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Abstract
Multi-scale feature fusion has been widely used in handcrafted descriptors, but has not been fully explored in deep learning-
based descriptor extraction. Simple concatenation of descriptors of different scales has not been successful in significantly
improving performance for computer vision tasks. In this paper, we propose a novel convolutional neural network, based on
center-surround adaptive multi-scale feature fusion. Our approach enables the network to focus on different center-surround
scales, resulting in improved performance.We also introduce a novel regularization technique that uses second-order similarity
to constrain the learning of local descriptors, based on the symmetric property of the similarity matrix. The proposed method
outperforms single-scale or simple-concatenation descriptors on two datasets and achieves state-of-the-art results on the
Brown dataset. Furthermore, our method demonstrates excellent generalization ability on the HPatches dataset. Our code is
released on GitHub: https://github.com/Leung-GD/AFSRNet/tree/main.

Keywords Local descriptor · Multi-scale feature fusion · Symmetric regularization

1 Introduction

In recent years, there has been a growing interest in 3D con-
struction [1, 2], imagematching [3, 4], and image registration
[5]. Efficient descriptor learning has emerged as a crucial
research area within these computer vision applications. The
dominant approach to generate local feature descriptors is to
encode image patches into representative vectors.

In previous studies, the focus was on handcrafted descrip-
tors, which require sophisticated engineering knowledge and
mathematical derivation processes [6]. Traditional image-
matching pipelines rely on handcrafted descriptors, which
have been successful in various applications. However,
learning-based descriptors have demonstrated better scal-
ability, robustness, and discriminability, achieving higher
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matching performance compared to handcrafted descriptors
[7]. In this case, a single-scale network cannot realize the
specific size of specific learning and cannot integrate more
rich information.

Previous studies primarily focused on handcrafted descrip-
tors, which require sophisticated engineering knowledge and
mathematical derivation processes [6]. Traditional image
matching pipelines, based on handcrafted descriptors like
SIFT [8] and SURF [9], have been successful in various
applications. However, these crafted descriptors still face
challenges, such as the omission of important image details.
Recently, learning-based descriptors [7, 10, 11] have demon-
strated better scalability, robustness, and discriminability,
achieving higher matching performance compared to hand-
crafted descriptors. These studies show that deep learning can
greatly improve the efficiency of descriptors. In this case, a
single-scale network is typically used to learn local features.
However, a single-scale network cannot realize specific-
scale learning, thereby failing to integrate richer information.
Center-surround multi-scale feature extraction is performed
by generating sub-patches of different sizes cropped from the
central regions of input patches. Features are then extracted
from the respective sub-patches to formmulti-scale features.
The adoption of deep learning-based descriptor extraction,
as seen in CS L2Net [10] and Patch-NetVLAD [12], is more
effective in introducing richer information into the learned

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05418-w&domain=pdf
https://github.com/Leung-GD/AFSRNet/tree/main


AFSRNet: learning local descriptors with adaptive multi-scale... 5407

features. However, it is important to highlight that simple
concatenation and fixed-weight fusion, commonly used in
this approach, cannot be optimized during backpropagation.

The descriptor network based on the triplet loss function
proves effective in enhancing descriptor performance under
challenging conditions. Numerous studies have focused on
refining this loss function, incorporating regularization for
modification [13–17]. This function is commonly employed
to train descriptor networks, emphasizing that the distance
between descriptors of negative samples should exceed that
between descriptors of positive samples. Despite its effec-
tiveness, prior works often overlook the characteristics of the
descriptor distance measure. The relative distance between
matching pairs can also be constrained in the regularization
term. Additionally, while previous works commonly sim-
plify calculations using a similarity matrix, they neglect that
the symmetry of the similarity matrix can be used for the
network’s training constraint.

To tackle the previously mentioned challenges, we pro-
pose a novel approach called AFSRNet, a center-surround
multi-scale convolutional neural network designed for extract-
ing local descriptors. AFSRNet employs three branches as
its input, each dedicated to a distinct center-surround scale
for processing input patches. These branches generate fea-
tures of the same size using dilated convolution. In addition
to the network architecture, we address descriptor learning
challenges by introducing a unique regularization term based
on symmetry of the descriptor similarity matrix. Unlike pre-
vious works, our approach considers not only the distance
between descriptors of negative and positive samples, but
also the relative distance between matching pairs in the reg-
ularization term. Moreover, we perform the regularization
by enhancing symmetry of the similarity matrix to further
decrease the calculation of descriptor learning. In summary,
the main contributions of our work include the following:

1) We introduce a novel neural network based on center-
surround Adaptive Multi-Scale Feature Fusion (AMSF)
for learning local descriptors, which can be optimized
during backpropagation.

2) We propose a new regularization term called Symmet-
ric Regularization (SR), which constrains the similarity
matrix of the descriptors to improve the robustness of the
learned descriptors.

3) By combining SR with triplet loss, our descriptor-
learningnetwork canbe trained to achieve state-of-the-art
results for local descriptor learning.

2 Related work

The research of designing local descriptors has gradually
moved from handcrafted ones to learning-based ones. Since

the purpose of this paper is descriptor learning, belowwegive
a brief review of descriptor learning methods in this paper,
ranging from traditional methods to the recently proposed
learning-based methods and various applications of multi-
scale feature fusion.

2.1 Descriptors learning network

Handcrafted descriptors for local patches have primarily
focused on mathematical derivations, such as gradient filters
and intensity comparisons. SIFT [8] is widely considered
as the most commonly used real-valued descriptor, which
computes smoothed histograms using the gradient field of
the image patch. SURF[9] utilizes a box filter to extract
image gradient information and employs a multi-scale fil-
ter in the scale space, replacing the downsampling operation
in SIFT to improve computational efficiency. This modifi-
cation effectively enables many practical applications to be
realized. While SURF has demonstrated the significance of
multi-scale features in traditional descriptor learning, they
are rarely incorporated into deep learning-based methods.

HardNet [11] employs a simple but effective strategy
known as hard negative mining, which highlights the sig-
nificance of proper sampling. This sampling strategy aims
to select the most indistinguishable image descriptors to
train the network, resulting in improved robustness in patch
matching. Consequently, many models, including our own,
have adopted this sampling strategy since its introduction.
Furthermore, Liang et al. [18] proposed a multi-level aggre-
gation technique that facilitates descriptor learning across
the entire network. Each level of their network extracts a
feature vector after feature fusion, and the final descriptor
concatenates these outputs. CRBNet [19] is built upon L2Net
and starts by using strided convolutional layers for down-
sampling. They bring in a residual learning framework for
enhancement. The architecture has four stages with shortcut
connections, and they strategically put strided convolutional
layers in the last two stages to effectively keep the input
patch information. Zhang et al. DarkFeat [20] addresses the
descriptor challenges in low-light visual perception at night.
The local feature descriptor is crucial for such applications,
face performance degradation in extreme low-light scenar-
ios due to low signal-to-noise ratio in images. To overcome
this, the paper proposes a deep learning model designed for
end-to-enddetection anddescription of local features directly
fromRAW format images captured in extreme low-light con-
ditions.

The majority of the aforementioned research on descrip-
tor matching primarily focuses on single-scale approaches.
In contrast, we propose a center-surround multi-scale fusion
network to enhance matching accuracy and enable the net-
work to focus on different parts of the image patch. In the
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following section, we provide a detailed description of our
network architecture and its components.

2.2 Multi-scale feature fusion

Multiscale feature fusion has greatly contributed to target
detection and semantic segmentation tasks by combining
semantic and spatial information fromdifferent feature scales
to improve overall performance. Multiscale input methods
include building multiscale pyramids, using multiscale inter-
mediate feature maps, and parallel inputting of multiscale
image information.

In serial multi-scale architectures, FPN [21] integrates
multi-scale features with a modified top-down path using
center-cropped patches, creating a pyramid-like structure.
EFPN [22] enhances object detection with a Pyramid Net-
work featuring an extra high-res level for small object
detection. MSPFN [23] achieves rain streak removal with
recurrent calculation and a multi-scale pyramid. MFANet
[24] improves detection accuracy using channel attention.
In parallel multi-scale networks, SPP [25] extracts features
withmultiple pooling layers. ASPP [26] captures multi-scale
information with parallel atrous convolutions. Trident-net
[27] adjusts the receptive field with parallel multi-branch
architectures, enhancing feature extraction efficiency.

Building upon insights gained from prior methods, CS
L2Net [10] introduces a novel architectural paradigm in
the realm of feature extraction. Departing from conven-
tional approaches, CS L2Net embraces a concatenation
tower structure that leverages the strength of two distinct
L2Net models, each characterized by parallel towers. Patch-
NetVLAD [12] deviates from conventional concatenation by
employing fixed weights for the fusion of descriptors across
center-surround scales. The process involves cutting patches,
generating descriptors, and applying predetermined weights
for fusion.

However, an important observation is that existing multi-
scale fusion methods lack learnability or relies on a direct
connection. This limitation restricts the optimization of the
fusion process during backpropagation. To overcome this
challenge, our proposed approach introduces an adaptive
center-surround multi-scale fusion method. This innova-
tive strategy addresses the non-learnable nature of existing
techniques, allowing dynamic optimization of descriptor
fusion across various center-surround scales through adap-
tive weight adjustment during backpropagation.

To effectively utilize multi-scale features, we also design
a parallel multi-branch and center-surround network. Each
branch focuses on studying features at a particular scale, and
an efficient fusion technique is employed instead of simple
concatenation. This approach allows us to fully exploit the
benefits of multi-scale information. We propose a feature

fusion approach that can make adaptive learning and achieve
better performance.

2.3 Descriptor distance constraint

Modifying the loss function and regularization terms has
proven to be an effective approach for constraining the dis-
tance of descriptors. Triplet loss [28] enable the learning of
more suitable network weights by comparing Euclidean dis-
tances between samples. While Euclidean distances provide
an absolute measurement, relative distance measurement is
more appropriate for vector embedding learning. To incorpo-
rate relative measurement into descriptor learning, RALNet
[13] utilizes the angle distance between feature vectors
instead of the L2 distance to measure their similarity. In
our approach, the regularization of the loss function is also
designed based on angular distance. In addition to modify-
ing how descriptor distances are measured, researchers have
explored modifications to other aspects of the loss function.
For instance, CDF [17] enhances the triplet loss by utilizing
a dynamic margin based on cumulative distribution instead
of a fixed margin. HSD [15] projects the entire network onto
hyperspherical space by altering the normalization, demon-
strating that hyperspherical learning is more suitable for
descriptors. RDLNet [16] focuses on learning hard samples
and compact descriptors through triplet networks, directing
the network’s attention to challenging examples and promot-
ing the generation of concise descriptors.

The constraint of descriptor distances solely based on
matched and unmatched pairs may not be sufficiently robust.
In addition to first-order optimization techniques, SOS-
Net [14] demonstrates that second-order constraints further
enhance the quality of descriptors. However, SOSNet over-
looks the fact that the properties distance between matching
pairs can also be constrained within the regularization term.
In our approach, we introduce this constraint into the second-
order constraint and implement it using the similarity matrix.
This regularization term incorporates the consideration of
matching pair properties, improving the overall performance
and robustness of the descriptors.

3 Method

3.1 Network architecture

Figure 1 shows the main architecture of AFSRNet, which
mainly contains three parts: multi-scale input, feature extrac-
tion, and feature fusion. Each part is described in detail in
the following.

Multi-scale input Previous work has demonstrated that
focusing on pixels near the center of a patch and payingmore
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Fig. 1 The main architecture of AFSRNet consists of three parts: multi-scale input, feature extraction, and adaptive multi-scale fusion. The
architecture includes three branches, named Full Patch Branch, Center-Peripheral Branch, and Central Branch from top to bottom

attention to the central region of input patches can enhance
the accuracy of descriptor matching. To this end, we pro-
pose a three-stream structure that contains the central region
at all three different scales. As shown in Fig. 1, the three
multi-scale branches are referred to as the full-patch branch,
center-peripheral branch, and central branch, with sizes of
64×64, 48×48, and 32×32, respectively. The latter two parts
are obtained by cutting in a center-surround way. The one
closest to the center, and also the smallest, is called the central
part, corresponding to the center branch. The second smallest
part is the center-periphery section between the full patch and
the center, containing the center part, and it corresponds to
the center-periphery branch. The three inputs are processed
using dilated convolution with different strides in the three
branches to generate features of dimension 32×32×32. Such
a central-surroundmulti-scale patch information input is crit-
ical for enhancing the performance of descriptor matching.

Feature Extraction After adjusting the size of the feature
maps from the cropped patches, we feed them into feature
extraction module. The architecture of the feature extraction
module of AFSRNet is shown in Fig. 2. Instead of pooling
layers, the spatial size is reduced using stridden convolutions

since pooling layers tend to negatively impact the perfor-
mance of the descriptor [11]. The output of this module is a
feature map of size 8×8×128.

Feature Fusion In our proposed method, we utilize adja-
cent sub-networks in parallel for feature fusion. This allows
the descriptor to focus on feature information from different
center-surround receptive fields. To achieve adaptive feature
map fusion, we implement a fusion method based on nor-
malized weights, as follows:

F1 = Conv(
ω11 · P1 + ω12 · P2

ω11 + ω12 + ε
), (1)

F2 = Conv(
ω21 · P1 + ω22 · P2 + ω23 · P3

ω21 + ω22 + ω23 + ε
), (2)

F3 = Conv(
ω32 · P2 + ω33 · P3

ω32 + ω33 + ε
), (3)

Ff inal = ω f1 · F1 + ω f2 · F2 + ω f3 · F3
ω f1 + ω f2 + ω f3 + ε

. (4)

The weightωi j of the i th output and the j th input is learnable.
To ensure that ωi j ≥ 0, we apply a ReLu after each ωi j .

Fig. 2 The feature extraction
architecture is adapted from
HyNet [29]. Each convolutional
layer is followed by Filtere
Response Normalization (FRN)
and Thresholded Linear
Unit(TLU)
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Besides, ε = 0.0001 is a small value to avoid numerical
instability.

3.2 Loss function and regularization

Triplet loss Triplet loss is a commonly used loss function
for training local descriptors. It enforces smaller distances
between positive matches and larger distances between neg-
ative matches. The common expression for triplet loss is as
follows:

Ltriplet = 1

N

N∑

i

max(s(ai , pi ) − s(ai , ni ) + m, 0), (5)

where a, p and n represent an anchor, a positive and a nega-
tive of the triplet tuple,m represents the margin and function
s(x, y) represents the similarity score between the two fea-
tures x and y, and x and y are L2 normalized. Sampling
is crucial to achieve both performance gain and computa-
tional efficiency, thus, we adopt the same sampling strategy
as HardNet [11]. RALNet [13] has demonstrated that cosine
similarity is superior to Euclidean distance in comparing
descriptor distances. Therefore,wedefine the similarity func-
tion s(x, y) as follows, hereafter denoted as sxy for simplicity,
as follows:

s(x, y) = 1 − x · yT = 1 − ||x || ||y|| cos θxy, (6)

where θxy represents the angle between x and y.

Regularization During training, a training batch consists of
N pairs of matched patches. The size of the descriptor matri-
ces A and P are N × 384 while the similarity matrix D is
N × N . The similarity matrix D is shown as follows:

D = (1 − A · PT ) =

⎡

⎢⎢⎢⎢⎣

sa1 p1 sa1 p2 . sa1 pN
sa2 p1 . . .
. . . .
. . . .

saN p1 . . saN pN

⎤

⎥⎥⎥⎥⎦
. (7)

The foundational principle of second-order similarity (SOS)
posits that vertices with similar neighbors are likely to
exhibit similarity. SOSNet [14] employs second-order sim-
ilarity regularization (SOSR) by minimizing the Euclidean
distance between ai ,a j and pi ,p j to enhance descriptor sim-
ilarity. However, the efficacy of using Euclidean distance as a
second-order similarity measure may be limited [13]. Addi-
tionally, SOSNet overlooks the potential improvement that
could result from integrating first-order similarity properties
into second-order similarity constraints. While construct-
ing similarity matrices for training is common in descriptor

methodologies, these matrices are rarely utilized for regular-
ization terms within constraints.

In response to these limitations, we introduce a novel
regularization term, symmetric regularization (SR). The
motivation behind SR lies in addressing the inadequacies
of relying solely on Euclidean distance and exploring the
untapped potential of incorporating first-order and second-
order similarity properties. To achieve this, SR strategically
leverages distance matrices, which comprehensively capture
the pairwise relationships between descriptors.

Distance matrices provide a detailed representation of the
similarity landscape by encapsulating the distances between
all descriptor pairs. This nuanced understanding of pair-
wise relationships enables a more refined and context-aware
descriptor learning process. Moreover, SR places emphasis
on the symmetry of similarity relationships.

By incorporating distance matrices and symmetry con-
siderations into the regularization process, SR aims to refine
descriptor training. The regularization term encourages bidi-
rectional consistency in similarity relationships, enhancing
the overall robustness and accuracy of the descriptor model.
This strategic incorporation of distancematrices and symme-
try considerations represents a departure from conventional
approaches, ensuring a more detailed exploration of the
underlying structures within descriptor spaces. The intro-
duction of SR contributes to a more nuanced understanding
of the intrinsic relationships between descriptors, ultimately
leading to improved descriptor learning outcomes.

Proposition 1 Let ai , pi are pairs of matched descriptors in
a batch and they are second order similar, that is

First Order Simili tr y (FOS) : sai pi = sa j p j = 0, (8)

Second Order Simili tr y (SOS) : sai a j = spi p j , (9)

then the similarity matrix D is symmetric.

Proof Based on (8), we can conclude that

{
ai · pi T = ||ai || ||pi || cos θai pi = 1,

a j · p j
T = ||a j || ||p j || cos θa j p j = 1

(10)

The descriptors are all L2 normalized, so the norm of them
equal to 1, and thus can be conclude from (6) and (10) that

θai pi = θa j p j = 0. (11)

Based on (9) and (6), we can conclude that

θai a j = θpi p j , (12)
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and we have that

{
θai p j = θai a j±θa j p j ,

θa j pi = θpi p j ±θai pi .
(13)

Then, according to (6), (10), (11) and (12), we derive that

{
θai p j = θa j pi ,

sai p j = sa j pi

(14)

Then referring to (7), sai p j and sa j pi are the symmetrical
elements of the similarity matrix D. Therefore, it can con-
clude that if sai p j = sa j pi , D=DT , so the similarity matrix
D is a symmetric matrix.

If D is a symmetric matrix and ai , pi are fisrt order
matched, we have (11) and (14), then we conclude that:

{
θai a j = θai p j ±θa j p j = θai p j ,

θpi p j = θa j pi ±θa j p j = θa j pi .
(15)

Then referencing to (6), we conclude that sai a j = spi p j . So
if D is a symmetric matrix and ai , pi are fisrt order matched,
we can conclude that ai , pi are second order similar.

Finally, we have that if and only if ai , pi are pairs of
matched descriptors and they are second order similar, the
similarity matrix of them is symmetric. ��

This suggests that enhancing the symmetry of the descrip-
tor similarity matrix can lead to second-order similarity
among the descriptors within the same batch. We formulate
the symmetric regularization term as follows:

SR = ‖D − D�‖F
‖D‖F , (16)

where ‖D‖F denotes the Frobenius norm of D. Essentially,
(7) quantifies the proportion of asymmetry in the similarity
matrix D, with a decreasing value indicating reduced asym-
metry in the matrix.

In contrast to SOSNet, which employs a KNN algo-
rithm and constructs three matrices for computation with
an algorithmic complexity of O(N ), our proposed symmet-
ric regularizatio only requires the construction of a single
matrix and has an algorithmic complexity of O(1). The total
loss function is expressed as:

L = 1

N

N∑

i

max(s(ai , pi ) − s(ai , ni ) +m, 0) + λSR. (17)

4 Experiments

In this section, we compare our proposed descriptor learning
method with several methods on two benchmark datasets
including Brown dataset [30] and HPatches dataset [31].

4.1 Implementation details

To prevent overfitting, a dropout rate of 0.2 is applied. The
PyTorch library is utilized to train our local descriptor net-
work. SGD is chosen as the optimizer with an initial learning
rate of 0.1, momentum of 0.9, and weight decay of 0.0001.
The value of λ in the loss function is set to 0.15.

4.2 Experimental results and analysis

4.2.1 Brown phototour

For network training, we use the Brown Dataset [30],
which is composed of local patches extracted from different
scenes. Brown Dataset consists of three subsets: Yosemite,
Notredame, and Liberty. Usually, we take one of the sub-
sets as training set while the other two are used for testing.
Each patch in the dataset has a unique 3D point indexes and
patches with identical 3D point index are matching ones.
What is more, for each 3D point, there are at least 2 match-
ing patches. There are approximately 500K (1.5M) and 3D
points (patches) in the Brown dataset. The original size of
each patch is 64×64. In addition, we extract 1000K triplets
of patches from the training set with a batch size of 384 for
training. We follow the standard evaluation protocol of it by
using the 100K pairs provided by the authors and report the
false positive rate at 95% recall.

The impact of effective data-driven neural networks on
improving results compared to traditionalmethods is unques-
tionable. The deep learning based approach is a major leap
forward, especially themodifications to the network structure
and regularization terms that improve the descriptor learning
performance. As shown in Table 1, experimental results on
the Brown dataset highlight the superiority of CNN-based
approaches compared to SIFT, such as L2Net [10], HardNet
[11], RAL-Net [13] and SOSNet [14] .

Thanks to our adaptive fusion and simplified computa-
tional but efficient SR regularization, our approach outper-
forms previousmethods. Notably, ourmethod employs novel
three-branch center-surround multiscale learning, again out-
performing similar methods such as CS L2Net [10].

Based on the experimental results, we present the fol-
lowing observations. It is evident that deep learning-based
methods can significantly outperform traditional methods by
using data-driven and efficient neural networks. As shown in
Table 1, our approach outperforms other descriptor-learning
methods on the Brown dataset. Our method outperforms
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Table 1 Patch-verification
performance on the UBC
phototour dataset. False positive
rates at 95% recall are reported

Train Notredam Yosemite Liberty Yosemite Liberty Notredam Mean
Test Liberty Notredam Yosemite

SIFT [8] 29.84 22.53 27.29 26.55

TBLD [32] 20.4 21.95 14.47 16.53 36.88 35.09 18.25

BLCD [33] 10.07 11.90 4.90 5.26 9.02 10.03 8.53

HybridDesc [34] 2.70 3.63 0.81 1.00 3.17 2.67 2.33

L2Net [10] 2.36 4.70 0.72 1.29 2.57 1.71 2.23

CS L2Net [10] 1.71 3.87 0.56 1.09 2.03 1.30 1.76

HardNet [11] 1.49 2.51 0.53 0.79 1.96 1.84 1.51

RALNet [13] 1.30 2.39 0.37 0.67 1.52 1.31 1.26

SOSNet [14] 1.08 2.12 0.35 0.67 1.03 0.95 1.03

CDF [17] 1.21 2.01 0.39 0.68 1.51 1.29 1.18

CDF-STC [35] 1.16 1.86 0.36 0.61 1.18 1.09 1.04

HSD+ [15] 1.19 1.91 0.37 0.64 1.38 1.14 1.11

MR3A [36] 1.47 2.09 0.50 0.77 1.69 1.75 1.38

MFD-Net [37] 1.21 2.10 0.40 0.74 1.85 1.77 1.35

HyNet [29] 0.89 1.37 0.34 0.61 0.88 0.96 0.84

AFSRNet 0.84 1.40 0.28 0.45 0.94 0.67 0.76

unsupervised approaches such as TBLD [32], BLCD [33],
andHybridDesc [34]. Notably, it consistently surpasses these
methods and notably excels when compared to HybridDesc,
acknowledged as the leading unsupervised feature descriptor
learning approach.

4.2.2 HPatches

HPatches [31], a local descriptor evaluation benchmark, pro-
vides a huge dataset and evaluation criteria for modern
descriptors. HPatches dataset consists of over 1.5 mil-
lion patches extracted from 116 viewpoint and illumination
changing scenes and different from the Brown dataset, it con-
tains more diversity and noisy changes. According to the
different levels of geometric noise, the extracted patches can
be divided into three groups: easy, hard, and tough. There
are three evaluation tasks of HPatches: patch verification,
image matching, and patch retrieval. In the evaluation on the

HPatches dataset, all learning methods shown in Fig. 3 are
trained on Liberty, a subset of the Brown Dataset.

It is essential to note that all themethods presented inFig. 3
were trained using the Liberty subset of the Brown dataset.
This specific training dataset provides a consistent bench-
mark for assessing the performance of various methods. Our
proposed approach stands out with substantial enhancements
across multiple evaluation metrics, encompassing patch ver-
ification, image matching, and patch retrieval. The detailed
analysis depicted in Fig. 3 illustrates the comparative per-
formance of different methods in these key aspects. Notably,
our method consistently outperforms existing approaches,
underscoring its effectiveness in handling various challenges
posed by patch-based tasks. This comprehensive evalua-
tion on HPatches reaffirms the robustness and superiority of
our approach in comparison to the other methods, thereby
contributing to its credibility and relevance in real-world
applications.

Fig. 3 Results of the patch-verification, patch-matching, and patch-retrieval tasks on HPatches [31]. Our proposed method outperforms all other
methods in all three tasks
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4.3 Ablation study

To validate the efficacy of our proposed method, we per-
formed ablation experiments on various components, includ-
ing the AMSF module, the SR, the number of branches, and
the value of λ. These experiments were conducted on the
Brown dataset.

1)Impact o f AMSF : We evaluate the effect of AMSF
on descriptor learning by comparingAMSFwith single-scale
learning methods, such as L2Net [10], and simple concate-
nation methods, such as CS L2Net [10]on the Brown dataset.
Our AFSRNet comprises three sub-networks, so the dimen-
sion of the output produced by simply concatenating the
descriptors from the three sub-networks is 3×128, i.e., 384.
Therefore, for a fair comparison, all compared methods are
trained such that the dimension of their descriptors is also
384. Table 2 shows that our proposed adaptive multi-scale
fusion module is superior to concatenation.

In addition to the previously mentioned experimental
results, we further conducted a detailed analysis by exam-
ining the Area Under the Curve (AUC) throughout the entire
training process. The AUC curve, illustrated in Fig. 4-(a),
serves as a dynamic metric to evaluate the performance
evolution over different epochs. Remarkably, our model con-
sistently exhibits superior performance when compared to
the other two models, surpassing them notably around the
tenth epoch. As shown in the Fig. 4-(a) , Concatenation also
surpasses Single scale in about the 15th cycle, because one
more scale information can make the feature descriptor have
better matching performance, while AMSF surpasses Con-
catenation in about the 10th cycle, which shows that not only
scale information is important, but also how to fuse them into
one descriptor is also important, and our AMSF solves the
problem of how to fuse them in a better way based on the
utilization of multiscale information, and it can be seen that
this superiority is embodied in the whole process of training.

This in-depth investigation not only provides a more com-
prehensive understanding of the superiority of the AMSF
module but also emphasizes that this superiority is sus-
tained throughout the entire training process. TheAUC curve
showcases the continuous and progressive excellence of
our model, going beyond occasional instances of favorable
experimental results. This extended analysis not only bol-
sters the evidence supporting the effectiveness of the AMSF

module but also enhances the overall persuasiveness and
credibility of our work.

2)Impact o f SR: Moreover, we conducted experiments
to evaluate the effect of symmetric regularization(SR) on the
performance of our network. Our results show that networks
trained with symmetric regularization outperform networks
trained without symmetric regularization, as evidenced by
the decrease in FPR95. Specifically, Table 3 shows that, for
the same descriptor distance, using symmetric regularization
results in a 30.1% reduction in FPR95.

3)Impact o f the number of branches: To understand
how the number of branches affects thefinalmatching results,
we conducted experiments comparing two-branch and four-
branch models with our proposed three-branch model. The
input patch size for a two-branch network is 64×64 and
32×32, while for a four-branch network, it is 64×64, 56×56,
48×48, and 32×32. The network configuration is the same,
utilizing the AMSF module and SR. As shown in Table 4,
our three-branch model performs better. Despite the com-
putational intensity of the four-branch network, it doesn’t
outperform our approach in matching effectiveness. This
highlights that a network’s efficacy isn’t solely determined
by the number of branches or scales. Regarding the two-
branch network, althoug it’s performance is worse than four-
and three-branch ones, it outperforms other two-branch net-
works like CS L2Net [10], showcasing the effectiveness of
our adaptive fusion module.

4) Impact o f λ: We also explored the effect of the hyper-
parameter λ on the performance of our method by varying
its value from 0.05 to 0.4. The training was conducted on
the Liberty subset, and the evaluation was performed on the
remaining two subsets. As shown in Fig. 4-(b), we observed
that the best performance of the learned descriptors was
achieved when λ was set to 0.15. Therefore, we selected
λ=0.15 as the weight value to appropriately balance the first-
order and second-order loss functions in our approach.

4.4 Visualization result

In order to thoroughly assess the efficacy of our proposed
method, we present a comprehensive performance validation
based on visual results obtained from the HPatches dataset
[31]. The initial phase of our experimentation involved the
utilization of the SIFT algorithm [8] for both keypoint

Table 2 Comparison of AMSF,
concatenation, and single-scale
descriptors. AMSF stands for
adaptive multi-scale fusion

Train Notredam Yosemite Liberty Yosemite Liberty Notredam Mean
Test Liberty Notredam Yosemite

Single Scale 1.19 2.03 0.31 0.67 1.07 0.93 1.04

Concatenation 1.28 1.58 0.34 0.50 1.00 0.69 0.88

AMSF 0.84 1.40 0.28 0.45 0.94 0.67 0.76
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Fig. 4 Model analysis. AFSRNet is trained and tested on tested on Brown dataset.(a):Effect of AMSF. Area under the ROC curve (AUC) of different
training epoch (train on Liberty and test on Notredam) is served as an indicator. (b):Effect of the λ. The curve shows the relation between FPR95
and λ

Table 3 Effect of SR, where
“w/” and “w/o” mean with and
without, respectively

Train Notredam Yosemite Liberty Yosemite Liberty Notredam Mean
Test Liberty Notredam Yosemite

w/o SR 1.05 1.92 0.38 0.59 1.40 0.75 1.02

w/ SOSR 0.89 1.63 0.29 0.51 0.88 0.73 0.81

w/ SR 0.84 1.38 0.28 0.45 0.94 0.67 0.76

Table 4 Comparison of
different numbers of branches

Train Notredam Yosemite Liberty Yosemite Liberty Notredam Mean
Test Liberty Notredam Yosemite

Two Branches 1.21 1.51 0.41 0.46 1.03 0.86 0.91

Four Branches 0.86 1.42 0.29 0.42 0.94 0.74 0.78

Three Breanches 0.84 1.40 0.28 0.45 0.94 0.67 0.76

(a) HardNet 180 Matching 106 Matching 150 Matching

(b) SOSNet 227Matching 195 Matching 176 Matching

(c) AFSRNet 258Matching 246 Matching 247 Matching

Fig. 5 Visualization matching results on HPatches [31]. The correct matching pairs are indicated by blue lines
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detection and descriptor extraction. Three distinct methods,
namelyHardNet [11], SOSNet [14], and our novelAFSRNet,
were employed for the extraction of descriptors.

Following the descriptor extraction process, we applied a
nearest neighbor distance ratiomatching strategywith a spec-
ified threshold of 0.75, as illustrated in Fig. 5. This matching
strategy, depicted in the figure, serves to establish corre-
spondences between descriptors and plays a crucial role in
evaluating the performance of our method.

As shown in Fig. 5, it serves as a valuable reference, visu-
ally highlighting the superior performance of our proposed
method in terms of descriptor pair matching accuracy. Our
results demonstrate that our AFSRNet consistently outper-
forms bothHardNet and SOSNet, producingmore accurately
matched descriptor pairs. This superiority is particularly
evident in the visual results obtained from . The visualiza-
tion evaluation underscores the robustness of our approach,
showcasing its ability to generate more precise and reliable
descriptor matches when compared to the other two estab-
lished methods.

5 Conclusion

In this paper, we introduce a novel feature extraction model
based on adaptive multi-scale feature fusion (AMSF) and
a new regularization term, called symmetric regularization
(SR). Our proposed method achieves state-of-the-art per-
formance on the Brown dataset, and also exhibits strong
generalization ability on the HPatches dataset. Furthermore,
we conducted a comprehensive ablation study to reveal the
contribution of each proposed component to the final perfor-
mance. Our results show that our proposed AMSF module
and SR play critical roles in enhancing the performance of
descriptor learning.
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