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Abstract
To effectively address large-scale optimization problems, this paper proposes an evolutionary dynamic grouping (EDG) based
cooperative co-evolution (CC) algorithm. In the proposed algorithm, a novel decomposition method is designed to generate
the sub-components of decision variables dynamically. Additionally, an evolutionary search method based on the fireworks
search strategy is proposed to enhance the searchability of the algorithm. The performance of the proposed algorithm is
assessed using two benchmark suites, IEEE CEC’2010 and IEEE CEC’2013, as well as a real-world optimization problem,
the 0/1 Knapsack Problem (KP). Experimental results demonstrate that the proposed algorithm achieves competitive results
when compared with other state-of-the-art algorithms.

Keywords Large-scale optimization · Cooperative co-evolution (CC) · Dynamic grouping · Fireworks search strategy

1 Introduction

Over the past decade, the dimensional space of optimization
problems has grown significantly in real-world applications
[1, 2]. Consequently, large-scale global optimization prob-
lems (LSGOPs), involving at least thousands of decision
variables [3, 4], have emerged as a vibrant area of research.
The dimensionality of the decision variables is a major factor
in the complexity of optimization problems. The exponen-
tial growth in the size of the search space with respect to the
number of decision variables affects the number of candidate
solutions in the search space. Generally, the dimensionality
of the decision variables also has a direct impact on the com-
putational cost of the optimization and the computational
feasibility of detecting correlation between pairs of vari-
ables [5]. Therefore, LSGOPs are valuable but challenging to
solve. Recently, some attempts have been made for LSGOPs
[6].

Evolutionary algorithms (EAs) have demonstrated sig-
nificant success in solving complex optimization problems
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[7–13]. However, due to the ”curse of dimensionality” [14],
it is still difficult for traditional EAs to address LSGOPs
[15, 16]. Consequently, numerous researchers have under-
taken efforts to develop EAs tailored for LSGOPs [15,
17]. These algorithms are commonly known as large-scale
evolutionary algorithms (LSEAs). The existing LSEAs can
be roughly categorized into metaheuristics and divide-and-
conquer methods [18].

The metaheuristics LSEAs mainly focus on enhancing
the searchability of algorithms. In other words, various
schemes are designed to maintain population diversity in the
large-scale space. For instance, Hansen and Ostermeier [19]
developed a covariance matrix adaptation evolution strat-
egy (CMA-ES) algorithm utilizing two evolution paths to
preserve diversity. Ros and Hansen [20] proposed a variant
of CMA-EA, called sep-CMA-ES, to alleviate the time cost
associated with covariance matrix calculation in CMA-ES.
Additionally, Molina et al. [21] introduced a memetic algo-
rithm, named MA-SW-Chains, which assigns each search
intensity to each individual through chaining different local
search operators. LaTorre et al. [22] presented a multi-
offspring generation framework (MOS) that combines a
Genetic Algorithm (GA) with two local searches. Moreover,
several algorithms based on particle swarm optimization
(PSO) have been proposed. Specifically, Cheng and Jin [23]
proposed a competitive particle swarm algorithm (CSO)
employing a paired competition mechanism to generate the
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next population. They also presented a social learning par-
ticle swarm optimization algorithm (SL-PSO) [24], which
updates the positions of particles by learning from those
with better fitness values. Jian et al. [25] proposed a local
search strategy, ARS, based on a novel region-based encod-
ing scheme to enhance SL-PSO, forming the SLPSO-ARS.
Wang et al. [26, 27] proposed two variants of distributed PSO
(DPSO), nameddynamic group learningDPSO(DGLDPSO)
and adaptive granularity learningDPSO (AGLDPSO). These
algorithms increase population diversity by dynamically
changing the structure of the subpopulations. Furthermore,
Ge et al. [28] developed a novel distributed differential evo-
lution (DE) algorithm with an adaptive population model,
named DDE-AMS. Hadi et al. [29] proposed a hybrid algo-
rithm, MLSHADE-SPA, based on three DE strategies and a
modified Multiple Trajectory Search (MTS). Later, Koçer
and Uymaz [30] proposed an improved MLSHADE-SPA
(IMLSHADE-SPA) with a novel local searchmethod. Zhang
and Lan [31] introduced a memetic algorithm, MPCE &
SSALS, utilizing a multiparent crossover evolution strat-
egy and a step-size adaptive local search method for local
exploitation. Recently, Li et al. [32] proposed a dynamic sine
cosine algorithm, named DSCA, which includes a nonlin-
ear random convergence parameter to update the equation
dynamically, balancing the exploration and exploitation of
SCA. Sanjoy et al proposed an enhanced whale optimization
algorithm (eWOA) [33]. In eWOA, a selection parameter is
introduced, and the co-efficient vectors in the whale opti-
mization algorithm (WOA) are modified.

In contrast to the first category, the divide-and-conquer
LSEAs, mainly cooperative co-evolutionary EAs (CCEAs),
decompose original LSGOPs into several sub-components
and optimize them separately. CCEAs can effectively reduce
the search space, which makes it more conducive to solv-
ing complex LSGOPs. The primary challenge in employing
CC for solving LSGOPs lies in the choice of the problem
decomposition method. Consequently, numerous attempts
have been made to design effective decomposition methods.
For instance, Van den Bergh and Engelbrecht [34] proposed
a decision grouping method where a D-dimensional prob-
lem is evenlydivided into k small-dimensional sub-problems.
To consider the variable interdependencies, Yang et al. [35]
proposed a random grouping (RG), which randomly decom-
poses variables into a fixed number of sub-components at
each generation. Subsequently, they developed a method
to determine the sub-component sizes from a provided set
based on the probability of historical performance mea-
sures [36]. Omidvar et al. [37] proposed another competitive
decomposition method, called delta grouping, which iden-
tifies the interacting variables by measuring the averaged
difference in a certain variable across the entire popula-
tion. It was also extended to an improved version that can
adaptively determine the size of sub-components, as in [36].

However, these decomposition methods do not detect the
underlying structure of variable interactions. To address this,
Omidvar et al. [14] proposed a differential grouping (DG)
decomposition method. In DG, the interactions between
each variable are identified by detecting the fitness changes
when perturbing the variables. Sun et al. [38] developed an
extended differential grouping (XDG) method to detect the
indirect interactions between variables. Additionally, Mei
et al. [39] proposed a global differential grouping (GDG)
method. Later, Omidvar et al. [40] presented an improved
version of DG, named DG2, which exhibits better efficiency
and grouping accuracy than DG. Recently, Sun et al. [41]
developed a recursive differential grouping (RDG) method
based on the bisection method, which significantly improved
the efficiency of problem decomposition in terms of time
complexity. Chen et al. [42] proposed an efficient adap-
tive differential grouping algorithm (EDGA) for large-scale
black-box optimization problems. In addition, some algo-
rithms [43–45] are proposed to allocate different computing
resources based on the contribution of the sub-problems, and
others [46, 47] based on modified CC technique are also
developed.

The CCEAs have proven successful in addressing LSGOPs,
which can effectively reduce problem difficulty through a
divide-and-conquer approach. The full potential of CCEAs
is realized bymeticulously designing efficient decomposition
and evolutionary search methods. As mentioned above, the
decomposition methods can be classified into two different
approaches, namely, the manual decomposition method [34–
37] and the automatic decomposition method [14, 38–42].
In manual decomposition methods, the number of sub-
components is manually determined. These methods work
well on fully separable problems while exhibiting short-
comings in solving non-separable problems due to they do
not identify the underlying structure of variable interactions.
Conversely, automatic decomposition methods automati-
cally assign decision variables to different sub-components
based on their underlying structure, in which the interacting
variables can be placed into the same sub-component. How-
ever, a drawback is that the decomposed sub-components
will remain unchanged during the evolution, with only the
best-so-far solutions exchanged between different of them.
This makes the automatic decomposition methods insuffi-
cient to compensate for information. In particular, there are
often challenges in accurately decomposing real-world prob-
lems. Moreover, these methods are also unsuitable for both
fully separable and fully non-separable problems, as theywill
place only one variable in each sub-component or group all
variables into one big sub-component. Therefore, an effec-
tive decomposition method that strikes a balance between
the two approaches is needed. Compared with the decom-
position method, the evolutionary search method is equally
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crucial for enhancing CCEA performance, but limited atten-
tion has been devoted to improving these search methods.

To address the above issues, this paper proposes an evo-
lutionary dynamic grouping based cooperative co-evolution
algorithm, named EDGCC. The proposed EDGCC mainly
aims to enhance the informative collaborators among sub-
components and improve the searchability of the algorithm
in solving LSGOPs. The major contributions of this paper
are summarized as follows:

(1) An evolutionary dynamic grouping (EDG) method is
proposed. In EDG, the sub-components are dynamically
generated based on the designed selection, crossover,
mutation operations, and an adaptive frequency scheme.
It considers both the underlying structure of variable
interactions and the transfer of information between dif-
ferent sub-components.

(2) An evolutionary search method based on the fire-
works search strategy is proposed. In this strategy, the
operations of generating offspring populations in the
fireworks algorithm are first time introduced to the
CCEAs for LSGOPs. It is performed after each cycle
of sub-component optimization, which works with the
sub-component optimizer to enhance the diversity of the
population.

(3) An evolutionary dynamic grouping-based cooperative
co-evolution (EDGCC)algorithm is proposedforLSGOPs.
To demonstrate the effectiveness of EDGCC, a com-
prehensive empirical study has been conducted. The
experimental results indicate that the proposed algo-
rithm achieves promising performance compared with
four state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2,
a review of related work on the proposed algorithm is pro-
vided. In Section 3, the details of the proposed algorithm are
described. Experiments are conducted in Section 4. Finally,
the conclusions and future work are given in Section 5.

2 Related work

In this section, first, a brief introduction to the LSGOP is
given. Then, the idea of the CC technique is elaborated.
Finally, the firework algorithm is described.

2.1 Large-scale global optimization problems

Without loss of generality, an LSGOP can be formulated as
follows:

min f (x) , x = [x1, x2, · · · , xD] ∈ X . (1)

where f (x) is the objective function, x = [x1, x2, · · · , xD]
denotes a D-dimensional decision vector, X ∈ R

D indicates
the feasible solution set. In the LSGOP, D ≥ 1000 [48].

There are three categories for LSGOPs according to
the interaction relationship among variables, namely, fully
separable LSGOP, partially separable LSGOP, and fully
non-separable LSGOP. The separable LSGOP is defined as
follows:

argmin
S

f (x) =
(
argmin

S1
f (x1, · · · ) , · · · , argmin

Sm
f (· · · , xm)

)
.

(2)

where {S1,S2 · · · ,Sm} represents them disjoint sub-compo-
nents of x . If m = D, the LSGOP defined by (2) is a fully
separable LSGOP, and ifm = 1, the LSGOP defined by (2) is
a fully non-separable LSGOP. However, LSGOP defined by
(2) is a partially separable LSGOP whenm �= D andm �= 1.

2.2 Cooperative co-evolution technique

The cooperative co-evolution(CC) technique is a popular
approach for tackling large-scale optimization problems [49–
51]. It is attributed to the divide-and-conquer strategy, which
decomposes a large-scale problem into numbers of smaller
sub-problems and optimizes them separately. The perfor-
mance of CCEAs for solving LSGOPs is sensitive to the
choice of decomposition method. As reviewed in Section 1,
a number of decomposition methods have been proposed. In
this subsection, we detail the recently developed recursive
differential grouping (RDG) method [41], which can effi-
ciently and accurately decompose the problems based on the
interaction of decision variables. The detailed description of
RDG is as follows:

Notation: Let X be the set of decision variables {x1, · · · ,

xD} and UX be the set of unit vectors in the decision space
R

D . Let X1 be a subset of variables X and UX1 be a subset
of unit vectors UX . For any unit vector u = (u1, · · · , uD) ∈
UX1 , we have

ui = 0, ifxi /∈ X1. (3)

Theorem: Let f : R
D → R be an objective function;

X1 ⊂ X and X2 ⊂ X be two mutually exclusive subsets of
decision variables: X1 ∩ X2 = φ. There is some interaction
between decision variables in X1 and X2, if there exist two
unit vectors u1 ∈ UX1 and u2 ∈ UX2 , two real numbers
l1, l2 > 0, and a candidate solution x∗ in the decision space,
that satisfied the following:

f
(
x∗ + l1u1 + l2u2

) − f
(
x∗ + l2u2

) �=
f
(
x∗ + l1u1

) − f
(
x∗) .

(4)
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If there is an interaction between X1 and X2, X2 will be
further divided into two equal-sized and mutually exclusive
subsets. Then, the interactions between X1 and these subsets
are examined. The above process is repeated until RDG finds
all the variables that interact with X1. However, if the for-
mula is not held, X1 and X2 will be determined as mutually
separable sets.

In RDG, the interrelationship is examined between a
pair of sets of variables but not a pair of variables. During
this binary search procedure, if there is not an interaction
between X1 and a subset, RDG does not further examine
the interrelationship between X1 and the variables in this
subset. Therefore, RDG greatly improved the efficiency of
the time complexity compared with DG [14] and DG2 [40].
According to [41], the computational complexity of RDG
is O

(
Dlog2D

)
for decomposing a D-dimensional problem,

while DG is D2 + D, and DG2 is
[(
D2 + D + 2

)
/2

]
.

2.3 Fireworks algorithm

The fireworks algorithm (FWA) [52] is a swarm intelli-
gence algorithm inspired by the phenomenon of fireworks
explosion in the night sky. Liu et al. [53] have presented theo-
retical analysis and proved that FWA is an absorbingMarkov
stochastic process. In recent years, there are many pieces of
research for FWA in solving practical problems [54, 55].

FWAmainly follows the general framework of EAs. How-
ever, it proposes a new search manner that imitates the
process of fireworks explosion to search the potential space
by a stochastic explosion process within the local space. In
FWA, there are three main operations, namely, explosion,
Gaussian mutation, and selection. At first, several fireworks
are initialized randomly. Then, explosion sparks of these fire-
works are generated by the explosion operation. To maintain
the diversity of the population and balance the global and
local search, the explosion amplitude and the population of
the generated sparks are different between fireworks. Specif-
ically, a firework with lower fitness has a higher explosion
amplitude, which generates a smaller population within a
more extensive range. On the contrary, a firework with better
fitness will have a lower explosion amplitude and a larger
population. In other words, exploration is achieved by those
fireworks with a large explosion amplitude to escape from
local minima, while exploitation is achieved by those fire-
works with a small explosion amplitude to reinforce the local
search ability in promising areas. Moreover, the mutation
operation mutates the locations of the fireworks to gener-
ate mutation sparks, which are used to further improve the
diversity of the swarm. Finally, the selection operation selects
among the set of the generated two types of sparks and the
original fireworks for the next generation.

3 The proposed algorithm

In this section, themain framework of the proposed algorithm
EDGCC is first elaborated. Then, the evolutionary dynamic
grouping (EDG) method and the fireworks search strategy as
two critical components of EDGCC are introduced in detail.

3.1 Main framework of EDGCC

The main framework of the proposed EDGCC is given in
Algorithm 1. It starts by randomly initializing a population,
denoted as P , with size N , in which each solution con-
sists of D decision variables. Then, the RDG [41] method is
employed to detect the interaction of all decision variables.
The RDG method obtains several non-separable variable
groups and a separable variable group, which are denoted
as nonseps and seps, respectively.

In the main loop, to begin with, the sub-components
are generated by the EDG method. Subsequently, all sub-
components are optimized by the sub-component optimizer
one by one.Meanwhile, the function value improvementΔF
of each sub-component is calculated by subtracting the func-
tion values of the best solutions in the original population
and the optimized new population. This is utilized for the
selection operation of theEDGmethod. Finally, the fireworks
search strategy is executed to further enhance the exploration
and exploitation of the sub-component optimizer. It is essen-
tial to note that the meaning of parameters in the fireworks
search strategy is shown in Table 1. The above optimization
process is iterated until the termination condition is satisfied.
The subsequent sections elaborate on the EDG method and
the fireworks search strategy.

3.2 Evolutionary dynamic groupingmethod

In this subsection, the designed evolutionary dynamic group-
ing (EDG) method is elaborated. Its main idea is to generate
sub-components dynamically, just like the implementation
process of the genetic algorithm. Algorithm 2 presents the
details of the designed EDG method, which includes two
parts, i.e., sub-component initialization and sub-component
evolution.

At the beginning of EDG, the decision variables are
decomposed into several sub-components, which are used
for the initial optimization. During this process, the sub-
components are decomposed based on the variables prepro-
cessing by the RDG method. Depending on the detection
results of the RDG method, the decision variables are
divided into three situations corresponding to different sub-
component decomposition methods: 1) for fully separable
or fully non-separable problems, all variables are randomly
and uniformly divided into several sub-components, where
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Table 1 The parameters of
fireworks search strategy

character meaning

snum the number of solutions selected for "explosion sparks"

gnum the number of solutions selected for "Gaussian sparks"

Me the control parameter for the number of "explosion sparks"

a the control parameter for the maximum number of the "explosion sparks"

b the control parameter for the minimum number of the "explosion sparks"

Â the maximum explosion amplitude

Ainit the initial minimum explosion amplitude

A f inal the final minimum explosion amplitude

Algorithm 1 Main Framework of the Proposed EDGCC.
Require: N (population size), f (fitness function with decision vari-

ables XD), ub(upper bounds), lb (lower bounds), ε (the threshold), s
(the preset sub-components dimensions), m (the number of groups
divided in each sub-component), snum, gnum, Me, a, b, Â, Ainit ,
A f inal (the parameters of fireworks search strategy)

Ensure: P (final population)
cyc = 0;
S = φ;
ΔF = φ;
P ← Initialize population with N solutions;
[nonseps, seps] ← RDG( f , ub, lb, ε);
while termination condition is not reached do

subcomponent1:n ← EDG(cyc,ΔF, nonseps, seps, s,
m)//Algorithm 2;

for i = 1 : n do
P ← Optimizer(P, f , subcomponenti );
ΔFi = best − bestnew;

end for
cyc = cyc + 1;
P ← FireworksSearchStrategy(P, f , snum, gnum,

Me, Â, a, b, Ainit , A f inal)//Algorithm 3;
end while
return P

the dimension of each sub-component is s; 2) for a partially
separable problem and the number of separable variables
|seps| is half or more of D, each non-separable group
is regarded as a sub-component, and the separable vari-
ables are randomly and uniformly divided into |nonseps|
sub-components; 3) otherwise, each non-separable group is
regarded as a sub-component, and all separable variables
are placed in one sub-component. It is worth noteworthy
that the first two situations in the above variable decompo-
sition differ from the RDG method, while the third situation
is the same as the RDG method. This distinction is inten-
tional. Specifically, the sub-components in the first situation
are advantageous for the crossover and selection opera-
tors, whereas the sub-components decomposed by the RDG
method make crossover and selection operations impracti-
cal. The second situation aims to prevent an imbalance in
the number of variables between the separable variable sub-
component and other sub-components, which easily appears

in the RDG method. Thus, the sub-component of separable
variables is further divided in the second situation. Follow-
ing sub-component decomposition, the variables within each
sub-component are further randomly divided into m groups,
which serve as the genes for the crossover operation.

After the sub-component initialization, sub-component
evolution is performed to dynamically generate the sub-
components that are conducive to improving the search-
ability, as the optimization process proceeds. To visually
present the sub-component evolution, Fig. 1 visually illus-
trates the sub-component evolution, which contains the
selection, crossover, and mutation operations. Specifically,
two sub-components (i and j) are first selected based on
having the smallest function value improvement ΔF . The
motivation for such selection is the contribution of these two
sub-components to the optimization is poor, and thus the vari-
ables of these two sub-components should be decomposed
again. Subsequently, the crossover operation is performed to
generate new sub-components by exchanging variables in a
randomly chosen group k from the selected sub-components
i and j . Finally, a mutation operation is proposed to enhance
the variable diversity in the groups. In this operation, a group
g of the sub-component u is randomly selected, and a random
variable xd is added to this group.

In general, the early phase of an algorithm should
emphasize the exploration ability, while the later stages
should emphasize the exploitation ability. In EDG, the
sub-components are dynamically generated to enhance the
transfer of information between different sub-components
as optimization progresses. A higher frequency of informa-
tion transfer implies that more information is utilized to
guide the generation of offspring populations, resulting in
improved exploration ability. Conversely, a lower frequency
of information transfer is more conducive to enhancing the
exploitation ability of the algorithm. Therefore, an adap-
tive frequency scheme of the sub-component evolution is
designed to adjust the search focus. In this scheme, the fre-
quency of sub-component evolution is higher in the early
stages of the algorithm and decreases as the algorithm pro-
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Fig. 1 The diagram of sub-components evolution, which contains the selection, crossover and mutation operations

gresses. Specifically, if the cycle number of sub-component
optimization belongs to an assigned set Ŝ, the sub-component
evolution is performed. The cycle number set Ŝ is assigned
in the following manner:

Ŝ =
{
Ŝ; (cyc2 + cyc + 2)/2

}
,Wang2022 (5)

where cyc is the number of sub-component optimization
cycles. In other words, cyc = {1, 2, · · · , cycmax }, where
cycmax represents the maximum value of the cycle num-
ber when the termination condition is reached. To have a
clear understanding of it, Fig. 2 gives an illustration. Fig-
ure 2(a) shows a part of the function f (x) = (x2 + x + 2)/2
and Fig. 2(b) gives the values of f (x) when x is set to
x = {0, 1, 2, 3, 4, 5}. It is clear that the interval between the
function values of two adjacent variables gradually increases.
Therefore, the probability of sub-component evolution is
greater at the early stage of the optimization process, while
the possibility gets smaller as the optimization proceeds.

3.3 Fireworks search strategy

After the EDGmethod, the sub-components are optimized by
the sub-components optimizer. To further enhance the perfor-
mance of the algorithm, an evolutionary searchmethod based
on the fireworks search strategy is performed. Algorithm 3
provides the details of the fireworks search strategy. At first,
snum solutions in the current population P are randomly
selected as the initial fireworks. Their quality (i.e., fitness)
is evaluated to determine the number of explosion sparks
and the explosion amplitudes. Then, the fireworks explode to
generate several ”explosion sparks” within their local space.
Later, the ”Gaussian sparks” are generated by conducting
the search in a local Gaussian space around gnum randomly
selected fireworks. It should be noted that if the generated
spark exceeds the search range, it will be mapped to another
location in the search space by a mapping strategy. Finally,
to retain the information and pass it to the next iteration, the

Fig. 2 The illustration of the function used in the adaptive frequency scheme. (a) The function image. (b) The function values
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Algorithm 2 The Evolutionary Dynamic Grouping Method.
Require: cyc (the cycle number of sub-component optimization),

nonseps (the non-separable groups divided by RDG), seps (the
separable variables divided by RDG), s (the preset sub-components
dimensions), m (the number of groups divided in each sub-
component), ΔF (the function value improvement of each sub-
component)

Ensure: subcomponent (the regenerated sub-components)
1: if cyc = 0 then
2: if |seps| = D or |nonseps| = 1 ∩ |seps| = 0 then
3: n = ceil(D/s);
4: subcomponent ← Randomgroup(XD, n);
5: else
6: if |seps| >= D/2 then
7: subseps ← Randomgroup(seps, |nonseps|);
8: n = |nonseps| + |nonseps|;
9: subcomponent ← {nonseps; subseps};
10: else
11: n = |nonseps| + 1;
12: subcomponent1:n ← {nonseps; seps};
13: end if
14: end if
15: for i = 1 : n do
16: groups ← Randomgroup(subcomponenti ,m);
17: end for
18: end if
19: Ŝ ←

{
Ŝ; (cyc2 + cyc + 2)/2

}
;

20: if cyc ∈ S then
21: Sort the ΔF in ascending order;
22: ΔF(1) = ΔFi ;
23: ΔF(2) = ΔFj ;
24: Randomly select k ∈ [1,m];
25: subcomponent

′
i (groupk) = subcomponenti (groupk);

26: subcomponenti (groupk) = subcomponent j (groupk);
27: subcomponent j (groupk) = subcomponent

′
i (groupk);

28: Randomly select u ∈ [1, n], g ∈ [1,m], d ∈ [1, D] ;
29: subcomponentu(groupg) ={

subcomponentu(groupg); d
}
;

30: end if
31: return subcomponent

new solutions are selected from the set of the initial fireworks
and generated sparks to replace the original solutions of P .

In this paper, the operations of an enhanced version of
FWA (EFWA) [56] is introduced to the fireworks search strat-
egy. Compared to the traditional FWA, EFWA incorporates
five modifications. Specifically, for each dimension k, the
explosion amplitude Ak

i is bound as follows:

Ak
i =

{
Ak
min i f Ak

i < Ak
min,

Ak
i otherwise,

(6)

where,

Ak
min (t) = Ainit − Ainit − A f inal

evalsmax

√
(2 ∗ evalsmax − t) t,

(7)

and

Ai = Â · f (Xi ) − ymin + ε∑N
i=1 ( f (Xi ) − ymin) + ε

, (8)

t represents the number of function evaluations, evalsmax

denotes the maximum number of evaluations, Ainit and
A f inal are the initial andfinalminimumexplosion amplitude,
Â represents the constant to control the explosion ampli-
tude, ymax = max ( f (Xi )), ymin = min ( f (Xi )), ε is the
machine epsilon. The lower bound Amin of the explosion
amplitude is proposed to prevent the explosion amplitude
frombeing too small that the locations of the explosion sparks
are almost the same as the firework themselves. This paper
uses the non-linear decreasing function as Amin . In the early
stages of the search, Amin is set to a high value to facili-
tate exploration. As the number of evaluations increases, it is
lowered to allow for better exploitation capabilities around
good locations. Moreover, the number of explosion sparks s
for each firework Xi is calculated as follows:

si = Me · ymax − f (Xi ) + ε∑N
i=1 (ymax − f (Xi )) + ε

, (9)

where Me represents the constant to control the number of
explosion sparks. To avoid the decisive influence of the fire-
works in good positions, the number of sparks is determined
by the following:

si =
⎧⎨
⎩
round (aMe) ifsi < aMe,

round (bMe) ifsi > bMe,

round (si ) otherwise.
(10)

where a and b are constant parameters that confine the range
of the ”explosion sparks” size.

Furthermore, the operation that generates the ”explosion
sparks” is to add different offset displacements ΔXk in each
dimension. And the Gaussian mutation operation uses the
X̃ k
i = X̃ k

i + (X̃ i
B − X̃ k

i ) ∗ e to generate "Gaussian sparks",
where XB is the location of the currently best firework or
explosion spark found so far, and e = N (0, 1). This muta-
tion operation will expand along the direction between the
current firework position and the optimal firework position,
which ensures diversity in the search as well as the global
movement to find the best location found so far. If the gener-
ated sparks are out of bounds, the uniform random mapping

strategy X̄ k
i = Xk

min + rand ∗ (
Xk
max − Xk

min

)
is used. This

mapping strategy can avoid focusing the locations of themap-
ping on the origin.

In addition, the Eli tism−Randomselection (ERP) [57]
operation is introduced to select the solution. In this opera-
tion, the best candidate solution is selected first. Then, the
other individuals are selected randomly.
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Algorithm 3 The Fireworks Search Strategy.

Require: P (current population), snum, gnum, Me, a, b, Â, Ainit ,
A f inal (the parameters of fireworks search strategy)

Ensure: P (final population)
1: Randomly select snum solutions X from P as the initial ”explosion

sparks” X̂ ;
2: Set zk = round(rand(0, 1)), k = 1, 2, · · · , D;
3: for i = 1 : sum do
4: for each dimension of X̂ k

i , where z
k == 1 do

5: ΔXk = Ai × rand(−1, 1);
6: X̂ k

i = X̂ k
i + ΔXk ;

7: if X̂ k
i out of bounds then

8: map X̂ k
i to potential space;

9: end if
10: end for
11: end for
12: for j = 1 : gnum do
13: Randomly select one solutions X as the initial ”Gaussian sparks”

X̃ ;
14: e = Gaussian(0, 1);
15: for each dimension of X̃ k

i , where z
k == 1 do

16: X̃ k
i = X̃ k

i + (Xk
B − X̃ k

i ) ∗ e, where XB is the position of the
best firework found so far;

17: if X̃ k
i out of bounds then

18: map X̃ k
i to potential space;

19: end if
20: end for
21: end for
22: P ← Select the solutions from the X as well as all explosion and

Gaussian sparks to replace the original solutions X of original P;
23: return P

4 Experimental study

In this section, a comprehensive experimental study is con-
ducted to examine the performance of the proposed EDGCC.
First, the experimental settings and the parameter sensitivity
analysis are presented. Subsequently, a set of experiments
are conducted to evaluate the performance of the proposed
EDGCC. Finally, a discussion is given.

4.1 Experimental settings

1) Compared Algorithms: Four recently proposed state-
of-the-art LSEAs, namely, DSCA [32], eWOA [33],
DECC-RDG [41] and EDGA [42] are used for com-
parison. The DSCA and eWOA are the metaheuristics
LSEAs. The EDGA and DECC-RDG are the divide-and-
conquer LSEAs.

2) Benchmark Suites: Two widely used large-scale global
optimization benchmark suites are used. The first one
is IEEE CEC’2010 [58], which contains 20 test func-
tions. These functions can be classified into fully sep-
arable LSGOPs ( f1 − f3), partially separable LSGOPs
( f4 − f18), and fully non-separable LSGOPs ( f19− f20).
The other one is IEEE CEC’2013 [59], which contains
15 test functions. These functions can be classified into
fully separable LSGOPs ( f1 − f3), partially separable
LSGOPs ( f4 − f11), and fully non-separable LSGOPs
( f12 − f15). The number of decision variables of each
test functions is 1000 in both benchmark suites except
for the functions f13 and f14 in CEC’2013, have 905
decision variables.

3) Parameters: In the EDG method, as recommended by
[35], s is set to 100. Moreover, the group number of each
sub-componentm is set to 2. In the fireworks search strat-
egy, all parameters are set the same as recommended in
[56], where snum = 5, gnum = 5, Me = 50, Â = 40,
a = 0.04, b = 0.8, Ainit = (

Xk
max − Xk

min

) × 0.02, and
A f inal = (

Xk
max − Xk

min

) × 0.001.
4) Stopping Condition and Population Size: The population

size N of the algorithms is set to 50. In each run, themax-
imum number of function evolutions for each algorithm
is set to 3 × 106.

5) Performance Metrics: The mean and standard deviation
of the function value obtained from 25 independent runs
on each problem. To test the difference for statistical sig-

Fig. 3 The mean function values of different parameter m on f3, f4, f15 of CEC’2010. Statistical results are obtained by 25 independent runs. (a)
The function values on f3. (b) The function values on f4. (c) The function values on f15
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Table 2 Comparisons among
EDGCC and compared
algorithms on the CEC’2010
benchmark functions

Functions Quality eWOA DSCA EADG DECC-RDG EDGCC

f1 Mean 1.86E+11 − 4.39E+11 − 2.44E+05 − 2.07E+00 − 2.79E–19

Std 8.76E+09 7.24E+10 5.41E+05 6.75E+00 6.69E–19

f2 Mean 1.65E+04 − 2.67E+04 − 4.30E+03 − 4.38E+03 − 3.80E+02

Std 1.03E+02 3.24E+03 4.09E+02 1.72E+02 5.52E+01

f3 Mean 2.10E+01 − 2.16E+01 − 1.11E+01 − 1.65E+01 − 1.53E+00

Std 1.67E−02 4.36E−02 1.10E+00 3.35E−01 2.01E–01

f4 Mean 6.52E+13 − 2.00E+14 − 3.26E+10 − 6.68E+11 − 3.50E+10

Std 1.52E+13 9.15E+13 2.55E+10 3.33E+11 1.97E+10

f5 Mean 2.45E+08 − 3.51E+08 − 6.59E+07 + 1.28E+08 − 7.77E+07

Std 3.07E+07 1.70E+07 1.24E+07 1.92E+07 1.88E+07

f6 Mean 7.92E+06 − 9.55E+06 − 3.52E+04 − 1.61E+01 ≈ 1.66E+01

Std 2.40E+05 8.69E+05 1.76E+05 3.64E−01 2.28E+00

f7 Mean 1.09E+12 − 5.30E+12 − 1.15E+04 − 2.16E+01 − 1.65E–02

Std 4.51E+01 3.10E+12 5.90E+03 7.56E+01 5.37E–03

f8 Mean 4.74E+16 − 2.31E+17 − 3.28E+05 − 1.15E+04 − 9.99E–03

Std 4.96E+15 1.12E+17 1.10E+06 5.90E+03 4.25E–03

f9 Mean 9.07E+10 − 2.27E+11 − 3.72E+07 − 3.72E+07 − 1.11E+07

Std 4.01E+09 4.40E+10 2.79E+07 2.79E+06 1.17E+06

f10 Mean 1.22E+04 − 1.55E+04 − 3.20E+03 − 4.33E+03 − 1.93E+03

Std 9.84E+01 2.00E+03 1.36E+02 1.39E+02 4.18E+02

f11 Mean 1.11E+02 − 1.38E+02 − 2.58E+01 ≈ 1.03E+01 + 2.65E+01

Std 2.51E−01 7.41E+00 2.83E+00 8.50E-01 2.09E+00

f12 Mean 2.03E+07 − 4.85E+07 − 2.66E+04 − 1.53E+03 − 1.04E+01

Std 3.73E+06 1.31E+07 1.08E+04 4.66E+02 3.92E+00

f13 Mean 6.78E+11 − 4.14E+12 − 1.33E+04 − 7.12E+02 − 6.27E+02

Std 4.91E+09 2.23E+12 5.24E+03 2.52E+02 1.41E+02

f14 Mean 1.06E+11 − 2.18E+11 − 2.15E+07 + 3.47E+08 − 2.36E+07

Std 5.53E+09 1.03E+10 1.64E+06 2.31E+07 2.73E+06

f15 Mean 3.66E+03 − 4.18E+03 − 2.72E+03 + 5.84E+03 − 3.25E+03

Std 1.55E+02 6.97E+01 2.48E+02 1.01E+02 6.08E+02

f16 Mean 8.76E+01 − 1.13E+02 − 1.84E+01 ≈ 2.67E-13 + 1.87E+01

Std 1.59E−01 6.70E+00 3.08E+00 9.81E-15 4.34E+00

f17 Mean 1.87E+07 − 4.55E+07 − 8.30E+00 + 4.07E+04 − 1.14E+01

Std 6.04E+06 3.76E+06 3.00E+00 2.55E+03 2.28E+00

f18 Mean 7.70E+11 − 4.88E+12 − 1.16E+03 ≈ 1.20E+03 − 1.09E+03

Std 6.67E+09 6.08E+11 1.62E+02 1.07E+02 1.41E+02

f19 Mean 1.76E+08 − 4.31E+08 − 9.04E+05 + 1.71E+06 + 4.47E+06

Std 4.70E+07 1.37E+08 4.99E+04 8.91E+04 3.82E+06

f20 Mean 1.61E+12 − 1.12E+13 − 7.43E+07 − 6.96E+03 − 2.06E+03

Std 1.25E+10 1.51E+12 2.29E+08 1.27E+04 1.40E+02

No.best 0 0 4 3 13

+ / −/ ≈ 0/20/0 0/20/0 5/12/3 3/16/1

Statistical results are obtained by 25 independent runs
The bold entries are the best results that obtained by the tested algorithm
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nificance, theWilcoxon rank-sum test with a significance
level of 0.05 is employed to assess whether one algorithm
is better than another in terms of the function value. The
symbols " + ", " − ", " ≈ " are used to indicate that the
compared algorithm is significantly better than, worse
than, and similar to EDGCC, respectively.

The sub-component optimizer in this paper is imple-
mented by SaNSDE [60], which is the same as the compared
DECC-RDG. It should be noted that only m is the param-
eter introduced by the proposed algorithm. The sensitivity
analysis of m is given in the following subsection.

4.2 Parameter sensitivity analysis

In the proposed EDGCC, there is a major parameter, i.e., the
group number of each sub-component m, which is used to
determine the number of exchange variables in the crossover
operation of the EDG method. In this study, some com-
parisons are designed to study the influence of the above
parameter on the performance of EDGCC. Specifically, four
values for m are chosen to test the performance of these dif-
ferent parameter settings.

Figure 3 plots the mean function values of each parame-
ter, wherem is set to 2,4,6,8 on f3, f4, and f15 of CEC’2010
benchmark suit, respectively. From Fig. 3, it can be seen

Table 3 Comparisons among
EDGCC and compared
algorithms on the CEC’2013
benchmark functions

Functions Quality eWOA DSCA EADG DECC-RDG EDGCC

f1 Mean 1.92E+11 − 3.59E+11 − 1.02E+06 − 3.73+01 − 8.06E–22

Std 6.84E+09 1.17E+11 2.25E+06 1.24+02 8.30E–22

f2 Mean 4.31E+04 − 1.20E+05 − 1.11E+04 − 1.27+04 − 1.01E+02

Std 2.80E+02 6.05E+04 1.65E+03 6.40+02 1.90E+01

f3 Mean 2.10E+01 − 2.15E+01 − 2.06E+01 ≈ 2.13+01 − 2.01E+01

Std 2.10E−02 9.29E−02 9.07E−03 1.64−02 1.58E–03

f4 Mean 1.84E+13 − 5.01E+13 − 2.97E+08 + 4.44+10 − 1.05E+09

Std 8.40E+12 3.71E+07 1.51E+08 1.77+10 1.33E+09

f5 Mean 4.02E+07 − 8.92E+07 − 2.27E+06 + 5.09+06 − 2.53E+06

Std 2.23E+06 3.71E+07 3.06E+05 4.81+05 4.26E+05

f6 Mean 1.03E+06 ≈ 1.05E+06 ≈ 1.06E+06 ≈ 1.06+06 ≈ 1.06E+06

Std 2.05E+03 8.44E+03 2.15E+03 1.21+03 2.25E+03

f7 Mean 1.80E+14 − 1.27E+16 − 6.10E+05 + 6.42+07 − 3.18E+07

Std 7.79E+13 1.11E+16 2.70E+06 2.97+07 2.12E+07

f8 Mean 6.76E+17 − 3.16E+18 − 9.20E+13 + 5.04+15 − 3.55E+14

Std 4.76E+17 1.17E+18 5.35E+13 1.86+15 2.96E+14

f9 Mean 3.24E+09 − 5.98E+09 − 2.67E+08 − 4.82+08 − 2.24E+08

Std 4.10E+08 1.16E+09 7.54E+07 3.06+07 8.25E+07

f10 Mean 9.27E+07 + 9.58E+07 − 9.43E+07 ≈ 9.44+07 ≈ 9.43E+07

Std 8.19E+05 2.94E+05 2.71E+05 2.06+05 4.35E+05

f11 Mean 6.82E+15 − 4.56E+18 − 1.58E+10 − 5.38+08 + 1.04E+09

Std 3.61E+15 6.17E+18 3.60E+10 1.34+08 1.92E+08

f12 Mean 1.68E+12 − 1.03E+13 − 4.44E+07 − 4.85+03 − 1.63E+03

Std 1.15E+10 5.05E+12 1.83E+08 3.06+03 1.13E+02

f13 Mean 7.98E+15 − 2.35E+18 − 5.29E+08 − 3.06+09 − 4.71E+08

Std 2.46E+15 4.36E+18 2.18E+08 6.68+08 2.12E+08

f14 Mean 1.71E+16 − 4.21E+17 − 6.32E+08 + 2.87+09 + 4.00E+11

Std 3.98E+15 4.23E+17 7.70E+08 1.73+09 2.36E+11

f15 Mean 2.13E+11 − 1.18E+18 − 5.27E+06 + 9.75+06 + 5.99E+08

Std 8.79E+10 1.28E+18 1.70E+06 1.91+06 3.37E+08

No.best 2 0 6 1 6

+ / −/ ≈ 1/13/1 0/14/1 6/6/3 3/10/2

Statistical results are obtained by 25 independent runs
The bold entries are the best results that obtained by the tested algorithm
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that the different parameters can result in various perfor-
mances on test benchmark problems. Generally, the function
value increases as the increase of m. This is attributed to
the difference between sub-components generated by the
crossover operator and the original sub-components grad-
ually decreases as the increase of m. Consequently, it can be
recommended thatm = 2 can be used as a general parameter
setting for the proposed EDGCC.

4.3 Results on benchmark suits

In this subsection, the comparison experiments on bench-
mark suits are conducted. Tables 2 and 3 present the mean
and standard deviation of the function value obtained from
25 independent runs on the CEC’2010 andCEC’2013 bench-
mark suite, respectively. The best result on each function is
shown in the bold typeface.

As shown in Tables 2 and 3, EDGCC demonstrates supe-
rior performance, which achieves the best results on 19 out
of 35 functions across two benchmark suites. Followed by
EADG, which achieves the best on 10 functions. More-
over, DECC-RDG achieves the best on 4 functions, eWOA
achieves the best on 2 functions, and DSCA on none. Specif-
ically, for CEC’2010, EDGCC outperforms others in 13
functions, while EADG and DECC-RDG lead in 4 and 3
functions, respectively. For CEC’2013, both EDGCC and
EADG excel in 6 functions, while eWOA and DECC-RDG
demonstrate superiority in 2 and 1 functions, respectively.
In general, the effectiveness of EDGCC and the other two
CCEAs surpasses that of the compared metaheuristic algo-
rithms. This can be attributed to the fact that the CCEAs use
variable decomposition methods to reduce the search space.

Detailed view of each algorithm, the proposed EDGCC
outperforms them in most functions. Specifically, in com-
parison to other metaheuristic algorithms, EDGCC is sig-
nificantly better than eWOA only except for f6 and f10 in
CEC’2013. Similarly, EDGCCoutperformsDSCA across all
functions except for f6 in CEC’2013. In comparison to the
other CCEAs, EDGCC is better than EADG on 18 out of 35
functions and is statistically similar to EADG on 6 functions.
Moreover, EDGCC outperforms DECC-RDG on 26 out of
35 functions and is defeated on only 6 functions.

The performance of EDGCC in solving fully separable
LSGOPs (i.e., f1 − f3 in CEC’2010 and CEC’2013) and
fully non-separableLSGOPs (i.e., f19− f20 inCEC’2010 and
f12 − f15 in CEC’2013) is better than all the compared algo-
rithms. Additionally, for partially separable LSGOPs (i.e.,
f4 − f18 in CEC’2010 and f4 − f11 CEC’2013), the pro-
posed EDGCC also performs well on the majority of them.

The above statistical comparisons confirm that the pro-
posed EDGCC is more effective in solving the LSGOPs than
the compared state-of-the-art LSEAs. This can be attributed
to the fact that adequate information exchange between dif-

Table 4 Comparisons among EDGCC and two variants on the
CEC’2010 benchmark functions

Functions FCC CC-EDG EDGCC

f1 Mean 3.30E+00 − 5.20E−19 − 2.79E–19

Std 6.50E+00 5.81E−19 6.69E–19

f2 Mean 3.37E+03 − 7.24E+00 + 3.80E+02

Std 2.43E+02 4.51E+00 5.52E+01

f3 Mean 7.38E+00 − 2.62E+00 − 1.53E+00

Std 1.04E+00 1.65E−01 2.01E–01

f4 Mean 4.47E+10 − 3.60E+10 ≈ 3.50E+10

Std 1.97E+10 1.46E+10 1.97E+10

f5 Mean 7.96E+07 − 8.60E+07 − 7.77E+07

Std 1.32E+07 1.78E+07 1.88E+07

f6 Mean 1.64E+01 ≈ 1.57E+05 − 1.66E+01

Std 1.37E+00 4.28E+05 2.28E+00

f7 Mean 1.97E−02 − 1.90E+04 − 1.65E–02

Std 1.31E−02 6.80E+03 5.37E–03

f8 Mean 1.22E−02 − 8.06E+05 − 9.99E–03

Std 7.85E−03 1.65E+06 4.25E–03

f9 Mean 1.41E+07 − 1.03E+07 ≈ 1.11E+07

Std 4.18E+06 1.38E+06 1.17E+06

f10 Mean 2.99E+03 − 1.99E+03 ≈ 1.93E+03

Std 2.80E+02 8.62E+01 4.18E+02

f11 Mean 2.51E+01 − 2.86E+01 − 2.65E+01

Std 3.13E+00 2.98E+00 2.09E+00

f12 Mean 3.65E+02 − 1.28E+01 − 1.04E+01

Std 1.26E+02 1.70E+01 3.92E+00

f13 Mean 3.37E+02 + 6.13E+02 ≈ 6.27E+02

Std 7.85E+01 8.62E+01 1.41E+02

f14 Mean 2.21E+07 − 2.09E+07 + 2.36E+07

Std 1.28E+06 2.15E+06 2.73E+06

f15 Mean 2.99E+03 + 3.06E+03 − 3.25E+03

Std 5.94E+02 2.53E+02 6.08E+02

f16 Mean 1.81E+01 ≈ 2.09E+01 − 1.87E+01

Std 4.53E+00 3.88E+00 4.34E+00

f17 Mean 8.93E+00 + 8.63E+00 + 1.14E+01

Std 1.36E+00 2.36E+00 2.28E+00

f18 Mean 1.13E+03 ≈ 1.14E+03 ≈ 1.09E+03

Std 1.10E+02 1.38E+02 1.41E+02

f19 Mean 4.96E+05 + 3.39E+06 − 4.47E+06

Std 1.38E+04 2.04E+06 3.82E+06

f20 Mean 3.18E+03 − 2.17E+03 − 2.06E+03

Std 2.30E+02 1.59E+02 1.40E+02

No.best 6 4 10

EDGCC vs. 12 vs 8 13 vs 7

Statistical results are obtained by 25 independent runs
The bold entries are the best results that obtained by the tested algorithm
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ferent sub-components and an effective search strategy is
necessary.

4.4 The effectiveness analysis of two important
components

The proposed EDGCC has higher competitiveness in solv-
ing LSGOPs, which can contribute to the cooperation of the
main components, i.e., EGD method and fireworks search
strategy. To verify their respective effectiveness, two vari-
ants of EDGCC are designed and compared with the original
EDGCC on the CEC’2010 benchmark suite, where two vari-
ants are respectively called CC-EGD, and FCC. In CC-EDG,
the EGD method is preserved, while the fireworks search
strategy is removed. Its purpose is to investigate the effec-
tiveness of the fireworks search strategy. In FCC, the EGD
method is abandoned. Instead, the fireworks search strategy
is preserved, which aims to investigate the effectiveness of
the EGDmethod. Note that all parameters in these three algo-
rithms are consistent for a fair comparison.

Table 4 presents the comparison results among the original
EDGCC and its two variants on the CEC’2010 benchmark
suit. According to the table, EDGCC achieves the best results
on 10 out of 20 test problems, while CC-EGD and FCC
outperform in 6 and 4 test problems, respectively. This indi-
cates that the twomain components in EDGCC are important
to the performance of EDGCC, which cooperate to make
the EDGCC perform efficiently. Additionally, convergence
curves obtained from EDGCC and its two variants on func-
tions f3 and f10 are depicted in Fig. 4, which can visually
illustrate the distinctions. From the figure, it is evident that
EDGCC outperforms its variants throughout the evolution-
ary process. In summary, the synergy of themain components
makes the proposed algorithm perform noticeably.

4.5 Computational complexity and time of the EDG
method

The EDG method consists of two main components, i.e.,
sub-component initialization and sub-component evolution.
The initial sub-components of decision variables are gener-
ated based on the RDGmethod, which is a recently proposed
variable grouping method with low computational complex-
ity. As shown in [41], the computational complexity of the
initialization for a D-dimensional problem is O(Dlog(D)).

Following the sub-component initialization, the initial
sub-components are dynamically evolving as the optimiza-
tion process proceeds. This is an additional part compared
with static decompositionmethods. Table 5 gives the compu-
tational time of the sub-component evolution on CEC’2013
benchmark functions. It can be seen that the computational
time of this part is very small. In essence, compared with
static decomposition methods, the EDG method does not
incur significant additional computational time.

4.6 Application in real-world problem

To further validate the effectiveness of the proposedEDGCC,
the experimental study of the real-world optimization prob-
lem, i.e., the knapsack problem (KP), is conducted. In KP,
there is a set of goods, which is associated with weight and
profit values, and a backpack, which is associated with max-
imum capacity. The objective of the KP is to maximize the
total value of a subset of goods within the constraints of
the capacity of the knapsack. Therefore, it is a constrained
optimization problem. The specific settings andMatlab code
for the KP are available on PlatEMO [61]. The number of
decision variables of KP D is set to 100, 200, 300, 500, and

Fig. 4 The convergence curves of EDGCC, and two variants FCC, CC-EDG for functions f3 and f10. (a) The convergence curves on f3. (b) The
convergence curves on f10
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Table 5 Computational time of the sub-component dynamic evolution on CEC’2013 benchmark functions

Func f1 f2 f3 f4 f5 f6 f7

Time 8.89E−03 7.82E−03 2.71E−03 5.85E−02 4.61E−03 4.60E−03 1.13E−03

f8 f9 f10 f11 f12 f13 f14 f15

1.50E−03 2.93E−03 1.19E−01 1.88E−02 9.20E−03 2.56E−02 1.04E−02 9.67E−04

1000. Themaximumnumber of function evaluations for each
problem is set to 3000D.

The result obtained by each algorithm from 25 indepen-
dent runs on KP is presented in Table 6. According to the
results, it can be seen that the proposed EDGCC achieves
the best performance of all KPs with different variables.
TheEADGandDECC-RDGobtain similar results.However,
eWOA cannot converge to the optimal solution at all, and the
DSCA cannot find a solution that satisfies the constraint con-
ditions in any runs. Generally, the effect of the CCEAs is bet-
ter than the two metaheuristics algorithms. This observation
is the sameas the results that obtained on the benchmark suits.

In summary, the proposed EDGCC demonstrates a clear
advantage compared with the peer competitors on the real-
world KP.

4.7 Discussion

The above statistical comparisons confirm the effectiveness
of the proposed EDGCC for solving LSGOPs. This can
be attributed to the following reasons. First, with practical
information compensation by the EDG method, informa-
tion is transferred between different sub-components. Sub-
components that are more favorable to the current optimiza-
tion phase are generated. Additionally, the fireworks search
strategy further improves the diversity of the population.

Although the proposed EDGCC has shown encouraging
results in most test instances, the current study still has some
limitations as well. First, many of the parameters in this
paper are set as other relevant papers, while not analyzing
them in greater depth. For example, for fully separable and
fully non-separable problems, the decision variables are ran-
domly divided into some initial sub-components. The size
of each sub-component, which has a significant impact on
the performance of the algorithm, is set as recommended
by [35]. Therefore, the proposed EDGCC only achieves the
best on 3 out of 6 fully non-separable problems, which fails
to achieve the desired result. Additionally, it should be noted
that the fireworks search strategy will consume the function
evolution and potentially hamper the convergence speed of
the algorithm. Although the limitation of function evolution
frequency was not explicitly considered when tackling large-
scale optimization problems, where themaximum number of
function evaluations is set to be very large, it is necessary to
design strategies to enhance population convergence.

5 Conclusion

The performance of the CC technique for solving LSGOPs
will be influenced by the decomposition methods. How-
ever, most existing decomposition methods divide decision

Table 6 Comparisons among
EDGCC and compared
algorithms on the KP with 100,
200, 300, 500, and 1000
decision variables

Problem D Quality eWOA DSCA EADG DECCRDG EDGCC

KP 100 Mean 5.72E+03 − 4.00E+03 − 2.72E+03 − 2.72E+03 − 2.62E+03

Std 0.00E+00 2.71E+02 3.56E+01 6.33E+01 8.05E+01

200 Mean 1.10E+04 − 8.10E+03 − 5.21E+03 − 5.22E+03 − 4.94E+03

Std 0.00E+00 2.24E+02 5.76E+01 8.41E+01 1.38E+02

300 Mean 1.71E+04 − 1.27E+04 − 8.28E+03 − 8.27E+03 − 8.11E+03

Std 0.00E+00 6.45E+02 1.35E+02 6.27E+01 8.20E+01

500 Mean 2.76E+04 − 2.04E+04 − 1.35E+04 − 1.34E+04 − 1.31E+04

Std 0.00E+00 6.12E+02 1.31E+02 7.95E+01 1.79E+02

1000 Mean 5.59E+4 − 4.24E+04 − 2.75E+04 − 2.73E+04 − 2.70E+04

Std 0.00E+00 0.00E+00 2.67E+02 2.08E+02 3.68E+02

No.best 0 0 0 0 5

+ / −/ ≈ 0/5/0 0/5/1 0/5/0 0/5/0

Statistical results are obtained by 25 independent runs
The bold entries are the best results that obtained by the tested algorithm
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variables into fixed sub-components, which may not be con-
ducive to the information transfer between the variables in
different sub-components. Therefore, this paper proposes
an evolutionary dynamic grouping based cooperative co-
evolution algorithm, named EDGCC.

In EDGCC, a novel variables decompositionmethodEDG
is proposed to generate new sub-components dynamically in
the optimization process. The idea of the EDG method is
motivated by the evolution process of the genetic algorithm,
while the selection, crossover, and mutation operations are
redefined. To adjust the search focus in different stages of
the algorithm, an adaptive frequency scheme of EDG is also
proposed. Additionally, the fireworks search strategy is intro-
duced toworkwith the sub-components optimizer, which can
further improve the diversity of the population.

To examine the performance of the proposed EDGCC, a
comprehensive experimental study is conducted. First, the
sensitivity analysis of the unique parameter, i.e., the group
number of each sub-component m. From the result, it can be
seen that the performance of EDGCC will deteriorate as m
increases. Therefore, m = 2 is used as a general parameter
setting in this paper. Then, the comparisons among EDGCC
and four recently developed LSEAs on two widely used
CEC’2010 and CEC’2010 benchmarks are tested. Experi-
mental results show the effectiveness of EDGCC, in which
EDGCC achieves the best on 26 out of 35 functions. In
order to verify the effectiveness of the EDG method and
fireworks search strategy, EDGCC has been compared with
two variants on CEC’2010. From the result, it can be seen
that EDGCC obtains better convergence than the compared
two variants. Moreover, the computational time of the sub-
component dynamic evolution is tested. Finally, EDGCC is
applied to solving the real-world KP with 100, 200, 300,
500, and 1000 decision variables. The experimental results
show that the EDGCC algorithm has excellent performance
in solving KP.

In the future work, we would like to focus on investi-
gating if the EDG method can be extended for large-scale
multi-objective optimization problems and developing the
fireworks algorithm for large-scale problems.
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