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Abstract
Continuous emotion recognition plays a crucial role in developing friendly and natural human-computer interaction appli-
cations. However, there exist two significant challenges unresolved in this field: how to effectively fuse complementary
information from multiple modalities and capture long-range contextual dependencies during emotional evolution. In this
paper, a novel multimodal continuous emotion recognition framework was proposed to address the above challenges. For the
multimodal fusion challenge, the Multimodal Attention Fusion (MAF) method is proposed to fully utilize complementar-
ity and redundancy between multiple modalities. To tackle temporal context dependencies, the Local Contextual Temporal
Convolutional Network (LC-TCN) and the Global Contextual Temporal Convolutional Network (GC-TCN) were presented.
These networks have the ability to progressively integrate multi-scale temporal contextual information from input streams
of different modalities. Comprehensive experiments are conducted on the RECOLA and SEWA datasets to assess the effec-
tiveness of our proposed framework. The experimental results demonstrate superior recognition performance compared to
state-of-the-art approaches, achieving 0.834 and 0.671 on RECOLA, 0.573 and 0.533 on SEWA in terms of arousal and
valence, respectively. These findings indicate a novel direction for continuous emotion recognition by exploring temporal
multi-scale information.

Keywords Continuous emotion recognition · Local/global contextual temporal convolutional network ·
Multi-modal attention fusion · Temporal multi-scale information

1 Introduction

Automatic emotion recognition assumes a vital role in the
development of natural and friendly human-computer inter-
action applications, which enables computers to have higher
and more comprehensive intelligence. In recent years, driven
by the robust advancement of artificial intelligence and deep
learning techniques [1, 2], emotion recognition has been
widely applied in various real-life domains, such as vehi-
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cle driving [3], healthcare [4], education [5]. Early research
in the field of emotion recognition primarily concentrated
on the recognition of discrete emotional states through vari-
ous modalities, including facial expressions, audio cues, and
texts [6]. The discrete emotion model proposed by Ekman
is used in most studies to express affective states, which
contains seven basic emotions such as happy and angry[7].
Nonetheless, as in-depth research in this field has progressed,
it has become increasingly apparent that the discrete emo-
tion model exhibits three distinct deficiencies in effectively
expressing affective states [8, 9]: (1) The affective states
expressed by the discrete emotion model are inherently lim-
ited and there exist cultural differences; (2) It is difficult
to measure and deal with the correlation between emotion
categories; (3) The emotional evolution process of emo-
tion generation, development and transformation cannot be
described. As a result, there has been a shift away from dis-
crete emotion recognition towards the prediction of affective
states in the continuous dimensional space [10]. A widely
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embraced dimensional emotion model within this context
is the valence-arousal model, proposed by Russell in 1980
[11]. It utilizes the two fundamental dimensions: valence,
representing the positive and negative aspects of human emo-
tion, and arousal, indicating the degree of excitement and
depression within the emotional scope. Therefore, continu-
ous emotion recognition task, grounded in the dimensional
emotion model, aims to devise methodologies capable of
effectively predicting subtle and complex affective states.

Two key issues of how to effectively fuse complementary
information from different modalities and capture the long-
range context dependences remain unresolved in continuous
emotion recognition. They not only curtail the robustness
and accuracy of the emotion recognition system, but also
hinder its broader application in various life scenarios. The-
oretically, fusing information from multiple modalities can
substantially enhance the recognition accuracy. Inmost emo-
tion recognition studies [12], feature-level and decision-level
fusion strategies have been widely adopted. Feature-level
fusion methods generally obtains the fused features by con-
catenating feature vectors from multiple modalities. The
authors of [13] extracted high-level representations from
video and audio signals separately, which were then con-
catenated as input to a Long Short-Term Memory (LSTM)
model. Although this strategy is easy to follow and compre-
hend, itmay still be susceptible to the curse of dimensionality.
Decision-level fusion approaches feed the features extracted
from each modality into separate networks to generate initial
predictions, which are then fed into a subsequent recog-
nition model to forecast the final affective states [14, 15].
Although decision-level fusion approaches avoids the dimen-
sionality issue caused by feature concatenation, they may
overlook the intricate and nonlinear relationships between
different modalities, thereby amplifying the complexity of
model training. Furthermore, both of the aforementioned
fusion strategies fall short in their ability to explore and
exploit modality-specific information and common informa-
tion among modalities. Recently, the transformer [16] has
ignited extensive discussions regarding the application of
attention mechanism across diverse research fields [17–19].
In the realm of multi-modal fusion, attention mechanism
is proved to be an effective solution for capturing dynamic
interactions between different modalities. In response to this
challenge, a multi-modal fusion approach utilizing the atten-
tionmechanism and themodal interactionmatrix is proposed
to explore intra-modal and inter-modal information interac-
tions.

In recent years, abundant investigations have shown that
modeling temporal context dependencies is beneficial to
improving the prediction performance of emotion dimen-
sions. This is because the target dimension values are
continuous and the time interval between two adjacent pre-
dictions is short. Conventional regression models such as

Support Vector Regression (SVR) and Relevance Vector
Machine (RVM) were commonly adopted to predict contin-
uous affective states in early continuous emotion recognition
research [8, 12]. However, these approaches predict the
affective state independently at each time step, lacking the
capability to model temporal dependencies. Many methods
also relied on Recurrent Neural Networks (RNNs) to cap-
ture temporal contextual information and achieving emotion
recognition [20, 21]. However, RNNs and LSTMs gener-
ally perform poorly in learning very long-range contextual
information. Although this kind of networks can theoreti-
cally handle sequence data with arbitrary length, it generally
suffers from the limitations of gradient vanishing and explo-
sion. Three-Dimensional ConvolutionalNeuralNetwork (3D
CNN) is an extension of CNN in the temporal dimension,
which is specifically designed to capture temporal contextual
information in consecutive frames. Although some progress
has been made in continuous emotion recognition [22, 23],
themethods based on 3DCNN incur high computational con-
sumptionwhen capturing long-range contextual information.
Therefore, how to effectively model the long-range contex-
tual dependencies in sequential data remains a challenge.
To address this problem, the local and global contextual
temporal convolutional networks are proposed to explicitly
integrate multi-scale contextual information in continuous
emotion recognition. Our proposed method is designed on
the basis of the Temporal Convolutional Network (TCN)
which has been applied to several temporal modeling tasks
with exciting results [24, 25]. It allows the receptive field on
the time axis to grow exponentially without introducing too
many parameters. Furthermore, to the best of our knowledge,
few works have explicitly explored the impact of multi-scale
information in time dimension on capturing long-term con-
text dependencies.

In summary, continuous emotion recognition is a very
challenging task. On the one hand, it requires that the redun-
dancy and complementarity of modal information needs to
be fully considered when designing the fusion method. An
inappropriate fusion method may reduce robustness of the
recognition system.On the other hand, inability to effectively
model temporal dynamic information during emotion evo-
lution hinders the improvement of recognition performance.
Therefore, a novel multi-modal continuous emotion recogni-
tion framework was proposed that simultaneously addresses
the challenges of multi-modal data fusion and temporal con-
textual modeling. For this paper, the main contributions are
as follows:

(1) Regarding the issue of multimodal information fusion,
a model level fusion method based on attention mech-
anism has been proposed, which includes intra modal
attention and inter modal attention, effectively learn-
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ing complex nonlinear relationships between different
modalities while promoting dynamic interaction of emo-
tional information.

(2) Regarding the issue of temporal context dependency,
the local contextual temporal convolutional network and
the global contextual temporal convolutional network
have been proposed which combine temporal convolu-
tion networks with multi-scale context in time axis to
progressively integrate multi-scale temporal contextual
information from input feature sequences.

(3) An end-to-end trainable model framework has been built
that fuses multi-modal data to predict affective states at
the frame level. Experimental results conducted on the
RECOLA and SEWA datasets demonstrate the superior-
ity of our proposed framework over the state-of-the-art
methods for continuous emotion recognition.

The remainder of this paper is arranged as follows. In
Section 2 a brief overview of the related studies has been
given. Section 3 describes the details of the proposed archi-
tecture formulti-modal continuous emotion recognition. The
RECOLAdataset and SEWAdataset, the experimental setup,
as well as the experimental results, are reported in Section 4.
Conclusion and discussion are presented in Section 5.

2 Related work

2.1 Multi-modal continuous emotion recognition

A growing body of works have recently been devoted to
exploring continuous emotion recognition, in which the
multi-dimensional space constructed by the dimensional
emotion model can express a wide range of subtle and com-
plex affective states. Many continuous emotion recognition
studies are based on three benchmark datasets (SEMAINE
[26], RECOLA [27], SEWA [28]) used by the Audio/Visual
Emotion Challenge (AVEC). The models proposed in these
works all focus on how to effectively fusemultiplemodalities
and how to capture temporal context dependencies,which are
crucial for continuous emotion recognition.

For multi-modal fusion, the fusion strategies adopted in
most recent works are feature-level fusion and decision-
level fusion. In multi-modal continuous emotion recognition
using feature-level fusion strategy, features from different
modalities are usually concatenated into the multi-modal
feature vector, which is then fed into the prediction net-
work to get the final results. Huang et al. [29] combined
different modality features in the front-end for training SVR
or RVM, enabling simultaneous prediction of valence and
arousal values. However, this fusion approach is prone to
suffer from dimensional disasters. Dung et al. [30] concate-

nated the visual and sound features extracted by a dual-stream
auto-encoder and fed them into a LSTM to obtain the final
prediction results. Although the model was able to learn
discriminative emotional features from different modalities,
the complementary information in these features was not
effectively fused. There are also many multi-modal contin-
uous emotion recognition models based on decision-level
fusion. Deng et al. [31] first combined unimodal features
into a multi-modal feature vector to train a Deep Bidirec-
tional Long Short-Term Memory network (DBLSTM), and
then fed the outputs of multiple unimodal and multi-modal
DBLSTMs into a subsequent DBLSTM model to obtain
the final prediction results. However, the fusion method
ignores the complex nonlinear relationships between dif-
ferent modalities and increases the complexity of model
training. Pei et al. [32] explored and proposed a LSTM-
basedmodel-level fusionmethod for audio-visual continuous
emotion recognition. Thismethod took into account the com-
plementarity and redundancy among multiple streams from
different modalities and utilized an Adaptive Weight Net-
work (AWN) to adequately integrate auxiliary factors such
as gender. However, it ignored the influence of other factors
in modal information such as head pose and facial occlu-
sion on emotion recognition performance. Schoneveld et al.
[33] proposed a model-level fusion method using LSTM to
fuse the visual and sound features extracted respectively by
the distilled visual feature extraction network and the fine-
tuned VGGish backbone network. The advantage of this
work was to introduce knowledge distillation technique to
emotion recognition to make full use of unlabeled data to
improve recognition performance. However, it did not effec-
tively exploit the non-linear interactions between them when
fusing these modalities and considering temporal dynamics.

For temporal modeling, Recurrent Neural Networks are
adopted as the main structure to capture temporal contextual
information in most continuous emotion recognition works.
Mao et al. [34] proposed a three-stage model based on the
Bidirectional Long Short-Term Memory network (BLSTM)
to hierarchically learn emotional context information from
video sequences. The model made full use of long-term con-
textual information in the input data by learning temporal
information at different stages. However, the method pro-
posed in this work did not model the temporal dynamics
between modalities which was benefit to improve recogni-
tion performance. In [35], the authors combined a two-stream
network with the Gated Recurrent Unit (GRU) model to
learn spatio-temporal representations from video sequences
in an end-to-end manner and achieved promising results. It
was difficult for this method to explicitly characterize these
expressions. 3D CNNs have also been used to extract tempo-
ral contextual information from sequential data. For example,
the authors of [22, 36] employed 3D convolution networks
to consider both temporal motion and spatial appearance
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of facial image sequences, thus constructing the network
architecture using spatio-temporal information of consecu-
tive frames to improve recognition accuracy. However, these
methods based on 3DCNN incurred high computational con-
sumptionwhen capturing long-range contextual information.
Therefore, it was difficult for these methods to exploit ultra-
long-range context dependencies in videos.

In this paper, a novel framework for continuous emotion
recognition has been presented.Amodel-level fusionmethod
is proposed to fuse multiple feature streams extracted from
audio-visual modalities. Additionally, within this frame-
work, the temporal convolutional networks are improved to
capture ultra-long-range temporal dependencies.

2.2 Attentionmechanisms

To fully exploit the complementary information from differ-
ent data sources, attention-based fusion models have been
widely explored in a large number of applications, such as
video question answering [17], video classification [37] and
emotion recognition [18, 38, 39]. Wu et al. [40] proposed
a novel model framework to fuse facial expressions, head
pose and eye gaze information for continuous emotion recog-
nition. Firstly, the extracted head pose, eye gaze cues and
facial expression features were fused in the head pose-eye
gaze enhanced attention module. Secondly, the guided atten-
tion module was designed to adaptively adjust the effect
of its noise on facial expression information. However, it
was difficult to explore the nonlinear interaction relationship
between these features through concatenation operation. In
[41], the authors explored a variety of attention fusion strate-
gies and found that the proposed cross-modal hierarchical
self-attentional fusion approachwasmore advantageous after
comparisons. The fusion method took features from three
modalities as input, namely video, audio, and text, and used
self-attention to combine each modality with the remain-
ing modalities and then fused them with features from other
modalities in an attentional manner. Although they were able
to achieve good performance by understanding inter-modal
connections, intra-modal correlations were not well explored
in these fusion approaches of above works. In [42], to fully
explore the complementarity of visual and auralmodalities in
video data, authors proposed a joint cross-attention model. It
exploited complementary relationships to extract salient fea-
tures across audio-visual modalities, allowing more accurate
predictions of valence and arousal. However, the proposed
fusion method did not explore the impact of more auxiliary
information in the videos, such as head pose and eye move-
ment.

In this paper, an attention-based model-level fusion
method is proposed to efficiently learn complex interac-
tions among multiple modalities. The intra-modal attention

modules are used to recalibrate input feature streams so as
to highlight salient emotional features. In the inter-modal
attention module, the complex interactions between differ-
ent modalities are learned by cross-modal attention, and the
modal interaction matrix is introduced to enhance its ability.
Therefore, this fusion approach can simultaneously focus on
both the specific emotion information within the modality
and the common emotion information between modalities
for continuous emotion recognition.

2.3 Dilated convolution and temporal convolutional
networks

Although RNNs such as LTSM or GRU are commonly used
for sequencemodeling tasks to capture temporal information,
Temporal Convolutional Networks (TCNs) have received
increasing attention in recent research works [24, 43]. In
[43], the authors utilized dilated convolutions, causal con-
volutions and stacked residual blocks to build the general
TCN architecture capable of making predictions with infor-
mation from the far past. After the systematic comparison
in a wide range of sequence modeling tasks, they concluded
that convolution networks should be considered as a starting
point for research in sequence modeling tasks [43]. In [24],
the authors proposed a multi-stage architecture for temporal
action segmentation. They used dilated convolutions instead
of temporal pooling to increase the temporal receptive field,
where each stage consisted of a set of dilated convolutions to
generate initial predictions that were further refined as inputs
to the next stage. Inspired by the stacked hourglass network,
Du et al. [44] designed the Temporal Hourglass Convo-
lutional Neural Network (TH-CNN) to capture long-term
dynamic dependencies of emotional continuous changes. It
established contextual relationships by integrating low-level
encoding and high-level decoding information, while a novel
supervised strategy, namely Temporal Intermediate Super-
vision (TIS), was proposed to guide TH-CNN for learning
semantic representations in a coarse-to-fine-grained manner.
However, the approach did not highlight key information and
remove useless and redundant information when integrating
low-level coding and high-level decoding information. Hu
et al. [25] proposed a two-stage spatio-temporal attention
temporal convolution network for video-based continuous
dimension emotion recognition. The spatio-temporal atten-
tion branch introduced in each stage of the model helped
the network to learn different attention levels and adaptively
focus on informative spatio-temporal features. At the same
time, a smooth loss function was introduced in the training
phase to penalize outlier predictions in consecutive frames.
However, the model did not well explore temporal context
information at different scale. He et al. [45] proposed an
adversarial discriminative temporal convolutional network
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and an encoder-TCN to perform emotion recognition based
on EEG signals. Although the proposed method maintained
the representation invariance of features by learning joint
temporal information, it failed to effectively reduce the intra-
class distance and expand the inter-class distance.

In this paper, a sequence modeling scheme based on tem-
poral convolutional network [43] was proposed to efficiently
capture temporal contextual information in sequential data.
In contrast to the aforementioned literature, multi-scale con-
textual temporal information is explicitly integrated by the
proposed approach. It includes Local Contextual Temporal
Convolutional Network (LC-TCN) and Global Contextual
Temporal Convolutional Network (GC-TCN). LC-TCN is
composed of dilated convolutions and channel attention to
obtain local multi-scale context dependencies in each fea-
ture stream, while the GC-TCNmodule composed of dilated
convolutions and dense connections is responsible for obtain-
ing global multi-scale contextual dependencies to predict
dimensional affective states. Therefore, it can progressively
acquire temporal contextual information, which is crucial for
continuous emotion recognition. It should be noted that this
sequence modeling scheme can be applied not only to multi-
modal continuous emotion recognition, but also to other
sequencemodeling tasks that takemultiple feature sequences
as input.

3 method

3.1 Approach overview

In this section, we elaborate on the proposed framework
architecture, which utilizes multiple input feature streams
from different modalities to predict affective states in the
frame-level manner, as shown in Fig. 1. We explore the
optimal structure of each part of the framework, which is
divided into four parts. Thefirst part is responsible for extract-
ing emotional features from audios and videos respectively.
The second part is to feed each modal feature stream into
its respective LC-TCN network to capture local contextual
information. The third part is to input multiple modal fea-
ture streams into the multi-modal attention fusion module
to obtain the fused multi-modal features. The fourth part is
to input the fused feature stream to the GC-TCN network
to get the final prediction results. In the feature extraction
part, the handcrafted manner and deep-learning technique
are employed to extract informative emotional features from
audio and video modalities, respectively. For video modal-
ity, geometric features and high-level visual features are
extracted as visual emotion representations. The 18-layer
Residual Network (ResNet-18) pre-trained on the ImageNet
dataset is directly adopted to construct the feature extractor

Fig. 1 The overall architecture of the proposed model for continuous
emotion recognition. The input feature streams including high-level
visual features, geometric features and sound features are extracted from
the audio-visual embedding modules. Then, each feature stream is fed
into the corresponding LC-TCN to capture local multi-scale context
information in the time axis. The multi-modal attention fusion mod-
ule (MAF) takes these feature streams as input, and by intra-modal

attention and inter-modal attention, the complementary emotional infor-
mation from audio-visual modalities is effectively fused. The GC-TCN
is responsible for capturing the global multi-scale temporal contextual
information from the fused multi-modal features and feeds them into
the prediction sub-network composed of two fully connected layers to
predict arousal/valence values
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by removing the last fully connected layer of the model to
extract high-level visual features from the aligned face image
sequence. For audio modality, handcrafted features defined
by Extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [46] and VGGish-learned sound features are
extracted as auditory emotion representations. The VGGish
model pre-trained on the AudioSet dataset is adopted to
extract features from the log-mel spectrogram as a com-
plement to the eGeMAPS feature set. The concatenation of
handcrafted and CNN-learned sound feature vectors is then
regarded as the unified representation of acoustic modality.
In the local context aggregation part, each feature stream
is first fed to the linear hidden layer to standardize into
the same dimension. By applying parallel dilated convolu-
tional layers and channel attention to each feature stream,
local multi-scale contextual information is integrated and
captured through multiple LC-TCNs. In this part, the ability
of each feature stream to convey emotional information is
improved by the aggregation of local contextual information
through the LC-TCN network. In multi-modal fusion part,
the proposed multi-modal attention fusion apporach is used
to fuse multiple feature streams from different modalities so
as to effectively aggregate complementary information for
continuous emotion recognition, as shown in Fig. 1. In the
dimensional emotion prediction part, the fused multi-modal
features are fed into the GC-TCN to capture long-range con-
textual information during emotion evolution. Meanwhile,
considering the subtlety and continuity of emotional evolu-
tion, this network is devised in such a way that the deeper

layers of the network do not lose too much detailed infor-
mation. Finally, the arousal values or valence values are
predicted by a subsequent prediction sub-network consist-
ing of two fully connected layers. By the way, the overall
framework is designed to be end-to-end trainable.

3.2 Local contextual TCN

We first briefly describe the Temporal Convolutional Net-
work (TCN) proposed in [43]. Due to its simple architecture
and strong memory ability, it has been gradually used in
recent years for sequence prediction and modeling tasks to
capture long-range temporal information. Temporal convolu-
tion is essentially the one-dimensional convolution operation
performed in time axis. And the dilation rate is usually com-
bined with the convolution kernel to expand the receptive
field, which is also called dilated convolution. Temporal
convolutional network is composed of multiple temporal
convolution layers. Therefore, it can take an input sequence
with arbitrary length and map it to an output sequence of the
same length like the RNNs. In particular, each time step is
updated synchronously by a fixed-length time period rather
than sequentially. In order to observe the past and future infor-
mation at each time step like BLSTM, non-causal temporal
convolution is employed in this paper.

As shown in Fig. 2, the proposed LC-TCN is mainly
composed of multiple local temporal convolution blocks,
and the local temporal convolution block is composed of
dilated convolutions (Dilated_Conv) with different dila-

Fig. 2 The architecture of local temporal convolution block. The number of the temporal convolution block located in LC-TCN is denoted as l.
For convenience, Squeeze-and-Excitation (SE) attention is selected as channel attention. The kernel size and dilation rate of dilated convolution
are 3 and 2l (or 2l+1)
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tion factors, a 1D convolution (Conv1d) with kernel size
of 1, and channel attention (Channel_Attn). In order to
describe in detail the execution process of the local timing
convolution block, we denote the l-th local temporal convo-
lution block as TCBl . Its input and output are respectively
Xl ∈ R

T×C0 and Yl ∈ R
T×C1 , T represents the temporal

dimension, and C0 and C1 represent the input channel and
output channel, respectively. Firstly, the feature sequence Xl

is processed by two parallel dilated convolutional layers to
compute the local contextual features DCk1,r1 ∈ R

T×C0 and
DCk2,r2 ∈ R

T×C0 . The output of main branch Y
′
l is then

calculated by 1D convolutional layer and channel attention
module with the concatenation of two local contextual fea-
tures as input. Finally, Y

′
l is point-wise added by the output

of residual branch to obtain the final feature sequence Yl .
The residual connection is introduced to reduce the training
difficulty. The specific calculation process mentioned above
is presented as follows:

Y
′
l = TCBl (Xl)

= Channel_Attn
(
Conv1d

(
DCk1,r1 ⊕ DCk2,r2

))
,

DCk,r = Weight_Norm
(
Dilated_Convk,r (Xl)

)
(1)

Yl = Conv1d (Xl) + Y
′
l (2)

where ⊕ represents concatenation operation, k and r denote
the kernel size and expansion rate of the dilated convolution,
respectively. In the local temporal convolution block, a 1D
convolution layerwith kernel size 1 is adopted to integrate the
local multi-scale context information extracted by the paral-
lel dilated convolutional layers, and keep the same output
dimension. Note that in addition to the modules mentioned
above, the ReLU layer is placed after each convolutional
layer to calculate activation values, and the Dropout layer is
used to alleviate model overfitting.

Subsequently, the Squeeze-and-Excitation (SE) module
proposed to obtain the best performance is selected as
the channel attention layer to adaptively recalibrate the
channel features. In the module, average pooling operation
(AvgPool) is utilized to integrate emotional information in
the temporal dimension of feature sequence X . The descrip-
tor is fed into two standard convolutional layers (Conv2d)
with kernel size of 1, and the channel attentionmap generated
by sigmoid function is element-wise multiplied by original
input X . The execution process of the module is described as:

Channel_Attn (X) = σ (Conv2d (Conv2d (AvgPool (X)))) � X (3)

where σ denotes the sigmoid function and the symbol� indi-
cates element-wise multiplication. Our LC-TCN is designed
to obtain a large range of receptive field by increasing the
expansion factor per layer as the network goes deeper. This
network is used to explicitly learn rich affective patterns in
multi-scale contexts for each input feature stream.

3.3 Multi-modal attention fusionmodule

As illustrated in Fig. 1, the proposed fusion module con-
sists of two parts: the intra-modal attention sub-module and
the inter-modal attention sub-module. After the input feature
stream is processed by the network described in subsec-
tion 3.2, the module first recalibrates the different features
within themodality according to their importance tohighlight
effective emotional features. Then, the inter-modal attention
module composed of multiple parallel cross-modal atten-
tions is used to efficiently fuse complementary information
from different modalities. Furthermore, the modal interac-
tion matrix is introduced to facilitate this sub-module so as
to learn complex interactions between different modalities
and their correlations.

3.3.1 Intra-modal attention sub-module

To highlight salient emotional features in eachmodality, spe-
cific intra-modal attention modules are performed separately
on each input feature stream containing local temporal con-
textual information. Referring to [47], two fully connected
layers (FC) and a sigmoid activation function are utilized to
calculate the attention weights of intra-modal features and
element-wise multiply them with the original input feature
vector, which is formulated as:

Yt = Xt � σ ((XtW1)W2) , t = 1, 2, 3, · · · , T (4)

where � indicates element-wise multiplication, Xt and
Yt denote the feature vector of the t-th time step in an
input feature sequence and the corresponding output vector,
respectively. W1 andW2 represent the parameters of the first
fully connected layer and the second fully connected layer,
respectively. σ represents the sigmoid function. Note that we
reduce the output channels of the first fully connected layer.

3.3.2 Inter-modal attention sub-module

Inspired by the multi-head attention module proposed in
transformer [16], we propose the inter-modal attention mod-
ule to capture complementary emotional information in
multiple modalities. As shown in Fig. 1, the module is com-
posed of multiple parallel cross-modal attention branches,
which essentially use the scaled dot product attentions on
queries (Q), keys (K ) and values (V ). To concretely describe
the general structure of this module, let us denote the fea-
ture vector at time step t of the i-th feature sequence from
multiple modalities as Zi

t . Therefore, the feature vectors of
multiple input sequences at time step t can be denoted as
Zt = (

Z1
t , Z

2
t , Z

3
t , · · · , Zm

t

)
, m ∈ [1, M], t ∈ [1, T ],

where m indicates the number of input modalities. Here,
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it is assumed that m = 3 to facilitate subsequent elabora-
tion. In one of the attention branches, the query vector is
computed from the feature vector Z1

t , while key and value
vectors are computed from the other feature vectors. Firstly,
the three feature vectors Z1

t , Z2
t , Z3

t are projected to the
same dimension dmodel through linear layers, respectively.
Then, the query Q1

t ∈ R
dq is computed by the Z1

t and the
learnable weightsWq ∈ R

dmodel×dq , dq represents the dimen-
sion of the query vector, that is

Q1
t = Z1

t Wq (5)

Inspired by [48] and [49], We refer to the matrix obtained
by matrix multiplication of Z2

t and Z3
t as the Modal Interac-

tion Matrix (MIM), which can enhance the module’s ability
to learn complex interactions between different modalities.
The remaining two eigenvectors Z2

t , Z
3
t are first projected

into several different subspaces, and then the key K 1
t and

value V 1
t are calculated according to the above process which

are defined as follows:

K 1
t =

((
Z2
t W

2
k

)T ∗ Z3
t W

3
k

)
⊕

((
Z2
t W

2
k

)T ∗ Z3
t W

3
k

)T
(6)

V 1
t =

((
Z2
t W

2
v

)T ∗ Z3
t W

3
v

)
⊕

((
Z2
t W

2
v

)T ∗ Z3
t W

3
v

)T
(7)

where ∗ denotes matrix multiplication and ⊕ denotes con-
catenation operation, W 2

k ∈ R
dmodel×dk , W 3

k ∈ R
dmodel×dk ,

W 2
v ∈ R

dmodel×dv , W 3
v ∈ R

dmodel×dv are learnable weight
parameters, dk and dv denote feature dimensions of key and
value, respectively.

The cross-modal attention branch that obtains the query
vector based on Z1

t is shown in (8) and Fig. 3. At each time
step t of input feature sequences, we compute the query Q1

t
and key K 1

t , then compute the attention weights via dot-
product attention and apply them to the value V 1

t so as to
get the final output Zo

t . In the experiment, dmodel , dq , dk
and dv are set to the same dimension. The rest of the par-
allel cross-modal attention branches calculated in the same
way as this branch. The difference is that the corresponding
query vector is calculated using other feature vector, and the
remaining branches have their own learnable weight param-
eters. Finally, the output values of each parallel branch are
concatenated and fed into the linear layer to obtain the final
values. In this module, complementary emotional informa-
tion is aggregated in the form of multiple parallel attention
branches with different modal features as query vectors.

Zo
t = Attentionz1→(z2,z3)

(
Z1
t , Z

2
t , Z

3
t

)

= so f tmax

(
Q1

t K
1
t
T

√
dk

)

V 1
t

(8)

Fig. 3 The architecture of cross-modal attention module z1 → (
z2, z3

)
. The symbol ⊗ denotes matrix multiplication. The uni-modal feature

vectors (z1, z2, z3) are fed into the module after the standardization linear layers
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3.4 Global contextual TCN

In this subsection, the Global Contextual Temporal Convo-
lutional Network (GC-TCN) designed by us is also built
on the temporal convolutional network, as shown in Fig. 4.
However, the network differs fundamentally from the LC-
TCN proposed in subsection 3.2, its goal is to obtain global
multi-scale contextual temporal information from the fused
multi-modal feature sequence in order to continuously pre-
dict affective states. To achieve this goal, we consider the
design of the network structure in three ways, which are also
different from the LC-TCN. Firstly, GC-TCN has a deeper
network structure and a larger convolution kernel to expand
the receptive field in the time axis, and can utilize temporal
contextual informationwith the sequence length of ultra-long
time steps. Secondly, when designing the global temporal
convolutional block, we consider that deeper temporal con-
volutional layers will gradually lose the ability to perceive
subtle changes during emotion evolution. Although it con-
tains two parallel dilated convolution branches, where the
expansion rate of one branch increases gradually with the
depth of the network, while the expansion rate of the other
branch gradually decreases with the depth of the network.
Finally, the dense connection structure [50] is introduced into
the network to integrate multi-scale temporal features from
different layers in a denser manner and improve its robust-
ness.

The GC-TCN is formed by stacking multiple global tem-
poral convolutional blocks. The block is composed of two
parallel the dilated convolutions (Dilated_Conv), the 1D
convolution (Conv1d) and the weight normalization layer

(Weight_Norm). The l-th global temporal convolutional
block is denoted as GCBl . As shown in (9), the output fea-
ture sequence Ol is calculated by the concatenation of two
global contextual features which are generated by two par-
allel dilated convolution layers with the feature sequence Fl
as input.

Ol = GCBl (Fl)

= Conv1d
(
DCk1,r1 ⊕ DCk2,r2

)
,

DCk,r = Weight_Norm
(
Dilated_Convk,r (Fl)

)
(9)

where Fl ∈ R
T×C and Ol ∈ R

T×C are respectively the
input and output of GCBl , the symbol ⊕ denotes concatena-
tion operation, k and r indicate the kernel size and dilation
rate of the dilated convolution. Due to the dense connection
structure, the input of GCBl is computed by the sum of all
outputs of the global temporal convolutional blocks before
this block and original input feature sequence F0. The calcu-
lation process is defined as follows:

Fl = F0 +
l∑

i=1

Oi (10)

3.5 Affective dimensional prediction sub-network

To predict the arousal or valence dimension, the high-level
emotion representation learned by the proposed GC-TCN is
fed into the prediction sub-network. It consists of two fully
connected layers and a non-linear activation layer in the mid-
dle. For the convenience of understanding and description,

Fig. 4 The architecture of GC-TCN. (a) displays the global tempo-
ral convolution block, which contains two parallel dilated convolution
branches and a 1D convolutional layer. The GC-TCN learns long-range
multi-scale context information in time axis by stacking these blocks.

(b) illustrates that the GC-TCN which is composed of dense connec-
tions and global temporal convolution blocks. The symbols l and D
denote the layer number of the block and total blocks in GC-TCN. The
kernel size and dilation rate of dilated convolution are 7 and 2l (or 2D−l )
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algorithm 1 summarizes the overall framework forward pass
process after feature extraction.

Algorithm 1 the Proposed framework forward pass
Input: Z1,Z2, · · · ,Zm ∈ V , the number of feature sequences from

modalities m, the set of feature sequences V . We use m = 3 in our
experiments.

Output: P ∈ [−1,+1]length(Z)×1, the prediction values of model on
arousal or valence dimension.

Parameters: the framework includes all of the following parameters:
W1

l , W2
l ,W

3
l ,b

1
l ,b

2
l ,b

3
l , the parameters of standardization linear

layers before LC-TCNs.
W1

LCTCN,W2
LCTCN,W3

LCTCN, parameters of each LC-TCN;
WGCTCN, the GC-TCN parameters.
W1

AMA,W2
AMA,W3

AMA, parameters of each intra-modal attention
sub-module; WRMA, inter-attention sub-module parameters.
Wf1, Wf2,bf1,bf2, the parameters of the final two fully connected
layers.
/* LC-TCN modules to extract local context information from three
feature sequences */

1: l ←− length (Z)

2: for i = 1, 2, 3 do
3: Zi

L ←− RELU
(
Wi

lZ
i + bil

)

4: Zi
L ←− LCTCNi

(
Zi
L|Wi

LCTCN

)

5: end for
/*Multi-modal attentionmodule to fuse complementary information
from different modalities */

6: for i = 1, 2, 3 do
7: for t ∈ {1, 2, 3, . . . , l} : eit ←− I ntraModal Attentioni(

Zi
L[t]|Wi

AMA

)

8: Zi
I ←− {

ei1, e
i
2, e

i
3, . . . , e

i
l

}

9: end for
10: for t ∈ {1, 2, 3, . . . , l} do
11: ft ←− I nterModal Attention

(
Z1
I [t],Z2

I [t],Z3
I [t]|WRMA

)

12: end for
13: ZF ←− {f1, f2, f3, . . . , fl }

/* GC-TCN module to extract global context information from the
fused feature sequence */

14: ZG ←− GCTCN (ZF|WGCTCN)

15: return P = Wf2RELU (Wf1ZG + bf1) + bf2

4 Experiments and results

To verify the accuracy and effectiveness of our proposed
multi-modal continuous emotion recognition model, exten-
sive experiments are conducted on the RECOLA dataset
and SEWA dataset adopted by the Audio/Visual Emotion
Challenge (AVEC) and fair comparisons are made with
the state-of-the-art methods. The datasets, implementation
details, evaluation metric and experimental results will be
described at length in subsequent subsections.

4.1 Datasets and features extraction

REmote COLlaborative and Affective interaction (RECOLA)
[27] is a widely adopted and open multi-modal continu-

ous emotion dataset in the field, which was constructed
to study the socio-emotional behavior of multi-modal data
under remote collaboration tasks. The dataset simultane-
ously recordedmultiple modal data, including videos, audios
and physiological signals (electrocardiogram, electroder-
mal activity), generated by the natural interactions of 27
French-speaking subjects. These recordings were continu-
ously annotated by six French-speaking evaluators in two
emotional dimensions of arousal and valence, and then all
labels were resampled at a frame rate of 40 ms. The dataset
was equally divided into three parts: training, validation and
testing. Each part contains 9 recorded samples, and each
recording is 5 minutes long with a total of 7501 frames. The
visualization of sample label is shown in Fig. 5. It should be
noted that factors such as gender and age of subjects are bal-
anced in this division to avoid unnecessary effects on emotion
recognition.

SEWA dataset [28] consists of audiovisual recordings of
participants’ spontaneous actions captured using the field
recording paradigm, and contains data for both audio and
videomodalities.Discussions of subjects fromGerman (DE),
Hungarian (HU) and Chinese (CN) after watching a set of
commercials were recorded via a dedicated video chat plat-
form. The duration of the recordings varied from 40 seconds
to 3 minutes. These recordings were continuously annotated
at every 100 milliseconds by evaluators on three emotion
dimensions of arousal, valence, and liking. To facilitate com-
parison with other methods, this paper is conducted using
the dataset of AVEC2019 challenge [51], which is a subset
of the SEWA database. The AVEC2019 dataset was divided
into three parts: training set, validation set and test set. These
three parts contain 68, 28 and 104 records respectively. Chi-
nese subjects only exist in the test set and the labels of test
set are not publicly available. The training and validation sets
contain 34 and 14 German and Hungarian subject samples,
respectively. For the convenience of comparison, the samples
of subjects from the part of Hungarian culture are chosen to
carry out the experiment.

In our experiments, we utilize visual and acoustic baseline
features extracted from the AVEC2016 challenge [52] which
adopt the RECOLA as emotion analysis corpus. Regard-
ing visual features, the 316-dimensional geometric features
provided by AVEC2016 are employed, and the calculation
process is described as follows. 49 facial landmarks were
firstly traced from each frame and then aligned with the
average shape from standard points. The 196-dimensional
features were calculated from the difference between the
landmark positions in the previous and current video frame
and the difference between the coordinates of the aligned
landmarks and the coordinates of the mean shape. The
49-dimensional features were obtained by computing the
Euclidean distance between the median of the standard land-
marks and each aligned landmark in the video frame. The
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Fig. 5 The visualization of
sample label. The horizontal
axis represents the frame rate.
The emotional dimension value
of the vertical axis is [-1,1]

remaining 71-dimensional features correspond to Euclidean
distances and angles between points in three different groups.
On this basis,we reduce the feature dimensionality by obtain-
ing 19-dimensional features representing 99%of the variance
using principal component analysis. We apply the pretrained
18-layer ResNet on the aligned face images and take the out-
put of its last average pooling layer as the high-level visual
features. Regarding acoustic features, an acoustic baseline
feature set consisting of 88 features is used in this work. The
acoustic features consist of the Extended GenevaMinimalis-
tic Acoustic Parameter Set (eGeMAPS) [46] are extracted by
openSMILE. On this basis, two arithmetic functions, arith-
metic mean and standard derivation are applied over a fixed
window of 8 seconds with a step size of 40 ms on continu-
ous Low-Level Descriptors (LLDs) such as mel-frequency
cepstral coefficients, pitch, energy and loudness. Further-
more, referring to [53], the pretrained VGGish model is
employed to extract high-level spectral features from raw
audio data. Subsequently, these features are integrated with
aforementioned handcrafted features to establish the unified
representation of the auditory modality. In summary, three
feature streams comprising high-level visual features, geo-
metric features, and unified acoustic features extracted from
both visual and aural modalities are employed (Table 1).

For the experiments carried out on AVEC2019 dataset, we
adopt 69-dimensional eGeMAPS features and 53-dimensional
handcrafted visual features provided by this challenge.Hand-
crafted visual features consist of the descriptors of pose and

gaze, the intensities of 17 Facial Action Units (FAUs) along
with a confidence measure. Furthermore, the pretrained 18-
layer ResNet is applied on the aligned face images to extract
the high-level visual features at the frame rate of 50 frames
per second. Then the mean features of every 5 frames is
adopted as the input. For the acousticmodality, the pretrained
VGGish model is also used to extract 128-dimensional high-
level spectral features.

4.2 Evaluationmetric

In this paper, theConcordanceCorrelationCoefficient (CCC)
metric officially adopted by AVEC2016 is used to evalu-
ate the performance of our proposed model. Compared to
Pearson’s Correlation Coefficient (PCC), CCC measures the
agreement between two sequences while also taking into
account numerical precision, both of which are particularly
relevant for evaluating the performance of continuous emo-
tion recognition model. CCC is defined as:

ρc = 2ρσxσy

σ 2
x + σ 2

y + (
μy − μx

)2 (11)

where ρ denotes the PCC value between the two time series
x and y; x represents the true emotion labels’ time series, y
represents the predicted emotion labels’ time series; μ and
σ represents the mean and standard deviation of the corre-
sponding time series, respectively. The range of the CCC

Table 1 Summary of dimensional emotion datasets adopted in the evaluation

Dataset Modalities Number of subjects Number of frames per subjects Annotation Dimensions

RECOLA [33] video, audio, physiology 18 7501 frame-level(25 HZ) arousal, valence

SEWA [34] video, audio 48 467-1757 frame-level(10 HZ) arousal, valence, liking
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metric is between [−1,+1], with larger values indicating
stronger correlation, which −1 means complete inconsis-
tency, 0 no consistency at all, and +1 complete consistency.

4.3 Implementation details

Our proposedmodel is implemented via PyTorch and trained
on the Nvidia Geforce RTX 2080Ti Graphics Processing
Units (GPUs). This subsection details the important exper-
imental setup. During the training phase, random rotations
from -10° to 10°, horizontal flipping, cropping and scaling
on aligned face images were performed to avoid severe over-
fitting. During the training and testing phases, normalization
is applied to the facial images, geometric features and uni-
fied acoustic features. To extract the aligned face images from
video frames, the following three steps are performed. Firstly,
OpenCV is adopted to frame each video sample in the dataset.
Secondly, due to improper operations in the process of data
collection or video encoding, the number of video frames
in some video samples is less than the expected number at
the video frame rate. Therefore, we complement the natu-
rally missing frames after framing. Finally, referring to [44],
aligned face images from video frames are extracted by using
OpenFace for face detection and landmark alignment. Due
to the failure of face detection in video frames, the corre-
sponding data is filtered out to avoid severe misalignment of
sequential data from different modalities. Referring to [54],
the annotation delay between recordings and labels in the
dataset can seriously damage the emotion recognition sys-
tem.When predicting valence and arousal, for RECOLA, the
delay time is set to 3 seconds and 2.4 seconds to further align
feature sequences and labels, respectively. For SEWA, the
delay time is set to 2.4 seconds and 1.4 seconds for valence
and arousal.

Considering the video length and computational effi-
ciency, the length of the input sequence is set to 500 time
steps for RECOLA and 300 time steps for SEWA. For the
local contextual temporal convolutional network, we stack 4
layers of local temporal convolution blocks with the kernel
size of 3 and set dilation rates of the blocks to {1, 2, 4, 8}.
For RECOLA, the global contextual temporal convolutional
network is stacked by 6 layers of global temporal convolu-

tion blocks with the kernel size of 7 and dilation rates of the
blocks are {1, 2, 4, 8, 16, 32}. For SEWA, the global contex-
tual temporal convolutional network is stacked by 5 layers of
global temporal convolution blocks with the kernel size of 5
and dilation rates of the blocks are {1, 2, 4, 8, 16}. And the
input and output channels in each layer of above networks
are set to 128 for arousal and 64 for valence. In the experi-
ments, two different models are independently trained for the
prediction of arousal and valence dimensions. To achieve the
best performance, we used Adam as the optimizer to train
these models and tested the initial learning rate of 0.0001,
0.001 and 0.01 for valence and arousal. The batch size is set
to 8 and 16 for RECOLA and SEWA respectively.

4.4 Results and discussion

4.4.1 Comparison with the state-of-the-art works

Table 3 summarizes the results of our proposed approach
compared to the reported state-of-the-art works on the origi-
nal validation set of AVEC2016. This is because the labels of
the original test set of AVEC2016 are not released publicly.
For the RECOLA dataset, the sizes of trainable parameters
for arousal and valence in the proposed model are 3.7 mil-
lion and 0.9 million, respectively. During the training phase,
the average running time of each epoch of the proposed
model on the RECOLA dataset for arousal and valence was
65.5s and 48.2s, respectively. The average execution time of
our model framework at the testing phase on the RECOLA
dataset ranges from 1.3 seconds to 2.4 seconds per itera-
tion. As can be seen from Table 2, our proposed method
achieves better performance. In [55], the authors proposed
a model framework combining improved AlexNet network
and attention mechanism for audio-visual dual-modal emo-
tion recognition. Themodel utilized themultimodal attention
mechanism to fuse hand-extracted audio features and visual
features extracted by the AlexNet network. Our method out-
performs this fusion method by an average of 2.9%. The
method proposed in [56] concatenated visual and audio fea-
tures learned through a self-supervised strategy into a latent
representation vector, and fed it into the bidirectional GRU
network to predict arousal and valence values. The CCC val-

Table 2 Multi-modal emotion
recognition results and
comparison in terms of CCC
with the state-of-the-art works
on the RECOLA (AVEC 2016)
dataset

Method Fusion level Arousal (CCC) Valence (CCC) Average (CCC)

MAF-LSTM [55] feature-level 0.729 0.718 0.724

Concat-BGRU [56] feature-level 0.770 0.464 0.617

EA-BAF [57] decision-level 0.620 0.720 0.670

AWN-LSTM [32] model-level 0.830 0.623 0.727

Distilled-LSTM [33] model-level 0.810 0.630 0.720

Our proposed model-level 0.834 0.671 0.753
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Table 3 Multi-modal emotion
recognition results and
comparison in terms of CCC
with the state-of-the-art works
on the Hungarian culture of
SEWA (AVEC2019) dataset

Method Fusion level Arousal (CCC) Valence (CCC) Average (CCC)

ADA-LSTM [58] feature-level 0.585 0.463 0.524

LSTM-DNN [38] feature-level 0.513 0.588 0.551

CEDF-LSTM [31] decision-level 0.534 0.572 0.553

MulT-LSTM [39] model-level 0.530 0.549 0.540

Our proposed model-level 0.573 0.533 0.553

ues produced by this method are significantly lower than
our results in both the arousal dimension and the valence
dimension. In [57], audio and visual features extracted by the
embedding attention were separately fed into the LSTM to
get the corresponding initial predictions, whichwere then fed
into the proposed decision fusion method to obtain the final
results. It provides an average CCC value that is 8.3% lower
than the averageCCCvalue generated by ourmethod. In [32],
the authors utilized amodel-level fusionmethod based on the
adaptive weight network to fuse Local Gabor Binary Pattern-
ThreeOrthogonal Planes (LGBP-TOP) features, Local Phase
Quantization-Three Orthogonal Planes (LPQ-TOP) features,
geometric features and acoustic features from audio-visual
modalities. LSTM model was also adopted in their work to
capture long-range contextual information. Their reported
CCC values are on average 2.6% lower than those produced
by our method. The recognition performance of our pro-
posed method also outperforms the multi-modal continuous
emotion recognition method based on LSTM in [33]. Com-
pared to [55–57], we learn importance weights for each input
feature stream by using intra-modal attention to highlight
effective emotional features, while building the inter-modal
attention module to take full advantage of complementary
emotional information from multiple modalities. Compared
to [32, 33], in addition to effectively fusing emotional fea-
tures from different modalities, our proposed method also
utilizes temporal convolutional networks to capture tempo-
ral context information at different scales, which is beneficial
for improving the performance of continuous emotion recog-
nition.

Table 3 summarizes the results of our proposed approach
compared to the reported state-of-the-art works on the orig-
inal validation set of AVEC2019. For the SEWA dataset, the
sizes of trainable parameters for arousal and valence in the
proposed model are 3.1 million and 0.8 million, respectively.
And the average execution time of our model framework

at the testing phase on the SEWA dataset ranges from 1.2
seconds to 1.9 seconds per iteration. Deng et al. [31] first
combined unimodal features into a multi-modal feature vec-
tor to train a DBLSTM, and then fed the outputs of multiple
unimodal and multi-modal DBLSTMs into a subsequent
DBLSTM model to obtain the final prediction results. Chen
et al. [38] used concatenation operation to fuse multiple
feature vectors and employed LSTM to learn temporal con-
textual representation in the fused feature sequence. Then,
a DNN-based regressor was adopted to predict arousal or
valence dimension. Compared to the above approaches, our
proposed method achieves comparable recognition results.
Huang et al. [39] adopted the multi-head attention mecha-
nism to fuse complementary emotional information between
audio-visual modalities in model-level fusion, and further
combined transformer and LSTM to explore high-level emo-
tional representation. Their reported CCC values are on
average 1.3% lower than those producedbyourmethod.Zhao
et al. [58] utilized several pre-trained models to extract effi-
cient deep learning features from acoustic, visual and textual
modalities, which were concatenated and fed into LSTM to
obtain prediction results in different emotional dimensions.
The average CCC value provided by this approach is 2.9%
lower than the average CCC value generated by our method.

4.4.2 Detailed analysis

In this subsection, we first conduct ablation experiments on
the RECOLA dataset to demonstrate the effectiveness of the
proposed model-level fusion method and temporal model-
ing approach. The temporal convolutional network [43] with
non-causal convolution is adopted as the baseline to obtain
temporal contextual information, and the concatenation-
based feature-level fusion method is adopted as the baseline
to fuse the three input feature streams. FromTable 4, it can be
seen that our multi-modal attention fusion method achieves

Table 4 Ablation study of the
proposed Multi-modal Attention
Fusion module (MAF) in terms
of CCC on RECOLA (AVEC
2016) dataset

Method Arousal (CCC) Valence (CCC) Average (CCC)

Concat(baseline) 0.739 0.571 0.655

MAF w/o MIM 0.826 0.659 0.743

MAF 0.834 0.671 0.753
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Table 5 Ablation study of the
proposed Local/Global
Contextual TCN (LC/GC-TCN)
in terms of CCC on RECOLA
(AVEC 2016) dataset

Method Arousal (CCC) Valence (CCC) Average (CCC)

TCN(baseline) 0.805 0.623 0.714

LC/GC-TCN w/o Dense 0.822 0.661 0.742

LC/GC-TCN 0.834 0.671 0.753

a significant improvement in the prediction performance
of arousal and valence compared to feature concatenation,
which demonstrates the advantages of the proposed approach
in fusing complementary emotional information from dif-
ferent modalities. Furthermore, the effect of introducing the
Modal Interaction Matrix (MIM) or not on the recognition
performance is investigated. The results show that by further
applying the modal interaction matrix, the CCC values of
the arousal and valence dimensions are improved by 0.8%
and 1.2%, respectively. This is mainly because it can signif-
icantly enhance the ability of our fusion method to model
the dynamic interaction of information between modalities.
Meanwhile, as shown in Table 5, it can be noticed that
utilizing multi-scale temporal information in temporal con-
volutional networks improves the recognition performance
of dimensional affective states. Furthermore, Table 5 illus-
trates the prediction accuracy of applying dense connections
(Dense) to the global context temporal convolutional net-
work. This structure brings performance improvements of
1.2% and 1% for arousal and valence, respectively. This is
mainly due to its ability to continuously integrate multi-scale
temporal contextual information from different layers for
predicting affective states.

Additionally, we evaluate the proposed model framework
by using the unimodal feature stream or the combination of
multiple feature streams as its input to explore the contribu-
tion of different input feature streams to the predicted valence
and arousal values. In order to accommodate the experimen-
tal requirements, a single-modal emotion recognition archi-
tecture is constructed by removing the multi-modal attention
fusion module in the multi-modal recognition framework.
Table 6 shows the recognition performance obtained by the

proposed model when using unimodal and multi-modal data
as input. Several conclusions can be drawn from Table 6.
Firstly, unified audio features have better recognition perfor-
mance than geometric features and high-level visual features
in predicting arousal values, while geometric features have
the best recognition performance in predicting valence val-
ues compared to the other unimodal features. Therefore,
this result once again proves that the emotional informa-
tion contained in multiple modalities is complementary and
redundant. Secondly, the proposed model framework for
emotion recognition using multi-modal data outperforms the
unimodal emotion recognition architecture, again illustrat-
ing that the proposed multi-modal attention fusion module
facilitates the integration of emotional information from dif-
ferent modalities. Thirdly, the best recognition results are
achieved in both arousal and valence when using the three
feature streams as input, which validates the effectiveness of
the proposed overall framework.

To more intuitively illustrate the effectiveness of our pro-
posed method, we present the predicted arousal values for
several samples in Fig. 6. It can be seen that the CCC values
generated by our proposed method for video 2 and video 6
are as high as 0.856 and 0.881, respectively. Similarly, the
valence values predicted by the proposed method for sev-
eral samples are also listed in Fig. 7. It can be seen that the
CCC values of our proposed method are as high as 0.779 and
0.731 for video 1 and video 6, respectively. These all fully
demonstrate that the proposed method has good accuracy in
predicting continuous affective states.

The framework in research provides a novel direction for
improving emotion recognition systemsby integrating the the
concept of temporal multi-scale into context dependent mod-

Table 6 Recognition performance of unimodal and multi-modal input streams in terms of CCC on RECOLA (AVEC2016) dataset

Features Method Arousal (CCC) Valence (CCC) Average (CCC)
Audio Unified Video Geometry Video CNN-based

� Single 0.729 0.303 0.516

� Single 0.367 0.531 0.449

� Single 0.296 0.436 0.366

� � Multi-Modal 0.809 0.615 0.712

� � Multi-Modal 0.801 0.514 0.658

� � Multi-Modal 0.506 0.591 0.549

� � � Multi-Modal 0.834 0.671 0.753
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Fig. 6 Visualization of arousal predictions and comparison with the Ground-truth of random samples on RECOLA (AVEC 2016)

eling. Nevertheless, there is room for further improvement
in our temporal modeling approach, as the LC/GC-TCN net-
work integratesmulti-scale context information at a relatively
coarse granularity without fine-grained filtering. Addition-
ally, the model currently treats the prediction of arousal
and valence dimensions as independent regression problems,
even though these dimensions are intrinsically interrelated.
The model framework can be further improved to more
effectively integrate multi-scale contextual information and
explore the interdependence between different emotional
dimensions. Furthermore, the inclusion of the uncertainty

for clean datasets is high. The concern of the uncertainty of
measured method then is totally missed. Future work can
conduct uncertainty analysis on models, which can improve
their credibility and application value [59].

5 Conclusion

Continuous emotion recognition remains a challenging task
due to the complexities of effectively fusing emotional infor-
mation from multiple modalities and modeling contextual

Fig. 7 Visualization of valence predictions and comparison with the Ground-truth of random samples on RECOLA (AVEC 2016)

123



Amultimodal fusion-based deep learning... 3055

dependencies during emotional evolution. These challenges
have impeded the wider application of the research area’s
results in human-computer interaction systems. In this paper,
an innovative and effectivemodel framework is introduced to
address these challenges. Considering the nature that affec-
tive states evolve over time and existmultiple representations,
the framework in research delves into complex interac-
tion relationships and long-range contextual dependencies
within audio-visual modalities. For multi-modal fusion, the
multi-modal attention fusion module is proposed to fuse
complementary emotional information fromdifferentmodal-
ities. Specifically, the intra-modal attention is employed to
assess the importance of different features within each input
feature stream for continuous emotion recognition, thereby
highlighting salient emotional features. Subsequently, the
inter-modal attention module learns complex correlations
among different modalities and facilitates dynamic interac-
tions between them. In terms of temporal modeling, local
and global temporal convolutional networks (LC-TCN and
GC-TCN) are introduced by stacking temporal convolution
blocks. These networks progressively learn ultra-long-range
dependencies and capture contextual information at differ-
ent temporal scales. Consequently, our model establishes
complicated mapping relationships between multiple input
feature streams and dimensional emotion states. Extensive
experiments are conducted on RECOLA and SEWA datasets
to show the effectiveness of our proposed model. Com-
pared with the reported state-of-the-art methods, approach in
our research achieves better recognition performance. Corre-
sponding results also demonstrate the ability of the proposed
method to effectively fuse information from different modal-
ities and capture multi-scale temporal context dependencies
for multi-modal continuous emotion recognition.
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