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Abstract
Knowledge graph embedding converts knowledge graphs based on symbolic representations into low-dimensional vectors.
Effective knowledge graph embedding methods are key to ensuring downstream tasks. Some studies have shown significant
performance differences among various knowledge graph embedding models on different datasets. They attribute this issue to
the insufficient representation ability of themodels. However, what representation ability knowledge graph embeddingmodels
possess is still unknown. Therefore, this paper first selects three representative models for analysis: translation and rotation
models in distance models, and the Bert model in neural network models. Based on the analysis results, it can be concluded
that the translation model focuses on clustering features, the rotation model focuses on hierarchy features, and the Bert model
focuses on word co-occurrence features. This paper categorize clustering and hierarchy as structure features, and word co-
occurrence as semantic features. Furthermore, a model that solely focuses on a single feature will lead to a lack of accuracy
and generality, making it challenging for the model to be applicable to modern large-scale knowledge graphs. Therefore,
this paper proposes an ensemble model with structure and semantic features for knowledge graph embedding. Specifically,
the ensemble model includes a structure part and a semantic part. The structure part consists of three models: translation,
rotation and cross. Translation and rotation models serve as basic feature extraction, while the cross model enhances the
interaction between them. The semantic part is built based on Bert and integrated with the structure part after fine-tuning.
In addition, this paper also introduces a frequency model to mitigate the training imbalance caused by differences in entity
frequencies. Finally, we verify the effectiveness of the model through link prediction. Experiments show that the ensemble
model has achieved improvement on FB15k-237 and YAGO3-10, and also has good performance on WN18RR, proving the
effectiveness of the model.
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1 Introduction

Knowledge graphs are a structured representation of knowl-
edge, typically consisting of a series of triples (h, r, t), where h
represents the head entity, r represents the relation, and t rep-
resents the tail entity. Embedding is the process of mapping
data to a lower-dimensional space, aiming to preserve the
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original features of the data and improve the computational
efficiency of computers in processing the data. In machine
learning, embeddings arewidely used in fields such as natural
language processing, image processing, and recommenda-
tion systems to better handle and analyze data. Knowledge
graph embedding [1] is the process of embedding entities
and relations of a knowledge graph into a lower-dimensional
space. As shown in Fig. 1, initially, vectors are allocated to all
entities and relations, forming a vector set. Subsequently, for
a given triple (Mount Everest, instance of,Mountain), its cor-
responding vectors are queried. These vectors are input into a
model. The model’s output is also a vector which represents
the knowledge features of this triple. Finally, a score function
is used to transform the vector into a scalar, which represents
the score of this triple. A lower score indicates that the triple
is more correct. After training, we select the common down-
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Fig. 1 Knowledge graph
embedding and link
prediction. loss is a scalar, and
in link prediction, it represents
the score for each entity

stream task of link prediction [2] in knowledge graphs for
validation. Link prediction refers to the task of predicting
the correct tail entity (or head entity) among candidate enti-
ties when given the head entity (or tail entity) and a specific
relation. In Fig. 1, three candidate entities (hill, Mountain,
sky) are initially presented. Subsequently, the scores for these
three entities are computed using the trained vector set and
the model. Finally, the candidate entity with the lowest score
is selected as the prediction result.

Current popular knowledge graph embedding methods
can be broadly categorized into two types: distance models
and neural network models. For distance models, they repre-
sent triples using vector operations. Based on the operation
methods, distance models can be further categorized into
translation models and rotation models. Translation mod-
els are based on vector addition, while rotation models are
based on vector multiplication. For neural network mod-
els, they represent triples using neural networks. Differing
from distance models that directly define vector operations,
neural network models perform calculations between vec-
tors using neural networks. Previous research has shown that
these models and their improvements tend to perform differ-
ently on various benchmarks. For instance, transE performs
better on FB15k-237 but poorly on datasets like WN18RR
and YAGO3-10. RotateE shows significant improvements
on WN18RR, YAGO3-10 and FB15k-237. The neural net-
work models (e.g., Bert) further improve performance on
WN18RR but do not have a significant impact on FB15k-
237. In response to this problem, some studies suggest that
it is caused by the limited representational capacity of the
model. Therefore, they incorporate additional models into
the existing ones to enhance the performance. However, the
fundamental problem of what these models can effectively
represent remains unclear, which limits both further model
improvements and the selection of different models for prac-
tical applications.

Inspired byHAKE [3], we think that what distancemodels
can represent is a structure features that reflect the collective
features of entities. Therefore, this paper first analyzes the

features of rotation and translation models in distance mod-
els. The results indicate that translation models can extract
clustering features, while rotation models can extract hier-
archical features. For neural network models, we discover
through experimental analysis that an important feature they
can extract is co-occurrence of words.

Furthermore, integrating these three types of models
together may potentially enhance the model’s accuracy and
applicability. Inspired by this idea, this paper adopts an
ensemble learning approach to combine these three types of
models, resulting in a unified ensemble model. Since clus-
ter features and hierarchical features are related to geometric
structural features, while word co-occurrence features are
related to content, the designof the ensemblemodel is divided
into two parts: structure part and semantic part. The structure
part consists of an ensemble of translation and rotation mod-
els.Additionally,wefind that introducing cross-terms similar
to those inmultivariate linear regression improvesmodel per-
formance. The semantic part of the model uses a bi-encoder
architecture based on Bert. When different models are inte-
grated, there is an issue of mismatched output magnitudes,
leading to some models dominating with large outputs while
others are weakened with smaller outputs. To address this
problem, we redesign the score functions for both the struc-
ture and semantic parts. For the structure part, we adjust the
norm selection for its score function and determine the opti-
mal choice through grid search. For the semantic part, we
introduce the sigmoid function to control the range of the
output values.

During the training process, a common issue arises con-
cerning the high-frequency occurrence of certain samples,
where some entities and relations appear frequently in the
triples, resulting in them being trained more frequently.
Therefore, this paper introduces the frequency model to
address the problemand conducts an analysiswithin the ”Fre-
quency Part”.

Finally, this paper validates the ensemble model on com-
monly used benchmarks and achieves competitive results.
Particularly, compared to using individual models like
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transE and rotateE, the ensemble model exhibits significant
improvements. In summary, this paper’s contributions are as
follows: (1) Explaining the primary knowledge features
extracted by translation models, rotation models, and
neural networkmodels (Bert). (2)Combining the features
of variousmodels to train amore powerful representation
model using ensemble learning. (3) Introducing the fre-
quencymodel to alleviate the issueof imbalanced learning
between high-frequency and low-frequency samples.

2 Related work

Roughly speaking, knowledge graph embedding models can
be divided into two categories: distance models and neural
network models. Our work involves the two types of models
mentioned above. More specifically, the structure part shares
similarities with transE and rotateE. The semantic part uti-
lizes Bert, a neural network model.

2.1 Distancemodel

The distance model is mainly based on the idea of geomet-
ric translation and rotation, where entities and relationships
exist in vector form. TransE [4] is the earliest distance model
which represents the relationship as a translation vector
between head and tail entities. It defines the score func-
tion as f = ||h + r − t ||1/2, where h, r , t ∈ Rn . So it is
a translation model. However, transE suffers from the prob-
lemof not being able to learn 1-N,N-1 andN-N relationships.
Therefore, transE needs to be improved to accommodate
these various patterns. RotateE [5] is the earliest distance
model which represents the relationship as a rotation vector
between head and tail entities. It defines the score functions
as f = ||h ◦ r − t ||1/2, where h, r , t ∈ Rn . It can fit a vari-
ety of relational patterns, such as 1-N, N-1 and self-reflexive,
which not only solve the problems in translationmodels well,
but also represent more patterns.

Subsequent research regard these two models as funda-
mental models in the distance model. GTransE improves
the regularization and negative sampling techniques of the
transE model [6]. RotatPRH [7] combines the ideas of rota-
teE and transE. To emphasize the significant role of entities,
transP [8] introduces an entity space. It also aims to solve one-
to-many and many-to-one problems. To further capture the
transitive relations between entities, Rot-Pro [9] introduces
a projection mechanism to model transitivity in knowledge
graphs. To enhance representational capabilities, QuatE [10]
embeds triples into a complex space. Similarly, AttH [11]
employs a hyperbolic space with a larger capacity for knowl-
edge graph embedding. Due to the lack of consideration for
entity types in the above model, ETF [12] add type infor-

mation constraints to the base distance model. Similarly,
relation-constraint model [13] introduces relationship con-
straints to the base distance model, and make the knowledge
more accurate.

2.2 Neural networkmodel

Neural network models have been applied to knowledge
graph embeddings due to their powerful representational
capabilities. Based on the type of neural network architec-
ture, they can be broadly classified into two main categories:
CNN-based neural network models and Transformer-based
neural network models.

ConvE [14] is a CNN-based neural network model. It
reshapes the vectors of head entities and relations into a 2D
matrix and then undergoes learning through a CNN network.
Finally, it generates predicted tail entity vectors. Inspired by
ConvE, ConvNE [15] considers relationships with globally
consistent dimensions.

The Bert [16] model is a Transformer-based neural net-
work model. Leveraging Bert’s outstanding performance
in NLP tasks, KG-Bert [17] fine-tunes the Bert model to
predict triples in knowledge graphs. However, it performs
poorly in low-dimensional spaces. Therefore, SAttLE [18]
improves this issue through self-attention mechanisms. To
extract richer relationship representations, RFAN [19] uti-
lizes a multi-head attention mechanism to capture complex
relationship features. To constrain the learning pattern of the
network, somemodels [20] incorporate structural constraints
into neural networkmodels. Compared to CNN-based neural
network models, Transformer-based neural network models
have gained broader applications.

In addition, there are also some studies focusing on other
aspects. For example, RLPAth [21] applies reinforcement
learning for knowledge graph embeddings. DynamicKG [22]
explores dynamic knowledge graphs.

Overall, both distance models and neural network models
have performed well on certain benchmarks. However, they
still exhibit fundamental differences in their representation
capabilities for knowledge.

3 Features every model has learned

This section analyzes the features that distance models and
neural network models can represent. Specifically, for dis-
tance models, we choose the classical translation model and
rotationmodel. For semantic models, we choose the classical
Bert model.

3.1 Features of translationmodel

The translation model defines the score functions as f =
||h + r − t ||1/2, where h represents the vector for the head
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entity, r represents the vector for the relationship, and t repre-
sents the vector for the tail entity. After training, the score for
each correct triple is minimized as much as possible. Ideally,
the gradient is 0when learning to a steady state. Since entities
and relationships exist in multiple triples, the stability con-
dition becomes that the gradient sum of all triples associated
with a particular entity or relationship in the knowledge graph
is 0. Suppose that for the relation r , all the triples related to r
in the training set are taken out and their score functions are
summed. Then the total score expression is:

∑

i

fi =
∑

i

||hi + r − ti ||1/2

Taking the derivative of the above expression, the equation
that r satisfies when the training converges to the equilibrium
state can be introduced as:

∑

i

ti −
∑

i

hi = Nr

From the above equation, it can be seen that after training by
gradient descent, the relation is a vector pointing from the
centroid of the set of tail entities to the centroid of the set
of head entities. The results are shown in Fig. 2. To make
the score function of each triple as small as possible, it is
necessary to make the tail entity as close as possible to the
centroid of the set of tail entities and the head entity as close
as possible to the centroid of the set of head entities. The
ideal case is when all head entities are at the same point and
all tail entities are at the same point. In general, r responds
to the translation relationship between two centroids, and
the entity embeddings learned by the translation model have
distinct clustering features.

3.2 Features of rotationmodel

The rotation model defines the score functions as f =
||h ◦ r − t ||1/2, and use the same learning approach as the
translation model. Therefore, in the same way, all the triples

in the training set associated with the relation r are taken and
summed over the score function. Calculate the derivative of
this expression.

r ◦
∑

i

hi =
∑

i

ti

The summation term in the above equation can still be consid-
ered as two clustering centroids. Let h = ∑

i hi , t = ∑
i ti ,

and then take the L1-norm.

||r ◦ h||1 = ||t ||1
To correlate r ◦ h with dot product, the dimension of r ◦ h
is divided into positive and negative terms, then ||r ◦ h||1 =
||(r ◦ h)+||1 + ||(r ◦ h)−||1. To facilitate the analysis, con-
sider the special case ||r ◦ h||1 = ||(r ◦ h)+||1 (h and r have
the same sign for each dimension). Since each dimension of
the vector is positive, the above equation can be changed to
|r ◦ h|1 = ||r ||2||h||2cosϑ , where ϑ is the angle between h
and r . From the equivalence between 1-norm and 2-norm we
can get:

||t ||2 ≤ ||t ||1 ≤ √
n ||t ||2

||t ||2 ≤ ||r ||2||h||2 cosϑ ≤ √
n ||t ||2

||r ||2 cosϑ√
n

||h||2 ≤ ||t ||2 ≤ ||r ||2 cosϑ ||h||2
||r ||2cosϑ reflects the hierarchical relationship between the
head entity and the tail entity.The tail entity is in the interval
from ||r ||2||h||2 cosϑ/

√
n to ||r ||2||h||2 cosϑ .

||r ||2 cosϑ√
n

≥ 1 → ||t || ≥ ||h||

||r ||2 cosϑ ≤ 1 → ||t || ≤ ||h||
If ||r ||2 cosϑ ∈ [1,√n], h and t can be considered to be

at the same level. If ||r ||2 cosϑ ∈ [0, 1], t is closer to the
origin, so it is at a lower level. If ||r ||2 cosϑ ∈ [√n,∞], t
is far to the origin, so it is at a higher level. The results are
shown in Fig. 2.

Fig. 2 Structural features. The
left figure represents the
clustering features of entities
extracted by the translation
model, and the associated
entities are in the same area; the
right figure represents the
hierarchical features of entities
extracted by the rotation model,
and the associated entities are in
the same circle
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Fig. 3 Semantic features. The semantic model for learning word rela-
tionships can capture the co-occurrence of words between sentences.
The left side of the figure shows the triple head entity and its descrip-
tion information, while the right side shows the triple tail entity and

its description information. Some triple entities themselves have the
same words. The co-occurrence of words between sentences is more
prominent after adding description information

3.3 Features of bert model

The Bert model learns the relationships between words and
sentences through a self attention mechanism. This paper
explores the contribution of eachword to prediction accuracy
by excluding some specifiedwords. Finally,we found that the
Bert model can extract co-occurrence between words which
is shown in Fig. 3. This property is a feature that is completely
unlearned by structure models. The relevant experiments are
in the ”Semantic Part Analysis”.

4 Ensemble model with structure
and semantic

This section describes the design of the structure part and the
semantic part, and the way of training the ensemble model.
The ensemble model framework is shown in Fig. 4.

4.1 Structure part

First, we analyze the three models in the structure part: trans-
lation, rotation, and cross. Then, we analyze the selection of
the score function.

4.1.1 Combine translation and rotation model

The structure part consists of translation and rotationmodels.
The translation model is denoted as T and the rotation model
is denoted as R. The embeddings for the translation model
are denoted as hm , rm and tm , while hn , rn and tn represent
the embeddings for the rotation model. The score function is
denoted as g1. First, calculate the feature vectors Vm and Vn
for the triplets based on the translation and rotation model.
The specific expressions are as follows:

Vm = hm + rm − tm

Vn = hn ◦ rn − tn

Then, we calculate the scores for both the translation and
rotation models, and the specific expressions are as follows:

T = g1 (Vm)

R = g1 (Vn)

Finally, the two parts are weighted and summed. The expres-
sion is as follows:

M = (ω1T + ω2R) ω1, ω2 ∈ R
k+

Fig. 4 Ensemble model. The
model consists of a structure
part and a semantic part. The
entire process is divided into
two steps. Firstly, it retrieves
triples from the dataset and
queries their corresponding
vectors. Then, it calculates
scores through the model
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4.1.2 Cross model

This paper is inspired by the crossover term in the multiple
linear regression equation. To avoid the inability to interact
information between models, the cross module of two struc-
ture models are added at the end of the model. It enables
the models to interact with each other, and at the same time
extends the simple linear summation to nonlinear summa-
tion to improve the representation ability of the models.The
specific expression for the intersection term is:

C = T · R

Combining the modules, the expression for the structure part
is:

M = (ω1T + ω2R + ω3C) ω1, ω2, ω3 ∈ R
k+

4.1.3 Score function for structure

Structure models typically use the L2 norm to calculate the
scoring function. However, for different structure models,
the score distribution calculated using the L2 norm varies, as
shown in Fig. 5. This can result in different contributions to
the final score from each model.

To solve this problem, this paper introduces scaling fac-
tors p and q to control the local and global calculation of
scores, and tries to make the mean values of the two types
of models as close as possible. Take rotation model as an
example. Calculate the derivative of the head entity hn :

dR

dhn
= g′

1V
′
n

Fig. 5 The score distribution for the T and R structure models.
Count represents the number of scores in that interval, and X represents
the scores calculated by the model. The scoring function utilizes the L2
norm

Vn determined by the design of the model, so it is fixed. g
is determined by the score function and can be designed as
needed. The general expression of the score function can be
expressed as:

g1 =
(

∑

i

([Vn]i )
p

)1/q

where [Vn]i denotes the i-th dimension of the vector V , and
p, q are adjustable coefficients.

First, analyze it as a whole by letting x = ∑
i ([Vn]i )

p,
so that g1 = xq . By changing q, the gradient will have a
different form. When q = 2 , it can prevent excessively
large score values. Additionally, due to the inverse propor-
tionality between gradient values and x, datawith high scores
update slowly, while data with low scores update quickly.
This helps prevent extreme differentiation between high and
low score values. When q = 1 , the score grows linearly with
x . The gradient is constant, and the constraint on the features
is loose. Overall, different values of q can change the form
of the gradient and thus affect the learning process.

Second, analyze the coefficients p in x . When p = 2,
the gradient is positively proportional to [Vn]i , which will
keep the [Vn]i from being too large (because the data in each
dimension is less than 1, it becomes even smaller after squar-
ing). This will result in a more concentrated distribution of
each dimension on the vector space. When p = 1, the gradi-
ent is constant, so the learning rate is not influenced by [Vn]i .
This will not constrain the distribution of each dimension on

Fig. 6 Semantic Part The model is primarily composed of Bert and
MLP
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the vector space. There is no advantage or disadvantage to
the different values of p. It is a matter of which one is more
applicable to the model.

4.2 Semantic part

This section provides a detailed overview of the overall pro-
cess of the semantic part, as shown in Fig. 6. Previous studies
have shown that, for prediction tasks, utilizing the bi-encoder
architecture yields the best results. Therefore, this paper
adopts the same design approach.

4.2.1 Bert model

The bi-encoder architecture refers to utilizing one Bert [16]
encoding for (h, r) and another Bert encoding for t , with the
parameters between the two Berts not shared.

Taking the triple (h, r , t) as an example. First, we extract
embedding vectors hb, rb, and tb from the sets of entity
vectors and relation vectors. Then, we combine hb and rb
together as the input X for Bert1. The advantage of using
a single Bert encoder to jointly encode h and r is to enable
information interaction between them. This ensures that the
embedding vectors for the same entity under different rela-
tions are distinct. According to the input structure required
by Bert, the combination method for hb and rb is as follows:

X = [vCLS, hb, vSE P , rb, vSE P ]

where X represents the input for Bert1, vCLS represents the
embedding vector of the sentence’s start symbol, vSE P rep-
resents the embedding vector of the sentence’s end symbol,
hb represents the embedding vector of the head entity h, and
rb represents the embedding vector of the relation r . vCLS

and vSE P are both special symbols inherent to Bert and do
not require user input. Vb1 and Vb2 represent the triple feature
vector after passing through the Bert model.

Similarly, the second Bert encoder is used to embed t . The
only difference is that when encoding t , r is not introduced.
If two Bert models embed relation at the same time, the con-
tribution of relation to the model to discriminate entity will
be reduced, which is not conducive to effective learning of
knowledge. The input for Bert2 is denoted as Y .

Y = [vCLS, tb, vSE P ]

where tb represents the embedding vector of the tail entity
t . Therefore, the semantic part produces two feature vectors
for the triple. The expressions are as follows:

Vb1, Vb2 = Bi Encoder(X ,Y )

where Bi Encoder represents the semantic model composed
of Bert1 and Bert2, Vb1 represents the output of Bert1, and
Vb2 represents the output of Bert2.

Finally, the score computation for a triple by the Bert
model can be represented by the following equation:

S = g2(Vb1, Vb2)

4.2.2 Score function for semantic

This paper emploies an MLP as the score function to trans-
form the output vectors of Bert into scores. Vb1 and Vb2 are
passed into anMLP network. The output of theMLP network
represents the probability that X and Y can form a triple.

g2 = σ(MLP(Vb1, Vb2))

where Vb1 and Vb2 are the outputs of the Bert1 and Bert2. σ
represents the sigmoid function.

Algorithm 1 Training the ensemble model.
Require: structure part: htype, rtype, tt ype(t ype = m, n); senmatic
part:hb, rb, tb; frequency part: hv, tv
for every epoch do

Randomly sample one positive triple: Pos
Randomly sample n negative triples: Negi
// − − − − − − − − − StructurePart − − − − − − − −−
T = g1(model(hm , rm , tm)) 


model : hm + rm − tm , g1 : (
∑

i (·)p)1/q
R = g1(model(hn, rn, tn)) 


model : hn + rn − tn, g1 : (
∑

i (·)p)1/q
C = T · R
// − − − − − − − − − SemanticPart − − − − − − − −−
hb, rb → X , tb → Y
S = g2(model(X , Y )) 


model : Bi Encoder(X , Y ), g2 : σ(MLP(·))
// − − − − − − − − − FrequencyPart − − − − − − − −−
β = g f (model(hv, tv)) 
 model : hv − tv, g f : ||σ(·)||
// − − − − − − − − − Loss − − − − − − − −−
dr = β · sum(T , R,C, S)

L+ = −logσ (γ − dr (Pos))
L− = − ∑n

i k logσ (dr (Negi ) − γ )

L+Bert = CE(S(Pos), 1)
L−Bert = ∑n

i CE(S(Negi ), 0)
Loss = L+ + L− + L+Bert + L−Bert

end for
return htype, rtype, tt ype(t ype = m, n), hb, rb, tb, hv, tv

4.3 Frequency part

4.3.1 Frequency model

The frequency of knowledge pairs is helpful for link predic-
tion, and higher frequency means more likely to be correct.
However, during the training process, knowledge pairs with
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Fig. 7 Frequencypart.h1 and t1 have three types of relationships in the
training set, while h2 and t2 have only one type of relationship. This will
cause h1 and t1 to appear more frequently during the training process,
and the training process is unbalanced.(The same problem exists for
entities with one-to-many or many-to-one relationships)

high frequency occurrences will have more iterations and
thus learn the distribution adapted to themselves faster, while
knowledge pairs with low frequency occurrences will have
the opposite. The difference between high and low frequency
will destroy the balances of the training process. Therefore,
the purpose of introducing frequency features in this paper
is both to be introduced as features to enhance the model

representation ability and to balance the differences in the
training process due to different frequencies. As for the fre-
quency, most of the triples appear only once in the training
set, so we used the binary knowledge pairs which also con-
taining local knowledge. The binary knowledge pair contains
(h, r), (t, r), and (h, t). Because relations and entities are not
equivalent concepts, the binary knowledge pairs are specific
to (h, t) which is shown in Fig. 7.

The frequency of the binary knowledge pair (h, t) is not
directly calculated using the number of occurrences in the
training set. On the one hand, different triples contain the
same (h, t) binary pair, this represents a potential connec-
tion between pieces of knowledge. On the other hand, the
frequency information calculated in this way is less flexi-
ble and is highly influenced by the training process. So we
make the binary frequency features learnable by designing
the frequency model so that it can be used as both weights
to influence the training process and features to influence the
prediction. Inspired by the SE [23] model, we introduce the
distance to reflect the frequency. The frequency model is:

β = g f (hv − tv)

where hv and tv represent the embedding vectors of the fre-
quency model.

Fig. 8 The training process. m, n represent input vectors for the structure part, b represents input vectors for the semantic part, and v represents
input vectors for the frequency part
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4.3.2 Score function for frequency

The scoring computation in the frequency model directly
employs theL2norm (normalized through a sigmoid function
first), and the specific expression is as follows.

g f = ||σ (·) ||

From the above equation, it can be seen that the binary fre-
quency is positively proportional to the distance between hv

and tv . σ is used to constrain the distance values and the mid-
dle interval can quickly separate binary knowledge pairs with
different frequencies.When the distance is greater (or less)
than a certain value, the difference in frequencywill not bring
great changes, and then themain reliance is on clustering and
hierarchical features to predict.

4.4 Trainingmethod

The training process is depicted in Fig. 8. For all entities
and relations, randomly initialize all required vectors (with
dimensions D), forming the sets of entity vectors and relation
vectors. Firstly, randomly select a positive sample, such as
(fruit, hyponym, apple), from the set of triples. Randomly
replace the apple with other entities n times to generate n
negative samples. Secondly, retrieve all vectors related to
fruit and apple from the entity vector set, and retrieve all
vectors related to hyponym from the relation vector set. Then,
calculate the score basedon the vector’s correspondingmodel
and score function. Finally, calculate the loss based on the
scores and update the vectors.

For a clearer representation of the entire process, we
present the training flow in pseudocode, as shown in Algo-
rithm1.Firstly, sample positive andnegative examples. Then,
calculate T , R,C, S, and β using structure and semantic
models respectively. Finally, compute the loss functions L+
and L−Bert for positive samples, and L− and L+Bert for
negative samples, and sum them up to obtain the final loss.

Additionally, to select the optimal parameters p and q, we
employed a grid search approach. Specifically, p and q are
searched in the range [1 : 2] with a step size of 0.5. Then
repeat Algorithm 1 based on the searched values of p and q.
Finally, the optimal combinations of p and q is determined
separately for T and R.

4.5 Loss function

To train the model, we use a self-adversarial multi-negative
sampling strategy(Sun et al. 2019). This method makes the
difference between positive and negative samples more obvi-
ous by means of multiple negative sampling, thus making it

easier to distinguish between positive and negative samples.
The specific expression of the loss function is as follows:

dr = β · sum(T , R,C, S)

L+ = − log σ (γ − dr (h, r , t))

L− = −
n∑

i

k log σ
(
dr

(
h′
i , r

′
i , t

′
i

) − γ
)

where k = exp(αdr(h′
i ,r

′
i ,t

′
i ))∑

i exp(αdr(h
′
i ,r

′
i ,t

′
i ))

, k is the weighting coefficient

for multiple negative sampling, (h, r , t) is a positive sample,(
h′
i , r

′
i , t

′
i

)
is a negative sample, n is the number of negative

samples, and α is the sampling temperature coefficient.
Meanwhile, since a binary classification approach is

employed in the semantic section, a binary classification loss
function is further introduced for the output of the semantic
part.

L+Bert = CE(S(h, r , t), 1)

L−Bert =
n∑

i

CE(S(h′
i , r

′
i , t

′
i ), 0)

where (h, r , t) is a positive sample,
(
h′
i , r

′
i , t

′
i

)
is a negative

sample.

5 Experimental setup and analysis

In this section we will expand on the following aspects. First
we present the details of the experimental setup. Then we
show the effects of the proposed model on three data sets.
Finally, we conduct a comprehensive analysis of the ensem-
blemodel infiveparts. (1)TheStructurePartAnalysis section
investigates the optimal scoring function selection for the T
and R models. Then, We perform the ablation experiment on
the structure part to validate the effectiveness of each part.
(2) The Semantic Part Analysis section conducts the abla-
tion experiment to validate the effectiveness of semantic. A
set of comparative experiments is then designed to validate
the features of Bert in extracting word co-occurrence. (3)
The Frequency Part Analysis section verifies whether the
model learned frequency features. (4) The Complementar-
ity Of Structure And Semantic section involved experiments
on the complementarity of structure and semantics to explore
the possibility of discarding certain part. (5) The Complexity
Analysis section provides an analysis of the model’s com-
plexity.
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Table 1 Statistics of datasets

Dataset #E #R #TR #TE

WN18RR 40,493 11 86,835 3,134

FB15k-237 14,541 237 272,115 20,466

YAGO3-10 123,182 37 1,079,040 5,000

The symbols #E and #R denote the number of entities and relations,
respectively. #TR and #TE denote the size of train set and test set,
respectively

5.1 Experimental setup

We analyze our model on three commonly used datasets:
WN18RR(Toutanova andChen2015), FB15K-237(Dettmers
et al.2018), YAGO3-10(Mahdisoltani, Biega and Suchanek
2013). Details of these datasets are summarized in Table 1.

WN18RR, FB15K-237 and YAGO3-10 are subsets inter-
cepted from the three data sets WN18, FB15K and YAGO3.
Since there is a large overlap between the test and train-
ing sets in the WN18, FB15K and YAGO3 datasets, simple
models can also achieve good results. So we use WN18RR,
FB15K-237 and YAGO3-10 as baseline models.

Test setup: we use the same test as Bordes et al. (2013).
For the test triple (h, r , t), we replace its head and tail entities
with the entities in the candidate set to form a series of triples
respectively. Then the score value of each triple is calculated
and ranked. The main metrics we use are H@K, MR and
MRR. H@K is the percentage of correct triples ranked in the
top K. MR is the mean value of the correct triple ranking.
MRR is the mean of the inverse of the correct triple ranking.
We use the “Filtered” setting to calculate the results to avoid
the impact of 1-N, N-1 and N-N problems.

Training setup: we use Adam (Kingma and Ba 2015) as
the optimizer. The search range for the optimal values of p
and q is 0-2, and the search step is 0.5. D (vector dimension)
is set to 768.

Table 3 Link prediction results on FB15k-237, YAGO3-10 and
WN18RR(MR, MRR)

FB15K-237 YAGO3-10 WN18RR
MR MRR MR MRR MR MRR

TransE 323 0.294 − − 2300 0.226

RotatE 177 0.338 − 0.495 3340 0.476

Rot-Pro 201 0.344 − − 2815 0.457

HAKE − 0.346 − 0.545 − 0.497

QuatE 176 0.311 − − 3472 0.481

AttH − 0.324 − 0.397 − 0.466

ConvE 245 0.325 − 0.44 4464 0.43

ConvKB 257 0.396 − − 2554 0.248

KG-BERT 153 − − − 97 0.216

SAttLE − 0.373 − − − 0.503

Ensemble 174 0.353 − 0.558 3123 0.466

5.2 Main results

We compare the proposed model with a series of baseline
models. Since the ensemble model primarily incorporates
transE, rotatE, and Bert, we place special emphasis on ana-
lyzing the improvements achieved by the ensemble model in
comparison to these three individual models. The results are
shown in Tables 2 and 3.

For the FB15K-237 dataset, both transE and rotateE per-
form well. So it can be determined that both clustering and
hierarchicality are represented on this dataset. Compared to
rotateE, it is 1.8% higher on H@1, 1.36% higher on H@3
and 0.84% higher on H@10. Compared to HAKE, which
also uses both translation and rotation models, the ensemble
model is 0.9% higher on H@1, 0.6% higher on H@3. This
shows that the ensemble model is effective. Based on theMR
andMRRmetrics, it can be inferred that the ensemble model
pays more attention to overall ranking. Because theMRmet-

Table 2 Link prediction results
on FB15k-237, YAGO3-10 and
WN18RR(H@1, H@3, H@10)

FB15K-237 YAGO3-10 WN18RR
H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10

TransE − − 0.465 − − − 0.025 0.132 0.501

RotatE 0.241 0.375 0.533 0.402 0.55 0.67 0.428 0.492 0.571

Rot-Pro 0.246 0.383 0.537 0.443 0.596 0.699 0.397 0.482 0.577

HAKE 0.25 0.381 0.542 0.462 0.596 0.694 0.427 0.516 0.582

QuatE 0.221 0.342 0.495 − − − 0.436 0.5 0.564

AttH 0.252 0.384 0.54 0.31 0.437 0.566 0.443 0.482 0.526

ConvE 0.237 0.356 0.501 0.35 0.49 0.62 0.4 0.44 0.52

ConvKB − − 0.517 − − − − − 0.525

KG-BERT − − 0.42 − − − 0.041 0.302 0.524

SAttLE 0.266 0.394 0.541 − − − 0.442 0.49 0.54

Ensemble 0.259 0.387 0.537 0.477 0.61 0.701 0.424 0.506 0.582

123



2910 Y. Wang et al.

Fig. 9 Optimal parameters. The left figure represents the same parameter settings for FB15k-237 and YAGO3-10 datasets. The right figure
represents the parameter settings for the WN18RR dataset

ric focuses more on triples with lower rankings, while MRR
is more concerned with triples ranked towards the top. Some
models perform well in only one metric, such as ConvKB,
while the ensemble model performs well in both metrics.

For YAGO3-10, the ensemble model achieved the best
results across all metrics. Compared to rotateE, the ensem-
ble model is 7.51% higher on H@1, 6.02% higher on H@3,
3.14% higher on H@10, and 0.063 higher on MRR. Com-
pared toHAKE, the ensemblemodel is 1.5%higher onH@1,
1.5% higher on H@3, 0.7% higher on H@10, and 0.013
higher on MRR. Interestingly, YAGO3-10 is a large-scale
dataset with a training set of one million, which means it has
richer features compared to smaller datasets. The ensemble
model performed better on larger datasets, demonstrating the
advantage of the ensemble model in combining more fea-
tures.

For theWN18RR, the ensemble model also perform well.
Specifically, the transE model does not perform well on this
dataset, but the ensemble model can leverage features from
different models, thus still achieving competitive results.
Therefore, for different datasets, the ensemblemodel exhibits
greater adaptability.

5.3 Structure part analysis

5.3.1 Optimal score function for structure part

We use a control variable approach. First, we randomly
determine the parameters p and q in R and search for the
parameters in T . Then fix the parameters in T and search the
parameters in R. p and q parameters in the other terms are set
to 2. Figure 9 shows the optimal p, q parameters searched on
the FB15K-237, YAGO3-10 andWN18RR datasets. Among
them, the FB15K-237 andYAGO3-10 datasets have the same
parameter selection, where the T term is chosen to be 2-norm
and the R term is chosen to be 1-norm. This indicates that
the clustering feature constraint is tight while the hierarchi-
cal feature constraint is loose. In contrast, for the WN18RR

dataset, the T term is chosen to be 1-norm and the R term
is chosen to be 2-norm. This indicates that the clustering
feature constraint is loose while the hierarchical feature con-
straint is tight. In general, the generalized score function does
optimize the results in terms of expressions.

5.3.2 Ablation experiment

In this section, we take YAGO3-10 as an example. Training
each part of the model separately and exploring the contri-
bution of each part to the final accuracy. From Table 4, it can
be seen that the direct combined learning of both T and R
is not a significant improvement compared to the baseline
model. And the introduction of the C term has significantly
improved on YAGO3-10. Therefore the effective combina-
tion of features is quite important for prediction. In general,
each term in the model contributes to the final prediction.

5.4 Semantic part analysis

Wefirst conduct ablation experiments on the semantic part to
analyze its impact on the results. We choose the FB15k-237
and WN18RR datasets, and the metrics Hit@1 and Hit@10.
As shown in Table 5, the semantic part indeed brings a
significant improvement to the WN18RR dataset, but the
improvement on FB15k-237 is minimal. This is consistent
with previous research findings.

Table 4 Ablation Experiment On YAGO3-10, T is the translation
part(TransE in the baseline model), R is the rotation part(RotateE in the
baseline model), C is the cross part, and P is the frequency part

T R C MRR H@1 H@3 H@10

� − − − −
� 0.495 0.402 0.550 0.670

� � 0.508 0.413 0.566 0.674

� � � 0.552 0.473 0.603 0.695
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Table 5 Ablation experiment for semantic

Semantic FB15K-237 WN18RR
H@1 H@10 H@1 H@10

� 0.259 0.537 0.424 0.582

× 0.257 0.536 0.412 0.561

� indicates that the ensemble model has semantic part.× indicates that
the ensemble model does not have the semantic part

We further analyze the textual features of the two datasets.
Since theWN18RR dataset is a word bank, entities may have
the same word roots among themselves. Entities encoded
through Bert contain the same information (word roots or
the same categories). This property is referred to as word co-
occurrence. Therefore, co-occurrence after word separation
is helpful for WN18RR dataset. For the FB15K237 dataset,
the entities contain a large number of names of people and
places, which do not provide information about the same
words (word roots or entity categories, etc.). Therefore, for
the FB15K-237 dataset, simply encoding entity names by the
Bert model cannot obtain valid information.

To verify this result, this paper designs the following com-
parison experiments: (i) encode only the entities. (ii) encode
only the serial numbers (pre-generate a serial number for
each entity, causing the textual information of the entities
to be lost). For example, consider the original triple (fruit,
hyponym, apple). First, introduce a serial number for each
text, such as (fruit: 1, hyponym, apple: 2). Then, the entity
part is removed, leaving only the serial number, such as (1,
hyponym, 2).

On the original predicted results, due to the absence of
entity textual information, there will inevitably be additional
errors in predicting some triples. Excluding the results that
were already predicted incorrectly in (i), we conducted a sta-
tistical analysis of the newly generated incorrect prediction
results in (ii). From Fig. 10, it is evident that among the
newly added incorrect predictions, 62% of the triples orig-
inally had entities with co-occurring words. The encoding
of serial numbers resulted in the loss of this information.
Therefore, we can see that the Bert model pays attention to

Fig. 11 β-Frequence. Divide the frequency of entity occurrence in the
training set into 6 intervals. Verify the relationship between β and the
frequency interval on three datasets respectively

the co-occurrence of words, and the absence of words will
result in a decline in Bert’s predictive ability.

5.5 Frequency part analysis

This section analyzes the relationship between the number
of occurrences of knowledge pairs in the training set and the
score of the frequency model(β), and detects whether the
learning results of the frequency model are consistent with
expectations.

The frequency model aims to learn the frequency features
of knowledge pairs in the knowledge graph and reacts by
the score of the model. To verify the law of frequency model
learning, we divide the frequency of knowledge pairs into six
intervals:0-5, 5-15, 15-25, 25-35, 35-45, ≥ 45. Compute the
scores of all triples in each interval and then take the average.
The relationship between frequency and the socre is shown in
Fig. 11.We can see that the score and frequency are inversely
related. It means that the higher the frequency, the closer the
distance between h and t . Among them, the inverse trend is
most obvious in the FB15K-237 and YAGO3-10 datasets,
Therefore the introduction of frequency is valid for both
datasets. However, on the WN18RR dataset, the curve has
some fluctuations. It means that the WN18RR dataset does
not have a very distinct frequency profile.

Fig. 10 Entity co-occurrence of WN18RR dataset. count = 0 indicates no co-occurrence between the head and tail entities, while count ≥ 1
signifies co-occurrence
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5.6 Complementarity of structure and semantic

The structure part assigns vectors directly to each entity and
relation, and it does not focus on each clause. Therefore, the
same vocabulary after subsumption does not bring any help
to the structure embedding. However, the structure part can
focus on the overall distribution among the data (different
structure designs focus on different aspects). Therefore, as
long as similar structure features exist in the dataset, it is
possible to achieve certain results without introducing addi-
tional knowledge.

The semantic part is embedded as a vector by the Bert
model. It focuses on each subword, so that the connections
that entities represent from words can be captured. However,
when entities are abstracted (person names, etc.), it is difficult
to capture the connections between entities in this way, and
need to introduce more valid descriptive information.

For WN18RR, we choose the structure model rota-
teE(Rotation Model) and the semantic model Bert (with
descriptive information) to embed the entities and relations
of WN18RR, respectively, and then calculate the ranking
of the test triples on the two models. As can be seen from
Fig. 12, theBertmodel achieves better results than the rotateE
model onmost of the triples. However, the rotateEmodel still
achieves better results than the Bert model on a small number
of triples, and even far better results than Bert on individual
triples. This indicates that the semantic model cannot eas-
ily replace the holistic knowledge learned by the structure
model.

5.7 Complexity analysis

In terms of time complexity analysis, the gradient descent
algorithm has a time complexity of O(NCL), where N is the
batch size, C is the computation per single sample, and L is
the number of iterations. For the structure part, the time com-
plexity per single sample isO(d), whered is the dimension of
the embedding vectors, as it involves only norm calculations.

Fig. 12 The predicted rankings obtained with the structure and seman-
tic models, respectively, then subtracted(On WN18RR)

Table 6 Training time

Structure Semantic

Training Gpus 1 4

Batch size 512 4

Iterations 20000 4

Training way − Fine-tuning

Time 2.5h 5h

In the semantic part, the computational load per single sample
mainly depends on the self-attention mechanism within the
Bert model. Generally, the time complexity of self-attention
is O(kd2), where k is the number of model layers, and d
is the dimension of the embedding vectors. Therefore, the
overall time complexity for Algorithm 1 over one pass is
approximately O(N (k2d + 3d)L), where 3d represents
the computations required for the translation model, rotation
model, and interaction model within the structure part.

In terms of space complexity analysis, the space complex-
ity of the structure part is mainly determined by the number
of samples and the dimension of the embedding vectors for
each sample. Thus, its space complexity is O(Vd), where V
is the size of the vocabulary (the number of entities and rela-
tions). The space complexity of the semantic part is primarily
determined by the number of parameters. When considering
only embedding vectors and self-attentionmatrices, its space
complexity is O(Vd + kd2).

We have provided the parameter settings during training
and the final runtime, as shown in Table 6. It can be observed
that due to fine-tuning, the semantic part has smaller values
for iterations and batch size. However, Bert, with its high
time complexity, results in a longer runtime compared to the
structure part. Algorithm 1 takes approximately 7 hours to
complete.

6 Conclusion

To investigate what knowledge embeddingmodels can repre-
sent, this paper conduct theoretical proofs. Building upon this
foundation, we employ ensemble learning to integrate vari-
ous models, aiming to achieve higher accuracy and broader
applicability. Experimental results show that our proposed
method outperforms existing approaches onmost benchmark
datasets and remains competitive on a few others. From our
research, we can summarize several practical recommenda-
tions.

(1)If entities exhibit shared characteristics based on
relationship descriptions, such as ([London, Oxford, Cam-
bridge], city of, United Kingdom), introducing translation
models capable of extracting clustering features is effective.
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(2)If entities exhibit a clear hierarchical structure based
on relationship descriptions, such as (fruit, hyponym, [apple,
banana, grape]), (fruit, hypernym, [food, nature]), intro-
ducing rotation models capable of extracting hierarchical
features is effective.

(3)If entities possess rich textual information, such as
(Beethoven: enjoy playing music, profession, musician),
incorporating neural networks like Bert can extract more
information (e.g., music and musician).

In summary, selecting appropriate models based on their
features can enhance the representational capacity of embed-
ding models.
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