck , tk , and nk denotes the word, coreference, entity
type, and sentence number embeddings of word xk , respec-
tively; and ui, jk denotes the position embedding of word xk
relative to the mention pair (hi , h j ). These embeddings are
described below.

• Word embedding: Each word is mapped to a dw-
dimensional vector by a word embedding matrix P ∈
R

|Vw |∗dw , where |Vw| is the size of the vocabulary and
dw is the dimension of word embedding. For DocRED,
CDR, andGDA,we usedGloVe pre-trainedword embed-
dings [29], PubMed pre-trained word embeddings [30],
and randomly initialized word embeddings [15], respec-
tively.

[1] Kungliga Hovkapellet (The Royal Court Orchestra) is a Swedish orchestra, originally part of the Royal Court in Sweden's capital Stockholm.
... 

[4] From 1731, public concerts were performed at Riddarhuset in Stockholm.

[5] Since 1773, when the Royal Swedish Opera was founded by Gustav III of Sweden, the Kungliga Hovkapellet has been part of the opera's

company.

G2

G1 G

GNN-RNN

Fig. 3 An example of the document graph construction process. For a good visualization, we only exhibit some representative edges and nodes in
this figure
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• Coreference embedding: Mentions corresponding to the
same entity are assigned the same entity ID, which is
determined by the order in which the entity appears in the
document. Each entity ID is mapped to a dc-dimensional
vector by a coreference embedding matrix P ∈ R

|Vc|∗dc ,
where |Vc| is the number of entities, and dc is the dimen-
sion of coreference embedding.

• Entity type embedding.: Each label type ismapped to a dt -
dimensional vector by an entity-type embedding matrix
P ∈ R

|Vt |∗dt , where |Vt | is the number of entity types,
and dt is the dimension of entity-type embedding.

• Sentence number embedding.: To facilitate the integra-
tionofG1 andG2, a sentencenumber embedding is added
to eachword to indicate which sentence theword belongs
to.

• Word position embedding: Following the method pro-
posed in [13], each word in the sentence is marked as
either belonging to the first or secondmentions or neither.
Each position marker is mapped to a dpw -dimensional
vector by a position embedding matrix P ∈ R

3∗dpw ,
where dpw is the dimension of word position embedding.

Mentionpair edge representation Following themethod
proposed in [6], we feed the representations of mention
pairs into the encoder, which converts sequences into transi-
tion matrices corresponding to edges. The encoder contains
a bidirectional long short-term memory (BiLSTM) and a
multi-layer perceptron (MLP) or BERT. Taking the former
as an example,

ςi, j = MLP
(
Bi LST M

(
si, j

))
, (2)

where si, j = {E(xi, jk )}Ck=1 denotes the representation of the
mention pair,C denotes the number of words in the sentence,
and ςi, j is the edge representation of the mention pair.

Multi-layer learned mention representation The edge
representation of mention pairs is the input to the multi-layer
RNN, and the mention vector representation is learned layer
by layer:

h(n)
i = σ(

∑

j∈N (i)
ς

(n−1)
i, j h(n−1)

j + Wh
(n−1)h(n−1)

i ), (3)

where h(n)
i denotes the hidden vector of the mention node i

in the sentence at n-layer, σ denotes the nonlinear activation
function, N (i) denotes the set of neighbor nodes of the men-
tion node i , and W (n−1)

h denotes a trainable parameter. The
superscript (n) is the RNN layer number, which is uniformly
expressed in the following formulas. Taking inspiration from
the gatedGNN [31], we set the initial vector representation of
the mention node i and j to h(0)

i =[1; 0]T and h(0)
j =[0; 1]T ,

respectively. While the initial vector representations of other
mention nodes are set to zero.

(2) Inter-sentence relation graph

We construct a fully connected inter-sentence relation
graph G2 = (V s, Es), where V s denotes the set of sen-
tences, and each edge (gi , g j ) ∈ Es denotes adjacency (e.g.,
“next sentence” or “previous sentence”), coreference (from
anaphora to their antecedents sentence), or discourse depen-
dency relations (the semantic relations between text units).
We add edges on all sentence node pairs to enhance the
graph’s connectivity.

Context-enhance sentence representation The context-
enhance sentence representation embeds both semantic and
augmented information of sentences into their sentence rep-
resentation. To be more specific, we use sentence embedding
as a basic feature to capture meaningful semantic regulari-
ties.Meanwhile, sentence relative position embedding is also
used to augment the representation.

si, jl = [Xl; v
i, j
l ], (4)

where Xl denotes the sentence embedding of sentence sl , and
v
i, j
l denotes the relative position embedding of sentence sl
relative to the sentence pair. These embeddings are described
below:

• Sentence embedding.: It is represented by the average
value of all word embedding representations in the sen-
tence.

• Sentence relative position embedding.: In the example
in Fig. 1, the relative position of sentence 2 to sen-
tence 1 is 1, and the relative position of sentence 2 to
sentence 4 is -2. Each position marker is mapped to a
dps -dimensional vector through the position embedding
matrix P ∈ R

2∗dps , where dps is the dimension of sen-
tence relative position embedding.

Sentence pair edge representation We feed the repre-
sentations of sentence pairs into the encoder.

ηi, j = MLP(BiLSTM(Di, j )), (5)

where Di, j = {E(si, jl )}Ll=1 denotes the representation of
the sentence pair, L denotes the number of sentences in the
document, and ηi, j is the edge representation of the sentence
pair.

Multi-layer learned sentence representation The edge
representation of sentence pairs is the input to themulti-layer
RNN, and the sentence vector representation is learned layer
by layer:

g(n)
i = σ(

∑

j∈N (i)
η

(n−1)
i, j g(n−1)

j + Wg
(n−1)g(n−1)

i ), (6)
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where g(n)
i denotes the hidden vector of sentence node i at

n-layer, and W (n−1)
g denotes a trainable parameter.

(3) Document graph

Through sentence number embedding, a connecting edge
is established for each mention and the sentence they belong
to, G1 and G2 are aggregated to generate a document graph
G. Following the methods of [32] and [33], to capture both
local and non-local interactions in the document graph, the
document graph simulates information interactions through
a current state transition process so that the final representa-
tion of each sentence captures the information of the entire
document. During the state transition process, each node
exchanges information with all its graph neighbors. After
a certain number of iterations, the probability distribution of
each node converges to a steady state. The document graph
embedding H (n) is expressed as follows:

H (n) = [H (n)
1 ; H (n)

2 ; . . . ; H (n)
L }, (7)

H (n)
l = [h(n)

1 ; h(n)
2 ; . . . ; h(n)

M ; g(n)
l ]. (8)

where H (n)
l denotes the final representation of l-sentence

in the n-iteration, which is composed of the mention vec-
tor representation h(n)

1 , h(n)
2 , . . . , h(n)

M and the sentence vector

representation g(n)
l , and M is the number of mentions in the

l-sentence.
As shown in Fig. 4. By default, the intra-sentence relation

graph and inter-sentence relation graph only exchange infor-
mation at neighbor nodes. To expedite information exchange,
the size of the neighbor window is increased to allow more
nodes to communicate at each state transition. For the k-
th state transition, the size of the neighbor window can be
expanded by k words in sequence. For example, in the sec-
ond iteration, the neighbor range of h(2)

i in (3) is enlarged

to [h(1)
i−2, h

(1)
i−1, h

(1)
i , h(1)

i+1, h
(1)
i+2], and the neighbor range of

g(2)
i in (6) is enlarged to [g(1)

i−2, g
(1)
i−1, g

(1)
i , g(1)

i+1, g
(1)
i+2]. With

increasing iterations, themention and sentencenodes become
increasingly richer in contextual information.

Different layers of the document graph can represent the
features at different abstraction levels of the l-sentence, all of
which are crucial to the final representation of the l-sentence.
To cover the features at all levels, we connect the repre-
sentations of each level of the l-sentence to form the final
representation Hl of the l-sentence.

Hl = [H (0)
l , H (1)

l , . . . , H (n)
l ]. (9)

3.2.2 Selective attention subgraphmodule

The selective attention subgraph module utilizes selective
attention to select sentences related to the entity pair, thereby
generating document subgraphs as the scope ofRE.The input
of this module is the final representation of each sentence
and the entity pair

(
ei , e j

)
, and the output is the document

subgraph G ′. The main workflow contains two steps:
Step 1:Calculating the correlation between each sentence

and the entity pair; then, select the most relevantm sentences
according to the correlation result.

Step 2: Aggregating m sentences into the document sub-
graph as the scope of RE.

For a given entity pair (ei , e j ), the correlation between
each sentence and the entity pair can be expressed as follows:

ai, jl = exp(qi, jl )
∑L

k=1 exp(q
i, j
k )

, (10)

qi . jl = HT
l Aεi, j , (11)

εi, j = MeanPooling([ei ; e j ]), (12)
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ei = log

Nei∑

j=1

exp(h j ). (13)

Where ai, jl denotes the normalized attention weight of each

sentence vector, qi . jl denotes a query-based function to mea-
sure how well the input sentence and the entity pair match, A
denote aweighted diagonalmatrix, and εi, j denotes the query
vector associated with entity pair (ei , e j ). For an entity ei
withmultiple mentions

{
h j

}nei
j=1, where nei denotes the num-

ber of mentions for entity ei , we apply logsumexp pooling
[34], a smooth version of max pooling, to obtain the hidden
vector representation of the entity.

Based on the order of relevance of each sentence, m
sentences are selected and spliced to obtain the subgraph
G ′ = {sk}mk=1. Finally, we define the conditional probability
P(G ′|ei , e j ,G, θ) of the document subgraph through soft-
max layer.

P(G ′|ei , e j ,G, θ) = exp(oi, j )∑
u,v∈V e exp

(
ou,v

) , (14)

oi, j = εi, j g
′
i, j + di, j , (15)

g
′
i, j =

∑m

k=1
ai, jk Hk . (16)

where oi, j denotes the output vector representation of the
subgraph, di, j denotes the bias vector, and g

′
i, j is computed

as a weighted sum of all sentence vectors on the subgraph.

3.2.3 Path reasoningmodule

The path reasoning module explicitly models multiple asso-
ciated paths with different lengths between two entities,
thereby forming a unified representation of the reasoning
chain, which is used to extract the intra-sentence, inter-
sentence relations, and supporting evidence. The input of this
module is the document subgraph G ′ and the entity embed-
ding representation, and the output is the set of triples T and
supporting evidence E in the document. The main workflow
contains three steps:

Step 1:Constructing direct and indirect paths between the
entity pair. The direct path indicates that the entity pair is in
a sentence, whereas the indirect path indicates that the entity
pair is not in the same sentence and that their intermediate
paths need to be combined.

Step 2: Combining the direct and indirect paths to form a
unified path representation.

Step 3: Using the unified path representation to predict
the probability of the relation existing in the entity pair.

Path construction Reasoning paths between entities can
be divided into direct paths and indirect paths. The direct
path construction represents the direct relation information
obtained from the subgraph G ′ as follows:

χi, j =
[[

e(1)
i � e(1)

j

]T ;
[
e(2)
i � e(2)

j

]T ; ...;
[
e(K )
i � e(K )

j

]T ]
.

(17)

The indirect path represents the indirect relation information
obtained from the subgraph G ′ using the following modified
bilinear transformation:

f
(
χi,k, χk, j

) = σ
(
χi,k � (

Wrχk, j
))

, (18)

where χi, j denotes the path representation between node
ei and e j , � denotes element-wise multiplication, and K
denotes the level of the path reasoning module, which will be
discussed in detail in the experimental section. Wr denotes
a trainable weight matrix, σ denotes a sigmoid non-linear
activation function.

Path aggregation. We use linear interpolation to aggre-
gate direct and indirect paths as follows:

ri, j = αχi, j + (1 − α)
∑

k �=i, j
f
(
χi,k, χk, j

)
, (19)

where α ∈ [0, 1] is used to describe the relative weight
between the direct and indirect paths. If the direct path pro-
vides a suitably reliable prediction, then we do not need to
focus on indirect path information; moreover, the sentence
on the reasoning path is marked as supporting evidence Eri, j

.
Relation classification. We use a single linear layer and

a sigmoid activation function to calculate the probability of
relation ri, j on the subgraph G ′.

P(ri, j |ei , e j ,G ′, θ) = σ(Linear
(
ri, j

)
). (20)

In general, the relation probability P(ri, j |ei , e j ,G, θ)

between the entity pairs (ei , e j ) in the document can be cal-
culated as follows:

P(ri, j |ei , e j ,G, θ) =
∑

G ′ P(ri, j |ei , e j ,G ′, θ)P(G ′|ei , e j ,G, θ).

(21)

For a given document, we use cross-entropy for the clas-
sification loss function; that is,

L =
∑

i �= j

∑

ri, j∈R
log P(ri, j |ei , e j ,G, θ). (22)
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Table 2 Statistics of the
datasets used in the experiments

Statistics/Dataset DocRED DocRED CDR GDA
(human-annotated) (distantly supervised)

Training set 3,053 101,873 500 23,353

Development set 1,000 1,000 500 5,839

Test set 1,000 1,000 500 1,000

Relations 97 97 2 2

4 Experiments

In this section, we perform experiments on three widely-used
DocRE datasets to verify the effectiveness of our proposed
method.

4.1 Datasets and evaluationmetrics

DocRED1 [35] is a general large-scale DocRE dataset
constructed by Wikipedia and Wikidata. The dataset con-
tains two different versions: human-annotated and distantly
supervised. The human-annotated dataset includes entity
mentions, entity types, relation instances, and correspond-
ing supporting evidence, whereas the distantly supervised
dataset does not contain supporting evidence. This is mainly
because the construction process of the distantly supervised
dataset mainly uses fine-tuned BERT to identify entities, link
them toWikidata data, and obtain relation labels through dis-
tantly supervised.

CDR2 [36] is a human-annotated dataset in the biomedical
field. This dataset represents a binary classification task that
identifies induced relations between chemicals and diseases,
which is of immense significance in biomedical research.

GDA3 [37] is a large-scale distantly supervised dataset in
the biomedical field. This dataset also represents a binary
classification task that identifies the interaction between
genes and disease concepts. It contains 29,192 documents for
training and 1,000 documents for testing. Based on previous
settings [15], the original training set is divided into training
and development sets. The statistics of the three datasets are
presented in Table 2.

Considering some relation instances present in the training
and dev/test sets at the same time, the model may mem-
orize their relation during training and perform better on
the dev/test set, thereby introducing evaluation bias. There-
fore, we adopted F1 and IgnF1 as evaluation metrics in the
DocRED dataset, where IgnF1 denotes the F1 score that
ignores the triples that appear in the training sets. The results

1 https://github.com/thunlp/DocRED
2 https://biocreative.bioinformatics.udel.edu/media/store/files/2016/
CDR_Data.zip
3 https://bitbucket.org/alexwuhkucs/gda-extraction/get/
fd4a7409365e.zip

of the DocRED test set were evaluated through CodaLab 4.
In addition, to assess the inter-sentence reasoning ability of
the model on the biomedical dataset, we divided the test set
into two parts based on whether an entity pair exists in the
same sentence; thereafter, we reported the evaluation results
of Intra-F1 and Inter-F1, respectively.

4.2 Baselinemodels

Our proposed SAPR-GNN is compared with some state-of-
the-art DocRE methods. These baselines can be divided into
three groups.

• Sequence-based Models. These models use different
neural network architectures to encode sentences in a
document, including CNN [10], LSTM [11], BiLSTM
[12], and Context-aware [13] models. The first three
models differ only in terms of the encoder used to encode
the document. Context-aware models combine contex-
tual information with an attention mechanism to predict
relations between entity pairs.

• Graph-based Models. These models construct the doc-
ument graph for reasoning. GCNN [14] constructs a
document-level graph using coreference links and then
applies a relational GCN for reasoning. EoG [15] is an
RE model used in the biomedical field; it uses differ-
ent nodes and edges to create the document graph and
utilizes the edge reasoning mechanism to learn intra-
sentence and inter-sentence relations.AGGCN [17] uses
attention-guided GCN to transform the original depen-
dency tree into a fully connectedweightedgraph,which is
used to encode the relation between sentences. LSR [18]
automatically generates potential document-level graphs
and then utilizes refinement strategies to aggregate the
relevant information to gradually achieve cross-sentence
relational reasoning. GAIN [19] introduce graph aggre-
gation and inference network to better cope with DocRE,
which features double graphs in different granularity.

• Transformer-based Models. These models are fine-
tuned for the DocRE dataset. HIN [20] introduced a
hierarchical inference network to aggregate inference
information fromentity level to sentence level, andfinally

4 https://competitions.codalab.org/competitions/20717#results
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to document level. ATLOP [21] introduced two novel
technologies, namely adaptive thresholding and local-
ized context pooling, to solvemulti-label andmulti-entity
problems. SSAN [22] formalizes the entity structure for
DocRE. It designs two transformation modules inside
each self-attention block to produce attentive biases to
adaptively regularize its attention flow. Its best model
SSAN+Adaptation utilizes the distantly supervised data
from DocRED to first pre-train SSAN before fine-
tuning the annotated training set for better adaptation,
which alleviates a distribution gap between parameters in
newly introduced transformation layers and those already
pre-trained ones. DocuNet [23] propose a document
U-shaped network for DocRE. SAIS [24] propose to
explicitly teach themodel to capture relevant contexts and
entity types by supervising and augmenting intermediate
steps for RE. KD-Rb [38] proposed a novel framework
for DocRE, based on knowledge distillation, axial atten-
tion, and adaptive focal loss.

4.3 Experiment settings

Experiment environment.we use the PyTorch open-source
machine learning library 5 [39] to build ourmodel.Allmodels
were trained and tested on an NVIDIATesla V100GPUwith
16GB of graphics memory.

Hyperparameter settings. In our experiments, we tuned
the hyperparameters on the dev set. we used the Adam
optimizer [40] with the cross-entropy loss function to train
the model. The word embedding dimension was set to
100; the dimensions for coreference embedding, entity type
embedding, word position embedding, and sentence rela-
tive position embedding were set to 20; and the hidden
size of BiLSTM was 256. We selected the nonlinear acti-
vation functions in ReLU and tanh with the learning
rate λ ∈ {0.1, 0.01, 0.001, 0.0001} and dropout rate in
{0.1, 0.2, 0.3, 0.4, 0.5}. The early stopping mechanism was
used to determine the best training epoch [41]. We tuned
the hyperparameters on the dev set. With the ReLU activa-
tion function and the learning rate and the dropout rate of
0.001 and 0.5, respectively, our model achieved the best per-
formance. In addition, The dev set of the human-annotated
DocRED dataset statistics indicates that the average number
of supporting evidence for relation instances in each doc-
ument is 2.6. Therefore, we set the maximum number of
sentences contained in the subgraph to 3. After calculating
the attentionweights (10), we selected the top three sentences
with the largest weights to generate a subgraph.

5 https://pytorch.org

We also used different pre-trained language models as
the encoder in the experiment. For the DocRED dataset, we
utilized the BERT-base [42] or Roberta-large models[43];
For the CDR and GDA datasets, we utilized the SciBERT-
base model [44], which is pre-trained on the scientific
publication corpora. The learning rate λ was selected from
{1e − 5, 2e − 5, 3e − 5, 4e − 5, 5e − 5}. The learning rate
for fine-tuning BERT is 5e-5, that for fine-tuning SciBERT
or distant pretrain is 2e-5, and the dropout rate of 0.1, our
model obtained the best performance.

4.4 Extraction result comparison

Results onDocREDhuman-annotated dataset.The exper-
iment results on DocRED are reported in Table 3.

1) ForSequence-basedmodels,we canobserve thatContext-
aware consistently outperforms all baselines on the dev
set. The results demonstrate that rich contextual informa-
tion is essential; however, this method ignores whether
contextual relation participates in the relational reasoning
process of the entity pair. Therefore, Context-aware could
not significantly outperform other models on the test set,
and our model outperformed all sequence-based models
consistently. Compared with BiLSTM, GloVe+SAPR-
GNN (#layers = 3) yielded a 5.49% improvement in F1
on the test set.

2) For Graph-based models, Our model consistently obtains
the best score than baselines. Compared with static graph
models, GloVe+SAPR-GNN (#layers = 3) achieves an
improvement of F1 on the test set by 4.93% (GCNN)
and 4.73% (EoG). The comparison results demonstrate
that the static graph model cannot capture the complex
interactions in the document. Compared with atten-
tion mechanism-based graph models, GloVe+SAPR-
GNN (#layers = 3) achieves an improvement of F1
on the test set by 5.10% (AGGCN). Compared with
GloVe+LSR/GloVe+GAIN, GloVe+SAPR-GNN (#lay-
ers = 3) achieves an improvement of F1 on the test set
by 2.37%/1.47%. That means that our model can make
full use of sentences related to the entity pair and combine
path reasoning for better RE in the document.

3) ForTransformer-basedmodels, BERT+SAPR-GNN (#lay-
ers = 3) outperforms most models by an improvement of
F1 on the test set, which further indicates that SAPR-
GNN can offer consistent and robust improvements. We
can also observe that compared with GloVe+SAPR-GNN
(#layers = 3), BERT+SAPR-GNN (#layers = 3) achieves
an improvement of 6.25%. The comparison results show
that using a transformer as a context encoder can sig-
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nificantly improve the performance of RE. When using
Roberta-large as the encoder, the Roberta+SAPR-GNN
(#layers=3) model achieved an F1 score of 63.90.

As shown inTable 3, distantly superviseddata can improve
the performance of DocRE. We conducted experiments
to leverage the distantly supervised data to improve our
model performance.ComparedwithRoBERTa+SAPR-GNN
(#layer=3), SAPR-GNN+Adaptation achieves an improve-
ment of F1 on the test set by 1.84%. Besides, we also

found that SSAN+Adaptation and KD-Rb also have certain
competitive advantages. This is mainly because SSAN incor-
porates these structural dependencies within the standard
self-attention mechanism and throughout the overall encod-
ing stage. KD-Rb uses knowledge distillation to overcome
the differences between human-annotated data and distantly
supervised data. Moreover, KD-Rb also tackles the under-
explored class imbalance problem and the two-hop logical
reasoning problem. We plan to integrate the advantages of
these works in our future work to improve the effectiveness
of our model.

Table 3 Performance of
different baseline models and
SAPR-GNN on the DocRED
human-annotated dataset, where
the numbers in boldface indicate
the best results

Model Dev Test
IgnF1 F1 IgnF1 F1

CNN* [35] 41.58 43.45 40.33 42.26

LSTM* [35] 48.44 50.68 47.71 50.07

BiLSTM* [35] 48.87 50.94 48.78 51.06

Context-Aware* [35] 48.94 51.09 48.40 50.70

GCNN‡ [14] 46.22 51.52 49.59 51.62

EoG‡ [15] 45.94 52.15 49.48 51.82

AGGCN‡ [17] 46.29 52.47 48.89 51.45

GloVe+LSR* [18] 48.82 55.17 52.15 54.18

GloVe+GAIN* [19] 53.05 55.29 52.66 55.08

GloVe+SAPR-GNN (#layers = 1) 49.20 53.50 50.25 52.45

GloVe+SAPR-GNN (#layers = 2) 52.20 55.90 51.95 54.80

GloVe+SAPR-GNN (#layers = 3) 54.20 57.40 53.35 56.55

BERT+HIN* [20] 54.29 56.31 53.70 55.60

BERT+SSAN* [22] 57.03 59.19 55.84 58.16

BERT+LSR* [18] 52.43 59.00 56.97 59.05

BERT+GAIN* [19] 59.14 61.22 59.00 61.24

BERT+ATLOP* [21] 59.22 61.09 59.31 61.30

BERT+DocuNet* [23] 59.86 61.83 59.93 61.86

BERT+SAIS* [24] 59.98 62.96 60.96 62.77

BERT+SAPR-GNN (#layers = 1) 55.27 59.39 54.15 58.26

BERT+SAPR-GNN (#layers = 2) 58.21 61.92 57.76 60.65

BERT+SAPR-GNN (#layers = 3) 60.22 63.09 60.70 62.80

RoBERTa+SSAN* [22] 60.25 62.08 59.47 61.42

RoBERTa+ATLOP* [21] 61.32 63.18 61.39 63.40

RoBERTa+DocuNet* [23] 62.23 64.12 62.39 64.55

RoBERTa+SAIS* [24] 62.23 65.17 63.44 65.11

RoBERTa+SAPR-GNN (#layers = 1) 56.46 60.26 55.39 59.31

RoBERTa+SAPR-GNN (#layers = 2) 59.47 62.70 59.00 61.78

RoBERTa+SAPR-GNN (#layers = 3) 61.45 64.06 61.80 63.90

SSAN+Adaptation* [22] 63.76 65.69 63.78 65.92

KD-Rb* [38] 65.27 67.12 65.24 67.28

SAPR-GNN+Adaptation 63.26 65.33 63.39 65.74

∗ indicates that the results are reported from their original papers. ‡ indicates that the results are reported from
[18]
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Results on biomedical datasets.Table 4 shows the exper-
iment results on biomedical datasets CDR and GDA. Our
proposed SciBERT+SAPR-GNN (#layers = 3) consistently
obtains the best score than most baseline models. The com-
parison results demonstrate the applicability and generality
of our model. Similar performance gains are also observed in
SAIS, this is mainly because SAIS captures textual contexts
and entity types information for RE similar to ourmodel. The
difference is SAIS extracts relations of better quality due to
more effective supervision and retrieves the corresponding
supporting evidencemore accurately due to Pooled Evidence
Retrieval (PER) and Fine-grained Evidence Retrieval (FER),
where PER distinguishes entity pairs with and without valid
supporting sentences and FER output more interpretable evi-
dence unique to each valid relation of an entity pair. We plan
to exploit these modules in our further work that improves
the effect of RE.

We also observe that most models trained with CDR
data were superior to that trained with GDA data for inter-
sentence RE, which attribute this behavior to the fact that
there are only a few inter-sentence relations in the GDA
dataset, which led to insufficient training of these models.
However, another phenomenon is that the DHG method out-
performs all baseline models in the inter-sentence setting
in GDA. This is mainly because DHG adds entity-to-entity
complement edges in the second-tiar layer, this type of edge
can prevent having disconnected graphs and enhance the
multi-hop reasoning ability.

Effect of layer number. The number of layers represents
the reasoning ability of our models. A K-layer version can
infer K-hop relations. To explore the impact of the num-
ber of layers, we also compare our models with different
numbers of layers. From Tables 3 and 4, we could see that
on all three datasets, the 3-layer version achieves the best,

indicating considering more hops in reasoning leads to bet-
ter performance. However, neither the shallowmodel nor the
deepmodel works very well. One possible reason is that only
collecting information from the nearest neighbor nodes is not
enough to identify the relation between two entities. In con-
trast, when the layer number is above 3, any two nodes in the
same graph are accessible, which may introduce redundant
information and hinder the inference.

4.5 Supporting evidence prediction

In this section, we further explore the performance of our
model for supporting evidence prediction on the DocRED
dev set. On the one hand, supporting evidence can provide
better explainability for predicted relation instances. On the
other hand, identifying supporting evidence and reasoning
relational facts from the text are naturally dual tasks with
potential mutual enhancement.

Moreover, most earlier approaches are not capable of
supporting evidence prediction despite the explainability
supporting evidence prediction can increase the predictive
performance of the model. In contrast, BERT+SAPR-GNN
(#layers = 3) establishes a new state-of-the-art result on sup-
porting evidence prediction. As shown in Table 5, we also
observe that GloVe+SAPR-GNN is significantly superior
to the heuristic predictor and neural predictor. The heuris-
tic predictor considers all sentences containing the head or
tail entity as supporting evidence, introducing substantial
irrelevant supporting evidence, which reduces the accuracy
of the supporting evidence prediction. The neural predictor
first converts sentences into input representations by con-
catenating word and position embedding. It then feeds the
representations into a BiLSTM encoder for contextual repre-
sentation. Finally, the output of the BiLSTM is concatenated

Table 4 Results were obtained with CDR and GDA test datasets, where the numbers in boldface indicate the best results

Model CDR GDA
F1 Intra-F1 Inter-F1 F1 Intra-F1 Inter-F1

EoG* [15] 63.6 68.2 50.9 81.5 85.2 49.3

LSR* [18] 61.2 66.2 50.3 79.6 83.1 49.6

LSR w/o MDP Nodes* [18] 64.8 68.9 53.1 82.2 85.4 51.1

DHG [28]* 65.9 70.1 54.6 83.1 85.6 58.8

SAIS [24]* 79.0 – – 87.1 – –

PubMed/Random+SAPR-GNN (#layers = 1) 57.2 61.4 46.3 75.1 78.5 44.9

PubMed/Random+SAPR-GNN (#layers = 2) 59.2 63.0 48.2 77.3 80.3 46.2

PubMed/Random+SAPR-GNN (#layers = 3) 61.6 65.4 50.8 79.4 82.2 48.3

SciBERT+SAPR-GNN (#layers = 1) 63.2 67.1 52.4 81.7 84.2 51.5

SciBERT+SAPR-GNN (#layers = 2) 64.3 68.2 52.9 82.7 85.9 51.9

SciBERT+SAPR-GNN (#layers = 3) 67.8 72.4 56.1 83.9 88.4 53.2

∗ indicates that the results are reported from their original papers. We also present the intra-F1 and inter-F1 for further analysis

123



Graph neural networks with selective attention and path 5365

Table 5 Performance of supporting evidence prediction in F1 measure-
ment, where the numbers in boldface indicate the best results

Model Dev Test

Heuristic predictor [35] 36.21 36.76

Neural predictor [35] 44.07 43.83

GloVe+SAPR-GNN (#layers = 1) 45.85 44.25

GloVe+SAPR-GNN (#layers = 2) 47.38 46.02

GloVe+SAPR-GNN (#layers = 3) 49.96 48.75

BERT+E2GRE [45] 47.12 –

BERT+Eider [46] 50.71 51.27

BERT+SAIS [24] 53.70 52.88

BERT+SAPR-GNN (#layers = 1) 51.25 50.25

BERT+SAPR-GNN (#layers = 2) 53.36 52.63

BERT+SAPR-GNN (#layers = 3) 55.48 54.75

at the first and last positions with a trainable relation embed-
ding to obtain the representation of a sentence, which is used
to predict whether the sentence is adopted as supporting evi-
dence for the given relation instance. The neural predictor
ignores the role of the intermediate path in the path reasoning
process, leading to a lower recall in the supporting evidence
prediction. Our model SAPR-GNN can reduce the influ-
ence of irrelevant sentences through selective attention and
path reasoning mechanism to obtain an effective reasoning
path. In this manner, a reliable balance is achieved between
precision and recall, and the best F1 score is obtained. Fur-
thermore, based on the order in which sentences appear on
the reasoning path, the order of supporting evidence extrac-
tion can be determined, thus providing better explainability
for DocRE.

5 Analysis and discussion

In this section, we use the DocRED dev set to analyze and
discuss model complexity, the impact of different supporting
evidence, ablation experiments, case studies, and visualiza-
tion analysis of selective attention. The experiments were
conducted with the following five research objectives:

• Evaluating the computational complexity of our pro-
posed SAPR-GNN.

• Analyzing the extraction performance of themodel under
different numbers and types of supporting evidence.

• Analyzing the impact of the network structure and
features of our proposed SAPR-GNN on the model
extraction performance.

• Showing the actual effect of our proposed SAPR-GNN
and other baseline models in real cases.

• Quantifying the distributionof selective attentionweights
and providing explainable analysis for the selection of
supporting evidence.

5.1 Complexity analysis

In this subsection, the complexity analysis of our proposed
SAPR-GNN is provided. The computational complexity of
our proposed SAPR-GNN is the sum of the three sub-
modules. Suppose there are m sentences in a document and
that each sentence has ni mentions. In the GNN–RNN mod-
ule, all mention nodes are fully connected, and their time

complexity is
m∑

i=1
n2i . Additionally, all sentence nodes are

fully connected, and their time complexity is m2. In the
selective attention module, the upper bound on the num-
ber of sentences contained in the generated subgraph is
m. In the path reasoning module, suppose there is n̄ men-
tions on average in each sentence of the document and mn̄
mentions in the subgraph, and that the average length of
path reasoning is (mn̄−1)

2 . The overall complexity is then
m∑

i=1
n2i +m2+m+ (mn̄−1)

2 . Assuming the number of iterations

of the model is a constant j , the computational complexity
of our proposed SAPR-GNN is:

O( j(
m∑

i=1

n2i +m2 +m + (mn̄ − 1)

2
)) = O(mn̄2 +m2). (23)

According to the statistics on the DocRED dev set, we
found that the average number of sentences in each docu-
ment m is 8.1 and that the average number of mentions in
each sentence n̄ is 3.5. Therefore, the average computational
complexity isO(mn̄2+m2), which is only related to the num-
ber of sentences in the document and the average number of
mentions in the sentence.

To compare the computational cost of SAPR-GNN and
baseline models (SSAN/ATLOP/DocuNet), we conduct an
experiment about the time cost. Experiments show that train-
ing and testing our model requires 6h on a single Tesla V100
GPU, while baseline models require 9h∼11h on the same
GPU, which shows SAPR-GNN runs 1.5∼1.8 faster than
baseline models, it has a significant reduction in computa-
tional cost. This is mainly because SAPR-GNN employs
a selective attention subgraph module to select the most
relevant sentences, which can filter out meaningless sen-
tences, and utilize these selected sentences to predict the
relation. However, the computational complexity of these
baseline models is similar to that of BERT, and its value is
o

(
seq_len∧2

)
(seq_len is the length of the entire document

sequence). Besides, we note that when SAIS is uncertain
about its original predictions, it applies evidence-based data
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augmentation with ensemble inference to boost the model’s
RE performance after the training of SAIS. However, SAIS
sets a low rejection rate so that data augmentation on a small
rejected set reduces the computational cost. Therefore, SAIS
and our model have certain advantages in terms of computa-
tional cost.

5.2 Supporting evidence analysis

In this section, the analysis of the supporting evidence is pro-
vided. It should be noted that when the RE model predicts a
wrong relation, it is not possible to directly determine sen-
tences that were used as supporting evidence. In this case,
computing precision is infeasible. Therefore, we used the
recall rate, as indicated in the following two subsections, to
measure the extraction performance of our proposed SAPR-
GNN under different supporting evidence.

Different numbers of supporting evidence. To analyze
how different numbers of supporting evidence affect the
performance of our proposed model, we conducted recall
experiments on relation instances with different numbers of
supporting evidence. The experiment results are shown in
Fig. 5.

The recall of 2-3 and 4-5 seems lower than the recall of
0-1 for most models. This is mainly because supporting evi-
dence is positively correlated with the number of hops in
path reasoning. The scope of path reasoning increases with
increasing supporting evidence, which leads to an increase
in the difficulty of reasoning.We also observed that when the
number of supporting evidence items exceeds seven, the per-
formance of other models decreases. This is mainly because
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Fig. 5 Recall of relation instances under different numbers of support-
ing evidence. The number in brackets is the number of relation instances
with the given number of supporting evidence

there are very few samples with more than seven supporting
evidence items on the dev set, which affects the performance
of othermodels.However, the performance ofBERT+SSAN,
BERT+HIN, and BERT+SAPR-GNN continues to increase
gradually, and BERT+SAPR-GNN consistently outperforms
the two other models. With an increasing number of sup-
porting evidence, this improvement becomes larger. This is
mainly because our proposed SAPR-GNN introduces cross-
sentence relation path reasoning, and always performs the
best on inter-sentence relation prediction (more than one evi-
dence sentence), thus improving the DocRE performance.

Different types of supporting evidence. To investigate
the difficulty of synthesizing information from different
types of supporting evidence, we divided the 12,323 rela-
tion instances on the dev set into three different types:

• Single relation instance. In 6,111 relation instances,
only one supporting evidence is needed to predict the
relation instance.

• Mix relation instance. In 1,059 relation instances, mul-
tiple supporting evidences are needed to predict the
relation instance, and the entity pair co-occur in at least
one supporting evidence.

• Multiple relation instance. In 4,666 relation instances,
multiple supporting evidences are needed to predict the
relation instance, and the entity pair do not co-occur
in any supporting evidence. The relation between entity
pairs can only be extracted frommultiple supporting evi-
dence.

The distribution of the number of supporting evidence in
Mix andMultiple types is shown in Fig. 6. In Fig. 6a, 88.57%
of the relation instances require 2-3 supporting evidence, and
10.48% of the relation instances need 4-5 supporting evi-
dence. In Fig. 6b, 93.68% of the relation instances need 2-3
supporting evidence, and5.74%of the relation instances need
4-5 supporting evidence. The number of relation instances
with six or more supporting evidence is relatively small;
therefore, it is more challenging to extract relation instances
with more than six supporting evidence.

We also compared the recall of our proposed SAPR-GNN
and the baseline model on DocRE under three different
types of supporting evidence. The experiment results are
presented in Table 6. Although multiple supporting evi-
dence can provide additional supplementary information, the
extraction performance is not comparable to that achieved
with single supporting evidence. It is challenging to inte-
grate global information among multiple supporting evi-
dence. Compared with BiLSTM, both GloVe+SAPR-GNN
and BERT+SAPR-GNN achieved improvement under dif-
ferent types of supporting evidence. We also found that
BERT+SAPR-GNN (#layers = 3) achieved significantly bet-
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Fig. 6 Distribution of the
number of supporting evidence
in the mix and multiple types
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ter results than BERT+SSAN and BERT+ATLOP under
multiple relation instances. This is mainly because ourmodel
can perform path reasoning, transfer information between
multiple sentences, and facilitate intra-sentence and inter-
sentence RE tasks.

5.3 Ablation study

To study the contributions of different modules in our model,
we run an ablation study on the DocRED dev set. We show
the results of the ablation study in Table 7.

In terms of network structure, whenwe remove theG1, we
initialize a mention node with (3) but replace h(n)

i with h(0)
i .

WithoutG1, the performance of BERT+SAPR-GNN sharply
drops by 2.08% and 2.23% in the IgnF1 and F1 scores on the
dev set. This drop shows that G1 plays a vital role in cap-
turing interactions among mentions belonging to the same
sentence. when we remove the G2. In detail, we initialize
a mention node with (6) but replace g(n)

i with g(0)
i . Without

G2, the performance ofBERT+SAPR-GNNsharply drops by
1.92% and 2.06% in the IgnF1 and F1 scores on the dev set.
This drop shows that G2 plays a vital role in capturing inter-
actions among sentences belonging to the same document.

Table 6 Recall of models on relation instances with different types of
supporting evidence, where the numbers in boldface indicate the best
results

Model Single Mix Multiple

BiLSTM [35] 51.10 49.40 46.60

BERT+SSAN [22] 58.83 62.51 52.08

BERT+ATLOP [21] 61.81 64.87 51.24

GloVe+SAPR-GNN (#layers = 1) 51.50 50.25 47.35

GloVe+SAPR-GNN (#layers = 2) 53.42 51.38 48.63

GloVe+SAPR-GNN (#layers = 3) 57.22 55.25 52.16

BERT+SAPR-GNN (#layers = 1) 57.55 55.50 52.92

BERT+SAPR-GNN (#layers = 2) 59.36 57.49 54.36

BERT+SAPR-GNN (#layers = 3) 61.03 59.25 56.32

We also observe that the contribution of G1 to document
graph representation is more, this is mainly because there
are 52% intra-sentence relations on the dev set. Next, we
remove the selective attention subgraph module, and the per-
formance of BERT+SAPR-GNN decreases on the dev set, as
indicated by a reduction of 1.84% and 1.97% in the IgnF1
and F1 score, respectively. This is mainly because the selec-
tive attention subgraph module can reduce the influence of
irrelevant sentences. Moreover, taking away the path reason-
ing module leads to 5.80% and 5.97% in the IgnF1 and F1
score decrease. This implies that the path reasoning module
is available to infer the relation between entities.

In terms of features, the entity type offers the most signifi-
cant effect,mainly because it directly affects the relation type.
The sentence number and relative position are crucial for
identifying cross-sentence relations and extracting support-
ing evidence from documents; in addition, coreference and
word position are essential for synthesizing information from
multiple mentions. When we removed all augment represen-
tation, the IgnF1 and F1 of BERT+SAPR-GNN decreased
by 4.05% and 3.66%, respectively, on the dev set. This

Table 7 Ablation study of BERT+SAPR-GNN on the DocRED dev
set. We exclude one module or feature in the model at a time, where the
numbers in boldface indicate the best results

Setting IgnF1 F1

BERT+SAPR-GNN 60.22 63.09

w/o G1 module 58.14 60.86

w/o G2 module 58.30 61.03

w/o Selective attention subgraph module 58.38 61.12

w/o Path reasoning module 54.42 57.12

w/o Entity type 58.21 60.81

w/o Sentence number 58.70 61.56

w/o Sentence relative position 58.95 61.72

w/o Coreference 59.26 62.57

w/o Word position 59.45 62.84

w/o Augment representation 56.17 59.43
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implies that the participation of multi-channel information
can enhance the expression ability of BERT+SAPR-GNN at
the entity mention and sentence level.

5.4 Case study

In this subsection, the case study of our proposed SAPR-
GNN is provided. Our goal here is to predict the relationship
between the entity pair (Japan,World War I I ). The results
are reported in Fig. 7, we found that:

1) In BERT+SAPR-GNN (#layers = 1), the mention inter-
acts with local mentions in the same sentence, such
as “World War II” and “Lark Force”, “World War II”
and “Australian Army”. The experimental result shows
that information is propagated locally at this step. In
BERT+SAPR-GNN (#layers = 2), the mention inter-
acts with several non-local mentions, such as “Australian

Army” and “Lark Force”, “World War II” and “Imperial
JapaneseArmy”, “Imperial JapaneseArmy” and “Japan”.
The experimental result shows that information starts to
propagate globally at this step. Through such intra- and
inter-sentence information interaction, the relation of the
entity pair (Japan, World War I I ) can be predicted
as “participant of” by BERT+SAPR-GNN (#layers = 3),
which is denoted by P1344.

2) Context-aware and AGGCN methods only predicted the
relations P607 and P17; thus, they failed to predict the
entity pair (Japan, World War I I ) with the relation
P1344. LSR andBERT+SAPR-GNN can predict the rela-
tion accurately. This shows that the iterative refinement
strategy of LSR and multi-hop reasoning of SAPR-GNN
can help the model perform better relational reasoning.

3) LSR assigns a relatively high score to “New Ireland”.
There is no relation between (New I reland,World War
I I ). SAPR-GNN can make full use of the relevant sen-

[1] Lark Force was an Australian Army formation established in

March 1941 during World War for service in New Britain and

New Ireland. .

[4] Most of Lark Force was captured by the Imperial Japanese
Army after Rabaul and Kavieng were captured in January 1942.

[5] The officers of Lark Force were transported to Japan, however

the NCOS and men were unfortunately torpedoed by the USS

Sturgeon while being transported aboard the Montevideo Maru.

Subject: Japan
Object: World War 
Relation: participant of 

Ground Truth

ContextAware AGGCN LSR

BERT+SAPR-GNN
(#layers=1)

New Ireland

Lark Force

Japan

Imperial Japanese

Army

Australian 

Army World War 

BERT+SAPR-GNN
(#layers=2)

BERT+SAPR-GNN
(#layers=3)

Fig. 7 Case study of an example from the DocRED dev set, where P17 denotes “country,” P137 denotes “operator,” P607 denotes “conflict,” and
P1344 denotes “participant of.” In addition, we visualize the reasoning process of BERT+SAPR-GNN to predict the relation of the entity pair
(Japan, World War I I )
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[1 ]Lark Force was an Australian Army formation established in March 1941

during World War II for service in New Britain and New Ireland. [2]Under the 

command of Lieutenant Colonel John Scanlan, it was raised in Australia and 

deployed to Rabaul and Kavieng, aboard SS Katoomba, MV Neptuna and HMAT 

Zealandia, to defend their strategically important harbours and airfields. [3]The 

objective of the force, was to maintain a forward air observation line as long as 

possible and to make the enemy fight for this line rather than abandon it at the 

first threat as the force was considered too small to withstand any invasion.

[ 4 ] Most of Lark Force was captured by the Imperial Japanese Army after 

Rabaul and Kavieng were captured in January 1942. [ 5 ] The officers of Lark 
Force were transported to Japan, however the NCOs and men were unfortunately 

torpedoed by the USS Sturgeon while being transported aboard the Montevideo 

Maru. [ 6 ] Only a handful of the Japanese rew were rescued, with none of the 

between 1,050 and 1,053 prisoners aboard surviving as they were still locked 

below deck.

Ground Truth: participant of

The Prediction of SAPR-GNN: participant of

Fig. 8 (a) Document containing six sentences. Words in red are target entities, words in blue are non-target entities, and the evidence sentences are
underlined. (b) Visual results of selective attention on the DocRED development set; the deeper color indicates a greater weight

tences in the document and incorporate the multi-path
reasoning mechanism to eliminate the existence of such
empty relations.

5.5 Visualization analysis of selective attention

Figure 8 shows the visualization analysis of selective atten-
tion. As shown in Fig. 8a, the red word in the figure is the
target entity, the blue word is the non-target entity, and the
underlined sentence is the supporting evidence. It should be
noted that since only supporting evidence is marked on the
dev set, the attention weight is not marked. Inspired by Li
et al. [47], it is assumed that the weight of the four support-
ing evidence is 0.25, respectively, and then it is compared
with the first four sentences with the largest attention weight
generated by our model to judge whether the real supporting
evidence is consistent with the predicted results. As shown
in Fig. 8b, The “Evidence” row shows the actual attention
weights of sentences in the document, and the “S-weight”
row shows the attention weights generated by our model.

In Fig. 8, we can observe that the supporting evidence
predicted by our model is consistent with the real support-
ing evidence. In addition, we can observe the following: 1)
Our model pays more attention to information sentences,
such as sentences containing target entities, bridging enti-
ties, and sentences representing the relation between entities.
For example, when predicting the relation of the entity pair
(Japan, World War I I ), our model pays more attention
to sentences 1, 4, 5, and 6. These sentences are essential
for the relation “participant of." 2) The visualization results
not only confirm the effectiveness of supporting evidence
prediction but also reveal the explainability of our proposed
SAPR-GNN.

6 Conclusion

In this paper, we proposed a novel DocRE method. The
method first utilizes GNN–RNN module to realize hier-
archical document modeling and information interaction.
Then, selective attention is introduced to generate document
subgraphs as the scope of RE. Finally, path reasoning is
introduced to infer the relation between entities and pro-
vide supporting evidence for each relation instance. Our
model enhances the explainability of the extraction results.
The extensive experiment results conducted on several pub-
lic DocRE datasets demonstrate that our proposed approach
outperforms most existing methods. Further analysis shows
selective attention and path reasoning are able to discover
more accurate inter-sentence relations and supporting evi-
dence.

We also performed error analysis on the experiment results
and found that a more reasonable method may be necessary
to exclude irrelevant sentences, instead of simply setting a
fixed length constraint, such as three, for all instances in
the DocRED dataset. This work will be carried out in our
subsequent study. Additionally, we plan to improve the per-
formance of DocRE in the following aspects: 1) we will
consider the impact ofmorefine-grained supporting evidence
and supporting evidence extraction order on DocRE; 2) we
will investigate how to avoid error transmission between RE
and supporting evidence prediction; 3) we will explore the
combination of relational paths from plain text and external
knowledge bases.
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