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Abstract
Visual relationship modeling plays an indispensable role in visual question answering (VQA). VQA models need to fully
understand the visual scene and positional relationships within the image to answer complex reasoning questions involving
visual object relationships. Accurate reasoning and an understanding of the relationships between different visual objects are
particularly crucial. However, most reasoning models used in current VQA tasks only use simple attention mechanisms to
model visual object relationships and ignore the potential for effective modeling using rich visual object features during the
learning process. This work proposes an effective visual object Relationship Reasoning and Adaptive Fusion (RRAF) model
to address the shortcomings of existing VQA model research. RRAF can simultaneously model visual objects’ position,
appearance, and semantic features and uses an adaptive fusion mechanism to achieve fine-grained multimodal reasoning
and fusion. Specifically, we designed an effective image encoder to model and learn the relationship between the position
and appearance features of visual objects. In addition, in the co-attention module, we employ semantic information from
the question to focus on critical visual objects. Finally, we use an adaptive fusion mechanism to reassign weights and fuse
different modalities of features to effectively predict the answer. Experimental results show that the RRAFmodel outperforms
current state-of-the-art methods on the VQA 2.0 and GQA datasets, especially in visual object counting problems. We also
conducted extensive ablation experiments to demonstrate the effectiveness of the RRAFmodel, achieving an overall accuracy
of 71.33% and 57.83% on the VQA 2.0 and GQA datasets, respectively. Code is available at https://github.com/shenxiang-
vqa/RRAF.
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1 Introduction

The Visual Question Answering (VQA) [1] task is an emerg-
ing research area in the field of artificial intelligence, which
involves learning from both visual and textual modalities,
thus bridging the gap between computer vision and natural
language processing. In recent years, multimodal learning of
language and vision has received extensive attention. Among
various commonmultimodal learning tasks, including image
captioning [2, 3], visual grounding [4], cross-modal infor-
mation retrieval [5–7], and visual question answering [1].
VQA has emerged as a contemporary method for conduct-
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ing the Turing test to evaluate visual intelligence. It learns to
reason answers about real-world images when given natural
language questions about the visual content. The VQA task
requires models to provide answers based on given questions
and images related to those questions, which places very high
demands on the model to handle cross-modal information.

In recent years, advanced VQA methods [8–10] have
mainly adopted attention mechanisms and multimodal joint
representations of questions to achieve better performance.
Thesemethods aim to answer questions based on visual clues
extracted from images and semantic information related to
the questions, such as MCAN [11] and DFAF [12], which
have significantly improved the performance of the VQA
task. However, these models have not fully utilized spa-
tial positional relationships and geometric image features
in images, but only used partial positional information. For
example, MCAN encodes some positional information in
the image preprocessing stage through convolutional neural
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networks. In addition, there is another study that learns cross-
modal alignment through pre-training on a large amount of
unlabeled data. Although this method is effective, there is a
natural deficiency in visual reasoning ability when answer-
ing questions that require a deep understanding of positional
relationships between visual objects. Moreover, these large-
scale pre-trained models directly connect positional features
with semantic features before attention operations,which can
often generate potential noise.Manymethods [10, 13, 14]aim
to extract information from rich images and questions, but
do not consider possible noise information. Although image
and question features can be extracted through deep con-
volutional and recurrent neural networks, they may not be
effectively used for reasoning and predicting correct answers.
Therefore, the VQA task places high demand on the cross-
modal information processing capability of models.

As shown in Fig. 1, the model needs to understand the
semantic, spatial, and appearance relationships of the input
image. The image shown in Fig. 1 is from the public dataset
MSCOCO VQA v2. The model needs to understand the
semantic relationships between objects and learn the spa-
tial relationships and appearance weights of visual objects
with other objects.When answering the question “Howmany
spoons are there beside the plate on the table?”. The model
first focuses on “spoons” based on the semantic informa-
tion in the question. Then, it uses the critical information of
the target object to learn the appearance weight of “spoons”
and reasons based on the position information of “spoons”
and other objects to predict the answer accurately. To obtain
the semantic, spatial, and appearance information of these
visual objects, we need to go beyond simple object detec-
tion and understand the interaction of fixed properties and

relative position relationships between different objects in
the image. The essence of the VQA task is to reason about
the relationships between local and global objects in differ-
ent regions of the image and establish complex multimodal
feature relationships to answer questions.

However, deep mining of image feature information may
also pose challenges for model prediction because it can
cause a modal alignment problem between different features
of images and questions. Deep modeling of visual object
relationships may also include unnecessary information in
the final obtained image features. In order to give the model
better decision-making motivation, the current mainstream
method is to use visual attention maps to tell the model
the focus area in the image so that the model can focus
on the area matching human visual focus when answering
questions. However, recent research has shown that current
VQA task models do not truly focus on the same areas as
human attention [15]. Therefore, in order to answer the cor-
rect questions, it is crucial to search for key information in
the image based on the semantic information of the ques-
tions. Most existing multimodal fusion models extract rich
semantic features from images and questions, fuse multi-
modal features through multiplication and concatenation,
and then map them to a common space for answer predic-
tion. Although some linear models, such as MCB [16], and
MFH [17], are considered effective fusion methods, these
shallow multimodal fusion models lack fine-grained mul-
timodal interactions. Attention mechanisms [18] are often
one of the most commonly used methods for multimodal
alignment and filtering of unnecessary information to allow
multimodalmodeling and improved interaction learning. The
model can selectively focus on essential areas in the image

Fig. 1 Illustrating the need for a model to simultaneously understand both the spatial relationships and visual appearance of objects in order to
comprehend complex reasoning tasks
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through attentionmechanisms. For example,BUTD[19] uses
a bottom-up attention mechanism to align question informa-
tion and each object feature. At the same time, DFAF [20]
andMCAN [11] consider attention within each modality and
interaction attention between different modalities. However,
these attention mechanisms and fusion methods only focus
on object information related to semantic questions when
implementing modal alignment. Therefore, geometric posi-
tion relationships and appearanceweight information that are
ignored near the focused objects will also affect the model’s
ability to answer complex reasoning questions.

Based on the above analysis and inspired by relevant
work [21–23], we propose a relationship reasoning and adap-
tive fusion network for visual question answering tasks.
In the process of image feature modeling, we designed an
image feature encoder to achieve object position relation-
ship reasoning and geometric appearanceweight relationship
modeling. At the same time, we use a deep co-attention net-
work mechanism to obtain rich image semantic features.
Given that irrelevant information may exist in image fea-
tures, which may affect the alignment of image and question
modalities and the prediction of correct answers, we use
an adaptive fusion mechanism to reassign weights of dif-
ferent modalities before the fusion of multimodal features.
By reassigning modality weights, we can filter out irrelevant
information, and also align the question information with the
relevant position in the image.

In order to address the challenges in VQA tasks, this
paper proposes a novel visual object Relational Reasoning
and Adaptive Fusion (RRAF) model. In visual object rela-
tion reasoning, an image encoder is used to model the spatial
and geometric weight relations of visual objects. In contrast,
the question encoder guides the image decoder to learn image
semantic information. The network can obtain more re-fined
image features, including position relationships, appearance
weights, and semantic relationships,which support reasoning
and answering of complex questions. In addition, we pro-
pose an effective multi-modal adaptive fusion mechanism,
which can automatically adjust model features before fusion
without designing complex attentionmechanisms, increasing
model parameters, or losing important feature informa-
tion. Therefore, the main contributions of this work are as
follows:

(1) This paper proposes a novel visual object relation rea-
soning network that employs an image encoder to
simultaneously model object positions and appearance
weight relations, while a question encoder guides the
image decoder to learn crucial semantic information
from the image. By using the object relation reason-
ing network, more fine-grained image features can be
obtained simultaneously (including position relation-
ships, appearance weights, and semantic relationships),

which enable complex question reasoning and answer-
ing.

(2) An effective multi-modal adaptive fusion mechanism
is proposed, which explores the effects of fusion using
different weighting allocation strategies. The method is
designed to be simple and effective, without the need
for complex attention mechanisms, without increasing
model parameters or losing important feature informa-
tion.

(3) Experimental results on the benchmark VQA 2.0 and
GQAdatasets demonstrate that the RRAFmodel outper-
forms current state-of-the-art models. Through ablation
experiments, we further analyze the impact of parame-
ter settings on the RRAF model and reveal the model’s
interpretability.

The rest of this paper is organized as follows: Section 2
introduces the visual question answeringmodels, visual rela-
tion reasoning models, and multi-modal fusion mechanisms
related to this study. Section 3 describes the overall structure
and specific design details of the RRAFmodel in detail. Sec-
tion 4 presents the experimental results of comparisons on
the VQA 2.0 and GQA benchmark datasets under different
parameter settings, and the ablation experiment research, and
visualizes the model through attention. Finally, the work of
this paper is summarized, and future research directions are
pointed out.

2 Related work

2.1 Visual question answering

Visual Question Answering (VQA) is a multimodal task that
utilizes machine learning or deep learning techniques to ana-
lyze visual input (images and videos) and answer questions
related to the visual content. In recent years, there has been
an increasing focus on the understanding and reasoning of
visual information in the VQA task. The VQA task aims to
combine visual and textual information to correctly predict
answers to given images and related questions by profoundly
understanding and reasoning about the visual and textual
information. This process requires the model to have strong
reasoning abilities [1], especially for answering complex
questions requiring even more complex reasoning abilities.
Achieving answers to complex questions relies heavily on
the sophisticated reasoning abilities of the model. A critical
step in this process is the in-depth exploration and under-
standing of semantic cues within the questions by the model.
Subsequently, the model engages in reasoning and judgment
regarding image content through the analysis and model-
ing of semantic clues from the questions. For the analysis
and reasoning of natural language, Sean Gerrish [24], in his

5064



123

Relational reasoning and adaptive...

work “How Smart Machines Think,” employs the principles
of deep parse trees to analyze and comprehend the part-of-
speech and language structures within sentence questions,
thereby constructing an effective DeepQA system. However,
implementing such intricate reasoning in visual question
answering tasks is more challenging. This is because the
model needs to analyze and reason about the semantic infor-
mation in the questions and also utilize information from
question clues for cross-modal understanding of image data
that lacks the grammatical structure inherent in natural lan-
guage. Therefore, researchers have constructed various VQA
reasoning models.

VQA models traditionally map image and question fea-
tures to the same high-dimensional space and fuse them
through simple methods, which can easily ignore the intro-
duction of noise and thus affect model performance. Cur-
rently, many VQA methods use attention mechanisms to
improve the overall performance of the model. For exam-
ple, many VQA methods [9, 10, 25–27] mainly study the
relationship between visual regions and words in questions.
Yang et al. [28] proposed aStackedAttentionNetwork (SAN)
to locate image regions relevant to the questions. In [29], the
authors proposed a compact trilinear interaction model that
can simultaneously learn the relationships between images,
questions, and answers, thereby achieving better model
reasoning.Nguyen et al. [8] proposed a new reasoning frame-
work to understand these features and effectively predicts
in a coarse-to-fine manner. ReGAT [30] considers explicit
and implicit relationships to enrich image representations. In
addition to attention mechanisms, multimodal fusion strate-
gies also critically impact the final performance of the VQA
task [31]. Traditional multimodal fusion methods concate-
nate image and question features differently and then map
them to a common space after alignment. At the same time,
recent research [16, 32] explores more complex and effective
multimodal fusion methods. Extracting meaningful features
is also crucial for correctly answering questions in the VQA
task. In image feature processing, grid features [33] and
object region visual features [19, 34] are widely used, and
these image features are more refined compared to region
visual features. In term of question features, Glove [35] and
BERT [36] commonly represent words and sentences. With
the emergence of pre-training models, visual and language
multi-tasking can effectively promote alignment betweendif-
ferent modalities, thereby making the model perform well.

2.2 Visual relation reasoning

Visual relationship reasoning is crucial in visual-linguistic
tasks and is the core of visual question answering. Visual
relationship modeling aims to reason and understand the
relationships between objects, such as spatial and logical
relationships. These methods are based on symbolic rea-

soning [37] or graph-based simple reasoning. Modeling
the position, appearance, shape, and semantics of visual
objects is crucial for locating targets in contextual infor-
mation. Recent research [38, 39] has shown that modeling
position and semantic relationships between visual objects
can help the model better understand the image and answer
complex reasoning questions. Most existing research on
visual object relationship reasoning focuses on implicit and
explicit reasoning. Implicit relationships [30, 40, 41] are
derived from the correlation of modal features (such as
self-attention), while explicit relationships [30, 42, 43] rep-
resent geometric or semantic relationships between objects.
However, more than explicit or implicit reasoning alone is
needed to adequately achieve model reasoning. To better
construct a reasoning model, graph neural network-based
reasoning methods [30, 44] have received widespread atten-
tion. For example, Cadène et al. [45] proposed a multimodal
relationship network for modeling spatial and semantic rela-
tionships between image regions. Li et al. [30] proposed
a relationship-aware graph attention network, where image
object regions are treated as nodes, and edges represent
implicit relationships between objects. In addition, various
attention mechanisms have been applied in existing methods
to enhance the learning of implicit semantic relationships in
the reasoning framework. These models assign an impor-
tance score to each region for a question and use them
to weigh and summarize visual representations. Liu et al.
[46] proposed the deep semantic-guided relationship atten-
tion network (DSGANet), which explicitly uses the formed
3D spatial relationships between objects to accurately align
relationships inside/within objects. Chen et al. [47] pro-
posed a cross-modal relational reasoning network (CRRN)
to mask inconsistent attention graphs, highlight all potential
alignments of corresponding word domains to align rela-
tionship consistency, and integrate the interpretability of
VQA systems. Zhao et al. [48] leveraged enhanced seman-
tic information within queries and employed graph neural
networks to achieve entity reasoning. However, these mod-
els cannot model visual-spatial and semantic relationships
simultaneously and lack interpretability to some extent. The
RRAF model is capable of concurrently modeling the spa-
tial, appearance, and semantic features of visual information.
However, augmenting the number of reasoning modules to
simultaneously capture diverse visual features will escalate
the complexity and computational costs of the model.

2.3 Multimodal adaptive fusion

In VQA tasks, correctly selecting and fusing important
feature information is crucial. Traditional modality fusion
methods [16, 17] mainly focus on fusing shallow features.
For example, Fukui et al. [16] proposed theMultimodalCom-
pact Bilinear (MCB) method to map multimodal features to
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high-dimensional space, which could be more computation-
ally efficient due to its largememory requirement. To address
the high-dimensional problem in MCB. Yu et al. proposed
an enhanced version of MCB, named multimodal Factor-
ized Bilinear (MFB) pooling [17], which uses the matrix
factorization technique to compute the fused features, reduc-
ing the number of parameters and further enhancing the
representation power of multimodal fused features. Kim et
al. [49] further proposed MLB, which reduces the number
of parameters by rewriting the weight matrix as the mul-
tiplication of two smaller matrices. These modality fusion
methods have helped improve the performance of VQA
models. Recently, some researchers have proposed adap-
tive fusion mechanisms to better select and allocate different
modality information. For instance,Guet al. [50] proposed an
adaptive fusion network that utilizes complementary infor-
mation from attentionmaps and adaptively fuses information
based on word-level embeddings at different levels to rep-
resent image-question pairs appropriately. Chen et al. [51]
proposed a unified Adaptive Rebalancing Network (ARN)
for handling the classification of head and tail classes in the
VQA dataset, which first learns a generic representation, and
then gradually emphasizes tail data through an adaptively
learned rebalancing branch. Zhang et al. [52] designed a
practical Deep Multimodal Reasoning and Fusion network
(DMRFNet) to achieve fine-grained multimodal reasoning
and fusion. However, these methods did not consider the
contribution weights for modality fusion at the end. There-
fore, this paper designs a simple and effective adaptive fusion
mechanism to reallocate the weights of different modalities,
effectively improving the overall performance of the model.
However, adaptive fusionmay exhibit high sensitivity to sub-
tle variations in input data, resulting in themodel’s instability
when confronted with minor changes. This sensitivity could
render the model highly responsive to noise or uncertainty.
Consequently, we address the impact of employing distinct
strategies for adaptive fusion mechanisms on the model sep-
arately.

3 Method

In this paper, the input of an image, question, and answer is
represented by I , Q, and A = {ai }|Ω|, respectively. Given an
image I and a question Q, the goal is to predict an answer
a∗ ∈ Ω that best matches ground-truth answer a. The VQA
task can be defined as a classification problem:

a∗ ← arg max
a∈Ω

pθ (a|I , Q) (1)

This section presents a detailed description of the RRAF
model,which is a visual object relationship reasoningmethod

based on an adaptive fusion mechanism. The overall frame-
work of the RRAF model is shown in Fig. 2, which mainly
consists of feature extraction, visual object relationship rea-
soning, modality adaptive fusion, and answer prediction
modules. Firstly, we describe the methods for extracting
question and image features, and then describe the principles
of the image and question encoders, as well as details about
the question-guided image decoder. Finally, we introduce the
design of the multi-modal adaptive fusion mechanism and
answer prediction module. Through the introduction in this
section, we can have a comprehensive understanding of the
implementation details and working principles of the RRAF
model.

3.1 Image and question representation

Image representation: In the section on image feature rep-
resentation, inspired by the bottom-up attention mechanism,
and following the approach proposed by [19], we employ a
bottom-up approach to extract salient regions of the image as
visual features. These features are based on intermediate fea-
tures extracted from a Faster R-CNN [53] model pre-trained
on the Visual Genomes [54] dataset, with ResNet-101 [55] as
the backbone network. Specifically, a confidence threshold is
set based on the probability of detected objects, dynamically
determining the number of detected objects, denoted as k ∈
[10, 100]. Considering the varying number of salient regions
in each image, we choose k=100 and fill the regions below
this threshold with zeros to reach the maximum size. The
feature representation FS = {

f 1s , f 2s , · · · , f ks
} ∈ R

k×dv

(k=100) of the salient regions is obtained by convolution and
mean pooling. The feature of the i-th visual object, denoted
as f is ∈ R

dv (dv=2048), can be represented. Simultaneously,
we obtain the bounding box coordinates FG = {bi }ki=1 of the
object, where the i-th visual object detection box is repre-
sented as boi = (

ximin, y
i
min, x

i
max, y

i
max

)
, with ximin and yimin

indicating the coordinates of the top-left corner, and ximax and
yimax indicating the coordinates of the bottom-right corner.

Question representation: In the question feature repre-
sentation section, we follow the approach proposed by [11].
To ensure uniform length for all questions, each given ques-
tion is initially tokenized into a sequence of words, which is
then tokenized into words, and the number of these words is
padded to themaximumvalue of 14; any exceeding portion is
discarded. Subsequently, these words are represented in vec-
tor form, and using the 300-DGloVeword embeddingmodel
pre-trained on a large-scale corpus [35], they are transformed
into a size of t × 300 word sequence, where t ∈ [1, 14] rep-
resents the number of words in the question. Finally, these
word embeddings are passed through a single-layer LSTM
network to obtain the question feature matrix represented as
Qs = {q1, q2, · · · , qt } ∈ R

t×dq (t=14), where qi ∈ R
dq

(dq=512).
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Fig. 2 Overall architecture of the proposed RRAF model

3.2 Visual relational reasoning

We adopted a structure consisting of two encoders and one
decoder. Figure 3(a) illustrates the structure of the question
encoder, which effectively learns the relationships among
questions using the multi-head self-attention mechanism
and guides self-attention to important regions of images
related to the questions, thereby achieving the proposed
image semantic relation modeling. Figure 3(b) shows the
structure of the image encoder, which differs from the tra-
ditional Transformer framework structure as we constructed
a novel image encoder that simultaneously models visual
object appearance and geometric positional features. The
traditional Transformer framework structure only employs
unidirectional encoders and decoders and uses only self-
attention and the question-guided attention of the decoder
during the image modeling process. However, the RRAF
model uses both image and text encoders and a decoder to
achieve reasoning for complex problems.

3.2.1 Question encoder

As shown in Fig. 3 (a) represents the semantic encoder of the
question.Using the question encoder, not only can the seman-
tic features of the question be effectively learned through a
self-attention mechanism, but the important regions of the
image can also be attended based on the obtained relevant
weights of the question semantic features. This is benefi-
cial for the model to extract fine-grained image semantic
features. In order to capture richer semantic features of the
text, the question encoder is stacked with L self-attention
(SA) units. Figure 3(a) represents a question encoder unit,
which ismainly composed ofmulti-head self-attention layers
and fully connected layers. Given the input question feature
Qs = {q1, q2, · · · , qt } ∈ R

t×dq as input, the multi-head

attention layer can effectively learn the relationships between
words < qi , q j >. For ease of writing, we will describe in
detail the first layer of the question encoder,where the seman-
tic relationship feature of the question is represented as Fq1 .
The specific representation formula is as follows:

Qq = QsWQq , Kq = QsWKq , Vq = QsWVq (2)

Fq1 = MA
(
Qq , Kq , Vq

) = concat (head1, head2, · · · , headh)W
Oq
l (3)

headi = so f t max

⎛

⎜
⎝

(
QqW

Qq
i

)
·
(
KqW

Kq
i

)T

√
d

⎞

⎟
⎠
(
VqW

Vq
i

)

(4)

whereW
Qq
i ,W

Kq
i ,W

Vq
i ∈ R

d×dh (d=512, dh=64) are the pro-

jection matrices for the i-th head. W
Oq
l ∈ R

h∗dh×d (h=8,l =
1, · · · , 6) represents a linear mapping matrix. The notation
concat (·) is used to represent the concatenation of all the
heads. MA (·) is used to indicate multiple attention mech-
anisms. In order to avoid an increase in model size due to
multiple concatenations, we usually have dh = d/h. The
output from the multi-head self-attention layer is then fed
into a fully connected layer and subsequently into the next
question encoder unit. The formula is defined as follows:

FFN
(
Fq1

) = max
(
0, Fq1W1 + b1

)
W2 + b2 (5)

FFN
(
Fq1

) → FFN
(
FqL

)
(6)

where Wj and b j ( j=1,2) represent weight coefficients and
biased variable respectively. FFN (·) represents a feed for-
ward network.
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Fig. 3 Figures(a) and (b) represent the question encoder and image decoder in the co-attention mechanism, while figures(c) represents the image
reasoning encoder

3.2.2 Image decoder

Figure 3(b) shows, an image decoder that employs a multi-
head self-attention mechanism to process the semantic infor-
mation of an image, similar to the self-attention mechanism
for the question encoder described in Section 3.2.1. The dif-
ference is that in the image decoder, the semantic information
of the question is used to guide attention to the seman-

tic information of the image, thereby obtaining higher-level
semantic information. The image encoder consists of multi-
head self-attention layers for the image, multi-head question
self-attention guided image attention layers, and fully con-
nected layers. The semantic features of the question are used
as input. Themulti-head question self-attention guided image
attention layer can effectively learn the relationship between
the questionwords and a semantic image< qi , fsi >. Firstly,
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self-attention learning is performed based on the extracted
image features. Fs and FI1 represent the original low-level
features of the input image and the semantic features of the
image after being processed by multi-head self-attention,
respectively. The equation is defined as follows:

FS
W ∗−−→ (KS, VS, QS)︸ ︷︷ ︸

LM

(7)

FI1 =MA (KS, QS, VS)=concat (H1, H2, · · · , Hh)W
OS
l

(8)

FFN
(
FI1

) = max
(
0, FI1W3 + b3

) + b4 (9)

W ∗ and LM represent the mapping parameter matrix and
linear mapping, respectively, Hi defined in (4). F

′
S1

denotes
image feature maps that have been guided by the seman-
tic features of the query through multi-head self-attention to
attend to the target region features of the image. The formula
is expressed as follows:

Q
′
S1 = LN

(
FS + FFN

(
FI1

))
(10)

F
′
S1 = MA

(
Q

′
S1 , K

′
q , V

′
q

)
= concat

(
H

′
1, H

′
2, · · · , H

′
h

)
W

Q
′
S1

(11)

H
′
i = so f t max

⎛

⎜⎜
⎝

(
Q

′
S1
W

Q
′
S

i

)
·
(
K

′
qW

K
′
q

i

)

√
d

⎞

⎟⎟
⎠ ·

(
V

′
qW

V
′
q

i

)

(12)

FFN
(
F

′
S1

) ···−→ FFN
(
F

′
SL

)
= FL

S (13)

where Q
′
S1

represents the query vector after self-attention
learning on the image in the first layer, and LN (·) represents
layer normalization. W

Q
′
S

i ,W
K

′
q

i ,W
V

′
q

i and W
Q

′
S1 ∈ R

h∗dh×d

are learnable parameter matrices.

3.2.3 Image encoder

The visual object position and appearance modeling encoder
is shown in Fig. 3(c). Section 3.2.2 introduced the image
decoder, which obtains image features that are semantically
related to the question but do not include information about
the visual object’s position and appearance shape. However,
in the VQA task, it is vital to have a deep understanding
and reasoning of the image while modeling the position and
appearance shape of the visual object. As shown in Fig. 3(c),

the image encoder first models the position relationship and
appearance shape of the visual object separately. In con-
trast, appearance shape modeling uses self-attention to learn
appearance weights between different visual objects. Visual
object position relationship modeling constructs weight rela-
tionships based on object coordinate relationships. Then, the
position and appearance weight relationships are combined
with modeling of the visual object and ultimately obtains
image features that contain visual object position and appear-
ance weight relationships. These features help to answer
complex VQA questions.

To model relationships between different objects and
effectively represent the spatial positions of each visual
object, we calculate the transformed position coordinates
bi = [xi , yi , wi , hi ] for the i-th detection box from its origi-
nal coordinates boi = (

ximin, y
i
min, x

i
max, y

i
max

)
. Here, (xi , yi ),

wi , and hi represent the center coordinates, width, and height
of the bounding box, respectively. The specific calculation is
formulated as follows:

⎡

⎢⎢
⎣

xi = 0.5 ∗ (ximin + ximax

)

yi = 0.5 ∗ (yimin + yimax

)

wi = ximax − ximin + 1.0
hi = yimax − yimin + 1.0

⎤

⎥⎥
⎦ (14)

The coordinates representing the bounding box position of
the visual object are obtained through the calculation in
(14) and denoted as FG = {bi }Ki=1. In order to model the
relationships between different objects, the image encoder
first encodes the coordinates of visual objects, denoted by
FG = {bi }Ki=1. We first calculate the relative positional
relationship between the m-th visual object at coordinate
bm = [xm, ym, wm, hm] and the n-th coordinate bn =
[xn, yn, wn, hn]. The formula for calculating the object posi-
tional relationship is as follows:

prmn =
[
log

( |xm − xn |
wm

)
, log

( |ym − yn |
hm

)
, log

(
wn

wm

)
, log

(
hn
hm

)]

(15)

grmn = ReLU (Emb (prmn)WG) (16)

where prmn denotes the computation of the positional rela-
tionship between two coordinates, while Emb (·) refers to
the embedding of a 4-dimensional relative positional feature
into a dr -dimensional vector using sine and cosine functions
of different wavelengths. Finally, the dr -dimensional vector
WG ∈ R

dr is transformed into a scalar grmn .
The modeling of the spatial relationship of visual objects

also involves calculating the appearance weights of objects.
The appearance features of visual objects are derived from
the original semantic visual features FS , which are decoded
by an image decoder and combined with the semantic visual
features FL

S (L refers to the number of layers of encoder and
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decoder) of the visual objects related to the question. Then,
the appearance weight relationships of different objects are
modeled using the information of the semantic visual fea-
tures of the visual objects. By using the dot-product attention
method on the input appearance features FA = {

v∗
i

}K
i=1, the

appearance weights between different visual objects can be
obtained, where armn represents the similarity between the
appearance of objects. The calculation is performed using
the dot-product attention [11] as follows:

armn = σ
[(

v∗
mQI

) · (v∗
n KI

)
/
(√

dv/N
)]

(17)

By performing the aforementioned computations, we
obtain the geometric positional relationship feature grmn and
the appearance weight feature armn . The integration of these
two distinct visual features enables the learning of interac-
tive reasoning among different object features. Given K sets

of visual objects
{
f na , f ng

}K

n=1
, the relationship between the

n-th visual object and the entire set of visual objects is repre-
sented by FR (n). The specific formula for this relationship
is defined as follows:

αnm = grmn · exp (armn)

K∑

n
grmn · exp (armn)

(18)

FR (n) = σ

(
∑

m

αmn · (W · f ma
)
)

(19)

whereW represents the projectionmatrix,σ (·) represents the
activation function, and FR (n) represents the reasoning fea-
ture which contains geometric positional relationships and
appearance weights. To further enhance visual object rea-
soning, we connect various object features to obtain the final
visual reasoning feature FN

AG .

FN
AG = ||Ni=1F

i
R (n) ⊕ armn (20)

where ⊕ represents feature addition operation, || represents
a concatenation function, and N denotes the number of rea-
soning attention heads.

3.3 Modal adaptive fusion and answer prediction

By modeling the positional, appearance, and semantic fea-
tures of visual objects simultaneously using image encoders
and decoders, rich visual features can be obtained from
the image. When answering questions, the model needs to
retrieve information from visual regions or the relationships
between them, or retrieve both simultaneously depending
on the requirements of the question. However, these rich
image features may contain information that is irrelevant

to the question, making it difficult to align modal features
from different domains during modal fusion. In addition,
the abundance of image feature information can lead to a
greater contribution of image features for classification and
a lesser contribution of question features. Inspired by rele-
vant research [56], we designed different types ofmultimodal
adaptive fusion modules that dynamically control the con-
tribution of image and question information to predict the
answer through amodal adaptive fusionmechanism.As illus-
trated in Fig. 4, the utilization of adaptive fusionmechanisms
enables effective incorporation of diverse features into the
answer prediction process, taking into account their respec-
tive contributions.

By using a deep co-attention network, we output the

semantic image feature FL
S =

{
f (L)
s1 , f (L)

s2 , · · · , f (L)
sm

}
∈

R
m×ds .Similarly, by encoding the image position and appear-

ance features FN
AG ∈ R

m×dv through visual reasoning, a fine-
grained image feature is obtained that contains image seman-
tics, position and appearance. The output question feature

is represented by QL
S =

{
q(L)
s1 , q(L)

s2 , · · · , q(L)
st

}
∈ R

t×ds .

We first use two MLP layers (FC(dv)-ReLU-Dropout(0.1)-
FC(1)) to compress the two different-dimensional features to
the same dimension. Taking the image feature as an example,
the final output image feature can be represented as F̃sga :

FSAG = FN
AG ⊕ FL

S (21)

λ = so f t max (MLP (FSAG)) (22)

F̃sag =
m∑

i

λi f
i
sag (23)

where Γ = [λ1, λ2, · · · , λm] ∈ R
m is the learnable weight

parameter. Feature q̃s of the question can be obtained using
the samemethod. In order to improve the ability of the model
to predict the correct answer, we use an MLP network to
obtain two modal features with equal contribution. To avoid
manually assigning weights to the modal features of the
image and the question, we designed two different strategies
for an adaptive fusion mechanism to reassign the weights
of the output modal features. As shown in Fig. 4(b), this
is a simple and efficient method. Specifically, we designed
two different fusion methods. The first method is based on
the overall features of the image and the question, and reas-
signs the weights of the new features. The specific equation
is defined as follows:

C1 = so f t max
(
W f1

[
F̃sag ⊕ q̃s

])
(24)

α = T1C1, β = T2C1 (25)
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Fig. 4 Comparison of traditional fusion strategy and adaptive fusion strategy

We also developed an additional weight distribution method,
which can be expressed by the following equation:

C2 = sigmoid
(
W f2

[
concat

(
F̃sag, q̃s

)])
(26)

ε = C2 ⊗ q̃s, η = 1 − ε (27)

where W f1 and W f2 are projection matrices, T1 and T2 rep-
resent operations for extracting and allocating weights. We
express it using a multi-modal linear fusion function as fol-
lows:

Z1 = LN (Wα (α ⊗ q̃s)) + Wβ

(
β ⊗ F̃sag

)
(28)

Z1 = LN (Wε (ε ⊗ q̃s)) + Wη

(
η ⊗ F̃sag

)
(29)

where Z1 and Z2 represent the features obtained by using
different fusion strategies. Wα and Wβ are the trainable
parameter matrix. Since a question may have multiple cor-
rect answers, binary cross-entropy loss (BCE) is used as the
model optimization objective during the training process.

loss = −
|A|∑

i=1

(
yi log

(
ŷi
) + (1 − yi ) log

(
1 − ŷi

))
(30)

|A| represents the size of the candidate answer set, ŷi is the
score predicted by the model for each candidate answer, and
yi is the soft score of the answer provided in the dataset.

4 Experiments and discussion

All experiments in this paper were conducted on a Linux
Ubuntu 18.04 system with 4 NVIDIA Geforce GTX 3090TI

graphics cards, each with 24GB of memory. The deep learn-
ing framework was PyTorch, and the CUDA version was
10.0. In Sections 4.1 and 4.2, we first introduce the two
datasets used in this paper, namely VQA 2.0 [56] and GQA
[56], and provide detailed information on the experimen-
tal settings. Section 4.3 describes the experimental results
on these two benchmark datasets and compares them with
state-of-the-arts models, while Section 4.4 describes the
comparison of ablation experiments. Finally, in Section 4.5,
we demonstrate the effectiveness of our method through
visual examples.

4.1 DataSet

VQA 2.0:The VQA 2.0 dataset [56] is a fully manually
annotated open-domain benchmark dataset for visual ques-
tion answering. It consists of images from the MS-COCO
dataset along with associated question-answer (QA) pairs.
Each image is associated with a minimum of three ques-
tions, and each question has ten corresponding answers. Due
to the manual annotation of questions, the dataset inevitably
carries certain language biases. Researchers have attempted
to address the effectiveness of minimizing (Table 1) model
learning bias by balancing answers for each question. The
VQA 2.0 dataset is partitioned into training, validation, and
test sets, with the sample distribution outlined as follows:

Table 1 VQA 2.0 dataset sample distribution

Split Images Questions Answers

Train 82,783 443,757 4,437,570

Val 40,504 214,354 2,143,540

Test 81,434 447,739 -

All 204,721 1,105,904 -
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The test set contains two subsets: test-dev and test-std.
The questions in the VQA 2.0 dataset can be divided into
three types based on the category of their answers:“Yes/No”,
“Number”, and “Other”. For open-ended tasks, following the
work of Antol et al. [57], a voting mechanism is used to score
the accuracy of the predicted answers, as shown below:

Accuracy (a) = min

{
count (a)

3
, 1

}
(31)

where count(a) is the number of votes for answer a by 10
different annotators.

GQA: The GQA [58] dataset comprises 113K images,
encompassing 22M questions. In contrast to VQA 2.0, the
GQA dataset emphasizes the inference and compositional
language understanding capabilities of questions, while also
prioritizing the objectivity of inquiries, underscoring that
answers to questions can only be derived from the images
themselves. Relative to the VQA 2.0 dataset, the GQA
dataset mitigates language biases by establishing connec-
tions between keywords in questions and corresponding
regions within images, facilitating research to more accu-
rately pinpoint the reasons for model errors. Furthermore,
GQA introduces a more extensive set of evaluation metrics,
including consistency, validity, plausibility, and distribution,
to comprehensively assess the performance of models in
complex scene-based question reasoning. The sample dis-
tribution of the GQA dataset is shown in Table 2.

4.2 Implementation details

In the experiment, we first used a pre-trained Faster-RCNN
model with ResNet-101 as the backbone to extract object
features from the images. The dimensions of the object fea-
tures and the question word features are 2048 and 512,
respectively. In the multi-head attention mechanism, we set
the number of attention heads h to 8, and the dimension
of the features outputted by each head is d/h = 64. Fol-
lowing the suggestion in [11], the number of layers L in
both the image decoder and question encoder is set to 6,
with a feedforward layer structure of FC(512,2048)-ReLU-
dropout(0.1)-FC(2048,512). The reasoning module in the
image is set to N ∈ [4, 8, 16, 32, 64]. During the training

Table 2 GQA dataset sample distribution

Split Images Questions Vocab

Train 72,140 94,300 -

Val 10,234 132,062 -

Test-dev 398 12,578 -

Test 2,987 95,336 -

All 85,759 1,182,976 3,097

process, we optimized the RRAF model using AdamW [55]
with β1 = 0.9 and β2 = 0.98. The batch size was set to 64,
and binary cross-entropy (BCE) was used as the loss func-
tion. The learning rate was set to min

(
2.5te−5, 1e−4

)
, where

t is the current epoch number starting from1.After 10 epochs
of training, the learning rate was reduced to 1/5 of the cur-
rent learning rate every two epochs. TheVQA2.0 training set
includes the train subset, val subset, and additional vg subset,
i.e., train+val+vg. The vg subset consists of QA pairs from
the Visual Genome dataset. The GQA training set consists
of the train and val subsets, i.e., train+val.

4.3 Comparison with state-of-the-art

Table 3 compares the RRAF model and current advanced
visual reasoning models on the VQA 2.0 dataset. The com-
parative experimental results in Table 3 show that using
the proposed relation reasoning module and adaptive fusion
mechanism can improve accuracy in predicting answers.
BAN [59] is a bilinear attention network that considers
a bilinear interaction between multimodal inputs to fully
utilize information fromaquestion and image features. BAN-
Counter [59] combines BAN with Counter, a neural network
module that allows robust counting between object proposals
and further improves the model’s accuracy on counting met-
rics. The DFAF [12] andMCAN [11] models use deep coop-
erative attention networks to capture the interaction between
modalities effectively. The DFAF model designed an infor-
mation flow interaction within and between modalities. The
MCANmodel uses self-attention and question-guided atten-
tion units to establish the relationship between modalities.
MuRel [45] and ReGAT [30] use graph neural networks to
construct deep reasoning networks. MuRel adopts residual
characteristic learning for end-to-end reasoning, and ReGAT
combines explicit and implicit relationships to achieve com-
plex reasoning. TRRNet [60] adopts themethod of reasoning
relation features to enhance the model’s understanding of
the image. ViBERT [61] uses pre-training to effectively
improve model performance, with significantly increased
model parameter volume compared to end-to-end models.
MDFNet [62] proposes amulti-graph reasoning andmodality
fusion method to achieve fine-grained multimodal reasoning
and fusion. Compared with the proposed reasoning mod-
ule and adaptive fusion method in this paper, the RRAF
model presented in this paper performs significantly better
than the MDFNet model. The GMA [44] model builds a
graph for the question from syntactic and embedded informa-
tion to implement reasoning between images and questions.
The LSAT [9] model enhances the self-attention mecha-
nism in the image decoder, achieving fine-grained reasoning
on images through local window interactions. UFSCAN +
counter [63] constructs an effective joint feature and spatial
co-attention network (UFSCAN) to improve model perfor-
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Table 3 Performance
comparison on VQA 2.0 with
SOTAs

Model Test-dev Test-std
Yes/No Number Other All All

BAN [59] 85.42 50.93 60.26 69.52 -

BAN-Counter [59] 85.42 54.04 60.52 70.04 70.35

DFAF [12] 86.09 53.32 60.49 70.22 70.34

MuRel [45] 84.77 49.84 57.85 68.03 68.41

ReGAT [30] 86.08 54.42 60.33 70.27 70.58

MCAN [11] 86.82 53.26 60.72 70.63 70.90

ViBERT [61] - - - 70.80 71.10

TRRNet [60] 87.27 51.89 61.02 70.80 71.20

MDFNet [62] 86.85 53.73 61.78 71.19 71.32

GMA [44] 85.62 51.74 60.51 69.86 70.16

LSAT-R [9] 87.06 53.32 61.04 70.88 71.13

UFSCAN-counter [63] 85.52 54.99 61.08 70.46 70.73

MCAoA [64] 87.05 53.81 60.97 70.90 71.14

CLVIN [65] 87.09 53.65 60.89 70.86 71.16

CAAN [10] 87.09 53.37 61.13 70.94 71.31

RRAF(ours) 87.03 55.39 60.95 71.06 71.33

mance. MCAoA [64] adds attention modules in the encoder
and decoder to judge the relationship between attention
results and queries. CLVIN [65] and CAAN [10] are both
based on the Transformer architecture, aiming to enhance
the representation capability of questions and improve the
mode of interaction, thereby boosting the model’s inference
abilities.

It is worth noting that the RRAF model performs well in
object counting, as shown in the“Number” column of Table
3. Our model outperforms previous state-of-the-art models
by at least 0.4% in this category. In addition, in the counting
models specifically designed, BAN-Counter andUFSCAN+
counter, although the “Number” category has shown signifi-
cant improvement, there is no substantial improvement in the
accuracy of the “ALL” category. Our model’s advantage is

in achieving the best performance in the “Number” category
and improving accuracy in other categories. The reason is
that theRRAFmodel can simultaneouslymodel visual object
semantics, position, and appearance shape and use adaptive
fusion mechanisms to effectively help the model improve
performance. The MCAN model is the wining model in
the 2019 VQA Challenge. The comparison between the
RRAF model and the MCAN model shows good accuracy,
with an increase of 0.21% in Yes/No, 2.13% in Number,
0.23% in Other, and 0.43% in “All” on test-dev and test-std,
respectively. In addition, the accuracy of the “Number” cat-
egory compared to advanced counting models UFSCAN +
counter and ReGAT increased by 0.4% and 0.97%, respec-
tively, which indicates that our proposed model has good
performance.

Table 4 Performance
comparison on GQA

Methods Accuracy Open Binary Validity Plausibility Consistency

Human [58] 89.3 87.4 91.2 98.9 97.2 98.4

CNN+LSTM [58] 46.55 31.80 63.26 96.02 84.25 74.57

Bottom-up [19] 49.74 34.83 66.64 96.18 84.57 78.71

MAC [58] 54.06 38.91 71.23 96.16 84.48 81.59

BAN [59] 56.19 41.13 73.31 96.77 85.58 84.64

DMFNet [52] 57.05 41.86 73.98 97.62 84.87 86.98

LGCN [40] 56.10 - - - - -

MCAN_Base [66] 56.00 38.76 75.61 96.69 85.35 87.03

SPCA-Net [66] 57.05 40.20 76.23 96.44 85.23 87.78

GMA [44] 57.26 42.30 73.20 96.41 85.05 83.95

MSRAN [67] 57.56 41.99 75.20 96.05 84.62 88.61

RRAF (ours) 57.83 42.32 76.50 96.80 85.61 88.01
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Table 5 Experimental results of
the RRAF model using region
features and grid features under
different adaptive fusion
strategies

Model VR(s/g/a) FC1 FC2 Yes/No Number Other All

RRAF-R s × × 86.82 53.26 60.72 70.63

RRAF-G s × × 87.43 53.80 61.81 71.45

RRAF-R (32) s/g/a × × 86.79 54.14 60.77 70.74

RRAF-G s
√

- 87.55 54.53 61.78 71.57

RRAF-G s -
√

87.35 54.14 61.71 71.46

RRAF-R s
√

- 86.95 53.44 60.93 70.81

RRAF-R s -
√

87.17 53.27 60.93 70.87

Table 4 presents the comparison results of RRAF with
state-of-the-art models on the GQA dataset, where the first
row shows human performance, which can be considered as
the upper limit of the current VQA task. CNN+LSTM [58]
is a method that predicts the answer by linearly combining
image and question features. Othermodels use Faster-RCNN
to extract image features. MAC is a milestone model on
the GQA reasoning dataset, decomposing a task into con-
tinuous reasoning steps. LGCN [40] model visual object
regions using neural graph networks and complete VQA
tasks by jointly inferring semantic relationships amongvisual
objects and relationships among attributes. DMFNet [52]
uses multiple graph reasoning and fusion layers with pre-
trained semantic relationship embedding to explain complex
spatial and semantic relationships between visual objects.
SPCA-Net [66] and MSRAN [67] employ encoder-decoder
structures to infer images using spatial coordinates of visual
objects. According to Table 4, the RRAF model has higher
accuracy compared to the current state-of-the-art reason-
ing models. Compared with the latest GMA [44] model,
RRAF has improved in “Accuracy”, “Open”, “Binary”, and
“Consistency” by 0.57%, 0.02%, 2.66%, and 3.59%, respec-
tively, but “Validity” did not reach the current best level. We
speculate that incorporating the visual object positional rela-
tionships for reasoning and adaptive fusion mechanism is
effective. However, the original baseline model has limita-
tions in checking “Validity” and the rationality of the answer
within the scope of the question.

4.4 Ablation study

This section primarily discusses the test results of the RRAF
model on the VQA 2.0 and GQA benchmark datasets test-

dev. In order to analyze the role of each module in the model
and demonstrate the superiority of the proposed method,
ablation experiments were performed on the complete model
on the two benchmark datasets to explore the function of each
module. The RRAFmodel variants we propose are discussed
as follows.

4.4.1 Ablation analysis on VQA 2.0 and GQA dataset

Table 5 shows the performance of the RRAF model using
region and grid visual features under two adaptive fusion
strategies. “RRAF-R” and “RRAF-G” respectively represent
the use of region visual feature m ∈ [10, 100] and the grid
visual feature, where the grid visual feature has a resolution
of 8 × 8. VR(s/g/a) represents the image reasoning mod-
ule, where s, g, and a reference to semantic, positional, and
appearance reasoning for visual objects, respectively. FC1

and FC2 represent two different adaptive fusion strategies.
The experimental results in Table 5 show that the adaptive
fusion mechanism performs better than the baseline model.
To better verify the effectiveness of the proposed adaptive
fusion mechanism, we conducted a validation experiment
using grid visual features as the baseline model. In addition,
due to the absence of detection boxes for grid visual features,
it was impossible tomodel the positional relationship. There-
fore we should have included a position reasoning module
in the ablation experiment. Based on the comparative exper-
imental results, the adaptive fusion method can substantially
enhance the overall accuracy of the model. However, this
improvement is contingent on a simplistic analysis of image
and question features for adaptive fusion. Consequently, the
model cannot attain superior reasoning abilities and achieve
optimal outcomes.More complex feature analysis techniques

Table 6 Ablation experiments
on different reasoning modules
under the exploration of region
visual features and adaptive
fusion strategy FC1

Model VR(s/g/a) FC1 FC2 Yes/No Number Other All

RRAF-R (4) s/g/a
√

- 87.05 54.34 60.64 70.80

RRAF-R (8) s/g/a
√

- 86.88 54.50 60.89 70.87

RRAF-R (16) s/g/a
√

- 86.88 54.65 60.66 70.78

RRAF-R (32) s/g/a
√

- 86.88 55.05 61.03 71.00

RRAF-R (64) s/g/a
√

- 87.03 55.39 60.95 71.06
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Table 7 Exploring ablation
experiments on varying numbers
of reasoning modules based on
region visual features and the
adaptive fusion strategy FC2

Model VR(s/g/a) FC1 FC2 Yes/No Number Other All

RRAF-R (4) s/g/a -
√

86.84 54.69 60.87 70.87

RRAF-R (8) s/g/a -
√

86.88 54.78 60.91 70.91

RRAF-R (16) s/g/a -
√

86.95 54.53 60.84 70.88

RRAF-R (32) s/g/a -
√

86.99 54.79 60.93 70.97

RRAF-R (64) s/g/a -
√

86.99 54.80 60.95 70.98

may need to enhance the model’s reasoning capacity further
and achieve outstanding results.

Table 6 explores the impact of a different number of rea-
soning modules on the model’s performance when using the
first adaptive fusionmechanism. As shown in the table, using
the relation reasoning module can effectively improve the
accuracy of the “Number” category. As the number of atten-
tion heads in the relation reasoning module increases, the
accuracy of the model’s “Number” and “All” categories also
improves continuously. Due to limited computing resources,
we only verified the attention head number of object relation
reasoning to 64. Among them, the RRAF-R (64) is the model
that we finally adopted.

Table 7 analyzes the effect of using a different numbers
of reasoning module heads on the performance of the model
when using the second adaptive fusionmechanism. The table
shows that although the second adaptive fusion mechanism
can significantly improve the performance of the model, its
effect could be better than that of the first adaptive fusion
strategy. This may be due to the imbalance in modal allo-
cation between the question and image features, since the
weight contribution of the automatically allocated question
features is ε (see (27)). In contrast, that of the image features
is 1 − ε; this also indicates the necessity of designing a rea-
sonable adaptive fusion module to correctly predict answers
in VQA models.

Table 8 shows the performance of the variant models of
RRAF on the benchmark dataset GQA. The table compares
the differences between the models that do not use adaptive
fusion strategies and visual object relation reasoning mod-
ules and our proposedmodel. All variant models on the GQA
dataset are trained using region visual features and detection
boxes (frcn+bbox) for training and validation. Table 6 shows
that employing our proposed visual object relation reason-
ing module and adaptive fusion mechanism can improve the
model’s overall performance. Moreover, the first adaptive
fusion mechanism is more reasonable than the second. Since
we did not use question information to guide the construc-
tion of the image encoder, some irrelevant information may
have been incorporated into the final image features. Accord-
ingly, how can one filter out these irrelevant features again?
Undoubtedly, using the adaptive fusion mechanism is a sim-
ple and effective method. It does not lose essential image
features and also improves overall model performance.

As shown in Table 9, the RRAF model effectively
improves model performance and does not excessively
increase the number of parameters. In contrast, the MCAN+PA
[38] model introduces position information in intra-modal
interaction learning, which can adaptively adjust the inter-
modal interaction according to different inputs. Although it
achieved good results, it increases many parameters and per-
formsworse than theRRAFmodel in the “Number” category.

Table 8 The experimental results of RRAF using different modules on the GQA benchmark dataset

Model VR(s/g/a) FC1 FC2 Accuracy Open Binary Validity Plausibility Consistency

RRAF-R s × × 56.00 75.61 38.76 96.69 85.35 87.03

RRAF-R s
√

- 56.98 74.86 41.25 96.90 85.40 87.61

RRAF-R s -
√

56.84 74.91 40.95 96.86 85.26 87.43

RRAF-R (32) s/g/a × × 57.18 75.68 41.23 96.72 85.45 87.12

RRAF-R (32) s/g/a
√

- 57.48 75.74 41.73 97.02 85.75 87.12

RRAF-R (32) s/g/a -
√

57.46 74.84 41.37 97.12 85.78 87.02

RRAF-R (64) s/g/a × × 57.23 74.98 41.51 96.98 85.62 86.34

RRAF-R (64) s/g/a
√

- 57.83 76.50 42.32 96.80 85.61 88.01

RRAF-R (64) s/g/a -
√

57.79 75.55 42.27 96.85 85.63 86.99
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Table 9 Comparison of parameter size and performance of RRAF
model on VQA 2.0 and GQA datasets

Model Dataset Params Test-dev Test-std

MCAN [11] VQA 2.0 57.80M 70.63 70.90

MCAN+PA [38] VQA 2.0 68.50M 71.05 71.52

MCAN GQA 53.06M 56.00 -

RRAF-R (32) VQA 2.0 58.19M 71.00 71.23

RRAF-R (32) GQA 54.80M 57.48 -

RRAF-R (64) VQA 2.0 61.34M 71.06 71.33

RRAF-R (64) GQA 55.60M 57.83 -

In this study, we followed the above experimental settings
and trained the VQA 2.0 dataset using the train+val+vg
training method and the GQA dataset using the train+val
training method. Since the adaptive fusion mechanism does
not change the number of parameters of the model, we used
the results of the first adaptive fusion mechanism when
comparing the RRAF model in the table (see Table 4).
According to the experimental results, increasing the num-
ber of visual objects for reasoning relation attention from
32 to 64 only increased the parameters by 1.61M but sig-
nificantly improved performance. Notably, we proposed a
plug-and-play visual object relation reasoning method in
end-to-end VQA tasks, which can be applied to differ-
ent VQA model tasks and effectively improve the model
performance.

4.5 Qualitative analysis

In order to better demonstrate the effectiveness of the pro-
posed visual object relation module and adaptive fusion
mechanism, we conducted ablation experiments and com-
pared the image reasoning process using different attention
modules. As shown in the visual examples in the first row
of Fig. 5 (a) represents the case where object position and
appearance are not modeled. The model only focuses on the
“computers” on the table based on semantic information and
cannot effectively utilize information from surrounding com-
puter objects for reasoning. At the same time, it only focuses
on the local area (screen color) of the middle computer based
on semantic information, leading the model to believe that
“black” is the correct answer. (b) When object position,
semantics, and appearance (VR-s/a/g) are modeled, reason-
ing more accurately based on semantic information and
calculating the relationshipweights betweendifferent objects
is possible. However, irrelevant information unrelated to
objects is easily introduced during modeling. When using
visual object relation reasoning to learn visual relation rea-
soning and the adaptive fusion mechanism (VR-s/a/g+FCn),
the model can better combine the semantic information of
the problem and effectively filter out irrelevant visual infor-
mation. This enables themodel to answer complex reasoning
questions accurately.

In the second row of Fig. 5, we show a counting question
for complex objects in visual objects. To accurately answer

Fig. 5 Visual object relation reasoning attention visualization example based on adaptive fusion mechanism
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the count of complex targets (small or overlapping targets) in
visual objects, it is necessary to understand and calculate the
image accurately. (d) represents a method that only focuses
on visual objects based on semantic information, which does
not help the model to better understand the positional rela-
tionship between objects and is prone to ignoring counting
of complex objects. (e) depicts a modeling approach that
integrates visual object semantics, position, and appearance
information, enabling comprehension and reasoning among
objects. However, this approach also considers irrelevant
information surrounding visual objects, leading to the inclu-
sion of information unrelated to objects and potential errors
in model calculations. (f) shows the attention result using the
adaptive fusion mechanism and visual object relation rea-
soning. Themodel understands the appearance and positional
relationship between visual objects and also uses an adaptive
fusion mechanism to avoid irrelevant information from par-
ticipating in the features of the predicted answer. Therefore,
the model can effectively perform reasoning and calculation
for complex problems.

5 Conclusion and future work

We proposed a visual object relation reasoning method
based on an adaptive fusion mechanism to efficiently rea-
son complex relationships among visual objects thru a visual
relationship reasoning and adaptive fusion (RRAF) model.
The model adopt an efficient and applicable image encoder
that can simultaneously learn the interaction between visual
objects’ position and appearance features, achieving spatial
positional relationship reasoning and appearance shape rea-
soning for complex visual objects. In a deep co-attention
network, the question semantic-guided attention mechanism
can achieve more accurate semantic alignment between
image regions and problem text information. Meanwhile,
the adaptive fusion mechanism can reassign the contribution
of modalities based on the question and semantic features,
effectively filtering out irrelevant information features and
ensuring consistency between the relationships among visual
objects and the position descriptions in the problem. This
paper conducted ablation experiments on the model to verify
its performance, and the results show that each component
in the model plays an important role. Performance analy-
sis on the VQA 2.0 and GQA benchmark datasets shows
that the RRAF model effectively improved the accuracy of
the model’s counting category and also improves overall
model performance. This indicates that the RRAF can better
understand visual content and reason multiple visual rela-
tionships (position, semantics, and appearance) amongvisual
regions.

This work explored the inherent property relationships of
visual objects. However, there are many other interaction

relationships among visual objects, such as spatial posi-
tional and action interaction behavior relationships. In future
research work, more visual reasoning relationships will be
explored, and novel natural language reasoning methods will
also continue to be explored to help machines think and
understand problemsmore intelligently. Additionally, RRAF
is an easily transferable network model that can be used in
related visual language tasks to improve model performance.
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