
Applied Intelligence (2024) 54:2582–2593
https://doi.org/10.1007/s10489-024-05272-w

Bit-Close: a fast incremental concept calculation method

Yunfeng Ke1,2 · Jinhai Li1,2 · Shen Li1,2

Accepted: 2 January 2024 / Published online: 19 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The theory of Formal Concept Analysis (FCA) finds diverse applications in fields like knowledge extraction, cognitive
concept learning and data mining. The construction of a concept lattice significantly influences the effectiveness of formal
concept analysis; hence, the development of high-performance algorithms for concept construction is crucial. In this paper,
we introduce a novel algorithm called “Bit-Close” for formal concept construction. Bit-Close leverages bit representation
and operations, fundamental to computer science, to enhance the In-Close algorithm. Furthermore, we explore the parallel
method of Bit-Close. Our experimental results, obtained frommultiple public and random datasets, demonstrate that Bit-Close
outperforms In-Close by approximately 20% and is significantly better than other competing algorithms.

Keywords Formal concept analysis · Construction algorithm · In-Close · Bit-Close · Parallelization

1 Introduction

Formal Concept Analysis (FCA) is a mathematical method-
ology introduced by Wille [1] in 1982. It facilitates data
analysis and rule extraction by constructing concept lattices
based on a formal context. Rooted in the principles of partial
order sets or lattices, FCA is built on a robust mathematical
foundation. Over the past few decades, FCA has experienced
substantial growth and has been applied in various domains,
including data mining [2], conflict analysis [3], web mining
[4, 5], machine learning [6], knowledge discovery [7] and
outlier detection [8].

The foundational concept employed in data analysis is
the formal concept, which is defined as an ordered pair
comprising an object set and an attribute set. Typically, the

B Shen Li
lishen@kust.edu.cn

Yunfeng Ke
keyunfeng@stu.kust.edu.cn

Jinhai Li
jhlixjtu@163.com

1 Faculty of Science, Kunming University
of Science and Technology, Kunming 650500,
Yunnan, People’s Republic of China

2 Data Science Research Center, Kunming University
of Science and Technology, Kunming 650500, Yunnan,
People’s Republic of China

dataset is structured within the context of formal analy-
sis. By developing a concept lattice, object and attributes
can be classified and combined to produce an ordered,
structured diagram.Therefore, developing high-performance
concept construction algorithms is a crucial task. Concept
lattice construction algorithms can be categorized into two
primary classes: batch and incremental algorithms. Batch
algorithms generate concepts using a top-down or bottom-up
approach by incorporating attributes or objects into existing
concepts as parent concepts, resulting in the generation of
upper-level or lower-level concepts. In contrast, incremental
algorithms initiate with an initial concept and subsequently
add new objects, updating both newly generated and existing
concepts.

To begin, we introduce several representative batch algo-
rithms. Qian et al. [9, 10] proposed a novel method that
reduces intent computation and also introduced a decom-
position method for constructing the corresponding concept
lattice from a formal context. Ma et al. [11] utilized depen-
dence space models to obtain the concept lattice. Ganter
et al. [12] introduced theNext-Closure algorithm,which enu-
merates concept closures using feature vectors of objects
or attributes. Lindig et al. [13] presented the UpperNeigh-
bor algorithm, which initiates from the smallest concept,
generates analogous parents and ascertains concept gen-
eration through a tree structure. This algorithm, however,
requires extensive storage space for larger datasets due to the
need to maintain complete neighbor relationship informa-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05272-w&domain=pdf
http://orcid.org/0000-0002-3022-1141

Bit-Close: A fast incremental... 2583

tion. Overall, batch algorithms construct concepts through
relationships between concepts and can performwell in static
formal contexts. However, batch algorithms require a lot of
memory space and are computationally inefficient for large
formal context.

Next, we introduce some representative incremental algo-
rithms. Kuznetsov et al. [14] developed the CBO algorithm,
which enhances computational efficiency by preventing
duplicate concept computation through dictionary order and
achieving a pruning effect. Zou et al. [15] proposed an
efficient incremental algorithm called FastAddIntent, based
on AddIntent [16]. Andrews et al. [17] introduced the In-
Close algorithm, which enhances computational efficiency
by examining the three cases that arise when the current con-
cept extents intersect with the added attributes. The In-Close
family [17, 18] currently represents the best-performing set
of algorithms. In general, incremental concept construction
algorithms offer advantages, including resource savings and
suitability for big data. Hence, incremental algorithms are
more popular than batch algorithms. However, the imple-
mentation of incremental construction of concept lattices
is relatively complex and doesn’t always outperform batch
algorithms.

To further enhance computational efficiency, numerous
parallel algorithms have been proposed, including PCBO
[19], FPCBO [20] and CBO implemented using CUDA [21].
Additionally, in response to the diversity of data types, such
as fuzzy concept lattices and three-way concept lattices,
high-performance algorithms have been introduced. Hu et al.
[22] put forword the updating methods of object-induced
three-way concept lattices for dynamic formal contexts. Qi
et al. [23] introduced a high-performance algorithm for
creating three-way concept lattices within a given formal
context. Chunduri et al. [24] presented an innovative par-
allel algorithm for concept generation and the construction
of three-way concept lattices, with a focus on knowledge dis-
covery and representation in large datasets. Zhang et al. [25]
developed a batch-mode algorithm for direct construction
of fuzzy concept lattices by utilizing union and intersection
operations on the fuzzy set, scanning the fuzzy formal con-
text only once. Li et al. [26] established a novel method for
building an approximate concept lattice within an incom-
plete context, whileWan et al. [27] introduced a construction
method for approximate concept lattices. Inspired by paral-
lel and distributed computing [24, 28–31], we combine bit
operations with the In-Close algorithm and introduce the Bit-
Close algorithm. This Bit-Close algorithm is based on the
framework of the In-Close algorithm and employs bit oper-
ations to achieve implicit parallelism. Moreover, it cal also
be well parallelized. Subsequently, the experimental results
demonstrate the Bit-Close algorithm’s marked superiority
in computational efficiency, as confirmed through rigorous
comparative analysis. Furthermore, we perform a theoretical

analysis of Bit-Close and demonstrate that it is more efficient
for large data sets.

The paper’s structure is as follows: Section 2 introduces
formal concept analysis, dictionary ordering and the foun-
dational aspects of bitwise operations. Section 3 outlines
the work-flow and pseudo-code of the Bit-Close algorithm.
Section 4 includes the preprocessing of the experimental
dataset, the introduction of the compared algorithms and the
presentation of the experimental results. In Section 5, we
delve into a theoretical analysis of the superiority of the Bit-
Close algorithm over the other algorithms. Section 6 gives
the parallel implementation of the Bit-Close algorithm and
conducts a detailed analysis of the parallel effect. Finally,
Section 7 concludes the paper and proposes directions for
future research.

2 Preminary

The following section will introduce the basic concepts of
formal concept analysis, lexicographic order, and bitwise
operations.

2.1 Basic concepts of formal concept analysis

Definition 1 [1] The triple (U ,G, I) is called a formal con-
text, where U = {o1, o2, ..., on} is a non-empty finite set
of objects, G = {a1, a2, ..., am} is a non-empty finite set of
attributes, and I is a binary relation on the Cartesian product
U ×G. (o, a) ∈ I denotes object o possesses attribute a, and
(o, a) /∈ I denotes object o does not possess attribute a.

Example 1 Table 1 gives a formal context (U ,G, I) with
U = {o1, o2, o3, o4, o5, o6} and G = {a1, a2, a3, a4, a5},
where number 1 below each attribute indicates that the object
has the attribute, and number 0 indicates that the object does
not have the attribute.

Usually, the formal context that does not contain empty
rows, empty columns, full rows and full columns is called
a regular formal context, where “empty” and “full” denote
non-ownership and ownership, respectively. Obviously, the
formal context of Table 1 is regular.

Table 1 A formal context (U ,G, I)

U a1 a2 a3 a4 a5

o1 0 1 1 0 0

o2 1 1 0 0 0

o3 1 0 0 0 0

o4 0 0 0 0 1

o5 0 0 0 1 1

o6 0 0 1 1 1

123

2584 S. Li et al.

In order to extract concepts from the formal context
(U ,G, I), we need to give a formal description of the extent
and intent of the concept. First, the following operators are
given: ∀X ⊆ U , Y ⊆ G,

f (X) = {a ∈ G : ∀o ∈ X , (o, a) ∈ I },
g(Y) = {o ∈ U : ∀a ∈ Y , (o, a) ∈ I }.

That is, f (X) denotes the set of attributes common to all
objects in X ; g(Y) denotes the set of objects that have all
attributes in Y .

2.2 Lexicographic order

Given a set S ofwords or strings, lexicographic order, denoted
as ≺, is a binary relationship defined on S × S such that for
any two words or strings ω1 and ω1 in S, ω1 ≺ ω2 if and
only if the following condition holds:

There exists an index i (from left to right) such that the
i-th character of ω1 is before the i-th character of ω2, and for
all j satisfying 1 ≤ j < i , the j-th character of ω1 is equal
to the j-th character of ω2.

In mathematical notation, the lexicographic order can be
presented as(lw1 and lw2 represent the length of w1 and w2 ,
respectively):

w1 ≺ w2 ⇔
⎛
⎝

∃i such that 1 ≤ i ≤ min(lw1 , lw2),

and w1[i] < w2[i],
and w1[j] = w2[j] for all j such that 1 ≤ j < i .

⎞
⎠

Example 2 For the ordered set (S,≺)(≺ is the partial order-
ing symbol) with S = {1, 2, 3}, the lexicographic order is
(1) ≺ (1, 2) ≺ (1, 2, 3) ≺ (1, 3) ≺ (2) ≺ (2, 3) ≺ (3).
Here’s how we get this order:

Start by comparing the first (leftmost) digit of each num-
ber. The numbers beginning with 1 come first. So, we get
{(1), (1, 2), (1, 3), (1, 2, 3)}. Within these, we then look at
the next digit (where applicable) to get (1) ≺ (1, 2) ≺
(1, 2, 3) ≺ (1, 3). We then move onto the numbers begin-
ning with 2: {(2), (2, 3)}. Using the same process, we get
(2) ≺ (2, 3). Finally, the number beginning with 3 is last:
{(3)}. So, putting it all together, the lexicographical order of
the set is: (1) ≺ (1, 2) ≺ (1, 2, 3) ≺ (1, 3) ≺ (2) ≺ (2, 3) ≺
(3).

2.3 Concept dictionary order

As the intent of a concept constitutes a partially ordered set,
it is feasible and effective to arrange concepts lexicographi-
cally based on their partial order relationships. Given that
the intent of a concept represents a partially ordered set,
concepts can be organized in a lexicographic manner based

Fig. 1 The attribute set is {a1, a2, a3, a4} and red arrows represent
adding corresponding attribute into current intent.∅ represents the intent
is empty. The left-side arrangement indicates higher precedence in the
lexicographic order. (a) At this stage, the concept’s intent is ∅, and the
arrow signifies the addition of attribute a1 to the intent, resulting in the
updated intent {a1}. (b) All concepts including attribute a1 are pruned,
forming a new lexicographic tree depicted. The current intent is {a1},
and the arrow highlights the inclusion of attribute a2 in the intent. (c)All
concepts including attribute a2 are pruned and the new intent is {a1, a2}

on their partially ordered intent relationships. Assuming the
available attributes are {a1, a2, a3, a4}, a lexicographic tree
can be constructed, as illustrated in Fig. 1(a), wherein the
arrangement on the left side indicates a higher precedence in
the lexicographic order. At this juncture, the concept’s intent
is ∅, which denotes the intent is empty set, with the arrow
denoting the addition of attribute a1 to the intent, resulting in
the new intent {a1}. Consequently, all concepts preceding a1
are pruned, yielding a modified lexicographic tree depicted
in Fig. 1(b). The concept intent in Fig. 1(b) is {a1}, and the
arrowsignifies the incorporationof attributea2 into the intent,
generating a new intent and pruning all concepts preceding
a2, as presented in Fig. 1(c).

2.4 Bit operations

Information within a computer is stored as binary num-
bers in memory, and bitwise operations offer improved
computational performance compared to arithmetic oper-
ations such as addition, subtraction, multiplication, and
division. Numerous bitwise operations exist, however, due
to space constraints, this paper will exclusively discuss oper-
ations: And, Or, Not, and Left/Right Shifts employed in
the experiments. The subsequent examples demonstrate the
aforementioned operations, with “B” denoting binary, “D”
representing decimal, and “H” signifying hexadecimal.

123

Bit-Close: A fast incremental... 2585

Left Shift is to shift the binary number to the left by a
number of bits, the left (high) part of the shift is rounded off,
and the right (low) part is automatically zeroed. For exam-
ple, for an unsigned number a = 10110001B = 177D =
B1H, a
 1 = 01100010B = 98D = 62H.

Right Shift is to shift the binary number to the right
by a number of bits, the right (lower) part of the shift is
rounded off, and the left (higher) part of the shift is auto-
matically filled with zeroes. For example, for an unsigned
number a = 10110001B = 177D = B1H, a � 1 = 88D =
01011000B = 58H.

And is the operation of matching two binary numbers
by their corresponding bits, the operation rule is 1&1 =
1, 0&1 = 0, 1&0 = 0, 0&0 = 0. For example, for an
unsigned number a = 10011000B = 152D = 98H, b =
10000011B = 131D = 83H, a&b = 10000000B = 128D =
80H.

10011000
& 10000011

10000000

Or performs an logical or operation on each corre-
sponding bit of two binary numbers, the operation rule is
1|1=1, 0|1 = 1, 1|0 = 1, 0|0 = 0. For example, for
an unsigned number a = 11101000B = 232D = E8H,
b = 00111000B = 56D = 38H, a|b = 11111000B =
248D = F8H.

11101000
| 00111000

11111000

Not is to take the opposite value of each corresponding bit
of a binary number, the operation rule is ∼ 1 = 0, ∼ 0 = 1.

∼ 10110111
01001000

3 Bit-Close algorithm

The formal context can be viewed as a Boolean matrix con-
sisting ofm objects and n attributes. In the process of concept
construction, set operations are frequently used. However,
set operations on Boolean value sets can perform efficiently

through bit operations. From Section 2.4, we can easily find
that a bit operation in computers can perform a set compar-
ison of multiple binary bits at the same time. Bit operations
have parallel effects. Therefore, inspired by bit operations,
we combine bit operations and In-Close algorithm to further
improve the efficiency of concept construction.

In this section, we introduce an incremental concept con-
strurtion algorithm called “Bit-Close”, which combines the
“In-Close” algorithm with bit operations. The main process
of the algorithm is shown in Fig. 2, which mainly includes
three modules: encoding, calculation concept and decoding.

The binary relationship between objects and attributes is
represented as a Boolean matrix Im,n , where m and n repre-
sent the number of objects and attributes respectively. First,
the matrix is encoded to obtain the bitwise stored formal
context Im,
n/t�, where t represents the bit length. Then, the
formal context based on bit storage is used as input to the
Bit-Close algorithm to calculate the concept. The Bit-Close
algorithm is based on the first concept(full set, empty set)
and constructs the concept through the incremental method.
Three variables will be maintained: the current attribute j ,
the index r of the current closed concept and the index rnew of
the candidate newconcept. Finally, all the bit-encoded formal
concepts are decoded to obtain the formal concepts. A more
detailed description of each module is shown as follows.

3.1 Encoding

To calculate multiple attributes at the same time through bit
operations, the original formal context needs to convert into
bit storage formation. Figure 3 shows the process of convert-
ing the original formal context into bit storage formation.

As shown in Fig. 3(a) and (b), the eight attributes
converted into a binary sequence through bit encoding.
Figure 3(c) uses hexadecimal to represent this binary
sequence. Through bit operations, multiple attributes can be
calculated at the same time, thus greatly reducing the num-
ber of iterations during the set operation process. Algorithm
1 gives the bit encoding method of formal context.

The storage capacity of binary sequences in computers
is limited. Hence, with a large number of attributes, it may
be necessary to group attributes and use multiple binary
seguences for storage. Tables 2 and 3 provide an example of
attribute encoding based on storage length t , typically cor-
responding to the data type’s length. These Tables jointly
illustrate the bit encoding process for a formal context with
m objects and n attributes. Table 2 represents the original
state, while Table 3 depicts the formal context’s representa-
tion after bit encoding with a storage length of t .

Fig. 2 Incremental construction
algorithm flow based on bitwise
operations

Formal
Context

Encoding
Bit-Close
Algorithm

Decoding
Concept
Lattice

123

2586 S. Li et al.

Fig. 3 Convert a formal context
into a binary and hex formal
context

Algorithm 1 Bit encoding of the formal context.
Input: Formal Context Im,n .
Output: Formal Context of Bit Coding I ′

m,
n/t�.
1 begin
2 for i = 0 : m do
3 for j = 0 : n do
4 bit j = 1
 (j Mod t);
5 I ′

i,� j/t� = I ′
i,� j/t� & bit j ;

6 end
7 end
8 end

3.2 The Bit-Close algorithm

As the formal context undergoes bit encoding, set operations
on attribute sets necessitate corresponding algorithms. Algo-
rithm 2 is to add an attribute to an set in the bit-encooed state.

Table 2 A general formal context

a1 a2 a3 a4 · · · an−1 an

o1 0 1 0 0 · · · 1 0

o2 1 0 0 1 · · · 1 0

o3 0 0 0 1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

om−1 1 0 1 1 · · · 1 0

om 1 0 1 0 · · · 0 1

Similary, Algorithm 3 is to calculate the difference between
two sets in the bit-encoded state.

Algorithm 2 Add attribute j to the set B.
Input: attribute j , attribute set B.
Output: B ∪ { j}.

1 begin
2 Pos j = � j/t�, pos j = j Mod t ;
3 bit j = 1
 (signal[Pos j] − 1 − pos j) ;
4 B[Pos j] = B[Pos j] | bit j ;
5 end

When adding a single attribute to the original set, it must
undergo bit encoding before being added through bit opera-
tions. In Fig. 4, we present the flow charts of both Algorithms
2 and 3, illustrating their operations through an example. As
shown in Fig. 4(a), consider bit-coding the fourth attribute,

Table 3 The bit-coded formal context

a′
1 a′

2 · · · a′
n/t�

o1 bit1,1 bit1,2 · · · bit1,
n/t�
o2 bit2,1 bit2,2 · · · bit2,
n/t�
o3 bit3,1 bit3,2 · · · bit3,
n/t�
.
.
.

.

.

.
.
.
.

. . .
.
.
.

om−1 bitm−1,1 bitm−1,2 · · · bitm−1,
n/t�
om bitm,1 bitm,2 · · · bitm,
n/t�

123

Bit-Close: A fast incremental... 2587

Algorithm 3 Subtraction of attribute sets.
Input: The set of attributes B1, B2.
Output: B2 − B1.

1 begin
2 if signal[i] == t then
3 B̃1 = ∼ B1;
4 else
5 offset = (t − signal[i]);
6 B̃1 = (∼ B1
 offset) � offset;
7 end
8 return B2 & B̃1;
9 end

resulting in the binary sequence (0001 0000)B. By adding
this sequence through bit operations to the original set
(1010 0000)B, we obtain (1011 0000)B, effectively adding
the attribute to the original set. Similarly, in Fig. 4(b), when
calculating the difference between two sets, B2−B1, in the bit
encoding state, we first invert the B1 sequence (0110 0011)B
to obtain B̃1 = (1001 1100)B. Subseouently, we perform the
AND operation between B̃1 and B2 sequence (1110 0011)B,
resulting in the binary seguence of B2−B1 = (1000 0000)B.

Consistent with the In-Close algorithm, the Bit-Close
algorithm also utilizes a lexicographic approach for implicit
searching, avoiding the overhead of computing repeated clo-
sures. The Bit-Close algorithm encompasses three rerursive
cases:

Case 1: enters recursion by adding a new attribute.
Case 2: quickly obtains corresponding results by checking

the intersection of two attribute sets.
Case 3: checks whether the newly calculated concept is

newly generated by callingAlgorithm5. If it already
exists, it exits the recursion; otherwise, it enters the
next recursion branch.

Figure 1 in Section 2 illustrates the process of concept
generation, driven by Case 1. As shown in Fig. 1(a) and (b),
when adding attributes a1 or a2 to the attribute set, the recur-
sion branch is pruned. If the attribute set is empty, it enters
Case 2, taking the branch. Otherwise, it enters Case 3, either
pruning the branch or completing the recursion. Therefore,
the process ensures that concepts are closed only once per
concept. Although detecting whether a concept is newly gen-
erated reguires iteration, the checking matrix is relatively
small. Thus, the concept is generated efficiently.

3.3 Decoding

Since the obtained formal concept is coded, such as ({1, 3, 5},
(0010 1000)B), the object set own three objects and the
attribute set are bit-coded in a binary sequence. There-
fore, we need to decode the binary seguence of attributes

Algorithm 4 Bit-Close(r , y).
1 begin
2 rnew + +;
3 for j = y : n − 1 do
4 Arnew = φ;
5 for i = 0 : |A[r]| − 1 do
6 if M[A[r][i]][j] then
7 A[rnew] ∪ A[r][i];
8 end
9 end

10 if |A[rnew]| > 0 then
11 if |A[rnew]| == |A[r]| then
12 B[r] = B[r] ∪ j ;
13 end
14 else
15 if BitIscannonical(r , j − 1) then
16 B[rnew] = B[r] ∪ j ;
17 Bit-Close(rnew, j + 1);
18 end
19 end
20 end
21 end

Algorithm 5 BitIscannonical(r , y).
1 begin
2 for i = 0 :
(y + 1)/t� do
3 if i < �y/t� then
4 att_aftery[i] = attrand1[t − 1];
5 end
6 if i == �y/t� then
7 if (n Mod t) == 0 then
8 att_aftery[i] = attrand1[y Mod t];
9 else

10 att_aftery[i] = attrand2[y Mod t];
11 end
12 end
13 att_aftery[i] = att_aftery[i] − B[r][i];
14 intersec[i] = 0 | I ′[A[rnew][0]][i];
15 end
16 for i = 0 :
(y + 1)/t� do
17 for j = 0 : |A[rnew]| do
18 intersec[i] = (

intersec[i] & I ′[A[rnew][j]][i]);
19 end
20 intersec[i] = intersec[i] & att_aftery[i];
21 if 0 ! = intersec[i] then
22 return False;
23 end
24 end
25 return True;
26 end

like ({1, 3, 5}, {3, 5}). The pseudo-code of decoding pro-
cess is proposed in Algorithm 6, which is the inverse of
Algorithm 1.

123

2588 S. Li et al.

Fig. 4 Bit operations flow chart

Algorithm 6 Decoding.

Input: The formal concepts of bit encoding (Ã, B̃).
Output: The formal concepts of set representation (A, B).

1 begin
2 A = Ã;
3 for i = 1 : |B| do
4 for j = 1 :
n/t� do
5 for l = 1 : signal[j] do
6 if B[i][j] & bitl == bitl then
7 B[i] = B[i] ∪ { j × t + l};
8 end
9 end

10 end
11 end
12 end

4 Experiments

The experimental setup operates on the Windows 10 operat-
ing system with the following CPU and memory parameters:
an AMD 2700x CPU and 3GB of RAM, respectively. The
compared algorithms include In-Close, Add-intent, FCBO,
PCBO and IterEss. The experiments involve two categories
of datasets: UCI public datasets and randomly generated
datasets. Both of these algorithms have been implemented
within the Windows C/C++ environment and they utilize
the vector container from the C++ Standard TemplateLibrary
(STL) to optimize memory usage.

4.1 Compared algorithms

The Bit-Close algorithm’s performance is compared with
several other algorithms. Here is a more detailed descrip-
tion of these algorithms, with n denoting the number of
objects, m representing the number of attributes in the
formal context and c signifying the number of generated
concepts.

In-Close, a well-known family of algorithms in FCA, is
specifically designed for the efficient generation of formal
concepts. lt overcomes the challenges associated with con-

cept generation by utilizing incremental closure and matrix
searching to compute all formal concepts in a formal context
swiftly. An outstanding feature of this algorithm is its ability
to compute concepts without duplication, ensuring that each
concept is counted only once. In-Close is compact, straight-
forward, requires no matrix pre-processing and is easy to
implement. While it demonstrates impressive performance,
especially in sparse contexts, its efficiency may be reduced
in denser environments. This can be attributed to the inherent
characteristics of the algorithm and the challenges posed by
dense data structures. The time complexity of the In-Close
algorithm is represented as O(n2 × m × c) [32].

AddIntent is an incremental algorithm in FCA designed
to build new concepts based on previously established con-
cepts. It reduces redundant concept comparisons by caching
already generated concepts. First, the algorithm builds the
first concept starting from several previous objects. Then,
using this first concept as input, new concepts are generated
by continuously merging objects. In contrast to the ln-Close
algorithm, the Addlntent algorithm explores underlying con-
cepts by recursively traversing the graph, which makes it less
efficient. The time complexity of the AddIntent algorithm is
expressed as O(n2 × m × c) [32].

FCBO [33], a batch processing algorithm. Through
improved normative testing, it tests whether the current
concept has been constructed, thereby effectively reduc-
ing the repeated generation of formal concepts. Compared
to incremental algorithms, batch algorithms can build con-
cepts independently of previous constructions. This feature
is particularly beneficial for concept generation in static data
sets. FCBO adopts a breadth-first search strategy in opera-
tion. First, all adjacent nodes at a given depth are carefully
explored before advancing to nodes at subsequent depth lev-
els. However, the disadvantage of the FCBO algorithm is
that the amount of calculation is too large. ln the worst case,
FCBO may degenerate into CBO. The time complexity of
the FCBO algorithm is described as O(m2 × n × c) [32].

PCBO is a parallel implementation of the FCBO algo-
rithm, designed to accelerate concept generation through par-

123

Bit-Close: A fast incremental... 2589

allel computing. Compared to FCBO, the PCBO algorithm
performs faster, especiallywhen usingmultiple processors. It
sequentially explores the top L-level concepts in the primary
thread and distributes them amongworker threads. The effect
of the algorithm is mainly affected by the size of the data set
and the distribution ofconcepts. PCBO’s time complexity is
noted as O(m2 × n × c) [32].

IterEss is an incremental algorithm. It generates for-
mal concepts through a strategy of iterating over important
obiects preferentially. The core idea of iterEss is to gener-
ate important concepts in the concept lattice structure first
and then generate new concepts through iteration based on
these basic concepts. It avoids the calculation of unnecessary
obiects, resulting in a more efficient and simplified process.
The complexity analysis of IterEss is given by O(m2×n×c)
[32].

4.2 Experiments on open datasets

To initiate our experiments, we aimed to select datasets
that are both representative and feasible, with approxi-
mately ten thousand objects and several hundred attributes.
After careful consideration, we chose four datasets from
the UCI repository: Mushroom, Nursery, Adult and Let-
ter. These datasets, however, presented several challenges,
including multi-valued attributes, real-valued attributes and
missing values. To overcome these challenges, we employed
a non-zero filling method to handle missing values based
on the available data. Additionally, we utilized discretiza-
tion and one-hot encoding for real-valued data toransform
bothmulti-valued and real-valued attributes into correspond-
ing binary attributes, making them compatible with FCA
algorithms.

Adult includes 48842 samples and 15 multi-valued
attributes (the number in parentheses corresponds to the num-
ber of attributes and the continuous data are discretized): age
(16), workclass (9), fnlwgt (16), education (16), education-
num (16), marital-status (7), occupation (15), relationship
(6), race (5), sex (2), capital-gain (16), capital-loss (16),
hours-per-week (16), native-country (42), >50K (2) and
there are 4262 missing values in the dataset which are filled,
and then the data are one-hot encoded to finally get a the
formal context with 200 attributes.

Letter-recognition contains 20,000 samples and17multi-
valued attributes : capital letter (26), horizontal position of

Table 5 The running time of four datasets

Method Dataset
Mushroom Nursery Adult Letter

Bit-Close 3.193 0.228 19.724 19.004

In-Close [17] 3.256 0.244 22.803 25.593

Add-intent [34] 595.619 440.169 8848.44 3381.96

FCBO [33] 11.859 7.300 596.979 536.993

PCBO [19] 3.397 1.339 244.879 228.768

IterEss [35] 2.234 0.463 26.765 26.683

box (16), vertical position of box (16), width of box (16),
height of box (16), total pixels (16), mean x of pixels in
box (16), mean y of pixels in box (16), x variance (16),
y variance (16), x y correlation (16), x × x × y (16),
x × y × y (16), edge count left to right (16), correlation
of x-ege with y (16), edge count bottom to top (16) and
correlation of y-ege with x (16). The experiments were one-
hot encoded on the data to obtain a formal context with 282
attributes.

Nursery includes 12960 samples along with 8 multi-
valued attributes : parents (3), has-nurs (5), form (4), children
(4), housing (3), finance (2), social (3), health (3) and class
(5). The experiments are one-hot encoded on the data to get
a formal context with 32 attributes.

Mushroom contains 8124 samples and 23 multi-valued
attributes : classes (2), cap-shape (6), cap-surface (4), cap-
color (10), bruises (2), odor (9), gill-attachment (2), gill-
spacing (2), gill-size (2), gill-color (12), walk-shape (2),
walk-root (4), walk-surface-above-ring (4), walk-surface-
below-ring (4), walk-color-above-ring (9), walk-color-
below-ring (9), veil-type (1), veil-color (4), ring-number (3),
ring-type (5), spore-print-color (9) population (6) and habitat
(7). There are 2480 missing values in the dataset which are
filled and then one-hot encoding is performed on the data to
finally get a formal context with 118 attributes.

After completing these preprocessing steps, we obtained
formal contexts suitable for analysis by FCA algorithms.
The details regarding the size of the formal contexts, the
number of concepts and the density of these contexts can be
found in Table 4. Furthermore, Table 5 provides the running
times of various algorithms on the obtained formal contexts.
Notably, the Bit-Close algorithm outperforms others on all
four datasets.

Table 4 The processed datasets Dataset Mushroom Nursery Adult Letter

The size of formal contexts 8124× 118 12960× 32 48842× 200 20000× 282

The number of concepts 322057 183079 6479149 7677439

Density(%) 19.49 28.13 13.50 6.02

123

2590 S. Li et al.

Table 6 The running time with the number of objects (|G|) increasing
from 200 to 800 with an interval of 200, where |U | = 10000 and
p = 0.05

Method |G|
200 400 600 800

Bit-Close 0.846 10.459 47.841 131.049

In-Close 1.063 13.048 58.843 169.869

Add-intent 195.647 1297.49 7889.25 21509.6

FCBO 19.620 170.071 739.320 1947.553

PCBO 7.089 94.503 462.426 1494.809

IterEss 5.418 32.724 92.160 206.926

4.3 Experiments on random datasets

In experiments with random data, the number of objects
(|U |), the number of attributes (|G|) and the percentage of
non-zero elements in the Boolean matrix to all elements (the
density of formal contexts p)were used as control variables to
conduct experiments, respectively. The experimental results
are shown in Tables 6, 7 and 8.

As demonstrated in Tables 6 and 7, the Bit-Close algo-
rithm exhibits superior performance as the number of objects
or attributes increases, respectively. Table 8 reveals that the
Bit-Close algorithm outperforms when the density of the for-
mal context is relatively low, but it is not the best choice in
high-density contexts. The reason is that, the higher density
of non-zero values within a formal concept needs more com-
putations for repetition detection of formal concept through
matrix searches. Consequently, this leads to longer running
time. Compared with IterEss algorithm, the Bit-Close algo-
rithm is non-parallel, resulting in less efficient of repetition
detection. To overcome these challenges, we developed a
parallel version of the Bit-Close algorithm in Section 6 and
conducted a comprehensive discussion of its parallel princi-
ples and effects.

Table 7 The running timewith the number of attributes (|U |) increasing
from 10000 to 40000 with an interval of 10000, where |G| = 400 and
p = 0.05

Method |U |
10000 20000 30000 40000

Bit-Close 10.196 30.575 52.475 78.351

In-Close 12.945 36.685 67.272 102.027

Add-intent 1456.86 6271 15662.9 31129.5

FCBO 192.886 1637.989 3794.154 8100.822

PCBO 94.503 585.984 864.137 1375.901

IterEss 31.499 98.822 125.924 165.724

Table 8 The running time with the density (p) of formal context
increasing from 0.05 to 0.2 with an interval of 0.05, where |U | = 3000,
|G| = 150 and “-” indicates memory overflow

Method p
5% 10% 15% 20%

Bit-Close 0.073 1.283 13.700 127.99

In-Close 0.086 1.632 17.743 177.379

Add-intent 6.825 152.372 2841.84 −
FCBO 0.623 8.619 89.405 653.684

PCBO 0.231 3.360 28.689 208.817

IterEss 0.931 1.299 1.635 2.013

5 Theoretical analysis of Bit-Close algorithm

Given that the Bit-Close algorithm comes from the com-
bination of bit operations and the In-Close algorithm, the
theoretical time complexity of Bit-Close and In-Close is the
same as O(|G|2 · |U | · |C |)[32], where |U | denotes the num-
ber of objects, |G| represents the number of attributes and
|C | indicates the number of concepts. However, since Bit-
Close implements implicit parallel computing through bit
operations, its theoretical running time should be 1/n of the
In-Close algorithm, where n is the number of attributes in
bit storage. Experimental results from both the UCI dataset
and random dataset also confirm that, under the same con-
ditions, the Bit-Close algorithm outperforms In-Close. To
perform a more detailed comparison of the operational effi-
ciency of each algorithm, a general theoretical model for
concept construction algorithm [32] and experiment results
are combined to give a quantitative analysis for these algo-
rithms. The running time of the algorithm depends on the
number of objects(|U |), the number of attributes(|G|) and the
density of the concepts(p). The relationship is as follows:

time = α1 · |U |α2 · |G|α3 · pα4 (1)

where α1 is for fitting and does not influence the efficiency
of algorithms. The coefficients α2, α3 and α4, respectively,
represent the corresponding growth rate of the running time
as the number of concepts, the number of attributes, and the
concept density increase. For linear regression method based
on the experiment results, the running time of the algorithm
relationship is transformed into the following formate. The
obtained parameters are shown in Table 9.

log(time) = log(α1)+α2log(|U |)+α3log(|G|)+α4log(p)

(2)

From Table 9, we observe that coefficients α2, α3, of the
Bit-Close algorithm are the smallest among all algorithms.
This indicates that, as the number of concepts and attributes

123

Bit-Close: A fast incremental... 2591

Table 9 The parameter fitting
of algorithms

Parameter Method
Bit-Close In-Close Add-intent FCBO PCBO IterEss

log(α1) -195.782 -241.492 -73226.959 -16491.943 -3872.323 -615.375

α2 10.503 14.231 8113.605 2901.004 219.758 31.361

α3 66.797 86.330 6113.963 624.550 585.934 86.111

α4 87.182 118.898 10013.255 1767.273 387.789 35.203

increases, the increment in the running time of the Bit-Close
algorithm is the least pronounced. Additionally, since coef-
ficient α4 represents the growth rate of the density (p) of the
concepts where p ∈ (0, 1), the impact of density changes
on running time is lower than the impact of the increment
of objects and attributes. Consequently, Bit-Close algorithm
exhibits greater efficiency than other algorithms.

6 The parallel implementation of Bit-Close

Due to the recursive structure of the Bit-Close algorithm, the
main challenge is the implementation of parallel recursive
computation. Inspired by the parallel implementation of the
PCBO [19] and the parallel implement version of In-Close
[36], we adopt a similar approach and a detailed description
of the Bit-Close parallel algorithm is shown below.

As shown in Fig. 5, a recursive tree formed during con-
structing formal concepts in Bit-Close algorithm. Therefore,
decomposing the recursive tree into several subtrees and
assigning them to each thread for calculation is the key
to achieving parallel computing. The process is as fol-
lows: first determine the maximum recursion depth based
on the number of idle threads in the thread pool; next,
the recursion tree is decomposed into corresponding recur-

sive subtrees according to the maximum recursion depth
and assigned to each thread for simultaneous calculation;
when an operation is completed, the corresponding thread
uploads the results, enters the thread pool, and requests
work; then, repeat the above process until all concepts are
constructed.

Figure 6 illustrates the relative running time (i.e. the run-
ning time divided by single thread running time) of the
Bit-Close parallel algorithm versus the number of threads
used on four public datasets. It is obvious that as the num-
ber of threads increases, the overall running time gradually
decreases. Using dual threads can significantly reduce run-
time compared to single threading. However, the reduction
in running time is less noticeable when using 8 or 16 threads,
probably because the common data set we use is relatively
small relative to parallel computing. Too many threads may
lead to frequent thread switching, which may reduce operat-
ing efficiency. In summary, the Bit-Close parallel algorithm
demonstrates efficient parallelization effects.

7 Conclusion

In this study, we introduced Bit-Close, a novel concept
construction algorithm that integrates bit operations with

Fig. 5 Parallel calculations on
the Bit-Close

123

2592 S. Li et al.

Fig. 6 The relative running time of parallel computing

the In-Close algorithm. Our comprehensive evaluation com-
pared Bit-Close’s effectiveness with that of algorithms such
as In-Close, Add-intent, FCBO, IterEss and PCBO in for-
mal concept construction tasks. The datasets selected for
this assessment, including UCI datasets and randomly gen-
erated datasets, varied in size, attributes, and densities. The
analysis shows that Bit-Close significantly improves compu-
tational efficiency, particularly in larger and denser formal
contexts. Additionally, we conducted a theoretical analysis
of Bit-Close’s advantages over other algorithms. We also
investigated Bit-Close’s capabilities in parallel computing
andvalidated these through experiments. Future researchwill
aim to adapt Bit-Close for distributed computing within the
MapReduce framework, exploiting the framework’s efficient
memory and resource utilization across multiple devices to
enhance parallel computation.

Acknowledgements This work was supported by the National Natu-
ral Science Foundation of China (Nos.11971211 and 12171388) and
Natural Science Foundation of Yunnan Province (202201AU070136).

Author Contributions Yunfeng Ke: Software, Data curation, Writing -
original draft. Jinhai Li:Writing - review&editing, Funding acquisition
and discussion. Shen Li: Investigation, Writing - review & editing and
discussion.

Data availability statement Data openly available in a public reposi-
tory. The data that support the findings of this study are openly available
in UCI at https://archive.ics.uci.edu/datasets.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Wille R (1982) Restructuring lattice theory: an approach based on
hierarchies of concepts. In: Ordered sets. Springer, pp 445–470

2. Thomas J, CookK (2006) A visual analytics agenda. IEEEComput
Graph Appl 26(1):10–13

3. Wang L, Pei Z, Qin K (2023) A novel conflict analysis model based
on the formal concept analysis. Appl Intell 53:10699–10714

4. Jiang F, FanYS (2010)Web relationshipmining based on extended
concept lattice. J Softw 21(10):2432–2444

5. Zhang Z, Du J, Wang L (2013) Formal concept analysis approach
for data extraction from a limited deep web database. J Intell Inf
Syst 41(2):211–234

6. Godin R, Missaoui R, April A (1999) Experimental comparison of
navigation in a galois latticewith conventional information retrieval
methods. Int J Man-Mach Stud 38(5):747–767

7. Carpineto C, Romano G (1996) A lattice conceptual clustering
systemand its application to browsing retrieval.MachLearn 24:95–
122

8. Hu Q, Yuan Z, Qin K, Zhang J (2023) A novel outlier detection
approach based on formal concept analysis. Knowl-Based Syst 268

9. Qian T, Wei L (2014) A novel concept acquisition approach based
on formal contexts. Sci World J 1

10. Qian T, Wei L, Qi J (2017) Decomposition methods of formal
contexts to construct concept lattices. Int J Mach Learn Cybernet
8:95–108

11. Ma J, Zhang W, Qian Y (2020) Dependence space models to con-
struct concept lattices. Int J Approx Reason 123:1–16

12. Ganter B (2010) Two basic algorithms in concept analysis. In:
Formal concept analysis. Springer, pp 312–340

13. LindigC,GbrG (2000) Fast concept analysis.WorkConcept Struct
- Contrib ICCS 2000:152–161

14. Kuznetsov S (1989) Interpretation on graphs and complexity char-
acteristics of a search for specific patterns. AutomDocument Math
Linguist 23(1):23–27

15. Zou L, Zhang Z, Long J (2015) A fast incremental algorithm for
constructing concept lattices. Expert Syst Appl 42(9):4474–4481

16. Kourie DG, Obiedkov S, Watson BW, Van Der Merwe D (2009)
An incremental algorithm to construct a lattice of set intersections.
Sci Comput Program 74(3):128–142

17. Andrews S (2009) In-close, a fast algorithm for computing formal
concepts. In: ICCS supplementary proceedings. Springer, vol 483

18. Janostik R, Konecny J, Krajča P (2021) Lincbo: fast algorithm for
computation of the duquenne-guigues basis. Inf Sci 572:223–240

19. Krajca P, Outrata J, Vychodil V (2012) Parallel recursive algorithm
for fca. CLA. Citeseer 2008:71–82

20. Zou L, He T, Dai J (2022) A new parallel algorithm for computing
formal concepts based on two parallel stages. Inf Sci 586:514–524

21. Shan B, Qi J, Liu W (2012) A cuda-based algorithm for construct-
ing concept lattices. In:Rough sets and current trends in computing:
8th international conference. Springer, vol 1, pp 297–302

22. Hu Q, Qin K, Yang L (2023) The updating methods of object-
induced three-way concept in dynamic formal contexts. Appl Intell
53:1826–1841

23. Qi J, Wei L, Yao Y (2014) Three-way formal concept analysis.
In: Rough sets and knowledge technology. Springer International
Publishing, pp 732–741

24. Chunduri RK, Cherukuri AK (2023) Distributed three-way formal
concept analysis for large formal contexts. J Parallel Distrib Com-
put 171:141–156

25. ZhangZ (2018)Constructing l-fuzzy concept latticeswithout fuzzy
galois closure operation. Fuzzy Sets Syst 333:71–86

26. Li J, Mei C, Lv Y (2013) Incomplete decision contexts: approxi-
mate concept construction, rule acquisition and knowledge reduc-
tion. Int J Approx Reason 54(1):149–165

123

https://archive.ics.uci.edu/datasets

Bit-Close: A fast incremental... 2593

27. Wan Q, Wei L (2015) Approximate concepts acquisition based on
formal contexts. Knowl-Based Syst 75:78–86

28. Luo C, Wang S, Li T, Chen H, Lv J, Yi Z (2023) park rough hyper-
cuboid approach for scalable feature selection. IEEE Trans Knowl
Data Eng 35(3):3130–3144

29. Luo C, Wang S, Li T, Chen H, Lv J, Yi Z (2023) Rhdofs: a
distributed online algorithm towards scalable streaming feature
selection. IEEE Trans Parallel Distrib Syst 34(6):1830–1847

30. Luo C, Wang S, Li T, Chen H, Lv J, Yi Z (2022) Large-scale
meta-heuristic feature selection based on bpso assisted rough
hypercuboid approach. IEEE Trans Neural Netw Learn Syst 1–15

31. LuoC,CaoQ, Li T, ChenH,WangS (2023)Mapreduce accelerated
attribute reduction based on neighborhood entropy with apache
spark. Expert Syst Appl 211

32. Kovács L (2018) Efficiency analsyis of concept lattice construction
algorithms. Proced Manufac 22:11–18

33. Krajca P, Outrata J, Vychodil V (2010) Advances in algorithms
based on cbo. CLA. College Lang Assoc 672:325–337

34. van der Merwe D, Obiedkov S, Kourie D (2004) Addintent: a new
incremental algorithm for constructing concept lattices. Concept
Lattices. Springer 2961:372–385

35. Outrata J, Vychodil V (2012) Fast algorithm for computing fix-
points of galois connections induced by object-attribute relational
data. Inf Sci 185(1):114–127

36. Kodagoda N, Andrews S, Pulasinghe K (2017) A parallel version
of the in-close algorithm. In: 2017 6th national conference on tech-
nology and management (NCTM). IEEE, pp 1–5

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Yunfeng Ke is pursuing the
M.Sc. degree at Kunming Univer-
sity of Science and Technology,
Kunming, China. His research
interests include formal concept
analysis, conceptual cognitive
learning, granular computing, and
complex network.

Jinhai Li received the M.Sc. degree
in science from Guangxi Univer-
sity, Nanning, China, in 2009, and
the Ph.D. degree in science from
Xi’an Jiaotong University, Xi’an,
China, in 2012. He is currently a
professor at Kunming University
of Science and Technology, Kun-
ming, China. His current research
interests include big data, cogni-
tive computing, granular comput-
ing, and formal concept analysis.

Shen Li received the Ph.D. degree
in science from Institute of Theo-
retical Physics, Chinese Academy
of Sciences, Beijing, China, in
2020. He is currently a lecturer
at Kunming University of Science
and Technology, Kunming, China.
His research interests include
rough set, formal concept anal-
ysis, cognitive computing and
complex network.

123

	Bit-Close: a fast incremental concept calculation method
	Abstract
	1 Introduction
	2 Preminary
	2.1 Basic concepts of formal concept analysis
	2.2 Lexicographic order
	2.3 Concept dictionary order
	2.4 Bit operations

	3 Bit-Close algorithm
	3.1 Encoding
	3.2 The Bit-Close algorithm
	3.3 Decoding

	4 Experiments
	4.1 Compared algorithms
	4.2 Experiments on open datasets
	4.3 Experiments on random datasets

	5 Theoretical analysis of Bit-Close algorithm
	6 The parallel implementation of Bit-Close
	7 Conclusion
	Acknowledgements
	References

