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Abstract
The advent of AlphaGo and its successors marked the beginning of a new paradigm in playing games using artificial intelli-
gence. This was achieved by combining Monte Carlo tree search, a planning procedure, and deep learning. While the impact
on the domain of games has been undeniable, it is less clear how useful similar approaches are in applications beyond games
and how they need to be adapted from the original methodology. We perform a systematic literature review of peer-reviewed
articles detailing the application of neural Monte Carlo tree search methods in domains other than games. Our goal is to
systematically assess how such methods are structured in practice and if their success can be extended to other domains.
We find applications in a variety of domains, many distinct ways of guiding the tree search using learned policy and value
functions, and various training methods. Our review maps the current landscape of algorithms in the family of neural monte
carlo tree search as they are applied to practical problems, which is a first step towards a more principled way of designing
such algorithms for specific problems and their requirements.

Keywords Monte carlo tree search · MCTS · Neural monte carlo tree search · Reinforcement learning · Model-based
reinforcement learning · Decision-time planning

1 Introduction

The combination of Monte Carlo Tree Search (MCTS) and
deep learning led to the historical event of the computer pro-
gramAlphaGo beating a human champion in the game of Go
[99], which had been considered beyond the capabilities of
computational approaches for a long time. Since then, such
approaches, which we term neuralMCTS in this review, have
enjoyed a huge amount of popularity. They have been applied
to many other games and yield promising results in the field
of general game playing [89, 100].

While the effectiveness of neural MCTS in game contexts
has been clearly established, the transfer of such approaches
to non-game-playing applications is still a fairly recent devel-
opment and hence less well understood. This transfer to other
applications may create significant value, as previously com-
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putationally intractable problems may become tractable, just
as playing the game of Go became tractable with the intro-
duction of AlphaGo. More generally, neural MCTS methods
may be able to find higher quality solutions than previous
approaches andoccupy aunique niche bybalancing the trade-
off between computational cost and solution quality.

In principle, neural MCTS methods are applicable to
any (discrete) problem that can be addressed by traditional
model-free reinforcement learning methods. The promise of
neural MCTS approaches is in spending additional com-
putational budget to increase decision quality compared to
model-free reinforcement learning. This additional compu-
tational budget is spent on a planning procedure guided
by neural networks, therefore potentially combining the
advantages of forward planning and generalising from past
experience.

Since games have different characteristics thanmanyother
problems neuralMCTS approaches can be applied to, a direct
transfer of algorithms like AlphaZero without any modifica-
tions to problems other than games is often not possible. This
leads researchers to tailor neuralMCTSmethods to their spe-
cific applications and hence creates a considerable amount
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of algorithmic variation in the field. An overarching under-
standing of why certain variants are especially suitable for
certain problem settings has not been explicitly developed in
the literature yet. Further, the existing algorithmic variation
is not well documented, as different variants continue to be
introduced in individual publications, but little attention has
been devoted to creating a clear view of the bigger picture.
The first step towards such a view of the bigger picture is
in reviewing the current state neural MCTS approaches and
applications.

Some surveys and reviewsofMCTSapproaches have been
published in the past, e.g.Mandziuk [68] provides a survey of
selectedMCTS applications on non-game-playing problems.
However, it only examines two different applications, neither
of which feature any neural guidance.

A more extensive survey is provided in [161], which also
features a brief section on the combination of MCTS and
deep learning. However, their focus is on games rather than
other applications.

We are not aware of any reasonably extensive review of
applications of neural MCTS methods in non-game-playing
domains. We believe that such a review can shed light on
the extent to which such methods can be transferred to more
practical problems and how neural MCTS methods can be
designed to copewith the requirements of different use cases.
To gain an understanding of the kinds of problems for which
neural MCTS is suitable, we first review problem settings
of already existing neural MCTS applications. In a second
step, we review the existing variation in the design of neu-
ral MCTS algorithms. Our intention behind this review is
two-fold: First, we aim to give practitioners an overview to
evaluate whether their applications are suitable for the use
of neural MCTS and what algorithmic design choices are
available to them. Second, we hope to contribute towards a
more thorough understanding of the effect of different design
choices and towards a more principled guide to create neural
MCTS algorithms for specific problem settings.

The following research questions guide our review:

1. In which disciplines, domains, and application areas is
neural MCTS used?What are the commonalities and dif-
ferences in the observed applications?

2. What differences in the design of neural MCTS methods
can be observed compared to applications in games?

3. Where and how can neural guidance be used during the
tree search?

To address these questions, we perform a systematic lit-
erature review and analyze the resulting literature. Starting
with a keyword search in multiple databases, we filter arti-
cles for relevance, perform additional forward and backward
searches, and extract a set of predefined data items from each
article included in the review. The detailed review process is

described in Section 3. Before, we provide a brief introduc-
tion to the concepts of reinforcement learning, MCTS, and
AlphaZero in the next section. The remaining sections begin
with a focus on the problems described in the surveyed pub-
lications in Section 4, and continue with an examination of
the employed methods in Section 5. We end our review with
a brief discussion in Section 6.

2 Reinforcement learning & neural MCTS

2.1 Reinforcement learning

Reinforcement Learning (RL) is a paradigm of machine
learning, in which agents learn from experience collected
from an environment. To do so, an agent observes the state
s of the environment and executes an action a based on this
state. Upon acting, agents receive a reward r and observe a
new state s′. A problem which follows this kind of formula-
tion is called a Markov decision process (MDP) if the new
state s′ only depends on the state s immediately preceding
it and the action a of the agent. The agent’s goal in such an
MDP is to maximize the return, i.e. the expected long-term
cumulative reward, by learning an appropriate policy π , i.e.
a behavioural strategy that prescribes an action, or a proba-
bility distribution over actions, for a given state [108].

Such a policy can be learned directly from experience,
e.g. through policy gradient methods, or it can be derived
from a learned action-value function. An action-value func-
tion Qπ (s, a) estimates the value, i.e. the expected return, of
taking action a in state s. From such a learned action-value
function, a deterministic policy can be derived by greedily
choosing the best action, while a stochastic policy can be
derived by sampling actions proportionally to their value. In
addition to the policy- and value-based approaches described
so far, hybrid approaches which synergistically learn both
policy and value functions are often employed as well. Such
methods are called actor-critic approaches and often learn the
state-value function V π (s) instead of the action-value func-
tion Qπ (s, a). The former computes the expected return of
state s when following policy π , while the latter computes
the expected return of state s when first executing action a
and following π in subsequent steps [108]. The superscript
π is often omitted for more concise notation.

In contrast to model-free approaches, in model-based RL,
a model of the environment is used for planning. A model
simulates the dynamics of the environment either exactly
or approximately. Planning simply refers to the simulation
of experience using a model and planning approaches can
be categorized into background planning and decision-time
planning. In the former, the training data consisting of real
experiences collected from the environment is augmented
with imagined experience generated from a model. In the
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latter, the action selection at a given time-step is dependent
on planning (ahead) using a model, i.e. the consequences
of different choices of actions are imagined to improve the
policy for the current state [73]. MCTS, further explained
in the following, can be considered a form of decision-time
planning.

2.2 The connection between RL andMCTS

MCTS arose as a heuristic search method to play combi-
natorial games by performing a type of tree search based
on random sampling. In such games, a player has to decide
which action to perform in a given state to maximize an out-
come z at the terminal state of the game. While MCTS has
not been traditionally thought of as a type of reinforcement
learning, the scenario described here bears strong similar-
ities to the formulation of reinforcement learning problems
given earlier and some authors have explored this connection
in detail [116]. To avoid ambiguity, we will not use the term
reinforcement learning to refer toMCTS in this article. Simi-
larly to RL,MCTS also produces a policyπMCT S and a value
estimate vMCT S . InMCTS, the policy is produced for a given
state s by a multi-step look-ahead search, i.e. by considering
future scenarios and determining which sequence of actions
will lead to favourable outcomes starting from s. This policy
is produced anew for every encountered state, i.e. the deter-
mined policy does not generalize to states other than the one
currently encountered. In contrast, traditional RL produces
policies by learning from past experience that aim to general-
ize to unseen situations. At decision-time, no forward search
is performed and an action is simply chosen based on the
policy learned from past experience. In a sense, MCTS looks
into the future, while traditional RL looks back to the past
to determine actions. As a consequence, RL requires com-
putationally expensive upfront training but incurs negligible
computational cost at decision time, whileMCTS requires no
training, but performs computationally expensive planning at
decision time.

2.3 MCTS

The general idea of MCTS is to iteratively build up a search
tree of the solution space by balancing the exploration of
infrequently visited tree branches with the exploitation of
known, promising tree branches. This is accomplished by
the repeated execution of four different phases: selection,
expansion, evaluation, and back-propagation. In the selection
phase, starting from the root node, actions are chosen until
a leaf node sL is encountered. New children are then added
to this leaf node in the expansion phase and their value is
estimated in the evaluation phase. Finally, the values of the
newly added nodes are back-propagated up the tree to update

the values of nodes along the path to sL . In the following, we
describe each of these phases in more detail.

Selection In the selection phase, starting from the root node,
an action is chosen according to somemechanism. This leads
to a new state, in which the selection mechanism is applied
again. The process is repeated until a leaf node is encoun-
tered.

Themechanism of action selection is referred to as the tree
policy. While different mechanisms exist, the UCB1 [4] for-
mula is a popular choice.WhenMCTS is usedwith theUCB1
formula, the resulting algorithm is called Upper Confidence
Bound for Trees (UCT) [53]. In UCT, the action selection is
defined as follows:

a = argmax
a

W (s, a)

N (s, a)
+ c

√
ln N (s)

N (s, a)
(1)

where W (s, a) represents the number of wins encountered
in the search up to this point when choosing action a in state
s, N (s, a) the number of times a has been selected in s, and
N (s) the number of times s has been visited. The left part
of the sum encourages exploitation of actions known to lead
to favourable results where the fraction W (s,a)

N (s,a)
can be seen

as an approximation of Q(s, a). The right part of the sum
encourages exploration by giving a higher weight to actions
that have been visited less often compared to the total visit
count of the state. Exploration and exploitation are balanced
by the exploration constant c. For game outcomes z ∈ [0, 1],
the optimal choice of c is c = 1√

2
[54], but for rewards outside

this range, c may have to be adjusted [8].

Expansion After repeated application of the selection step,
the search may arrive at a node with unexpanded potential
children. Once this happens, one or more children of the
node will be expanded. There are some possible variations in
this phase. In some cases, all possible children are expanded
when a leaf node (a node with no children) is encountered. In
other cases, a single child is expanded when an expandable
node (a node with some as of yet unexpanded children) is
encountered. Expanding all children right away may lead to
undesirable tree growth depending on the application.

In some literature, expandable nodes are also called leaf
nodes. For clarity, we will only use the term leaf node to refer
to true leaf nodes without any children in this article. Note
that a leaf node is not the same as a terminal node, with the
former merely being the current end of a tree branch, while
the latter is a node that represents an end state of the game
(see Fig. 1).

Evaluation Once a node has been expanded, it is evaluated to
initializeW (s, a) and N (s, a). This evaluation is sometimes
also called simulation, roll-out, or play-out and consists of
playing the game starting from the newly expanded node until
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Fig. 1 Search tree as seen at a given time during the search. The current
node is indicatedwith a thick border, as are the edges that were traversed
in the current iteration of the search. s1 is currently a leaf node and its
potential children s3 and s4 are considered for expansion, as their dotted
edges signify. The terminal nodes s7, s8, s9, and s10 are represented by
rectangular nodes

a terminal state is encountered. The outcome z at the termi-
nal state is the result of the evaluation. The game is played
according to a default policy, which determines the sequence
of actions between the newly expanded node and the terminal
one. In the simplest case, the default policy samples actions
uniformly randomly [54].

Instead of evaluating newly expanded nodes, it is also pos-
sible to only evaluate leaf nodes and and leave the evaluation
of the newly expanded nodes for a later point in the search,
when they are again encountered as leaf nodes themselves.

Back-propagation The outcome z from the evaluation phase
is propagated up the tree to update W (s, a) among the pre-
ceding nodes. The visit counts of all selected nodes are
incremented as well.

Once the back-propagation phase is finished, the process
starts anew from the selection phase until a predefined sim-
ulated budget is reached.

2.4 AlphaZero

The program known as AlphaGo drew attention for being the
first computer program to beat a professional human player
in a full-size game of Go [99] by combining deep learning
andMCTS.WhileAlphaGo relied on supervised pre-training
on human expert moves prior to reinforcement learning, its
successor, AlphaGo Zero, was only trained using reinforce-
ment learningby self-play. It further simplified the trainingby
reducing the number of employed neural networks. AlphaGo
Zero was still developed specifically for the board game Go
and incorporated some game-specific mechanisms. In con-
trast, the next iteration of the AlphaGo family, AlphaZero, is
more generic and can be applied to a variety of board games.

The algorithms introduced in this subsection are all exam-
ples of neural MCTS, i.e. MCTS guided by neural networks.
While we focus on the AlphaZero family here due to its pop-

ularity, similar ideas were independently proposed under the
name of Expert Iteration [2]. In the following, we provide
more details on AlphaZero as one representative of neural
MCTS methods utilized for games.

Like regular MCTS, AlphaZero follows the four phases
of selection, expansion, evaluation, and back-propagation.
Some of the phases are assisted by a neural network fθ ,
which, given a state, produces a policy vector p, i.e. a prob-
ability distribution over all actions, and an estimate v of the
state value.

The selection phase in AlphaZero uses a variant of the
Predictor + UCT (PUCT) formula [83]:

a = argmax
a

Q(s, a) + c P(s, a)

√
N (s)

1 + N (s, a)
(2)

where P(s, a) denotes a prior probability of choosing action
a in state s given by fθ [100].

Once the selection phase reaches a leaf node sL , it is
evaluated by the neural network (p, v) = fθ (sL). The leaf
node is then fully expanded and its children initialized with
N (sL , a) = 0,W (sL , a) = 0, Q(sL , a) = 0, P(sL , a) =
pa . In the back-propagation step, the statistics of each node
including and preceding sL are then updated as: N (st , at ) =
N (st , at ) + 1,W (st , at ) = W (st , at ) + v, Q(st , at ) =
W (st ,at )
N (st ,at )

[100].
Note that the expansion and evaluation phases are inter-

woven here to some degree and do not strictly follow the
order of the phases in standard MCTS. In this review, we are
generally not overly concerned with the MCTS phases as a
strictly ordered set of algorithmic steps, but more with the
function each phase fulfills in the tree search.

Once the search budget is exhausted, an improved pol-
icy πMCT S is derived from the visit counts N (s, a) in the
tree and a corresponding value estimate vMCT S is extracted.
The produced policy πMCT S and value estimate vMCT S are
then used as training targets to further improve fθ . SinceAlp-
haZero plays two-player games, somemechanism is required
to determine the actions of the second player. Inwhat is called
self-play, the actions for the second player are chosen by
(some version of) the same policy currently being trained for
the first player [100].

As amodel-basedRLalgorithm,AlphaZeroneeds amodel
of the environment to perform the tree search. This model is
simply assumed to be given, although further extensions such
asMuZero [89] demonstrate that such amodel can be learned
from collected experience during the search.

To recapitulate, the neural guidance in AlphaZero, con-
sists of evaluating nodes by using fθ to compute v and p,
which are then used in the selection phase. The way neural
guidance is used in AlphaZero is not the only possible form
of neural guidance. Other possibilities to guide the search
exist, as will become apparent in Section 5.
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3 Researchmethodology

Weperform a systematic literature review, i.e. our review fol-
lows a structured, explicit, and reproducible method to iden-
tify and evaluate a body of literature relevant to our research
questions [117]. Our approach is sequential, meaning that we
follow a series of pre-defined steps in a given sequence con-
sisting of a keyword search inmultiple databases, a screening
process to filter for relevant articles, a forward and backward
search, data extraction from all included articles, followed
by analysis and synthesis of the results.

While we aim to take a neutral position and hence do not
want to limit the collected literature on arbitrary grounds,
a comprehensive literature search attempting to capture all
the relevant literature is infeasible due to incurred time-
requirements. Instead, we aim to balance feasibility and
coverage by collecting a representative sample of the exist-
ing literature by limiting ourselves to a keyword search with
a defined set of keywords in a limited number of databases.
Both the set of keywords as well as the set of databases could
be enlarged to arrive at more comprehensive results.

3.1 Search query & databases

To find relevant publications, we derive three types of key-
words:

1. Based on neural MCTS being a combination of MCTS
and neural networks or traditional reinforcement learn-
ing:

• “reinforcement learning” AND “monte carlo tree
search”

• “neural monte carlo tree search”
• “neural MCTS”

2. Based onMCTS providing the ability to perform decision-
time planning in a model-based reinforcement learning
setting:

• “decision-timeplanning”AND“reinforcement learn-
ing”

3. Based on the names given to algorithms in the AlphaGo
family:

• AlphaGo
• AlphaZero
• MuZero

Each of the partial search strings expressed after a bullet
point above is connected with an OR operator to arrive at one
overall search query.

We use this query to search for publications in the
databases Web of Science, IEEExplore, Scopus, ScienceDi-

rect, and PubMed. The search query is applied to the abstract,
title, and keywords.

3.2 Eligibility criteria & screening

To be included in the review, a given publication must fulfill
a predefined set of eligibility criteria:

1. Must feature an application of MCTS guided by a
neural network. This excludes publications which are
purely reviews or surveys. By guidance, we mean that a
learned policy or value function is used in at least one
of the phases of the tree search. These functions can
of course be learned by other means than neural net-
works. We explicitly only consider neural network based
approaches here because preliminary searches showed
that attempting to include other methods leads to many
more irrelevant search results while providing relatively
little additional value.

2. The publicationmust contain at least some amount of
validation of the presented approach. Purely concep-
tual articles are not considered.

3. The problem to which neural MCTS is applied must
not be a game. While many impressive results have
been achieved using neural MCTS in game playing, we
are interested in determining whether such approaches
transfer to other applications as well. We do consider
applications that are not typically considered a game, but
have been modelled as a game to facilitate the use of
neural MCTS.

4. Publication language must be English.

For each of the publications retrieved during the keyword
search described in the previous section, we assess its eligi-
bility according to the above criteria. After the removal of
duplicates, the screening process is conducted in two phases.
In the first phase, we only examine the abstract of each article
and discard it if it is clear that at least one of the above criteria
is not fulfilled. If there is any ambiguity, we reexamine the
article in a second phase, where we repeat the process using
the full text of the article. Any article that is not discarded in
this second phase will be included in our review.

3.3 Forward and backward search

After the abstract and full-text screening described above, we
perform a forward and backward search [130] based on the
set of publications which has passed the screening process.
That is, for every article, we check its references for further
relevant publications and also look for publications that in
turn reference the articles which passed our screening.
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Fig. 2 The literature search and
screening process starting from
a set of keywords to the final set
of publications to be included in
the review

In this step, we notice that among the additionally identi-
fied literature,many simply cite an approach already included
in our review for a similar application without performing
any modifications or providing additional details. We do not
include such publications in our review since they do not pro-
vide any benefit in addressing our research questions. The
eligibility criteria described above apply to the results from
forward and backward search as well.

The full search process from keyword search to our final
set of publications is visualized in Fig. 2.

3.4 Data extraction

For every article resulting from the search process described
above, we extract information along a set of predefined cat-
egories. These are given in Table 1, where problem refers to
a short description of the examined problem, time is either
continuous or discrete, horizon either finite or infinite, tran-
sitions either deterministic or stochastic.

Since it can be difficult to extract information from works
originating from different disciplines with differing termi-
nology and varying descriptions of details, we generally err
on the side of providing incomplete rather than wrong infor-
mation.

Some of the collected information did not lead to notable
insights and will hence not be discussed in this review. This
includes the activation functions, the author affiliations, and

comparisons of the neural MCTS approach with model-free
RL or MCTS without neural guidance. In such comparisons,
neural MCTS tends to find solutions with superior quality,
but this could simply be due to positive-results publication
bias.

4 Neural MCTS applications

4.1 Application fields

To determine the applicability of neural MCTS outside of
game-playing, we survey the areas of application to which
neural MCTS has been transferred. The algorithmic details
of individual approaches are analyzed in Section 5. Here,
we simply outline where such approaches are applied. We
find applications in a wide variety of domains including
chemistry, medicine, production, electrical engineering, and
computer science. In the following, we assign each publi-
cation to a specific application area. Note that his merely
serves the purpose of creating an overview of the research
landscape. Many articles could be assigned to more than one
category, and the choice of categories itself could have been
made in many different ways.

Chemistry In the chemical literature in particular, neural
MCTS has received considerable attention. It has been used
to perform synthesis planning, de novo molecular design,

Table 1 Information extracted
from each article after screening

Application Neural MCTS Implementation Other

Problem Selection Details Network Type Country

Time Expansion Details Activation Functions Organization Type

Reward Scale Evaluation Details Policy Loss Comparison MCTS

Horizon Use of Self-play Value Loss Comparison Model-free

Transitions Training Method MCTS Hyperparameters Comparison Baselines

Action space Learned Model Code Availability Used Hardware
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Table 2 Applications in chemistry

Source Application

[23] Protein Folding

[25] Lead Generation (Drug Discovery)

[67] RNA folding

[105] Reconstructing Molecular Structure from
Nuclear Magnetic Resonance Spectra

[109] Optimization of De Novo Stable Organic Rad-
icals for Aqueous Redox Flow Batteries

[36] Synthesis Planning

[48] Synthesis Planning

[90] Synthesis Planning

[91] Synthesis Planning

[112] Synthesis Planning

[126] Synthesis Planning

[148] Synthesis Planning

[63] De Novo Molecule Design

[65] De Novo Molecule Design

[74] De Novo Molecule Design

[78] De Novo Molecule Design

[106] De Novo Molecule Design

[145] De Novo Molecule Design

protein folding, and more (see Table 2). In many cases, states
are represented by a simplified molecular-input line-entry
system (SMILES) string, a notation allowing for the repre-
sentation of molecular structure [132]. Such a string can then
be iteratively constructed during the MCTS process until a
viable molecule is found or the attempt is discarded.

Molecular applications appear to be a comparatively
mature branch of neural MCTS research, as evidenced by
the fact that authors are building on each others work and
by the existence of standardized, commonly used implemen-
tations such as ChemTS [145]. This is an exception rather
than the norm, as most literature is more disjointed and most
other works either do not specify any implementation or use

Table 3 Applications in material science

Source Application

[24] Depth-graded Multilayer Structure Design for
X-ray Optics

[122] Constitutive Model Generation

[152] Inverse Material Design of Ionic Liquids for
CO2 Capture

[110] Design of Metal-Organic Frameworks

[135]

Table 4 Applications in electronic design

Source Application

[15] Electronic Circuit Routing

[41]

[80]

[111] Memory Chip Redundancy Analysis

a custom one (see Appendix A for a detailed list of observed
implementations).

Material science Closely related is the domain of material
science (see Table 3). In some cases, the SMILES repre-
sentation is used here as well, such as in the design of
metal-organic frameworks [110, 135], where metal ions and
organic ligands are combined to create structures of various
shapes.

In other cases, neural MCTS is used to optimize the thick-
ness of alternating layers of two materials in a multilayer
structure such that certain desired properties are achieved
[24] and to generate models which describe the mechanical
behaviour of materials in various circumstances [122].

Electronics design In the design of electronic circuits, neu-
ral MCTS is applied to solve routing problems in multiple
cases [15, 41, 80] (see Table 4), where it can outperform e.g.
traditional A* based approaches [41]. Thacker et al. [111]
further explore performing redundancy analysis in memory
chips using neural MCTS.

Energy systems Neural MCTS finds many applications in
the operation of energy systems, especially in innovative grid
concepts which aim to enable a more sustainable energy sup-
ply (see Table 5). This includes optimizing the operation of
residential microgrids in an online fashion [96] as well as
non-intrusive load monitoring and identification [50].

Some attention is also directed towards managing a grid
consisting of renewable energy sources and battery systems,

Table 5 Applications in energy systems

Source Application

[1] Voltage Regulation in Distributed Energy Sys-
tems

[50] Load Monitoring and Identification in Smart
Grids

[96] Residential Microgrid Scheduling

[107] Electrical Transmission Network Self-Healing

[114] Artificial Dispatcher Intelligent Control Sys-
tem in Electric Networks

[133] Predictive Maintenance Management for Bat-
tery Energy Storage Systems
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Table 6 Applications in production systems

Source Application

[37] Production Line Buffer Planning

[38] Dynamically Interconnected Assembly Sys-
tems Scheduling

[58] Industrial Mining Production Scheduling

[81] Sheet Metal Production Scheduling

[121] Parallel Machine Workshop Scheduling

[147] Collaborative Assembly

which absorb the former’s fluctuations in power output. For
instance, Al-Saffar et al. [1] devise a system to coordinate
voltage regulation in a distributed energy network with bat-
tery systems at multiple locations, while [133] use neural
MCTS to address predictive maintenance problems in such
systems.

Production Applications in production systems mainly con-
cern themselveswith various kinds of scheduling approaches.
Here, the processing sequence of jobs or operations on differ-
ent machines is to be determined to e.g. minimize the total
time until all jobs have finished processing (see Table 6).
Traditional RL approaches are also increasingly being inves-
tigated for these types of problems [34, 51, 86, 149]. A
closer examination of the advantages and disadvantages of
traditional RL and neural MCTS methods for scheduling
approaches may be an interesting line of future research.

Further applications in production include line buffer
planning in car manufacturing [37] as well as assembly plan-
ning in collaborative human-robot scenarios [147].

Combinatorial optimization While the scheduling problems
described above are problems from the field of combinatorial
optimization, the authors approach them from a production
perspective and pay close attention to the details of their
individual use cases. A second group of combinatorial opti-
mization applications can be found in Table 7. Here, the

Table 7 Applications in combinatorial optimization problems

Source Application

[46] Graph Coloring

[52] PBQP-based register allocation

[75] Machine Scheduling, Vehicle Routing

[134] Bin Packing

[136] Traveling Salesman Problem

[137]

[138] Highest Safe Rung Problem

[139]

[141] Quantified Boolean Formula Satisfaction

Table 8 Applications in cloud and edge computing

Source Application

[11] Task Offloading for UAV Edge Computing

[12] Resource Allocation in Mobile Edge Computing

[19] Directed Acyclic Graph Task Scheduling

[45]

[77] Cloud Workflow Scheduling

problems aremore abstract and investigated from a computer
science lens.

Combinatorial optimization problems share many simi-
larities with combinatorial board games. In a reinforcement
learning context, they are typically solved constructively
by building a solution iteratively from scratch, or they are
solved by improvement, i.e. by iteratively improving some
existing solution. In both cases, the problem features inher-
ently discrete time steps and an inherently discrete action
space. Differences can be observed in that there is no obvious
notion of winning or losing, but rather a sense of relative per-
formance. In addition, combinatorial games feature a fixed
board and a fixed set of game pieces. In, e.g. a traveling sales-
man problem, the equivalent of a board may be considered a
graph with weighted edges connecting different cities. Such
a graph, however, will vary, with each problem instance con-
sisting of different cities to be traveled through. In machine
scheduling problems, operationsmaybe considered the game
pieces. Depending on the exact problem formulation, each
operation needs to be processed on a specific machine for a
specific duration. An operation could therefore be described
as a game piecewhich can be freely parameterized by proper-
ties such as the duration, contrary to pieces in typical games.

Cloud & edge computing As before in the production
domain, a primary application in cloud and edge comput-
ing concerns scheduling problems (see Table 8). Again, the
scheduling problems are combinatorial optimization prob-
lems, but the authors’ interests arise from the domain of cloud
computing itself and the presented problems are less abstract.

Graph navigation Navigating a graph from a given node
to a target node is a relevant task in many settings, but is
gaining attention, particularly in knowledge graph research.
Here, a common task is knowledge graph completion, which

Table 9 Applications on graphs

Source Application

[40] Knowledge Graph Navigation

[95] (Knowledge) Graph Navigation

[123] Graph Navigation

[128] Knowledge Graph Completion
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Table 10 Applications in networking and communications

Source Application

[30] Service Function Chain Deployment Problem in Net-
work Function Virtualization

[32] Intrusion Defense in Software Defined Networking

[57] Network Function Virtualization Mapping and
Scheduling

[118] Virtual Network Embedding

[127] Resource Assignment in OpenRAN Networks

[69] Layout Optimization of Mobile Ad Hoc Networks

[120]

[144]

[159]

[160]

[146]

[10] Dynamic Spectrum Sharing of LTE and NR

[87] Radio Resource Scheduling

[92] Wireless Communication Scheduling

[142] Multi-RAT Access

[71] MIMO Detection

[13] Pilot-power Allocation for MIMO Systems

involves the prediction of missing relations between individ-
ual entities [128]. Graph navigation is an important sub-task
of knowledge graph completion [95], forwhich neuralMCTS
has been investigated (see Table 9) and been shown to out-
perform existing baselines [95].

Networking & communications Applications in networking
and communications (seeTable 10) range fromnetwork func-
tion virtualization [30, 57], to network topology optimization
[69, 120, 144, 146, 159, 160], to spectrum sharing in mobile
networks with multiple radio access technologies [10, 142].

One notable example here is the use of neural MCTS for
intrusion defense in software-defined networking scenarios
[32]. Here, the defense problem is actually modelled as a
two-player game, which is an exception amongmostly single
player scenarios within the surveyed literature.

Autonomous driving & motion planning Autonomous driv-
ing applications make up a comparatively large group
(Table 11), including general motion planning tasks [39, 61,
76, 131], motion planning tasks in autonomous parking sce-
narios [104, 150], and motion planning tasks in multi-agent
settings [82, 103]. More specialised tasks such as lane keep-
ing [56], overtaking [70], and higher-level decision making
during autonomous driving [44] are considered as well.

Such problems are often fundamentally different from
combinatorial games. For instance, Weingertner et al. [131]
consider a motion planning problem, in which the accel-
eration of a vehicle is controlled along a predetermined

Table 11 Applications in autonomous driving, as well as path and
motion planning

Source Application

[104] Motion Planning in Autonomous Parking

[150]

[39] Motion Planning in Autonomous Driving

[61]

[76]

[131]

[14] Driving Maneuver Prediction

[44] Tactical Decision Making

[56] Lane Keeping Tasks

[70] Overtaking Tasks

[82] Multi-Robot Motion and Path Planning

[103] Multi-Vehicle Motion and Path Planning

path. In its natural formulation, such a problem requires
selecting continuous actions in continuous time. To apply
neural MCTS, both time and action space are discretized.
The resulting solution demonstrates good performance and
outperforms A* search, pure deep learning approaches, and
model predictive control.

Natural language processing In Table 12, several applica-
tions of conversational agents are shown, in which agents
assist users in completing tasks [125], negotiate with users
to divide a given set of resources [49], and try to convince
users of a certain view by framingmessages in different ways
[9]. While humans are difficult to simulate as conversational
partners explicitly, models that approximate narrow conver-
sational behaviour of humans can be trained on historical
data and then utilized as part of the tree search [9, 125].

Natural language processing is itself a diverse field, in
which topics such as sentiment analysis [20] and named
entity recognition [59] are being addressed with neural
MCTS.

Machine learning MCTS guided by machine learning mod-
els can in turn be used in certain machine learning tasks
(see Table 13). For instance [47, 129] apply neural MCTS

Table 12 Applications in Natural Language Processing

Source Application

[9] Personalized Messaging

[49] Negotiation Dialogues

[125] Task-Completion Dialogues

[20] Sentiment Analysis

[42] Text Matching

[59] Named Entity Recognition
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Table 13 Applications in machine learning

Source Application

[47] Neural Network Distillation

[129] CNN Filter Pruning

[17] Costly Feature Classification

[64] Symbolic Regression

[158] Recommender Systems

to reduce the size of neural networks by network distillation
in the former and convolutional neural network (CNN) filter
pruning in the latter case.

Lu et al. [64] further approach the task of symbolic regres-
sion with neural MCTS. Here, instead of solving regression
tasks by adjusting the coefficients of a e.g. a linear or poly-
nomial function, the terms of a function themselves (e.g.
sinusoids, square operations, constants) are determined and
connected through mathematical operators such as addition
and divison. In MCTS, the full expression of a function can
be built up step by step.

Computer science Computer Science offers a wide range
of opportunities for the application of neural MCTS (see
Table 14), many of which are presented in separate sec-
tions. Others do not warrant their own section due the small
number of publications in their specific niche, but are never-
theless interesting. The number of publications this applies
to demonstrates the wide applicability of neural MCTS.

One notable example is AlphaTensor [26], where neural
MCTS is used to find efficient algorithms formatrixmultipli-
cation. Others include the optimization of database queries
[151], the recovery of sparse signals [18, 155], and various
applications in quantum computing [16, 22, 102].

Table 14 Applications in computer science

Source Application

[26] Matrix Multiplication Algorithm Discovery

[94] Sequence Discovery

[140] Model Checking

[151] Database Query Optimization

[153] Low-Density Parity-Check Code Construction

[18] Sparse Signal Recovery

[155]

[35] Automatic Theorem Proving

[156]

[157]

[16] Quantum Annealing Schedule Optimization

[22] Quantum Dynamics Optimization

[102] Qubit Routing

Table 15 Applications in various other fields

Source Application

[143] Active Space Multi-Debris Removal

[154] Configuration of Cellular Satellites

[31] Cognitive Radar Task Scheduling

[93]

[5] Object Rearrangement

[119] Scene Arrangement Planning

[98] User Interface Optimization

[113]

[84] Radiotherapy Beam Orientation Selection

[85]

[3] Fluid Structure Topology Optimization

[80] Truss Design

[21] Mobile Crowdsensing

[27] Electromagnetic Situation Analysis

[28] Robotic Manipulation

[33] Wildfire Spread Prediction

[55] Pneumatic Actuator Control

[62] Document Style Reverse Engineering

[124] Railway Timetable Rescheduling

Finally, Table 15 shows applications in various other fields
that do not fit into any of the previous categories. These fea-
ture a diverse set of problems including the optimization of
user interfaces [98, 113], control of a pneumatic actuator [55],
as well as design tasks for trusses [80] and fluid structures
[3]. As in many examples here, similar design tasks are also
being approached with traditional RL [29]. In future studies,
direct comparisons of traditional RL and neuralMCTSmeth-
ods on specific problems may help to decide what approach
is preferable under which conditions.

In summary, the applications described in the above sec-
tions originate in a variety of different disciplines including
chemistry, medicine, computer science, mathematics, and
electrical engineering. The types of problems include opti-
mization tasks of various kinds, control problems, generative
design tasks, and many others. Clearly, neural MCTS shows
wide applicability beyond combinatorial games, to problems
which in part share and do not share the properties of games.

4.2 Application characteristics

Like games, the problems surveyed here can be formulated as
a MDP. Playing combinatorial games involves choosing dis-
crete actions at discrete time-steps in a finite horizon setting,
i.e. games are episodic with well-defined terminal condi-
tions. Rewards are typically sparse and correspond to a small
set of possible game outcomes: loss (-1), draw (0), and win
(1). While the state transitions of each individual player are
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typically deterministic, the presence of a second player intro-
duces uncertainty about the states which will be encountered
at the next turn.Whilemany of the applications surveyed here
share many of these properties, neural MCTS is also applied
to applications which differ from combinatorial games in one
or multiple dimensions.

Time Many settings do not have a turn-based nature, but
allow for the execution of actions at arbitrary points in time,
i.e. time often has a continuous nature. This does not appear
to hinder the application of neural MCTS, as many authors
simply discretize the time dimension in their problem for-
mulation [5, 28, 33, 39, 47, 55, 56, 59, 76, 104, 131, 154].

Finite & infinite horizons Like combinatorial games, most
of the applications surveyed here consist of a finite horizon
problem, i.e. the problem is solved in episodes offinite length.
In some cases, the natural formulation of the problem features
an infinite horizon. To apply neuralMCTS, episodes can then
be created artificially by setting a maximum number of steps
after which the episode always terminates, as is done in [58,
96, 113].

Transitions Many of the surveyed problems are of a com-
pletely deterministic nature, which is a fundamental differ-
ence compared to the combinatorial games domain. In such
cases, the tree search may be modified to take advantage
of the deterministic transitions (see Section 5.3 for more
details).

Nevertheless, some problem formulations with stochastic
state transitions can be observed [32, 38, 58, 69, 92, 113, 125,
142].

Rewards The reward structure of typical problem settings
often does not share the simplicity of the reward function
present in games. Instead of a set with two or three distinct
reward values, rewards are typically given on a continuum
corresponding to the quality of the obtained solutions. Often,
the rewards are not even clearly bounded on one or both sides
(see e.g. [5, 45, 67, 90, 96, 125, 147, 154]).

In some cases, the reward is transformed by self-play
inspiredmechanisms. This will be investigated inmore detail
in Section 5.2.

While the majority of surveyed problems feature some
kind of sparse reward at the end of an episode, in some cases,
more fine-grained rewards after each action are incorporated
into the tree search [26, 44, 105].

Action spaces MCTS naturally lends itself well to discrete
action spaces, as is the case in combinatorial board games.
While modifications of (neural) MCTS for continuous action
spaces exist [72], the vast majority of applications surveyed
here exhibit discrete action spaces. Notable exceptions are
the approaches of Lei et al. [61] and Paxton et al. [76].

Further, Raina et al. [80] apply a hierarchical reinforce-
ment learning approach, in which neural MCTS is used for
an overarching set of discrete actions while subsequent, con-
tinuous actions are determined by another mechanism.

Finally, it is always possible to discretize a naturally
continuous action space. While this reduces the amount of
precision with which actions can be chosen, some appli-
cations can nevertheless be successfully approached in this
manner [26, 96].

State spaces While the exact characteristics of state spaces
depend not only on the underlying problem, but also on how
the problem is modelled, games such as Go have a well-
defined, regular board, which is helpful in formulating a state
space. In Go, the board of fixed size consisting of cells which
are positioned in spatial relation to each other lends itself
well to processing by a CNN. The problems surveyed here
feature a diverse range of state spaces which are processed
by different kinds of neural networks. Next to CNNs, the
employed neural networks include recursive neural networks
such as long short-term memory networks [5, 25, 28, 35, 40,
42, 46, 96, 113, 119] and gated recurrent units [20, 33, 49, 59,
65, 106, 110, 122, 123, 141, 145, 158], aswell as graph neural
networks [48, 52, 61, 63, 75, 77, 102, 105, 109, 123, 136, 137,
141, 157]. Less frequent types include transformers [26, 78,
87] and the DeepSet architecture [146]. In many cases, a
simple multi-layer perceptron is sufficient [10–13, 16, 22,
32, 36–38, 41, 45, 55, 56, 58, 76, 81, 90, 91, 97, 112, 125,
126, 131, 140, 150, 151, 155].

The chosen architecture and its depth will to some degree
determine what kind of hardware is required to train a neural
MCTS approach.

4.3 Hardware requirements

The training of AlphaZero involved more than 5000 tensor
processing units [100]. One might hence question whether
the application of neural MCTS is a viable option for
researchers and practitioners who do not have access to
resources of that magnitude.

Some of the publications we review do report the usage of
significant resources. For example, Huang et al. [46] use up
to 300 NVIDIA 1080Ti and 2080Ti GPUs during training.
The majority of the reported hardware, however, is not out of
reach for typical organizations and even private individuals.
Genheden et al. [36] report that they use a single Intel Xeon
CPU with a single NVIDIA 2080Ti GPU on a machine with
64GBmemory.Many others use a single high-end consumer
CPU and GPU [57, 58, 84, 94, 155].

On the lower end, some researchers even use consumer
notebooks to train neural MCTS methods [45, 141, 143].
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Clearly, hardware requirements vary by application and
the complexity of the employed neural networks. While it is
difficult to predict what level of hardware is required for a
given application and desired solution quality, it is clear that
moderately powerful hardware can be successfully utilized
in many applications.

5 Neural MCTSmethodologies

After gaining an overview of the breadth of possible neural
MCTS applications in the previous section, we now turn our
attention to the design of neural MCTS approaches as they
were encountered during the review.

5.1 Guidance network training

Before delving into the inner mechanisms of neural MCTS,
we content ourselves with the knowledge that learned pol-
icy and value networks are used to guide the tree search in
some way. In the following, we first dedicate some attention
to the training procedure used in AlphaZero [100], before
discussing alternatives found during the review.

Policy improvement byMCTS In AlphaZero [100], a learned
policy is iteratively improved by guiding an MCTS search
and in turn using the search results to improve the learned
policy (see Fig. 3). We refer to this procedure as policy
improvement by MCTS. More concretely, the learned pol-
icy πθ guides the tree search in one or multiple of the search
phases and a new policy πMCT S for the state under consider-
ation is obtained after a given number of MCTS simulations.
Since this new policy is typically stronger than the initial,

Fig. 3 MCTS as a policy improvement operator. The learned policy and
value function are used to guide the tree search, which then produces an
improved policy π∗

MCT S and value estimate V π∗
MCT S for a given state.

As visualized by the dotted lines, π∗
MCT S and V π∗

MCT S can then also be
used as training targets for the neural network

learned one, it can be used as a training target for the policy
network. More precisely, the policy network andMCTS pro-
duce policy probability vectors pθ and pMCT S for a given
state, where the former can be seen as the actual predic-
tion and the latter as the prediction target. These can then
be used in a cross-entropy loss function to train the policy
network: LCE = − pTMCT S log pθ . Accordingly, if a value
function is learned alongside the policy, its value estimates
are adjusted in the direction of those found by MCTS by
using the mean squared error (MSE) as a loss function:
LMSE = (vMCT S − v)2. Both terms are typically combined
with a regularization term into a single loss function

L = (vMCT S − v)2 − pTMCT S log pθ + c ‖θ‖2 (3)

The vast majority of the articles we reviewed that improve
a learned policy by MCTS use the loss function given in (3).
We find two exceptions to this, one in which the Kullback-
Leibler divergence is used instead of the cross-entropy [17]
and one in which the Kullback-Leibler divergence is also
used instead of the cross-entropy, but a quantile regression
distributional loss is additionally used instead of the MSE
[26]. It may be worth investigating what effect these loss
functions have on training, but the combination of cross-
entropy andMSEclearly emerges as the default choice during
our review.

Alternative training approaches We find two broad groups
of training approaches during our review: (1) training before
the networks are used to guide the tree search and (2) training
during the tree search, i.e. iteratively performing tree search
and using its results for training. In group (1), training is
facilitated either by supervised learning on labelled exam-
ples or by classical reinforcement learning algorithms in the
policy-based, value-based, and actor-critic families. In group
(2), the dominant approach is policy improvement byMCTS,
but somevariations on this exist. Finally, both approaches can
be combined by first performing what can be considered a
pre-training and then training further during the tree search.
This is sometimes referred to as a warm-start.

Figure 4 shows the distribution of thesedifferent approaches
as found in the surveyed publications and which specific
methods are employed in each approach. A large portion of
authors train their networks during the search by using pol-
icy improvement by MCTS. In some cases, training during
the search occurs by other methods such as Q-Learning [1,
37, 95, 123] and Maximum Entropy RL [157] on the MCTS
trajectories. Instead of improving the policy (alongside the
value function) byMCTS, it is also feasible to refine the value
function individually [62, 137], without any learned policy.
We term this approach value function refinement by MCTS
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Fig. 4 Depending on the
approach, policy and value
networks are trained before the
search, during the search, or
both. Depending on this choice,
different training methods are
employed. Policy gradient and
Actor-Critic are families of
algorithms that encompass
multiple specific algorithms

here. Likewise, while policy improvement by MCTS typi-
cally trains both a policy and a value function, sometimes
the policy is also trained in isolation [93].

When trained before the tree search, networks are most
often trained by supervised learning on labelled demonstra-
tions. Q-Learning [75, 76, 119, 125, 131], policy gradient
[24, 45, 55, 57, 64, 77] and actor-critic methods [17, 41, 121,
129] are also employed.

When both training phases are performed, the most com-
mon approach is to combine supervised pre-training with
policy improvement by MCTS [16, 81, 107, 126, 154].

Overall, there is some variety in the employed training
approaches, but the dominant strategies are supervised train-
ing before the search and policy improvement by MCTS,
sometimes combined in one approach as in the original
AlphaGo publication [99]. In a combinatorial game setting,
policy improvement by MCTS requires some mechanism by
which the opponent’s moves are generated. In the following,
such a mechanism and its relevance for applications beyond
games are discussed.

5.2 Self-play beyond games

One of the components leading to the success of AlphaGo is
the concept of self-play [99]. In a self-play setting, opponents
in amulti-player game are controlled by (someversion of) the
same policy, i.e. the policy plays against itself [43]. Learning
in such a scenario has the advantage that the policy always
faces an opponent of comparable skill, which evolves as the
training progresses. However, since many non-game-playing
applications have an inherently single-player nature, the role
of self-play beyond games is not obvious.

To gain a clearer understanding of the applicability of
self-play in such cases, we surveyed its usage among the
publications included in our review. During this process, it
became apparent that many authors use the term self-play,
but that the meaning of the term varies. This may be due to

the lack of an accepted, standardized definition. In the fol-
lowing, we first delineate different meanings of the term we
encountered and then report the usages of different versions
of self-play in our review.

In a two-player setting, the term self-play can be under-
stood intuitively.As used in the originalAlphaGopublication
[99], self-play entails that the policy currently being learned
plays a game against some older version of itself in a two-
player turn-based setting. This means that this other version
of the current policy is being used to generate new states by
playing every other turn of the game, as well as to obtain the
final reward of the game.

In single-player settings, the term self-play is also often
used, but its meaning is less obvious. In a single-player set-
ting, the state generating property described above is not
applicable, since the state transitions do not depend on the
actions of another player. Generating a new state requires
only the current state and the agent’s action. The reward gen-
erating property described above, however, is applicable if
the reward function is designed accordingly. If the reward is
not simply dependent on the performance of the current pol-
icy, but on the relative performance compared to some prior
version of the policy, the reward generating property of self-
play is transferred to the single-player setting. In otherwords,
the process of a policy trying to beat its own high score has
similarities to the concept of self-play in two-player settings.
While this is sometimes also called self-play, Mandhane et
al. [66] introduce the term self-competition for this type of
approach. In the remainder of this review, we will adopt
this term and reserve self-play for multi-player settings to
avoid confusion. While simple versions of self-competition
can be implemented trivially, Laterre et al. [60] introduced a
more substantiated form of self-competition named ranked
reward, followed by the approaches of Mandhane et al. [66]
and Schmidt et al. [88].

However, many authors claim to implement self-play
without obviously applying any of the concepts described
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above (see e.g. [80, 111]). While it is hard to be certain about
what is meant in such instances, we suspect that two further
concepts are sometimes termed self-play in the literature.
The first is the practice of keeping track of the best policy by
evaluating the current policy against the previous best one.
If the current policy can outperform the previous best one on
some defined set of problems, it replaces the currently saved
best policy. This simply serves the purpose of having access
to the best policy after training completes since training does
not necessarily improve the policy monotonically. In such
cases, the outcomes of evaluation are not used as rewards to
train the policy. Consequently, no learning follows from the
policy playing against another version of itself, i.e. it is not
a mechanism by which the current policy is improved, but
merely evaluated.

The last concept,whichwe suspect is sometimesdescribed
as self-play is policy improvement by MCTS as introduced
above (see e.g. [12]).

To be clear, we will use the term self-play only to describe
multi-player caseswhere the state generating property aswell
as the reward generating property hold, and the term self-
competition only for single-player cases where the reward
generating property holds.

While we would ideally like to report the usage of self-
play and self-competition for all publications included in our
review, we refrain from doing so when the terms are used
ambiguously and instead only report a selection of notable
examples where their meaning has been clearly established.

Self-play Actual self-play appears to be fairly rare in the
non-game-playing literature. We can only attribute the use
of self-play to a single work [27], in which a problem is
modelled as a two-player game and a policy learned by self-
play. In some other cases, problems are modelled as two-
player games aswell, but the resulting games are asymmetric,
i.e. the players have different action spaces and hence require
different policies [32, 138–141]. In such cases, two different
neural networks each learn a policy.

Self-competition In terms of self-competition, we observe
instances of ranked reward [109, 123, 127] as well as naive
approaches (see Table 16). In a naive approach, the perfor-
mance of the current policy on the current problem is simply
evaluated as some score and compared against the score of
the best policy observed up to this point on the same prob-
lem. If the current policy’s score is better, the game is won

Table 16 Self-competition

Type Publications

Ranked reward [109, 123, 127]

Naive (best) [46, 52]

Naive (average) [122]

(r = 1), if it is worse, the game is lost (r = −1), and if
it is equivalent, the outcome is a draw (r = 0) [46, 52]. A
variation of this is to not use the best policy, but to evaluate
against the average score of a group of saved policies [122].

In one case, a naive approach, as described above, is
applied, but instead of a past version of the policy, a sec-
ond, completely independent policy is learned and the two
policies continually compete against each other [3].

While self-competition can be used to generate rewards
based on the relative performance of the policy, this is not
strictly necessary, as the absolute performance can be used to
compute rewards just aswell. One benefit of self-competition
may simply be having a reward in a clearly defined range of
[−1, 1] or similar, as optimal choices of MCTS hyperparam-
eters depend on this range [8]. However, there appear to be
benefits beyond this, as the ranked reward approach has been
shown to outperform agents trained using a standard reward
in the range [0, 1] [60]. Whether this is the case for the naive
self-competition approaches as well is unclear.

5.3 Guided selection

The previous sections argue that MCTS functions as a policy
improvement operator. We now explore the mechanisms of
this policy improvement, i.e. the inner workings of neural
MCTS. A search iteration inMCTS begins with the selection
phase, in which actions are iteratively chosen starting from
the root state until a leaf node is encountered. As described
in Section 2.3, the choice of action is determined by a tree
policy, which generally takes the form

a = argmax
a

Q(s, a) +U (s, a) (4)

where Q(s, a) encourages exploitation of known high-value
actions, while U (s, a) encourages exploration of the search
tree. Variations exist both in the exact formulation of (4)
and in how individual terms of the equation are determined,
i.e. by learned policies and value functions or by conven-
tional means. We investigate each aspect individually in the
following.

Tree policy formulations The tree policies encountered dur-
ing the review are usually based on some version or extension
of the UCT rule, but some variation in the exact formulation
of the rule, especially in the exploration part, can be observed.

We provide an overview of variations ofU (s, a) identified
during our review in Table 17. While compiling the table,
we modified the exact formulations reported in individual
publications to arrive at a consistent notation. To this end, we
assumed that all reported logarithms are natural logarithms
and that N (s) = ∑

b N (s, b), i.e. N (s) refers to the visit
count of all the children in state s, while N (s, a) refers to the
visit count of action a in state s. The exploration constant,
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Table 17 Variations of tree
policies based on UCT

Frequency Name Variant Formula

27 UCT 0 c
√

2 lnN (s)
N (s,a)

2 1 c
√

lnN (s)
1+N (s,a)

1 2 c
√
N (s)

1+N (s,a)

39 PUCT 0 c P(s, a)
√
N (s)

1+N (s,a)

5 1 c P(s, a)

√
2 lnN (s)
N (s,a)

3 2 c P(s, a)
√
N (s)

N (s,a)

3 3 c P(s, a)μ
√

N (s)
1+N (s,a)

2 4 c P(s,a)
1+N (s,a)

2 5 c P(s, a)
√
N (s)+1

N (s,a)+1

2 6 c P(s, a)
N (s)

1+N (s,a)

1 7 c P(s, a)
√
N (s)+ε

N (s,a)+1

1 8 c P(s, a)

√
lnN (s)+1
1+N (s,a)

1 9 c P(s, a)

√
N (s)

1+N (s,a)

1 10 c P(s, a)

√
lnN (s)

1+N (s,a)

2 MuZero 0 P(s, a)
√
N (s)

1+N (s,a)

[
c1 + ln N (s)+c2+1

c2

]
1 1 P(s, a)

√
N (s)

1+N (s,a)

[
c1 + ln

√
N (s)+c2+1

c2

]
1 UCT D 0 c A(s, a)

√
2 ln N (s)
N (s,a)

1 PUCT B 0 c1 P(s, a)
√
N (s)

1+N (s,a)
+ c2B(s, a)

Different groups of selection formulae are each indiciatedwith a name and eachmember of a group additionally
has a variant number. The first member of a group is always the most frequently observed one, not necessarily
the original formulation of the group

sometimes given as cuct , cpuct or similar, is simply referred to
as c in this review. P(s, a) represents some prior probability
of choosing action a in state s, whether it be given by a
learned policy or obtained by other means.

Among the surveyed publications, a large proportion still
use (some variant of) the UCT formula (see Table 17), but
PUCT as it is used in AlphaZero [100] (PUCT variant 0 in
Table 17) is the most frequently used selection mechanism.
There are a number of less frequently used PUCT varia-
tions mostly concerning the presence of logarithms, constant
factors in the numerator and denominator, and scope of the
square root. These differences impact the overall magnitude
of the exploration term as well as its decay as individual
actions are visited more often (see Fig. 5). It is difficult to
judge the impact of different formulations on the search, since
authors usually do not directly compare them. In a rare excep-
tion, Xu and Lieberherr [138] try both the AlphaZero PUCT

variant as well as PUCT variant 9 in Table 17 and report that
the AlphaZero variant performs much better, although they
do not quantify this difference.

One notable PUCT variant, variant 3, introduces a new
constant μ which determines the impact of the prior prob-
abilities as P(s, a)μ. This variant seems to have been
independently suggested in [95, 104, 123].

Aside from UCT and PUCT variants, the MuZero [89]
selection formula or a variant of it is used by three authors.
We further find two unique modifications of typical selection
formulae that we cannot assign to any of the other groups:
UCT D and PUCT B . The former will be discussed at a later
point. PUCT B aims to exploit the nature of deterministic
single-player settings, in which future trajectories are not
influenced by the choices of another player. In such cases,
rather than simply looking at average state values, it may be
advantageous to keep track of the best encountered values
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Fig. 5 Different UCT-style fractions with a fixed N (s) = 1000. Note
that the vertical axis is logarithmic and shows the value the expressions
in the legend produce for different N (s, a)

during the search. Making decisions based on average val-
ues is problematic because most of the actions in a given
state may be bad choices, while one specific single action
may be a good choice. On average, the value of the node
will then be low, even though a promising child exists. In a
deterministic setting, the best path can be executed reliably
and, accordingly, it makes sense to choose nodes based on
their expected best value rather than the average one. Deng
et al. [23] design a selection formula that makes use of this
fact, which we refer to as PUCT B here. In PUCT B , the
best value of an action is simply scaled by a constant and
then added to PUCT variant 0.

Neural guidance in the tree policy Neural guidance may
be used in both the exploitation and the exploration part of
(4) (see Fig. 6). When used in the exploitation part, neural
guidance is typically used to estimate Q(s, a). This does not
change how the selection mechanism works, only how the
corresponding value is determined. Since value estimation is
a function of the evaluation step, this kind of neural guidance

Fig. 6 Neural Selection. Each of the children of the current state s are
considered and the one maximizing Q(s, a) +U (s, a) is chosen. Both
Q(s, a) andU (s, a)may be influenced by neural guidance in someway

Fig. 7 Proportion of choices in the selection phase among the surveyed
articles. Standard refers to some selection strategy that does not involve
the use of learned functions

will be explored in Section 5.5 and not discussed further at
this point.

In the exploration part of (4), neural guidance is typically
used to determine the prior probabilities P(s, a) in PUCT-
style formulae. As shown in Fig. 7, about 62%of all reviewed
articles report guiding the tree search in this way, with less
than 30% reporting selection phases without neural guid-
ance. The remaining articles do not report how the selection
phase is performed at all. While the latter can probably be
interpreted as selection without neural guidance, we try to
refrain from interpretations as much as possible and hence
give separate categories for standard selection andunreported
selection.

Most approaches for neurally guided selection phases take
the form described above, with the exception of a few special
cases. Zombori et al. [157] argue that a learned policy net-
work tends to make predictions with high confidence even if
they are of low quality, which leads to a strong unfounded
bias in the search. It may be more desirable to have a pol-
icy which makes less confident predictions if the prediction
quality is not sufficiently high. To achieve this, they use max-
imum entropy reinforcement learning and use the resulting
policy to compute prior probabilities for the selection phase.

In one exception, neural guidance occurs in a form other
than providing prior probabilities, as can be seen in the
UCT D formula in Table 17. It is named after its use of
a dueling network, which produces action advantage esti-
mates A(s, a) in addition to state values. In UCT D , the
action advantages are used in place of the prior probabili-
ties P(s, a). Vaguely related to the reasoning of Zombori
et al. the authors argue that a policy network trainedwith pol-
icy gradient methods tends to concentrate on the best action
for a given state, while not assigning probabilities propor-
tional to the expected usefulness of the other actions [125].
In other words, an overly low entropy policy vector may bias
the search to an undesirable degree. In contrast, the action
advantages do not overly focus on the best action.

5.4 Guided expansion

Once a leaf node sL is encountered during the selection phase
in MCTS, the expansion step is performed to create child
nodes of sL . Guidance by neural networks can be employed
in this step as well to bias and hence speed up the search. To
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avoid confusion, we will first give some details on possible
alternate ways to implement the expansion step and only then
return to the topic of neural guidance.

As discussed in Section 2.3, nodes are typically expanded
either one at a time whenever an expandable node sE is
encountered, or all children of a node are expanded simulta-
neously if a leaf node sL is encountered.

Clearly, implementing anMCTS approach requires decid-
ing how many children are expanded at a given time. There
is, however, an additional, related decision to be made: How
many and which children are considered for expansion? In
the naive case, the search is free to choose any action from
the set of all possible actions A(sL) in state sL . However, it
is also possible to be more selective in the expansion step.
To limit the growth of the tree, only a limited number of
children may be considered for expansion either randomly
or according to some rule or heuristic. In other words, the
search may be restricted to only choose actions from a set
Ã(sL) ⊂ A(sL). This is especially relevant for continuous
cases, where the number of potential children is infinite and
necessarily has to be limited in some way. Once such a set
Ã(sL) has been defined, the corresponding child nodes may
be expanded all at once when the leaf is encountered or one
by one, whenever the expendable node is encountered during
the tree search.

Neural guidance during the expansion step is possible in
both paradigms, i.e. when expanding on encountering a true
leaf node and when expanding on encountering an expand-
able node. In the former case, neural guidance means using
a learned policy to determine Ã(sL), while in the latter case,
neural guidance means choosing an action in A(sE ) to create
a new child node. Theoretically, it is possible to combine both
of these approaches by first determining and saving Ã(sL)

when a leaf is encountered for the first time, but not expand-
ing all corresponding nodes at this point. The children can
then be expanded one by one whenever the node is encoun-
tered again by choosing some action a ∈ Ã(sE ). However,
we do not observe this combined approach in the collected
literature.

Fig. 8 Neural Expansion. When a leaf node is encountered, possible
actions in the leaf node’s state are sampled by some mechanism involv-
ing the learned policy. For every sampled action, a new child is created

Fig. 9 Proportion of choices in the expansion phase among the surveyed
articles. Standard refers to some formof expansion that does not involve
the use of neural networks

We do observe some form of neurally guided expansion
in a sizeable portion of publications (see Figs. 8 and 9) and
categorize them in Table 18. In some additional examples,
neurally guided expansion is used, but the specifics are not
reported [25, 36, 90].

Ã(sL) can be determined by randomly sampling actions
from a learned policy, but it can also be determined by enu-
merating all actions in the policy distribution and choosing
the top k ones [48, 91, 112]. In the approach of Thakkar et al.
[112], the top k actions with a cumulative policy probability
of 0.995 or at most 50 actions are selected. In both types
of neurally guided expansion, instead of a learned policy, a
learned value function can of course be converted to a policy
with a softmax operator, as is done in [119].

While the exact impact of neurally guided expansion will
vary from application to application, its general potential is
demonstrated in [82]who report that their computational time
is 20 times reduced with neural expansion while achieving
higher quality solutions.

5.5 Guided evaluation

The evaluation step in MCTS serves to estimate the (state-
)value of a leaf node encountered during the tree search.
While it is often also called the roll-out step or the sim-
ulation step, its purpose is the value estimation of a leaf.
Roll-outs or simulations are simply approaches to produce
a value estimate. Here, we use the term evaluation, because
not all evaluation approaches in the neural MCTS literature
are based on roll-outs.

There are two obvious ways to use learned policies and
value functions during the evaluation phase: a roll-out using
the learned policy and a direct prediction by a learned value
function. In the former, actions are iteratively sampled from

Table 18 Types of neurally guided expansion

Type Publications

Choosing a ∈ A(sE ) [5, 24, 45, 64, 119, 143]

Determining Ã(sL ) [26, 48, 61, 80, 82, 91, 112, 145, 148]
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Fig. 10 Evaluation by learned
policy roll-out: After arriving at
leaf node with state s according
to the tree policy, the value of s
needs to be determined. Here,
the learned policy πθ is used to
generate a roll-out by iteratively
sampling actions until a terminal
state sT is reached. The reward
of this terminal state serves as
an estimate for the value of s

the learned policy starting from the encountered leaf node
until a terminal node is reached (see Fig. 10), while in the
latter, the value of the leaf node is simply predicted by the
learned value function without any roll-out (see Fig. 11).

Most authors use either learned policy or value functions
as described above, with 54 occurrences of learned value
functions and 26 occurrences of learned policy functions (see
Fig. 12) The remaining publications either do not use neural
guidance for the evaluation phase or their approach is unclear.

Among the neural evaluation approaches, some authors
employ different evaluation approaches depending on how
far the traininghas progressed. Song et al. [104] combineboth
approaches by performing roll-outs according to a learned
policy network in the early phases of training and use a

Fig. 11 Evaluation by learned value function: After arriving at leaf
node with state s by following the tree policy, the value of s needs to be
determined. Here, a learned value function Vθ is used to estimate the
value of s directly, without any need for a roll-out

learned value network for estimation in later stages. Zhang
et al. [150] use an initial phase of random roll-outs to pre-
train a policy network and employ the learned policy network
for roll-outs in later stages.

In some cases, roll-outs are not performedbynaively using
a learned policy, but more complex roll-out procedures are
still guided by learned functions. He et al. [40] use a value
network to guide a problem-specific roll-out procedure,while
Xing et al. [136] use a learned policy function to guide a
beam search. Kumar et al. [58] combine a value estimate as
predicted by a neural networkwith a domain-specific roll-out
policy,motivated by the fact that their reward function ismore
fine-grained than those typically observed in board games.
Finally, Lu et al. [64] use a value network in a symbolic
regression task to estimate whether a leaf node merits further
refinement by an optimization method, but their approach is
highly problem-specific.

Deng et al. [23] perform different evaluation approaches
dependingon thedepth of the node to be evaluated. If the node
is closer to the root of the tree, they use a neural network to
estimate the value of the state, while they perform a random

Fig. 12 Proportion of choices in the evaluation phase among the sur-
veyed articles. Value function refers to an evaluation by a learned value
function, policy to a roll-out using the learned policy and standard to a
random roll-out
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roll-out for nodes at deeper levels of the tree. Their experi-
ments show that this hybrid approach can balance solution
quality and computation time. Since neural inferences are
associated with non-negligible computational cost, replac-
ing them with random roll-outs can decrease the search time
especially at deeper levels, where roll-outs will have short
lengths.

In the application described by He et al. [41], episodes can
result in either a successful or a failed solution. Successful
solutions can still differ in quality and are rewarded accord-
ingly. They perform a roll-out by a learned policy, but if this
results in a failed terminal state, they backtrack until they
find a successful solution. They argue that this leads to bet-
ter search efficiency because preceding trajectories are not
repeated unnecessarily.

Design choices in other MCTS phases can also influence
what is required from the evaluation phase. Kovari et al. [56]
replace the exploitation term, i.e. the estimated value, of a
UCT-style formula with the probability of taking an action as
predicted by the policy network. Instead of a roll-out or direct
value prediction, they hence simply predict this probability
in the evaluation step.

5.6 Guidance in multiple phases

As discussed above, neural guidance can be employed in
the selection, expansion, and evaluation of phases of MCTS.
Of course, it is not necessary to limit this guidance to one
phase at a time and different types of neural guidance can be
combined in one approach.

To gain an overview of how different types of neural guid-
ance are typically combined,we visualize their use in Fig. 13.

The most common approach is to guide the selection step,
perform standard MCTS expansion, and then use a learned
value function for evaluation.Manyother combinations exist,
but none of them are used as often. When standard selec-
tion is used, the relative incidence of neural expansion is
higher thanwhenusingneural selection.This could, however,
be explained by the fact that the respective authors simply
wanted to highlight the effect of neural expansion since it is
often the main focus of their respective publications.

Infrequently occurring combinations may indicate a need
for further research.

5.7 Use of dynamics models

Neural MCTS is a model-based reinforcement learning
approach, i.e., it requires access to a dynamics model of the
environment to perform planning. Typically this dynamics
model is given [99, 101] and can be readily used in the tree
search. In contrast to a regular reinforcement learning envi-
ronment as defined in, e.g. the OpenAI Gym standard [7], a

dynamics model allows for the computation of the next state
and reward given an arbitrary initial state and action to be
executed. An environment, on the other hand, is in a specific
state at any given time which can be influenced by actions,
but does not allow for dynamics computations on arbitrary
states. In other words, an environment is stateful, while a
dynamics model is not.

The difficulty of developing such a dynamics model will
differ from application to application. In any case, its devel-
opment will require some additional effort. To circumvent
this, it is also possible to learn the dynamics model and then
use this learnedmodel for planning inMCTS [89, 115].While
this adds additional complexity to the training process, it can
be helpful in scenarios where an exact and efficient model of
the environment cannot be easily obtained.

During our review we found that the vast majority of
approaches utilize an existing dynamics model, but learned
models also find some application in practice.

For instance, Chen et al. [14] investigate an autonomous
driving task where a model is needed to predict the vehicle
state. In this case, the vehicle state is an image, meaning that
the model needs to produce an output image given an input
image (corresponding to the initial state) and an action.While
such amodel is not trivial to implement manually, Chen et al.
[14] are able to train a convolutional neural network to serve
this purpose.

Similarly, Challita et al. [10] apply neuralMCTS to enable
dynamic spectrum sharing between LTE andNR systems and
report that this requires a model of individual schedulers for
LTE and NR, which is not trivial to design. Instead, they
learn the model in an approach similar to the one proposed in
MuZero [89]. That is, the dynamics are not computed on the
raw observations, but on hidden representations, which are
computed from the observations by a learned representation
function. This approach is also taken by others [32, 96], but
dynamics models which work directly on the observations
can also be observed [21, 125].

In many cases, the dynamics model is not learned during
neural MCTS training, but trained separately in advance and
then simply used for inference during the tree search [9, 28,
39, 122]

As described above, one motivation to learn a dynam-
ics model may be the difficulty of creating one manually.
Another motivation is the speed with which a learned model
can be evaluated [109].

In some cases, the state transitions can be modelled
fairly easily, while the computation of the reward is time-
consuming. Some authors do not train a full dynamicsmodel,
but a scoringmodel,which can be used to assess the quality of
a given solution quickly. In contrast to a learned value func-
tion, which can be used to evaluate newly expanded nodes at
arbitrary depths, a scoring model only assigns a score to full
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Fig. 13 Parallel sets diagram of
surveyed neural guidance
configurations. Each vertical bar
signifies an option in one of the
MCTS phases: selection (left),
expansion (middle), evaluation
(right). In the expansion step,
each option (standard and neural
expansion) is displayed twice to
allow for easier tracing of the
visualized configuration

solutions, i.e. terminal nodes. The resulting scores can then
be used as training targets for the value function [42, 106,
151].

5.8 MCTSmodifications

Wenow turn our attention to selectedmodifications of typical
(neural)MCTS procedures as encountered during the review.

Average andbest values Asbrieflymentioned in Section 5.3,
deterministic single-player settings pose different require-
ments than combinatorial games. Action selection based
on the average value of a node will lead to sub-optimal
results, because a strong child node can be surrounded by
weak siblings. While the PUCT B mechanism described in
Section 5.3 is one option to address this, other authors have
identified this issue as well and proposed their own solutions.

Deng et al. [23] report that their final search results are
usually worse than the best solutions found during roll-outs
in empirical experiments. They point out that the final action
selection after tree search is performed based on the node
visit counts N (s). To rectify the problem, they introduce an
oversampling mechanism for good solutions. Whenever a
solution is found which outperforms all previously found
solutions during a roll-out, this solution will be given prefer-
ence in subsequent selection phases for a certain amount of
time, and will hence be visited more often.

A simpler approach is taken by Peng et al. [77] and Xing
et al. [137] to address the same problem. Here, the exploita-
tion part of (4), i.e. the average value of the node, is simply
replaced with the best observed value for the node. Fawzi
et al. [26] follow a similar strategy.

Zhang et al. [154] simply keep track of the maximum
reward encountered in the search and the action sequence
that lead to it, which is then returned after the search.

Value normalization While combinatorial games lend them-
selves well to reward function formulations in the range
[−1, 1], in other applications, rewards are often less regular
and sometimes completely unbounded. As mentioned ear-

lier, the exploration constant c needs to be tuned for different
reward ranges [8]. Further, even with a perfectly tuned c,
rewards outside of ranges like [−1, 1] or [0, 1] are typically
not conducive to algorithm convergence [97]. A number of
authors therefore suggest normalizing Q-values according
to the minimum and maximum values observed in the tree
search until the current point [78, 97, 137].

The cost of neural inference The main idea behind neural
MCTS approaches is to increase the efficiency of the tree
searchwith neural inferences.While neural inferences are not
too computationally expensive individually, when performed
in large numbers, the required computational time can add
up to significant amounts.

Deng et al. [23] vary the amount of neural inferences
by switching neural guidance off during the search some
proportion of the time. They find that neural guidance gener-
ally helps the search, but that further neural guidance after a
certain point only increases computational cost without pro-
viding additional benefits.

Designing mechanisms to limit the application of neural
guidance towhere it providesmaximumbenefits in a targeted
way may be an interesting line of research.

5.9 MCTS hyper-parameters

One last aspect in the design of neural MCTS approaches is
the choice of appropriate hyper-parameters. While choosing
hyper-parameters is highly problem-specific, it can neverthe-
less be useful to look at average hyper-parameter values to
serve as a starting point and determine reasonable bounds for
a problem-specific hyper-parameter optimization. To facili-
tate this, we summarize the values for the MCTS-specific
hyper-parameters found during our review in Fig. 14. A
large amount of variation in values exists for both the explo-
ration constant c used in UCT-style selection formulae and
the MCTS-budget nMCT S , i.e. the number of simulations or
play-outs performed during MCTS for a given time-step.
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Fig. 14 Distribution of reported
MCTS hyper-parameters:
Number of MCTS simulations
(top) and exploration constant c
(bottom). Note that a
logarithmic axis is used in both
cases. Variation on the vertical
axis is not meaningful, but
contains random jitter for better
visibility of individual data
points

It is known that the optimal choice of c depends on the
scale of the encountered rewards [8]. While reward scales
vary wildly and are not always reported among the literature
we survey, themost commonly reported reward scale is in the
interval [−1, 1], for which six different values of c ranging
from 0.5 to 5.0 are chosen. In other words, the scale of the
rewards does not appear to be the only criterion on which
authors choose hyper-parameter values.

Instead of having a fixed value, in some cases, the explo-
ration constant c and the MCTS budget nMCT S are changed
dynamically depending on circumstances.

Sometimes the exploration constant c is decreased as the
training progresses [16, 157], presumably because later train-
ing iterations profit more from perfecting the current policy
instead of performing further exploration. Wang et al. [126]
tune c dynamically based on the currently observed max-
imum Q-value to balance exploration and exploitation as
Q-value estimates evolve and report a significant improve-
ment in the observed results.

Some problem settings feature varying instance sizes,
where a larger instance size is generally associated with
higher difficulty. Zhong et al. [155] increase c as the problem
size grows, presumably becausemore exploration is required
to adequately cover the larger state space. For similar reasons,
they and others [123, 136] further choose larger nMCT S for
larger instance sizes.Wang et al. [121] even explicitly param-
eterize nMCT S by the problem size.

In many problems, the size of the remaining search space
decreases with increasing depth of the tree. Hu et al. [45]
argue that the search budget should depend on the depth of
the node the search starts from and present a mechanism that
decays nMCT S with increasing tree depth.

Fawzi et al. [26] report an increase in nMCT S after a certain
amount of training steps, presumably because later training
iterations can profit more from a higher search budget and a

larger proportion of the overall training time budget should
hence be allocated to those later iterations.

Some authors reduce the number of MCTS simulations at
test time. For instance, Chen et al. [14] reduce nMCT S by a
factor of ten at test time compared to the training phase. They
further limit the search depth in both phases, but do so to a
larger degree during test time.

In some cases, MCTS is only used to train a policy net-
work, which is then applied without further tree search at
test time [9, 10, 18, 20, 155]. This can be due to the spe-
cific requirements of the application, i.e., some applications
require fast inferences at test time that render the application
of tree search infeasible, but can still profit from MCTS at
training time [10]. In some applications, applying MCTS at
test time after having used it for training simply does not
improve performance to a significant degree [20].

6 Discussion & conclusion

While focusing on usages of neural MCTS outside of games,
we investigated the diversity in applications, their character-
istics, and the design of employed neural MCTS approaches
by performing a systematic literature review.

With regard to research question 1 posed in the introduc-
tion, we find that neural MCTS is applied in a wide variety
of domains to solve different problems. While most prob-
lems exhibit similar characteristics such as discrete time and
actions, finite horizon, and deterministic transitions, many
authors also demonstrate that neural MCTS can be applied
to problems with differing properties.

The applications encountered during the review usually
have slightly different requirements and properties than com-
binatorial games. This does affect the way solutions are
designed, an aspect investigated as part of research ques-
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tion 2. The concept of self-play, for instance, is generally not
applicable to single-player problems. In some cases, single-
player problems can be modelled as multi-player problems,
but this is the exception rather than the rule. It is possible to
employ a mechanism called self-competition, which repli-
cates the way self-play generates rewards in a single-player
setting.

Many authors further point out that selecting actions based
on average node values is not ideal in single-player determin-
istic environments. Different mechanisms, all based around
tracking maximal node value, can be employed to adjust the
typical MCTS mechanisms in this regard.

Compared to the neural MCTS ecosystem for games, as
well as the traditional RL ecosystem, the neural MCTS land-
scape is almost completely devoid of standardized implemen-
tations and components. Instead, almost all implementations
are entirely custom-made. In a few exceptions, domain-
specific implementations are reused by others, but they can
only be applied to a very narrow set of problems (see e.g.
[145]). While this is understandable for more fundamen-
tal research, where implementations are inherently in flux,
we believe that standardized components could significantly
speed up progress on the applied research side.

One reason for the lack of standardized components may
be that the design of neural MCTS methods varies substan-
tially, beginningwith their training approaches, to their use of
self-play related mechanisms, forms of neural guidance, and
other modifications to traditional MCTS setups. A widely
applicable neural MCTS framework would have to be highly
configurable to accommodate different disciplines and prob-
lem settings. While this is a difficult task, the traditional RL
ecosystemdemonstrates that standards [7] and publicly avail-
able implementations of algorithms [79] accelerate progress,
and that flexible frameworks suitable for research [6] can be
designed.

In response to research question 3, it can be concluded
that the forms of neural guidance used in the game litera-
ture are often used in other applications as well. The most
common type of guidance consists of neural selection and
evaluation by a learned value function, just as in AlphaZero
[100]. Other types, and combinations of neural guidance can
be found in the literature as well. Given the amount of varia-
tion in different neural MCTS systems, a central question for
practitioners is in how to set up their own systems depending
on the characteristics of their applications. Ideally, we would
be able to map observed problem characteristics to observed
neuralMCTS configurations to provide a guideline for others
to use. While some problem characteristics, e.g. the discrete
or continuous nature of the action space, can be determined
fairly reliably when reviewing existing publications, others
are not so easy to ascertain. The breadth and depth of the
(full) tree, for instance, are rarely reported explicitly. In some
cases, it may be possible to infer them, but in a review with

a multitude of different disciplines, trying to do so reliably
is difficult.

Some insights can nevertheless be derived from the col-
lected literature. In games and beyond, it is clear that neural
guidance can help to increase the efficiency of the tree
search, but can also incur computational cost without much
additional benefit in some situations. When and how to
employ neural guidance should hence be carefully weighed.
During the evaluation phase, for instance, the right choice of
mechanism depends on the depth of the overall tree as well
as the depth of the node to be evaluated. If the length of a
roll-out will be short, it may be preferable over an estimate
by a learned value functionwith associated inference cost. At
what exact depth one may be preferable over the other will
depend on the size of the employed neural network, which
will influence the inference cost, as well as the quality of
its predictions. Competing with a high quality estimate of a
learned value function may require multiple roll-outs, since
individual roll-outs are high variance estimates of a node’s
value. A good initial estimate can help focus the search on
promising regions of the solution space, while a bad estimate
can lead the search astray.

In applications with large tree breadth, neural guidance
may be especially helpful in the expansion phase, where it
can be used to prevent certain paths in the search tree from
consideration altogether. Of course, this comes at the risk of
cutting off high-quality solutions. Here as well, the quality
of neural network predictions determines whether such an
approach is sensible. Especially in applications with very
large tree breadth, or even continuous domains, however, a
search may not even be feasible without limiting the solution
space to some degree.

Clearly, many questions remain unanswered. Addition-
ally, a purely backward looking review tends to summarize
what has been done in the past, rather than what should
have been done. What is presented in this review is there-
fore primarily a map of existing approaches and less so
a collection of prescriptive knowledge. The results gath-
ered in this review can, however, serve as a foundation for
further experimental studies. It is clear that different appli-
cations can benefit from different variants of neural MCTS
and that no single algorithmic formulation will be the best
choice for all possible problems. Practitioners will hence
continue to be faced with the task of designing a suitable
algorithm for their specific problem setting. Our review can
serve as a starting place for this, as it provides a sum-
mary of the large set of known possible design choices.
Explicitly performing experiments for multiple applications
with different properties, in which the factors identified in
this review are systematically controlled, can serve to cre-
ate a more robust understanding of the design of neural
MCTSapproaches. Fromsuch an understanding, prescriptive
rules (of thumb) can be derived to aid practitioners in mak-
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ing appropriate design choices for applications with given
properties.

Appendix A: Implementations

Table 19 Publicly accessible implementations of neural MCTS
approaches

Source Link to Implementation

[5] https://github.com/baifanxxx/NPMO-
Rearrangement

[25] https://github.com/sekijima-lab/mermaid

[32] https://github.com/werner-duvaud/muzero-general
(muzero general)

[35] https://github.com/HOL-Theorem-Prover/HOL

[36] https://github.com/MolecularAI/aizynthfinder

[37] https://mgit.cs.uni-saarland.de/timopgros/
carmanufacturin

[82] https://github.com/bpriviere/decision_making

[94] https://github.com/lynshao/AlphaSeq

[106] see [145]

[109] https://github.com/NREL/rlmolecule

[113] https://userinterfaces.aalto.fi/adaptive/

[119] https://github.com/HanqingWangAI/SceneMover

[131] https://github.com/PhilippeW83440/MCTS-NNET

[135] see [145]

[136] https://github.com/CMACH508/2020-GNN-MCTS-
TSP

[145] https://github.com/tsudalab/ChemTS

[148] https://github.com/zbc0315/synprepy

[156] https://github.com/zsoltzombori/plcopprolog

[157] https://github.com/zsoltzombori/plcop

[158] https://github.com/zoulixin93/FMCTS
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