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Abstract
Fuzzy c-means (FCM) algorithm is an unsupervised clustering algorithm that effectively expresses complex real world 
information by integrating fuzzy parameters. Due to its simplicity and operability, it is widely used in multiple fields such as 
image segmentation, text categorization, pattern recognition and others. The intuitionistic fuzzy c-means (IFCM) clustering 
has been proven to exhibit better performance than FCM due to further capturing uncertain information in the dataset. How-
ever, the IFCM algorithm has limitations such as the random initialization of cluster centers and the unrestricted influence of 
all samples on all cluster centers. Therefore, a novel algorithm named equidistance index IFCM (EI-IFCM) is proposed for 
improving shortcomings of the IFCM. Firstly, the EI-IFCM can commence its learning process from more superior initial 
clustering centers. The EI-IFCM algorithm organizes the initial cluster centers based on the contribution of local density 
information from the data samples. Secondly, the membership degree boundary is assigned for the data samples satisfying the 
equidistance index to avoid the unrestricted influence of all samples on all cluster centers in the clustering process. Finally, 
the performance of the proposed EI-IFCM is numerically validated using UCI datasets which contain data from healthcare, 
plant, animal, and geography. The experimental results indicate that the proposed algorithm is competitive and suitable for 
fields such as plant clustering, medical classification, image differentiation and others. The experimental results also indicate 
that the proposed algorithm is surpassing in terms of iteration and precision in the mentioned fields by comparison with 
other efficient clustering algorithms.

Keywords  Equidistance index · Local density · Membership degree boundary · Intuitionistic fuzzy c-means · Equidistance 
index intuitionistic fuzzy c-means

1  Introduction

As an essential branch of machine learning, clustering analy-
sis aims to gather high similarity data samples into the same 
group. As an unsupervised learning algorithm, clustering 
has been widely used in many fields, such as image segmen-
tation [1], evaluation of credit risk prediction [2], and pattern 
recognition [3]. In various clustering algorithms [4–7], the 
fuzzy c-means clustering (FCM) proposed by Bellman et al. 

[8] can integrate the uncertainty of the actual datasets by 
combining Zada’s fuzzy theory [9]. The use of fuzzy infor-
mation is mostly driven by the ability to understand opera-
tions in a manner akin to human logical thinking, which 
can capture more information about actual problems [10]. In 
FCM clustering, the interaction between different clusters is 
generated by FCM, which can effectively avoid falling into 
the local optimal solution [11, 12]. Due to the uncertainty in 
data collection in practical problems, FCM may experience 
uncertainty when calculating the membership value of a 
given sample [13]. In other words, due to the fact that fuzzy 
theory only obtains uncertain information through mem-
bership functions in expressing fuzzy information, this can 
result in the loss of some fuzzy information [14]. Therefore, 
FCM has certain limitations in comprehensively obtaining 
uncertain information [15].

In order to improve the problem of fuzzy sets being 
unable to obtain more uncertain information, Atanassov 

 *	 Xiaomin Zhu 
	 xmzhu@bjtu.edu.cn

1	 School of Mechanical, Electronic and Control Engineering, 
Beijing Jiaotong University, Beijing 100044, China

2	 School of Economics and Management, Beijing Jiaotong 
University, Beijing 100044, China

3	 Rail Transit Department, Tianjin Jinhang Computing 
Technology Research Institute, Tianjin 300308, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05297-1&domain=pdf


3206	 Q. Ma et al.

extended Zada’s fuzzy theory and proposed the intuition-
istic fuzzy set [16]. The IFS uses membership and non-
membership functions to describe fuzzy information based 
on fuzzy sets, to avoid information loss. Scholars also men-
tioned that IFS allows for correct modeling of the problem 
based on available data and observation [17]. Given the 
powerful ability of intuitive fuzziness to capture uncertain 
information, it has been widely applied in multiple fields, 
such as fuzzy multi-attribute decision-making problems 
[18], classification problems [19, 20], forecasting problems 
[21], and others. Due to the fact that IFSs integrated the 
concepts of non-membership and hesitation degree in addi-
tion to membership in the datasets, which better represents 
the inherent uncertainty of datasets, IFSs are expanded to 
FCM [15, 22, 23]. Compared with FCM, IFCM has been 
proven to converge to better positions and have higher per-
formance in some problems [22, 23]. The IFCM, as a ver-
sion of FCM, computes the partition matrix or membership 
matrix by determining the membership value of each data 
point to join in a cluster, and the cluster centroids are also 
initialized randomly [15]. Therefore, although IFCM is an 
improvement for FCM in expressing uncertain information, 
its initial clustering center still heavily relies on the cluster-
ing center [24]. In response to this drawback, the current 
research mainly focuses on identifying the initial cluster-
ing center by obtaining density information on data sample 
distribution. This idea is first extended to FCM to verify the 
impact of considering sample distribution density on algo-
rithm performance. Currently, most density-based improved 
algorithms are implemented by obtaining the initial cluster 
center by the data points with high density based on cut-
off distance [25–28]. To improve the impact of the initial 
cluster center on the performance of the IFCM algorithm, 
Varshney et al. [15] also extended the calculation density 
based on the cut-off distance to IFCM and proposed the 
density-based IFCM algorithm. The cut-off distance dc∈[0, 
1] is defined as a random constant value, which is chosen 
experimentally. In addition, when calculating the density, the 
density rate λ, distance rate σ and other parameters need to 
be adjusted, which makes it difficult to calculate the cut-off 
density. The above sample density values are unfortunately 
overdependent on the cut-off distance and heavily affected 
by noise points.

Apart from the above mentioned shortcomings, the tradi-
tional algorithm converges too slowly because all the sam-
ples will always affect all the cluster centers [29]. Therefore, 
scholars have made great efforts to improve the convergence 
speed of the traditional algorithm. The current improvements 
can be divided into two types, including improvements to 
traditional algorithms from the perspective of data features 
and algorithm principles. From the perspective of data fea-
tures, the entropy measure [30], distance measure [25, 31], 
and probabilistic Euclidean distance [26] are extended to 

obtain the contributions of different features to the sam-
ple. For instance, Cherif et al. [27] proposed the three new 
interval type-2 fuzzy similarity measures and joined with 
fuzzy C-means algorithm. An intuitionistic kernelized total 
Bregman divergence is proposed to measure the difference 
and the weighted local information is introduced into the 
objective function [28]. Improvements from the perspective 
of algorithm principles include using advanced similarity 
measures instead of Euclidean distance measures when cal-
culating membership, and incorporating heuristic algorithms 
to avoid falling into local optimization solutions [32, 33]. In 
addition, some scholars have improved traditional algorithms 
from two perspectives to accelerate their convergence speed 
on large datasets. For example, a fuzzy C-means algorithm 
for optimizing data clustering is proposed by incorporat-
ing the typicality function [34]. The random sampling plus 
extension FCM (rseFCM) obtains the final effective cluster-
ing results by taking random samples into the literal FCM 
(LFCM). Starting from the viewpoint that all samples always 
affect all clustering centers, Zhou et al. [24] proposed a new 
membership compression method to achieve fast clustering 
by scaling membership. For the separation and processing 
of information, Joaquín Pérez et al. [35] applied the equidis-
tance index (EI) to obtain statistical information about the 
displacement of centroids at each iteration for reducing the 
number of calculations needed in the classification step of 
hard c-means, without significant loss of quality reduction. 
The algorithm proposed by Joaquín Pérez et al. [35] also 
verified that the data points can be divided by the EI, and 
can be achieved better performance. The extension of the EI 
to FCM is promising research.

According to the above analysis, although IFCM has 
the ability to express fuzzy information, its clustering per-
formance is unstable because its initial clustering center is 
randomly selected. It is still a challenge for IFCM to obtain 
the cluster center in a simple way and ensure the cluster-
ing performance. In addition, the convergence of the IFCM 
algorithm is too slow, because all samples always affect all 
cluster centers. Therefore, another challenge of IFCM is to 
reduce the number of iterations while ensuring the cluster-
ing performance. In light of this, a novel algorithm named 
EI-IFCM is proposed to obtain the initial cluster center and 
reduce the number of iterations effectively from the local 
density and membership boundary of samples. Both theo-
retical and empirical studies indicate that EI-IFCM is clear, 
efficient, and flexible. The main contributions are summa-
rized as follows:

(1)	 A new strategy for obtaining initial cluster centers 
based on local density is proposed. This strategy fully 
considers the two characteristics of easy calculation 
and the influence of noise data on the initial clustering 
center.
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(2)	 The EI condition is applied to the datasets division, 
which can provide relevant knowledge about whether 
the data sample center changes. The EI condition pro-
vides theoretical support for the division of data sam-
ples. To our knowledge, the study is among the earliest 
work that applies the equidistance index condition to 
the IFCM algorithm.

(3)	 The boundary value of the membership degree of IFCM 
is derived. It can increase the membership value of the 
data samples to the maximum value and terminate the 
subsequent iteration. The calculation of the member-
ship boundary significantly saves iterations.

(4)	 Extensive validation of the EI-IFCM on numerous real-
world datasets has been done to demonstrate the supe-
rior performance of the algorithm, and the applicability 
of the algorithm has also been verified.

The rest of this paper is organized as follows. Section 2 
presents some basic concepts and new findings of IFS and 
IFCM. The novel algorithm based on the local density and 
membership boundary of IFCM is presented in Section 3. 
In section 4, experiments and sensitivity analysis on some 
real-world datasets are given. The conclusion of the paper 
is shown in Section 5.

2 � Preliminaries

In this section, the relevant concepts of IFS, IFCM and the 
equidistance index are reviewed. Based on these basic con-
cepts, the membership boundary of IFCM is derived.

2.1 � Intuitionistic fuzzy C means clustering

Atanassov [16] proposed the intuitionistic fuzzy set (IFS) 
based on membership μA(x) of the fuzzy set by adding the 
nonmembership νA(x). An IFS A defined on G is given as 
follows [16].

where μA(x): G→[0,1], and νA(x): G→[0,1] with the con-
dition 0≤μA(x)+νA(x)≤1. The hesitation degree of A is 
expressed as πA(x)=1-μA(x)-νA(x)≤1.

The intuitionistic fuzzy complement function is first 
defined by Bustince et al. [36]. Chaira [22] rewrote the 
intuitionistic fuzzy complement function as N(x)=(1-xα)1/α, 
where α>0, N(1)=0 and N(0)=1. Chaira [22] also calculated 
the non-membership of IFS by using the rewritten intuition-
istic fuzzy complement function and gave the transformation 
form of IFS as follows.

(1)A =
�
⟨x,�A(x), �A(x)⟩�x ∈ G

�

And the hesitation degree is:

Clustering is described as the process of obtaining 
different clusters by calculating the membership of data 
sample points to multiple cluster centers. The IFCM algo-
rithm is an objective function-based clustering algorithm 
that may optimize the objective function to determine 
each data sample’s membership degree with each clus-
tering center, hence attaining the purpose of automatic 
clustering. Suppose X={x1, x2,…, xn} is the observation 
sample set and the features of each sample are IFSs in the 
s-dimension. The objective function of the intuitionistic 
IFCM algorithm is as follows [23]:

where c is the number of clusters, m is a fuzzy parameter, 
||xj, v

(t)

i
||2 is Euclidean distance measure between vi (cluster 

center) and xj (data points), and μij is the membership value 
of jth data (xj) in ith cluster.

To minimize the Jm(U,V;X) by using an iterative pro-
cess based on the following equation.

where 
(
�
(t+1)

ij

)∗

 denotes the membership of the jth data 
sample in ith cluster under t+1 iteration.

Based on the calculation of 
(
�
(t+1)

ij

)∗

 , the clustering 
center can be updated using the following equation.

where i=1,2,..,c, j=1,2,…,n.
The cluster center and membership matrix are updated 

after each iteration, and the algorithm stops when 
maxij|U∗new

ij
− U

∗prev

ij
| < 𝜀 is satisfied. ε is tolerance for the 

solution accuracy, which has already been set before 
implementing the clustering task.
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2.2 � Boundary value and equidistance index

Zhou et al. [29] obtained the membership degree bounds 
of FCM by rearranging the Euclidean distances from the 
cluster centers to the data samples in descending order. They 
designed the boundary value of the membership degree by 
using the following inequality [29] for the data sample xj to 
the nearest cluster center vi.

where 
(
d
(t+1)

j

)(c)

 denotes the max distance from the jth data 
point xj to the ith cluster center �(t+1)

i
 in t+1 iteration, and 

I∗
j
= argmin

1<i≤c

{
d
(t+1)

ij

}
.

According to Eq. (8), the boundary value of the intuition-
istic fuzzy membership degree of IFCM can be proposed in 
Lemma 1.

Lemma 1  For data sample xj, the boundary membership 
value of iteration t+1 can be calculated by formula (9).

Suppose the nearest and the second nearest cluster centers 
of data object xj are v1 and v2 , respectively. (d(t+1) j)(1) and 
(d(t+1) j)(2) are the Euclidean distance from xj to v1 and v2 , 
respectively. The equidistance index (EI) can be expressed as 
the difference between the two distances. Let v1 and v2 be the 
nearest and the second nearest cluster centers of an object 
xj , respectively. Then the EI can be defined as follows [35].

It is worth noting that 0 ≤ �
(t+1)

j
≤ ||v(t+1)

1
-v

(t+1)

2
||2 . It is 

known that the EI of each data object xj will change as the 
iterative process proceeds. There is a high or low likelihood 
that the cluster of data object xj will be changed. The equi-
distance threshold helps to identify the objects with a high 
likelihood of cluster change. Then the offsets of the cluster-
ing center in two iterations, i.e. t and t+1 are 
m1 = ||v(t+1)

1
-vt

1
|| and m2 = ||v(t+1)

2
-vt

2
|| , respectively. Then 

equidistance threshold β(t+1) is defined as follows [35].

From the above analysis, it can be seen that it is feasible 
to determine whether the cluster of a data object is going 
to change in the next iteration by comparing EI with the 

(8)1

c
≤ �
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j
j

≤
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(11)�
(t+1) = m1 + m2

equidistance threshold. Therefore, the partition EI for an 
object xj can be summarized as follows:

(1)	 If α(t+1) j≤β(t+1), the object xj has a high likelihood of 
cluster change for the next iteration in clustering;

(2)	 If α(t+1) j>β(t+1), the object xj has a low likelihood of 
cluster change in the next iteration.

Figure 1 can intuitively illustrate the division require-
ments of partition of EI condition for the object xm in the 
process of clustering iteration. As shown in the figure, it 
is assumed that the objects xm and xn are distributed at the 
positions, and v1 and v2 are the nearest and second nearest 
centers of these two objects, respectively. The parameter 
changes before and after iteration are shown in the figure. It 
can be seen from the figure that the center of xm is not easy 
to change, while the center of xn is likely to change.

3 � Equidistance Index Intuitionistic Fuzzy 
C‑Means (EI‑IFCM) Clustering Algorithm

In this section, we propose a new algorithm named equidis-
tance index intuitionistic fuzzy c-means (EI-IFCM) clus-
tering algorithm by integrating the IFCM and EI. Figure 2 
shows the implementation flow chart of the proposed EI-
IFCM clustering algorithm. The proposed algorithm mainly 
includes two parts, namely, the acquisition of the initial clus-
ter center and the update of the membership matrix. In the 
first part, the local density is fully considered to obtain the 
initial cluster center. The equidistance index segmentation 
is applied to the second part to ensure the fast convergence 
of the proposed algorithm.

3.1 � Acquisition of initial clustering centers

The traditional IFCM is sensitive to the selection of the initial 
clustering center. The cluster centers are often distributed in 
areas with dense data points, that is, the cluster centers have 
a large local density within the cluster range [37]. The initial 
cluster centers should satisfy the following conditions.

xm

v1 v2

1=m1+m2

xn

Fig. 1   Schematic diagram of partition of EI condition
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(1)	 If an object vi is a cluster center, its local density is large;
(2)	 If object vi is the cluster center of a cluster in the data 

set, the Euclidean distance between the object and the 
object with a higher local density than it must be large, 
that is, the object has a larger local density.

Therefore, Algorithm 1 is proposed to select the initial 
clustering centers in the EI-IFCM algorithm. In Algorithm 1 
the global average distance of the dataset is obtained by 
using E.q (12).

Algorithm 1    Initial center selection

And λ is the density factor that can affect the change of 
local density. The local density can be calculated using E.q 
(13).

where e is an exponential function that is applied to calculate 
the local density of the data sample point. The exponential 

(12)D =
1

n(n − 1)

�k

l=1
‖xj, xl‖2

(13)�i = e

1
∑k
l=1

‖xj ,xl‖2

function can eliminate the influence of noise data on the cal-
culation of local density. Therefore, the exponential function 
is used to calculate the local density of the sample.

Algorithm 1 selects data sample points whose local dis-
tance is greater than the global average distance through a 
descending arrangement of local density. The purpose is to 
select a large local density and the distance corresponding 
to two large local density points is greater than or equal to 
the global average distance to satisfy the initial cluster center 
selection conditions.

Fig. 2   Schematic diagram of the 
EI-IFCM algorithm implemen-
tation process

Input Sample Data Initialization Cluster Center

Initialization Center

EI condition division

Sample set X1Sample set X2

Attributes

Local 

Density

Membership Matrix
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Algorithm 2   EI-IFCM

3.2 � Update of membership matrix

The IFCM algorithm updates the membership matrix by 
calculating the Euclidean distance between the cluster cent-
ers and all sample objects. It allows all samples to affect all 
cluster centers, which will result in some waste of computing 
resources. When the data samples satisfy the EI division 
condition, it takes work to shift the cluster in the iteration 
process. Therefore, the fusion of EI condition and member-
ship boundary values into the IFCM algorithm to update 

the membership matrix is the main contribution of the pro-
posed algorithm. The pseudo-code of EI-IFCM based on 
the EI condition and membership boundary is shown in 
Algorithm 2. In the proposed algorithm, the data samples 
satisfying the EI should be separated from the process and 
assigned the boundary value of the membership.

After obtaining the initial cluster center in Algorithm 1, 
Algorithm 2 starts its learning process from a better cluster 
center. In the process of updating the membership matrix, the 
dataset is divided according to the EI division condition. The 
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division rules are shown in Eq. (15). The boundary value of 
membership can be obtained based on Eq. (14) as follows.

Updating the membership of the separated sample Xout 
data by the following formula.

where 1−M
1−u

(t)

ij

 is a factor less than 1 to maintain the u(t)
ij

 is 

decreased to u(t+1)
ij

 for i ≠ I∗
j
.

4 � Experimental results

4.1 � Environment settings and measuring indexes

Nine datasets from the UCI datasets (https://​archi​vr.​ics.​uci.​
edu/​ml/​index.​php) are utilized in this experiment to verify 
the competitiveness and effectiveness of the proposed algo-
rithm. The nine datasets mentioned above are aggregated 
from different groups in fields such as animals, plants, avia-
tion, healthcare etc. In this section, the applicability of the 
method is demonstrated by analyzing these actual datasets. 
A personal computer running Windows 10 and Python 
3.8.8 is used for all of the experiments. It has an Intel Core 
i5-1135G7 processor and a maximum memory capacity of 
16 GB for all processes. The brand new algorithm is bench-
marked with its counterparts such as FCM [8], LFCM [38], 
IFCM [23], rseFCM [38], MSFCM [29], FCM clustering 
by varying the fuzziness parameter (vFCM) [39], Improved 
FCM (IMFCM) [33], and feature weighted FCM (WFCM) 
[25]. As a classical clustering algorithm, the traditional FCM 
algorithm is often used to compare the improved clustering 
algorithms based on FCM. The proposed clustering algo-
rithm integrates the advantages of the IFCM algorithm, 
and IFCM is also used to compare with our algorithm. The 
MSFCM applies the boundary value of membership degree 
to the clustering method for the first time and is used to 
compare with EI-IFCM. In addition, other methods such as 
LFCM, rseFCM, IMFCM, WFCM, and vFCM are also used 
to compare with our methods because of their wide applica-
tion in clustering in very big datasets. The basic parameters 
m and α are set to 2 and 0.85, respectively. In addition, the 
iteration termination parameter ε is set as 1×10-6.

(14)

M = 1 −

⎛
⎜
⎜
⎜
⎜
⎝

1 −

⎡
⎢
⎢
⎢⎣

1 + (c − 1)

⎛
⎜
⎜
⎜
⎝

�
‖xj, �

(t+1)
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�(1)

�
d
(t+1)

j

�(c)

⎞
⎟
⎟
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⎠

2∕(m−1)⎤
⎥
⎥
⎥⎦

−�⎞
⎟
⎟
⎟
⎟
⎠

1∕�

(15)u
(t+1)

ij
=

⎧
⎪
⎨
⎪
⎩

M, if i = I∗
j

u
(t)

ij

�
1−M

1−u
(t)

ij

�
, if i ≠ I∗

j

The Rand index (RI) for evaluating clustering methods 
quality proposed by Rand in 1971 is widely used to measure 
the similarity of two clustering partitions [40]. Since RI was 
proposed, it has been widely used in the performance evalua-
tion of clustering algorithms. The larger the RI, the better the 
clustering performance. And the RI is extended by Hubert 
et al., which is adjusted rand index (ARI) [41]. The ARI 
inherits the advantages of RI and its value is between [-1,1]. 
The Adjusted Mutual Information (AMI) is an information 
theoretic measure and has the best properties among all these 
clustering evaluation measures [42]. In addition, the FMI 
considers the Fowlkes and Mallows Index (FMI) proposed 
by Fowlkes and Mallows in 1983 [43]. FMI is described as 
the geometric mean of accuracy and recall, which is used 
to comprehensively evaluate clustering performance. The 
larger the value of the above evaluation indexes, the closer 
the clustering result is to the true value, that is, the better the 
clustering performance.

4.2 � Results and discussion

Table 1 demonstrates the results of FCM, LFCM, IFCM, 
rseFCM, MSFCM, WFCM, IMFCM, vFCM, and EI-IFCM 
over nine datasets coming from UCI datasets. The charac-
teristic dimension (d), data amount (n) and category number 
(c) of the data set are listed in Table 1. On nine datasets, 
nine algorithms were tried ten times, and the average and 
standard deviation of each indicator’s ten tests are taken. The 
standard deviation is roughly 0 when it is less than or equal 
to 10-7. Specifically, when using the WFCM algorithm, its 
parameter t=-1, and the parameters a, b, and K of the vFCM 
algorithm are 0.95, 0.05, and 20, respectively. The selection 
of parameters for the above two algorithms comes from the 
optimal parameters validated in [25, 39].

In this section, we use the above evaluation indicators 
mentioned in section 4.1 to measure the clustering perfor-
mance of algorithms. Table 1 lists the detailed content of 
each indicator, with the best result highlighted in bold. In 
Table 1, in addition to evaluating the performance of a single 
indicator on different datasets, a comprehensive evaluation is 
also provided. The “Mean” in the table displays the compre-
hensive performance of the six indicators on all datasets, as 
well as the average ranking under all indicators in all data-
sets. Through verification, it can be found that the proposed 
algorithm can be well used in distinguishing different cat-
egories of plants, classifying diseases in medical treatment, 
and recognizing objects in aerial images and others.

From Table 1, it can be seen that different algorithms 
exhibit different performances on different datasets. For 
traditional algorithms such as FCM and LFCM, the con-
vergence position of the algorithm is learned by randomly 
initializing the membership matrix and randomly initializing 
the clustering centers. Compared to other algorithms, they 

https://archivr.ics.uci.edu/ml/index.php
https://archivr.ics.uci.edu/ml/index.php
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are not competitive on any dataset. The rseFCM algorithm, 
which integrates LFCM, has been proposed for clustering 
problems on large datasets. However, it inherits the inher-
ent drawbacks of LFCM, such as randomization of initial 
centers and slow convergence speed, and its accuracy has 
not been significantly improved on all datasets. The IFCM 
algorithm is based on an improvement of the FCM algorithm 
in considering more uncertain information, which adds hesi-
tation to the membership function of the FCM. Although the 
IFCM algorithm is random in obtaining the initial cluster-
ing centers, it performs well on the Shuttle, Avila, Abalone, 
Heart, Wine, and Iris datasets due to its consideration of 
more uncertain information in the data samples.

Compared with the algorithms mentioned above, the 
MSFCM algorithm performs better on multiple datasets. 
This is because the MSFCM algorithm proposes the concept 
of membership boundary from the perspective that all data 
objects always affect all clustering centers, and integrates 
it with the membership update process to obtain better and 
faster convergence positions. From Table 1, it can be seen 
that MSFCM exhibits good performance on most datasets, 
which proves that considering the boundary condition of 
membership is effective for improving the traditional algo-
rithm FCM. The WFCM algorithm is an algorithm that 
considers feature weighting and the calculation of feature 
weights depends on the Euclidean distance between the 
cluster center and the mean of all cluster centers. It can be 
seen that the datasets Satimage and Avila are sensitive to 
feature weighting and exhibit good performance, but the 
performance of the WFCM algorithm on other datasets is 
mediocre. The IMFCM algorithm takes into account the dis-
advantage of using Euclidean distance to calculate the mem-
bership matrix of the FCM algorithm, which is sensitive to 
noisy data. It proposes the Euclidean distance function that 
ensures a significant weight on normal data while a small 
weight on noisy data. It can be seen that this improvement 
has shown good performance on the Cancer dataset.

The vFCM algorithm improves FCM from the perspec-
tive of selecting and updating fuzzy parameters. VFCM 
determines whether to use the function m=am0+b to update 
fuzzy parameters by determining the remainder of the itera-
tion times t and K. It can be known that when t is a multiple 
of K, the value of m will decrease. For datasets that require 
multiple iterations to reach the convergence position, the 
value of m will decrease to 1 (with an initial value of 2). 
When the value of the fuzzy parameter is 1, it will cause 
confusion in the updating of membership due to the limita-
tion of 1/(m-1). Therefore, the vFCM algorithm does not 
converge on some datasets, such as Satimage, Avila, and 
Shuttle.

The proposed EI-IFCM algorithm integrates the further 
consideration of uncertain information in membership calcu-
lation in IFCM, as well as the use of membership boundary 

values in algorithm iterations. In addition, the proposed 
algorithm also considers the selection of initial clustering 
centers, which is a gap in the aforementioned algorithms. 
From Table 1, it can be seen that the EI-IFCM algorithm, 
which integrates multiple advantages, has shown good per-
formance on most datasets. The “mean” row of the table 
also fully reflects the overall performance of the proposed 
algorithm on all datasets, which is competitive.

Additionally, it can be seen that our algorithm consumes 
less time and iterations. This is because the proposed algo-
rithm first starts its learning from better initial clustering 
centers, which are obtained based on the density of data 
samples. The proposed algorithm divides the data samples 
during the learning process based on the EI condition and 
assigns boundary values for samples that satisfy the EI con-
dition. By starting the learning process from a better loca-
tion and assigning membership boundary values that match 
EI condition, the convergence position is achieved quickly 
during the algorithm operation process. From Table 1, it can 
be seen that this viewpoint has been validated on almost all 
datasets.

To verify whether there are statistical differences between 
algorithms, we include the p-values obtained by the Wil-
coxon test for every indicator of the proposed EI-IFCM 
algorithm and the other algorithms in Table 2. In addition, 
Table 2 also summarizes whether different indicators under 
each algorithm are greater than 0.05 (-) or less than 0.05 
(+), and counts their quantities. Specifically, due to the non-
convergence of the vFCM algorithm on the Satimage, Shut-
tle, and Avila datasets, these datasets have been removed 
when comparing EI-IFCM and vFCM algorithms. Although 
the proposed algorithm has significant differences in five 
or four indicators for FCM, IFCM, LFCM, and MSFCM, 
the p-value is still greater than 0.05 on one or two indica-
tors, indicating that the null hypothesis cannot be rejected. 
Similarly, compared to the recently proposed new algorithms 
IMFCM, WFCM, and vFCM, overall, the null hypothesis 
cannot be rejected. Therefore, we can conclude that there is 
no statistically significant difference between our algorithm 
and the most recent algorithms.

Figure 3 shows the visualization results of original sam-
ples, IFCM and EI-IFCM algorithms on Wine and Iris data 
sets. (a) and (d) are 2D figures on original samples. (b) and 
(c) are the clustering results of the two algorithms on the 
Wine dataset, respectively. (a) and (c) are the clustering 
results of the two algorithms on the Iris dataset respectively. 
It is clear from Fig. 3 that the algorithm proposed in this 
paper can achieve a better clustering effect than IFCM on 
Wine and Iris datasets. This shows that the proposed algo-
rithm is competitive. Especially on the Wine dataset, there 
are more obvious clustering results.

To verify the monotonicity of algorithms, Fig. 4 shows 
the iterative changes of nine algorithms on nine data sets 
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during 30 iterations. The vertical coordinate represents 
the sum of the objective function and the initial objective 
function, i.e. J(U,V)/J(U0,V0), and the horizontal coordi-
nate represents the number of iterations. Due to significant 
differences in target values among different algorithms, 
using this ratio of J(U,V) and J(U0,V0) can plot the results 
of all algorithms on the same graph. The initial objec-
tive values of FCM, LFCM, IFCM, rseFCM, MSFCM, 
FWFCM, IMFCM and vFCM algorithms are determined 
by randomly selected cluster centers or randomly given 

membership values. The change in the ratio during the 
iteration process will be significant when the original 
objective value is large, otherwise, the change will be 
small. The initial objective value of the EI-IFCM algo-
rithm is determined based on the selection of cluster cent-
ers. In addition, it can be seen from Fig. 4 that all datasets 
changed dramatically at the beginning of the iteration, 
then gradually slowed down. Compared with other clas-
sic algorithms, the EI-IFCM algorithm can achieve con-
vergence with fewer iterations.

Table 2   Wilcoxon test p-values obtained by the Wilcoxon test of all evaluate criteria pairs of the proposed algorithm and other algorithms

Evaluate criteria FCM LFCM IFCM rseFCM MSFCM IMFCM WFCM vFCM

ARI 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0251(+) 0.0195(+) 0.0078(+) 0.0313(+)
AMI 0.0195(+) 0.0195+) 0.0195(+) 0.0195(+) 0.0251(+) 0.3594(-) 0.1641(-) 0.0313(+)
FMI 0.0547(-) 0.0547(-) 0.2500(-) 0.0195(+) 0.4817(-) 0.0078(+) 0.0742(-) 0.2188(-)
RI 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0117(+) 0.2500(-) 0.2031(-) 0.0313(+)
Time 0.0039(+) 0.0039(+) 0.0273(+) 0.0039(+) 0.0977(-) 0.9102(-) 0.0039(+) 0.4375(-)
Iterations 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0039(+) 0.0313(+)
+/- 5/1 5/1 5/1 6/0 4/2 3/3 3/3 4/2

-400 -200 0 200 400 600 800 1000

-20

0

20

40

60

-400 -200 0 200 400 600 800 1000

-20

0

20

40

60

-400 -200 0 200 400 600 800 1000

-20

0

20

40

60

-3 -2 -1 0 1 2 3 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-3 -2 -1 0 1 2 3 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-3 -2 -1 0 1 2 3 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 Cluster 1

 Cluster 2

 Cluster 3

Original-Wine

(a)

 Cluster 1

 Cluster 2

 Cluster 3

 Cluster 1

 Cluster 2

 Cluster 3

IFCM-Wine

(b)

 Cluster 1

 Cluster 2

 Cluster 3

 Cluster 1

 Cluster 2

 Cluster 3

 Cluster 1

 Cluster 2

 Cluster 3

EI-IFCM-Wine

(c)

Original-Iris

(d)

IFCM-Iris

(e)

EI-IFCM-Iris

(f)

Fig. 3   Plots of Iris and Wine Datasets in 2-D by IFCM and EI-IFCM Algorithm
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4.3 � Sensitivity analysis

The stability of the initial clustering center is depicted in 
Fig. 5. Two representative datasets, Seeds and Satimage, are 
selected to describe this change. This is because there are 
significant differences in sample size, feature dimension, and 
clustering number between the two datasets. The abscissa 
in Fig. 5 is the number of experiments, and the ordinate 
is the impact of the initial center on the accuracy of the 
algorithms. The initial cluster center of IFCM is randomly 
selected. It can be seen from the figure that the initial cent-
ers randomly selected will cause the RI of the algorithm to 
fluctuate greatly, while the initial clustering centers selected 
through local density contribute to the stability of the algo-
rithm and ensure the clustering accuracy.

Similar to traditional FCM and IFCM algorithms, the 
parameters of the EI-IFCM algorithm have an impact on 
clustering performance. In this section, a detailed analysis 
is conducted on the impact of each parameter.

To analyze the sensitivity of the proposed algorithm to 
the fuzzy parameter m, the RI values of FCM and IFCM 
algorithms under different parameters m in four datasets are 

also measured. Figure 6 shows the changes in EI-IFCM, 
FCM and IFCM algorithms on m. It can be seen from the 
figure that the RI of the three algorithms fluctuates on dif-
ferent m. This shows that different datasets have different 
sensitivity to the fuzzy parameter m, and it is necessary to 
select appropriate fuzzy parameters according to different 
datasets to obtain higher clustering accuracy. On the data-
sets of Seeds, Avila and Abalone, the derived algorithm has 
roughly the same fluctuation as FCM and IFCM. When m 
is greater than 2.4, IFCM and EI-IFCM show a large gap 
with FCM in volatility but EI-IFCM and IFCM have roughly 
the same volatility trend on the Satimage dataset. This is 
because IFCM and EI-IFCM are affected by another hesita-
tion parameter α besides parameter m.

EI-IFCM and IFCM algorithms are affected not only by 
fuzzy parameters m but also by the parameter α. Parameter 
α can change the hesitation value of data samples. Fig-
ure 7 shows the impact of IFCM and EI-IFCM algorithms 
on the RI of datasets when parameters α in [0.15,0.95] 
are considered. It can be seen from the figure that IFCM 
and EI-IFCM fluctuate with the change of parameter α. 
The fluctuation trend of RI obtained by two algorithms in 
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different data sets is basically synchronous and consistent. 
It can be seen from the figure that when α=0.85, the two 
algorithms achieve the highest clustering accuracy in the 
Seeds and Satimage datasets at the same time. However, 
when the two algorithms achieve the highest clustering 
accuracy on the Avila and Abalone datasets, they are not 
under the same parameters. The IFCM achieves the high-
est clustering precision on two Avila when α=0.25, and 
EI-IFCM achieves the highest clustering precision on it 
when α is 0.7. The Abalone dataset achieves the high-
est clustering precision when α=0.65 in IFCM while the 
highest clustering precision is achieved in EI-IFCM when 
α=0.8. It is worth noting that the RI is 0.6131 in EI-IFCM 
and 0.6121 in IFCM when α=0.65, while RI in EI-IFCM 
is significantly greater than in IFCM when α=0.8 in the 
Abalone dataset. The same results can be obtained in the 
Avila dataset. On the whole, the performance of the EI-
IFCM algorithm is better than that of the IFCM algorithm, 
which is most obvious on the Avila dataset, and the excel-
lent ability of the algorithm has also been further proved.

In order to verify the impact of both parameters on 
algorithm performance, Figure 8 depicts the RI values 
obtained after both parameters are changed simultane-
ously. Among them, the value range is α in [0.1,1], and 
the value range of m is in [1.2,3.9]. The x-axis in the figure 
is α and m, respectively, and the y-axis is the RI value. 
From the figure, it can be seen that the performance of 
EI-IFCM and IFCM algorithms fluctuates with changes 
in parameters. There are differences in the sensitivity of 
different datasets to parameters. For the Avila dataset, 
when m=2.1 and α=0.4, the RI of the EI-IFCM algorithm 
achieves good performance. When m=1.5 and α=0.2, 
the IFCM algorithm achieves better performance. In this 
experiment, when m=3.9 and α=1, EI-IFCM and IFCM 
achieved the optimal RI values on both the Satimage and 
Seeds datasets. In addition, for the Abalone dataset, EI-
IFCM achieved optimal performance at m=2.1 and α=0.4, 
while IFCM achieved optimal performance at m=3 and 
α=0.7. When the hesitancy parameter α is 1, the hesitancy 
of IFS can be obtained by using �IFS = 1 − �A(x) , which 

Fig. 5   Influence of initial 
centers selection of IFCM and 
EI-IFCM Algorithms. (a) Seeds 
dataset, (b) Satimage dataset
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means that the consideration of hesitant information in the 
data sample is maximized. This means that the considera-
tion of hesitant information in the data sample reaches its 
maximum state.

From the above analysis, it can be concluded that dif-
ferent datasets and algorithms have different sensitivity 
to parameters. M represents the fuzzy performance of the 
dataset, while α represents the hesitant information of the 
uninterrupted dataset. From the analysis, it can be seen that 
when both parameters are considered simultaneously, higher 
clustering performance can be achieved than IFCM on most 
datasets. Therefore, when solving different practical prob-
lems, it is necessary to assign different parameters.

Based on the above analysis, it can be concluded that 
the proposed algorithm is competitive. Based on the above 
experiments on algorithms performance and parameter sen-
sitivity analysis, the following conclusions can be obtained. 
Firstly, the EI-IFCM algorithm is competitive compared to 
other algorithms. From Table 1, it can be seen that the vari-
ous indicator values of the proposed algorithm are signifi-
cantly better than other algorithms. Secondly, compared to 
other excellent algorithms, the proposed new algorithm uses 
a data density-based approach to obtain the initial cluster-
ing center. Compared with other algorithms that randomly 
select initial clustering centers, the proposed algorithm starts 
its learning process from a better center, thereby saving 

Fig. 7   Plot of hesitation param-
eter α on clustering perfor-
mance of two algorithms
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learning resources. At the same time, it avoids the instability 
of the initial clustering centers caused by random selection. 
Thirdly, by using EI condition to segment the dataset. It can 
assign membership boundaries to data objects that satisfy EI 
condition, which can avoid the disadvantage that all samples 
always affecting all clustering centers. Moreover, by apply-
ing the proposed algorithm to datasets in different fields, 
it can be concluded that the algorithm has applicability in 
fields such as image classification, plant category recogni-
tion, medical disease classification, and others. Finally, by 
comparing the parameter sensitivity analysis between the 
classical algorithm and the proposed algorithm, it can be 
seen that the proposed algorithm inherits the characteris-
tics of the classical algorithm with different sensitivities 
on different datasets. The EI-IFCM algorithm also has dif-
ferent sensitivities on different datasets. This needs further 
improvement in future research.

5 � Conclusion

Due to the idea of IFCM fusing hesitant information into 
membership and the recently proposed MSFCM model 
fusing membership boundaries, this paper proposes a new 
IFCM clustering algorithm called EI-IFCM, which inte-
grates local density. In the EI-IFCM algorithm, the initial 
clustering centers are obtained based on the sample distri-
bution density and are responsible for reducing instability 
caused by random selection. Therefore, the proposed algo-
rithm can start its learning process from scratch with rela-
tively stable initial clustering centers. On the other hand, 
in response to the viewpoint that all samples always affect 
all clustering centers in the classical IFCM algorithm, the 
algorithm combines the EI condition and the membership 
boundary derived in the paper. In this contribution, con-
sidering that the EI can provide partition condition for the 
datasets in two adjacent iterations, different membership cal-
culation rules are given to ensure fast convergence of data 
samples. To verify the applicability of the proposed algo-
rithm, experiments are conducted on 9 real world datasets. 
The experimental results show that the proposed EI-IFCM 
model has a competitive overall performance compared to 
other advanced models. By conducting experiments on these 
real world datasets, it can be verified that the proposed algo-
rithm can be applied to fields such as medical disease clas-
sification, geographic image recognition, plant and animal 
differentiation, and others. This demonstrates the applicabil-
ity of the algorithm.

However, the main limitation of the EI-IFCM algorithm is 
its inability to adaptively select the optimal parameters. Fur-
ther research can obtain the optimal computational param-
eters by using heuristic algorithms such as particle swarm 
optimization or genetic algorithms. Moreover, this study also 

inherits the limitation of classical algorithms that require 
presetting the number of clusters. Integrating data distribu-
tion density into the algorithm to independently obtain the 
number of clusters can also serve as an improvement to this 
model, which is one of the future research directions.
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