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Abstract
Network pruning is an essential technique for compressing and accelerating convolutional neural networks (CNNs). Existing
pruning algorithms primarily evaluate filter importance or similarity, and then remove unimportant filters or keep only one
similar filter at each convolutional layer based on a global pruning ratio. These methods, ignoring the sensitivity of pruning
among different convolutional layers, rely on a lot of manual experience and multiple experiments to obtain the optimal
convolutional neural network structure. To this end, we propose an automatic filter pruning algorithm via feature map average
similarity and reverse search genetic algorithm(RSGA), dubbed as AFPruner, which automatically searches for the optimal
combination of pruning ratio for all convolutional layers, evaluates filter similarity by feature map average similarity and
then prunes similarity filter. Our method is evaluated against several state-of-the-art CNNs on three different classification
datasets, and the experimental results show that our algorithm outperforms most current network pruning algorithms.

Keywords Model compression · Convolutional neural network · Network pruning · Genetic algorithm · Feature map average
similarity

1 Introduction

In the past decade, convolutional neural networks(CNNs)
have exhibited remarkable success in various computer
vision tasks, such as image classification [1], object detection
[2], and semantic segmentation [3], owing to their excep-
tional ability for representation learning. However, these
high-performance CNN models, such as VGG [4], ResNet
[5], and DenseNet [6], require a large amount of memory and
computational resources, which limits their deployment on
edge computing devices, e.g., on mobile devices.

In recent years, the compression and acceleration tech-
niques for deep models have become a hot research topic.
Commonly used techniques include knowledge distillation,
network pruning, and binary quantization. Network prun-
ing refers to reducing the storage and computational cost
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of deep convolutional neural networks by removing redun-
dant components, thus achieving model compression and
acceleration. Current research focuses mainly on structured
pruning, which involves removing unimportant filters from
the original network based on appropriate pruning strategies.
Li et al. [7] evaluates convolution kernels according to the
l1-norm and removes unimportant kernels. Liu et al. [8] uses
L1 regularization of the channel scaling factors of the batch
normalization(BN) layer to measure the importance of the
channel, and then prunes the channels with smaller scaling
factor values. HRank [9] first introduces the rank of the fea-
ture map as the evaluation criterion, which makes the whole
pruning process more efficient.

In pruning process, the essential work is selecting appro-
priate pruning strategies to judge redundant components and
determining the optimal pruning ratio. However, existing
pruning strategies are oversimple and neglect the structural
integrity and global correlation between layers of the CNN
model. These strategies prune layer by layer using a uni-
form pruning ratio, which may result in some layers being
overly prunedwhile others still exhibit structural redundancy,
thus fail to obtain the optimal network model structure. In
addition, the setting of the pruning ratio relies on manual
experience and requires repeated test to find the optimal over-
all pruning ratio.
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To address the above-mentioned problems, we propose
an automatic filter pruning algorithm AFPruner based on
feature map average similarity and reverse search genetic
algorithm(RSGA),which automatically searches for the opti-
mal combination of pruning ratio of each convolutional layer
of CNN. AFPruner uses feature map average similarity to
measure the similarity of filters, and then prunes similar fil-
ters at each layer according to the pruning ratio. In this way,
we can obtain the optimal CNN model structure.

Our contributions are summarized as follows:

(1) We propose a reverse search genetic algorithm(RSGA),
which enhances the diversity of the population using
a reverse search strategy. At the end of each iteration,
the algorithm replaces the worst two individuals with
their reverse individuals. Additionally, we use clustering
methods to group individuals and select individuals from
different clusters for evolutionary operations, which fur-
ther avoids the “prematurity” convergence.

(2) We use the reverse search genetic algorithm to search for
the optimal combination of pruning ratio of each convo-
lutional layer of CNN. Then, the similarity of the filter
is described using the feature map average similarity,
where the feature map average similarity is calculated
by using the averageEuclidean distance between the fea-
ture maps of multiple samples, and the filter is pruned
according to the filter similarity. This avoids the effect of
sample bias on filter similarity measurements. Accord-
ing to the similarity of the filters, we retain one similar
filter per group at each layer of the network and prune
the rest of the filters, achieving the purpose of model
compression. This approach reduces manual interven-
tion and repeated testing, and realizes automatic pruning.

(3) In this paper, experiments are designed on CIFAR-10,
CIFAR-100, and ILSVRC-2012 datasets to verify the
performance of the algorithm and compared with other
methods. The results show that AFPruner achieves a
good balance between performance and compression
ratio, and is superior to most of the current pruning algo-
rithms for CNN.

2 Related works

2.1 Pruning strategy

Due to weight pruning leading to non-structured sparse
filters, it is hard to accelerate the pruned model with gen-
eral hardware. Consequently, existing pruning research has
mainly focused on structured filter pruning. The current filter
pruning strategies can be roughly divided into the following
two types:

Importance metric Common pruning methods usually
use weight norm [7, 10, 11] to measure the importance of fil-
ters, and filters with smaller norm values contain less feature
information and should be pruned first. Azadeh et al. [12]
propose a genetic-based joint dynamic pruning and learning
method and prune redundant filters adaptively during train-
ing, which not only considers the l1-norm of the filter, but
also introduces the l1-norm of gradient to jointly measure
the importance of filters. NISP [13] obtains the importance
score of each filter by optimizing the reconstruction error
of the final response layer. Attention mechanism [14] is
also introduced in model pruning. Cheng et al. [15] apply
Squeeze-and-Excitation(SE) blocks for each convolutional
layer to predict the importance factor of each filter.

Similarity metric FPGM [16] proves that filters are not
“smaller-norm-less-important”. Furthermore, it calculates
the geometric median of all filters in the layer to measure
the similarity between filters, and then prunes the filters with
the smallest distance sum to the geometric median. OSFP
[17] also applies the idea of filter similarity, unlike FPGM
[16], which explores the distance relationship between all
filters of each convolutional layer. Similarly, Li et al. [18]
judge whether a filter is replaceable by exploring the similar-
ity relationship between feature maps. CLR-RNF [19] uses
the idea of k-reciprocal nearest to measure similar filters.
Some recent works [20–22] all introduce clustering to prune
similar filters.

2.2 Pruning ratio

The current methods for setting pruning ratio can be broadly
divided into two types: predefined and automatic. The pre-
defined method is to manually set the same pruning ratio
for all convolutional layers, and the pruning strategies men-
tioned above belong to this type. Previous studies [7, 23] have
revealed that the different convolutional layers have differ-
ent sensitivities to pruning. As a result, recent researches
have focused on automatically obtaining the pruning ratio,
i.e., setting different pruning threshold for all convolutional
layers.

Yang et al. [24] leverages second-order information to
prune filters with low sensitivity. AMC [25] combines rein-
forcement learning to determine the pruning ratio for each
layer automatically. DSA [26] proposes a new differentiable
pruning process, which optimizes the sparsity distribution
of continuous space to find the pruning ratio of each layer.
DMC [27] assigns a pruning ratio for each layer by applying
a discrete gate to each channel.

Liu et al. [28] has shown that the essence of network prun-
ing is finding the optimal structure. Based on this, recent
works treat the pruning problem as an optimization problem.
ABCPrunner [29] first shrinks the combinations of channels
to a specific space, and then automatically obtains the pruning
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ratio of each layer through the artificial bee colony algo-
rithm(ABC).MetaPruning [30] proposes a two-stage pruning
algorithm, which pretrains a PruningNet usingmeta-learning
to predict the weight parameters of the pruned model, and
then utilizes genetic algorithm to search for the optimal
combination of pruning ratio. ACP [31] first completes the
preliminary pruning of channels through hierarchical clus-
tering of channels, and then uses particle swarm algorithm
to search for the optimal pruned model. SST [32] limits the
channel pruning ratio of each layer to four thresholds using
twomagnitude parameters and uses particle swarmoptimiza-
tion to search the combination of pruning ratio. IPSOPruner
[33] removes the more sensitive layers during the pruning
process and then uses an improved particle swarm opti-
mization algorithm to search for the pruning ratio. AACP
[34] uses hyperparameters to compress the pruning ratio
combination space, and improves the traditional differential
evolution algorithm to obtain the optimal pruning ratio for
each layer. To solve the intractably huge combinations of
pruned structure for convolutional networks, the abovemeth-
ods artificially constrain the search space, which may result
in missing the optimal pruning ratio combination.

In addition to direct search pruning ratio, there are also
works to sparse different layers of the network from the per-
spective of search weight parameters and pruning strategy.
Wang et al. [35] guides channel pruning by sparing the dis-
tribution of BN layers, dynamically adjusting the importance
of channels using a scale factor and bias factor (γ and β), and
combines genetic algorithm to search for the optimal factor
combination. LFPC [36] defines the search space as different
pruning strategies to learn filter pruning criterion. According
to the filter distribution of each layer, it adaptively selects
a suitable pruning strategy for each layer to prune indepen-
dently.

3 Methodology

This section will introduce the proposed automatic filter
pruning framework based on reverse search genetic algo-
rithm. In the convolutional layer of CNN, the important
filters are able to extract discriminative local information
[37]. Without destroying the network structure, pruning
unimportant filters can effectively decrease the amount
of parameters and computations of the model to accel-
erate the inference speed. For a pre-trained model of
CNN with L convolutional layers, the model weights are{
Wi ∈ R

Ci+1×Ci×ki×ki , 1 ≤ i ≤ L
}
, where Ci , Ci+1, and ki

are the number of input channels, the number of output
channels, and the size of the convolution kernel of the i-th
convolutional layer, respectively. The j-th filter weights of
the i-th convolutional layer is denoted as W j

i ∈ R
Ci×ki×ki .

F j
i ∈ R

hi×wi is a feature map generated by the filter W j
i

after matrix operations. hi , wi are the height and width cor-
responding to the feature map of the i-th layer, respectively.

3.1 Definition of filter pruning

Most existing pruning methods prune filters(channels) of all
layers with a predefined global pruning ratio. However, the
pruned model may not be optimal due to the different prun-
ing sensitivity of filters(channels) in different layers. In this
paper, determining the optimal pruning ratio combination
of each layer filter is regarded as a combination optimiza-
tion problem. Specifically, we define the pruning problem as
follows: given an unpruned model M with L convolutional
layers, assuming that each layer of the network has c filters,
the filter pruning problem can be formulated as:

minLtest (M∗,W)

s.t. M∗ = argminLtrain (R∗, W)
(1)

where M∗ is the pruned model, R∗ = [r1, r2, . . . , rL] is the
filter pruning ratio vector, with ri denoting the filter prun-
ing ratio of layer i-th, i = 1, . . . ,L. W represents the weight
parameter of the network, andL represents the cross-entropy
classification loss of the network. This paper aims to obtain
the pruned model M∗ with the lowest training loss through
searching the original network model. Furthermore, after
determining the pruning ratio of each layer filters, fine-tuning
is performed to minimize the testing error of the pruned sub-
network.

3.2 Filter similarity evaluation

During the search phase, we propose amethod for evaluat-
ing filter similarity based on feature map average similarity.
According to the discovered pruning ratio, AFPruner prunes
the similarity filter at each layer.

The pruned model inherits the weight parameters of the
original network, to evaluate its performance. Inspired by
the previous work [38], we use the average euclidean dis-
tance(Other distances can also be used here, such as the
cosine distance, whichwill be described detailedly in Section
4.5.) of s sample feature maps to measure the filter similar-
ity in each convolutional layer, and the similarity calculation
formula is as follows:

dist
(
Ml

i ,M
l
j

)
= 1

s

∑s
t=1

√
∑N

n=1

(
mn

t,i − mn
t, j

)2

s.t. mn
t,i = flatten

(
Ml

t,i

)
,mn

t, j = flatten
(
Ml

t, j

) (2)

where Ml
t,i represents the i-th feature map generated by the

t-th image in the l-th layer, flatten(·) converts the feature
map matrix into a vector. In order to obtain more accurate
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Fig. 1 For the evaluation of the pruned models, filters are selected by
calculating the feature map average similarity of s sample. For them-th
layer of the network, we calculate the similarity matrix for all output

featuremaps and remove the filter corresponding to the featuremapwith
the highest similarity based on the filter pruning ratio in the current layer
structure vector

similarity, we uses the average Euclidean distance between
the feature maps of s samples, which reduces the impact
of sample bias. The smaller value of dist(Ml

i ,M
l
j ) means

that the two feature maps are more similar, and the specific
process is shown in Fig. 1.

3.3 Framework of automatic filter pruning
algorithm(AFPruner)

The proposed algorithm consists of four steps, as illus-
trated in Fig. 2.The entire algorithm flow is shown in
Algorithm 1.

• Population initialization: Initialize the pruning ratio
vector set by reverse search, and each vector represents
an individual in the population (i.e., a pruned modelM∗),
and the elements of each vector represent the filter prun-
ing ratio of one layer.

• Population evolution: Selection, crossover, mutation,
and evaluation of individuals to obtain next generation
populations.

• Reverse operation: At the end of each iteration, the two
individuals with the lowest fitness value are selected to
generate two reverse individuals, and these two individ-
uals are replaced with the generated reverse individuals.
This process increases group diversity and avoids the
“prematurity” convergence.

• Model fine-tuning: After the iteration of the reverse
search genetic algorithm is completed, the individuals

with the highest fitness in the population are selected as
the optimal pruning ratio combination R∗, and then the
pruningmethod described in Section 3.2 is used to obtain
the pruned model M∗. Finally, the pruned model is fine-
tuned to restore accuracy.

Algorithm 1 Automatic Filter Pruning(AFPruner)
Input: Original model M,W, Population Size: N, crossover probabil-

ity: Pc, mutation probability: Pm , max search cycles: T
Output: The optimal pruned model M∗
1: Initialize the individual R according to Eq.4
2: Initialize the population P according to Eq.5
3: for t = 0:T do
4: fitness = Fitness(Pt )
5: add Top2{fitness {Pt }} to Pt+1

6: Pt1,P
t
2,P

t
3 = Kmeans(Pt )

7: i = 2
8: while i < N do
9: Rt

n1,R
t
n2 =Selection(P

t
1,P

t
2,P

t
3)

10: Rt
n1′ ,Rt

n2′ = Crossover(Rt
n1,R

t
n2 )

11: Rt
n1′′ ,Rt

n2′′ = Mutation(Rt
n1′ ,Rt

n2′ )

12: fitness = Fitness(Rt
n1,R

t
n2,R

t
n1′′ ,Rt

n2′′ )

13: add Top2{fitness{Rt
n1,R

t
n2,R

t
n1′′ ,Rt

n2′′ }} to Pt+1

14: i = i+2
15: end while
16: Replace the Bottom2{fitness {Pt }} with reverse operation
17: end for
18: R∗= max fitness{PT}
19: M∗= Pruning(R∗,M,W)
20: M∗= Finetune(M∗,W)
21: return the optimal pruned model M∗
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Fig. 2 AFPruner algorithm
framework. The optimal pruned
model is obtained through
genetic algorithm, and then
fine-tune to recover the model
accuracy

3.4 The optimal combination search of prune ratio

To address the optimization problem described in (1), we
propose the reverse search genetic algorithm (RSGA) for
searching the optimal combination of pruning ratio at each
convolutional layer. In this section, we provide a detailed
description of our algorithm.

Fitness Previous works[29, 31–34] use the classification
accuracy of the network model to evaluate the fitness of indi-
viduals, without considering the relationship between model
compression ratio and classification accuracy. Our algorithm
uses a combination of model classification accuracy and
model compression ratio as an individual fitness function to
achieve the balance between classification accuracy and com-
pression ratio. Specifically, the fitness calculation is defined
as follows:

Fitness = w1 Acc+w2
Fo−Fk
Fo

+ w3
Po−Pk
Po

s.t.
∑3

i=1 wi = 1
(3)

where Acc denotes the classification accuracy of the indi-
vidual, Fo and Po are the Flops and Params of the original
network, respectively, Fk and Pk are the Flops and Params
retained by the individual, respectively. w1, w2, w3 are
dynamically adjustable parameters.

Initialization Assuming the population size is N, we first
randomly generate N/2 individuals to form a subpopulation
P1, and then perform the reverse operation to the subpopu-
lation P1 for generating a subpopulation P2. Subpopulations
P1 and P2 are combined to form the population P, which is
mathematically expressed as formula 4.

Ri = [r1, r2, r3, . . . , rL]
R′
i = [

r ′
1, r

′
2, r

′
3, . . . , r

′
L

]

s.t r ′
i = a + b − ri

⎫
⎬

⎭
→ P1 = [

R1,R2, . . .RN/2
]

P2 =
[
R′
1,R

′
2, · · ·R′

N/2

]

(4)

where L is the number of convolutional layers in the network
model. The pruning ratio of the i-th layer of the network,
denoted by ri , is uniformly distributed between (a, b), where
ri ∈ [a, b). In this paper, the value range of ri is [0, 1).
Ri represents an individual, i.e. a filter pruning ratio vector.
Using the aforementioned reverse initialization, the initial
population can be better distributed in the search space, and
N structure vectors as shown in Fig. 2(a) can be obtained.
We use t to denote the generation of population evolution so
that the initial population P can be expressed as:

P =
{
P01,P

0
2

}
=

[
R1,R2, . . . ,RN/2,R

′
1,R

′
2, · · ·R′

N/2

]
(5)

Selection To maintain the diversity of individuals in the
population, we first cluster the individuals into three sub-
groups using Euclidean distance by the K-means clustering
algorithm. Then, individuals are selected for crossover and
mutation operations fromdifferent subgroups in each genera-
tion, and the elitist preservation strategy is adopted to directly
transfer the top two individuals with the highest fitness to the
next generation. The specific process consists of three steps.

(1) The population Pt is clustered into three subgroups
Pt1,P

t
2, and Pt3.

(2) Two different subgroups are randomly selected.
(3) The roulette wheel selection algorithm is used to select

an individual from each of the two subpopulations,
which constitutes a pair of individuals that are used for
subsequent evolution operations, where the probability
of individuals being selected is proportional to their fit-
ness value. Assuming that the number of individuals in
the subgroup ism, for each individual Ri in the subgroup
Ptj , j = 1, 2, 3, the selection probability si is calculated
as follows:
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Fig. 3 Crossover process

si = fi∑m
k=1 fk

, i = 1, 2, . . . ,m (6)

Crossover We utilize the two-point crossover operation.
Firstly, two crossover points are randomly selected based
on the crossover probability. Then, the genes between the
selected points of the two individuals are exchanged, gen-
erating two new individuals. The operation is illustrated in
Fig. 3.

Mutation We employ the two-point mutation operation.
After crossover, two mutated genes are randomly selected
for each individual according to the mutation probability,
and two mutation genes are chosen to be reinitialized. The
mutation process is shown in Fig. 4.

Reverse operation To maintain the population diversity
and avoid the “prematurity” convergence, we introduce the
reverse operation in the genetic algorithm. At the end of
each iteration, the two individuals with the lowest fitness
are selected for the reverse operation, which generates two
new individuals to replace the original two individuals in
the population. By incorporating this reverse operation, the
genetic algorithm can maintain population diversity to a cer-
tain extent, which is beneficial for algorithm convergence.

4 Experiments

To validate the effectiveness of our proposed method, we
conduct experiments using state-of-the-art network mod-
els(VGGNet, ResNet) and compare with other algorithms
on multiple datasets.

4.1 Datasets and experimental setting

We conduct experiments on publicly available datasets,
including CIFAR-10, CIFAR-100, and ILSVRC-2012. The
CIFAR-10 contains 60,000 (50,000 training images and
10,000 testing images) 32×32 color images in 10 different

classes, with 6,000 images in each category. The CIFAR-
100 is similar to CIFAR-10, except it has 100 classes, each
containing 600 images. ILSVRC-2012 is one of the most
commonly used subsets in the ImageNet, which contains
1,000 classes with 1.28 million training images and 50k val-
idation images.

In experiments,weuseStochasticGradientDescent(SGD)
for fine-tuning with a momentum of 0.9. On CIFAR-10 and
CIFAR-100, the initial learning rate is 0.01, the batch size is
128, and the weight decay is set to 5e-3. The final model is
fine-tuned for 160 epochs and divided by 10 every 50 epochs.
On ILSVRC-2012, batch size is set to 256, theweight decay is
set to le-4 and 100 epochs are given for fine-tuning. The initial
learning rate is set to 0.1 and divided by 10 every 30 epochs.
In the process of evolutionary search, the pruned models are
fine-tuned for 2 epochs to get more accurate classification
accuracy. In the Algorithm 1, N = 10,T = 10,Pc = 0.7,
and Pm = 0.1.

4.2 w parameter analysis

In our method, w1, w2 and w3 are dynamically adjustable
hyperparameters. w1, w2 and w3 denote the percentage of
accuracy, Flops compression ratio and parameter compres-
sion ratio of the pruned model, respectively. On CIFAR-10,
we analyze the effect of these hyperparameters for the prun-
ing results based on the pruning process of the ResNet56
model.

The results are shown in Table 1.

(1) From the first 5 rows of the table, it is clear that when
the value ofw1 is tiny, the accuracy of the pruned model
is low, but the compression ratio is high. As the value of
w1 increases, the accuracy of the prunedmodel becomes
higher and higher, but the compression ratio becomes
lower and lower. It can be seen that when w1=0.7, the
accuracy and compression ratio have achieved better
results, so we initially choose the value of w1 as 0.7.

Fig. 4 Mutation process
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Table 1 The influence of
different w values for the
compression ratio and accuracy
of ResNet56 on CIFAR-10

Parameter setting Pruned Acc/% Flops.drop/% Params.drop/%

w1=0.5, w2=w3=0.25 92.08 73.13 76.61

w1=0.6, w2=w3=0.20 92.92 63.03 73.19

w1=0.7, w2=w3=0.15 93.34 50.81 59.15

w1=0.8, w2=w3=0.10 93.48 41.23 37.32

w1=0.9, w2=w3=0.05 93.57 39.53 41.61

w1=0.72, w2=w3=0.14 93.31 50.76 58.32

w1=0.74, w2=w3=0.13 93.37 48.44 53.36

w1=0.76, w2=w3=0.12 93.41 45.89 47.92

w1=0.78, w2=w3=0.11 93.43 40.21 39.76

w1=0.7, w2=0.05, w3=0.25 93.23 48.57 56.95

w1=0.7, w2=0.10, w3=0.20 93.29 50.76 58.79

w1=0.7, w2=0.15, w3=0.15 93.34 50.81 59.15

w1=0.7, w2=0.20, w3=0.10 93.45 53.67 52.64

w1=0.7, w2=0.25, w3=0.05 93.39 57.35 46.14

(2) In order to seek for more optimal results, we make a
more detailed analysis of w1 within the range of [0.7-
0.8]. The results are shown in the middle 4 rows of the
table. It can be seen that as the value ofw1 increases, the
accuracy of the pruned model is slightly improved, but
the Flops and Parameters compression ratio decreases
a lot. The reason is that the model accuracy is given
more attention, and the compression ratio are ignored.
Therefore, we finally choosew1 = 0.7 for the subsequent
analysis on w2 and w3.

(3) More attention is paid to the FLOPs compression ratio
for network pruning, this is because it directly affects
the computational speed of the model. From the last 5
rows of the table, it can be seen that w1 = 0.7, w2 =
0.2 and w3 = 0.1 obtain the best model accuracy and
compression ratio.

4.3 Algorithm analysis

4.3.1 Performance analysis

To validate the performance of the algorithm, we statisti-
cally analyze the individuals produced by different models
on CIFAR-10. The reverse search genetic algorithm tends
to retain good genes from parents, where crossover and
mutation are central in the evolution process, i.e., a bet-
ter individual is more likely to produce a better individual
through mutation or crossover. Figure 5(a) supports our view
that the average fitness of all the individuals is generally
higher than that of the previous generation, which suggests
that the overall quality of the individual has been improved
through crossover andmutation. In addition, it is clear that the
distance between individuals is larger after the reverse oper-

Fig. 5 (a) shows the average fitness over all individuals with respect
to the generation number. The bars indicate the highest and lowest fit-
ness in the corresponding generation. (b) shows the euclidean distances
between individuals before and after the reversal operation in each gen-

eration, including the average, maximum and minimum distances, with
the solid line represents before the reversal operation and the dashed
line represents after the reversal operation
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Table 2 Accuracy and pruning
ratio on CIFAR-10

Model Top-1/Drop Flops/Pruned Params/Pruned

VGG16 Baseline 93.02/0.00 317.59M/0.00% 14.73M/0.00%

AFPruner(-) 93.67/-0.65 128.18M/59.64% 4.07M/72.36%

AFPruner(∗) 93.55/-0.53 114.52M/63.94% 3.52M/76.12%

AFPruner(+) 93.55/-0.53 102.42M/67.75% 2.57M/82.56%

ResNet56 Baseline 93.26/0.00 127.62M/0.00% 0.85M/0.00%

AFPruner(-) 93.53/-0.27 67.68M/46.97% 0.40M/52.47%

AFPruner(∗) 93.45/-0.19 60.81M/52.35% 0.39M/54.42%

AFPruner(+) 93.39/-0.13 54.42M/57.35% 0.36M/58.21%

ResNet110 Baseline 93.50/0.00 257.09M/0.00% 1.73M/0.00%

AFPruner(-) 94.25/-0.75 129.75M/49.53% 0.89M/48.36%

AFPruner(∗) 94.08/-0.58 116.59M/54.65% 0.79M/54.27%

AFPruner(+) 93.95/-0.45 106.44M/58.60% 0.69M/60.07%

ation as seen in Fig. 5(b). This further shows that the reverse
operation increases the diversity of individuals, which is ben-
eficial to discover better individuals.

4.3.2 Robustness analysis

In order to rule out randomness in the experimental results,
we use statistical tests to record the results. Specifically, five
experiments are conducted on different datasets for different
models, and then average the results of the five experiments.
The experimental results are shown in Table 2, 3 and 4, where
“Model” is the model used in the experiment, “-” is the result
with the smallest pruning ratio , “+” is the result with the
largest pruning ratio, and “∗” is the result averaged over 5
trials. Four widely-used metrics are reported here, including
accuracy, Flops, Params, and pruning ratio, where "Pruned"
is the pruning ratio. For CIFAR-10 and CIFAR-100, Top-1
accuracy of pruned models are provided. For ILSVRC-2012,
both Top-1 and Top-5 accuracies are reported.

From the table, it can be seen that after compressing
the original model with an appropriate pruning ratio, the
accuracy of the pruned models are all slightly better than
the baseline. This is because common convolutional neural
networks exhibit different degrees of redundancy, and remov-

ing the redundant parameters not only does not negatively
affect the original network, but also improves the general-
ization performance of the model. AFPruner achieves nearly
half of the compression ratio on both FLOPs and Params
for different models, where VGG16 maximally compresses
67.75% FLOPs and 82.56% Params. This indicates that the
VGG16 has greater parameter redundancy. In addition, from
the results of multiple experiments, the accuracy of these
pruning models are approximately the same, and the aver-
age results reflect the stability of our algorithm. Based on the
above analysis, our pruning algorithm can effectively achieve
the compression and acceleration of CNNs.

4.4 Compared with other methods

Since there are fewpruningmethods report results onCIFAR-
100, we mainly compare our pruning results with other filter
pruning methods on CIFAR-10 and ILSVRC-2012. In Sec-
tion 4.4.1, the comparison of pruning ratio and accuracy are
reported in Tables 5 and 6. Among the compared methods,
ABCPruner [29], AACP [34] and SST [32] are all population
intelligence optimization algorithms, AMC [25], HRank [9],
FPGM [16], CSHE [21], Li et al.[18], FPSC [22] and CLR-
RNF [19] are the state-of-the-art filter pruning methods. The

Table 3 Accuracy and pruning
ratio on CIFAR-100

Model Top-1/Drop FLOPs/Pruned Params/Pruned

ResNet56 Baseline 69.26/0.00 127.62M/0.00% 0.85M/0.00%

AFPruner(-) 70.07/-0.81 63.48M/50.26% 0.42M/50.36%

AFPruner(∗) 70.00/-0.74 59.74M/53.19% 0.40M/52.46%

AFPruner(+) 69.96/-0.70 57.20M/55.18% 0.41M/51.69%

ResNet110 Baseline 72.02/0.00 257.09M/0.00% 1.73M/0.00%

AFPruner(-) 72.06/-0.04 134.38M/47.73% 0.78M/54.68%

AFPruner(∗) 72.01/-0.01 120.45M/53.15% 0.76M/56.27%

AFPruner(+) 71.98/0.04 106.87M/58.43% 0.70M/59.64%
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Table 4 Accuracy and pruning
ratio on ILSVRC-2012

Model Top-1/Drop Top-5/Drop FLOPs/Pruned Params/Pruned

ResNet18 Baseline 69.66/0.00 89.08/0.00 1824.52M/0.00% 11.69M/0.00%

AFPruner(-) 68.06/1.60 88.51/0.58 1000.75M/45.15% 6.55M/43.96%

AFPruner(∗) 68.01/1.65 88.07/1.02 944.74M/48.22% 6.37M/45.47%

AFPruner(+) 67.29/2.37 87.35/1.74 879.05M/51.82% 5.67M/51.49%

ResNet34 Baseline 73.28/0.00 91.45/0.00 3679.23M/0.00% 21.90M/0.00%

AFPruner(-) 72.36/0.92 90.83/0.62 1959.56M/46.74% 10.57M/51.73%

AFPruner(∗) 72.17/1.11 90.60/0.85 1891.49M/48.59% 10.11M/53.82%

AFPruner(+) 71.98/1.30 90.09/1.36 1781.48M/51.58% 9.63M/56.05%

ResNet50 Baseline 76.01/0.00 92.96/0.00 4135.70M/0.00% 25.56M/0.00%

AFPruner(-) 74.87/1.14 92.31/0.65 2369.76M/42.70% 13.43M/47.46%

AFPruner(∗) 74.23/1.78 91.89/1.07 2060.41M/50.18% 12.00M/53.05%

AFPruner(+) 73.89/2.12 91.69/1.27 1887.53M/54.36% 10.68M/58.23%

results of these comparingmethods are reported according to
the original article. It is worth noting that the average values
of the statistical tests are used for comparison here, not the
optimal values. In Section 4.4.2, we further compare the time
complexity of the algorithms in Table 7.

4.4.1 Accuracy and pruning ratio

Comparison on CIFAR-10 For ResNet56, it can be seen
fromTable 5 that most of themethods decrease the classifica-
tion accuracy after pruning. In contrast, our method exceeds

Table 5 Performance
comparison of ResNet56/110 on
CIFAR-10

Method Baseline Top-1/Drop FLOPs/Pruned Params/Pruned

results with ResNet56

Azadeh[12] 93.59 93.19/0.40 76.44M/40.10% -

Li et al.[18] 93.26 92.42/0.84 62.95M/49.90% 0.48M/44.00%

AACP[34] 93.10 92.82/0.28 62.72M/50.00% -

HRank[9] 93.26 93.17/0.09 62.72M/50.00% 0.49M/42.40%

AMC[25] 92.80 91.90/0.90 62.72M/50.00% -

CSHE[21] 93.26 93.07/0.19 62.72M/50.00% 0.49M/42.40%

SST[32] 93.57 93.28/0.29 62.39M/51.11% -

SFP [10] 93.59 93.35/0.24 59.40M/52.60% -

FPGM[16] 93.59 92.89/0.70 59.40M/52.60% -

FPSC[22] 93.59 93.14/0.45 59.40M/52.60% 0.39M/54.20%

ABCPruner[29] 93.26 93.23/0.03 58.54M/54.13% 0.39M/54.20%

CLR-RNF[19] 93.26 93.27/-0.01 54.00M/57.30% 0.38M/55.50%

AFPruner(Ours)∗ 93.26 93.45/-0.19 60.81M/52.35% 0.39M/54.42%

results with ResNet110

CSHE[21] 93.50 93.44/0.06 153.00M/39.50% 1.04M/38.70%

AACP[34] 93.30 93.76/-0.46 154.25M/40.00% -

SFP[10] 93.68 93.86/-0.18 152.20M/40.80% -

Li et al.[18] 93.50 92.99/0.51 134.88M/46.70% 0.74M/57.10%

Azadeh[12] 93.68 93.50/0.18 136.00M/47.10% -

FPGM[16] 93.68 93.85/-0.17 122.63M/52.30% -

HRank[9] 93.50 93.36/0.14 105.70M/58.20% 0.70M/59.20%

ABCPruner[29] 93.50 93.58/-0.08 89.87M/65.04% 0.56M/67.41%

CLR-RNF[19] 93.57 93.71/-0.14 86.80M/66.00% 0.53M/59.10%

AFPruner(Ours)∗ 93.50 94.08/-0.58 116.59M/54.65% 0.79M/54.27%
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Table 6 Performance
comparison of ResNet18/34/50
on ILSVRC-2012

Method Top-1/Drop Top-5/Drop FLOPs/Pruned Params/Pruned

results with ResNet18

Azadeh [12] 67.82/2.46 88.18/1.45 1454.14M/20.30% -

SFP [10] 67.10/3.18 87.78/1.85 1058.70M/41.80% -

ASFP [11] 67.41/2.82 87.89/1.62 1058.70M/41.80% -

FPGM [16] 67.78/2.50 88.01/1.62 1058.70M/41.80% -

FPSC [22] 67.43/2.85 87.99/1.64 1031.26M/43.30% 6.52M/44.20%

ABCPruner [29] 67.28/2.38 87.67/1.41 1005.71M/44.88% 6.60M/43.55%

AFPruner(Ours)∗ 68.01/1.65 88.07/1.02 944.74M/48.22% 6.37M/45.47%

results with ResNet34

Azadeh [12] 72.25/1.67 90.56/1.06 2899.23M/21.20% -

SFP [10] 71.83/2.09 90.33/1.29 2170.77M /41.10% -

ASFP [11] 71.72/2.20 90.65/0.97 2170.77M /41.10% -

FPGM [16] 71.19 /2.13 90.70/0.92 2170.77M /41.10% -

ABCPruner [29] 70.98/2.30 90.05/1.40 2170.77M/41.00% 10.12M/53.58%

AFPruner(Ours)∗ 72.17/1.11 90.60/0.85 1891.49M/48.59% 10.11M/53.82%

results with ResNet50

Azadeh 75.26/0.89 92.37/0.50 3068.69M/25.80% -

SFP [10] 74.61/1.54 92.06/0.47 2406.98M/41.80% -

ASFP [11] 74.88/1.27 92.39/0.48 2406.98M /41.80% -

HRank [9] 74.98/1.17 92.33/0.54 2325.92M/43.76% 16.15M/36.67%

CHSE [21] 72.25/3.40 - 1985.23M/51.50% 18.23M/27.80%

FPGM [16] 74.13/2.02 91.94/0.93 1923.10M/53.50% -

ABCPruner [29] 73.86/2.15 91.69/1.27 1890.60M/54.29% 11.75M/54.02%

AFPruner(Ours)∗ 74.23/1.78 91.89/1.07 2060.41M/50.18% 12.00M/53.05%

Table 7 Time complexity on
CIFAR-10

Method Top-1/Drop FLOPs/Pruned Params/Pruned Time Cost

result with VGG16

Baseline 93.02/0.00 317.59M/0.00% 14.73M/0.00% -

ABCPruner(ABC) [29] 92.90/0.12 106.25 M/66.20% 4.72 M/67.98% 2h31min

ACP(PSO) [31] 92.87/0.15 99.41 M/68.37% 4.35 M/70.43% 2h04min

Ours(RSGA) 93.55/-0.53 101.46M/67.75% 2.57M/82.56% 1h36min

result with ResNet56

Baseline 93.26/0.00 127.62M/0.00% 0.85M/0.00% -

ABCPruner(ABC) [29] 93.01/0.25 59.63 M/53.28% 0.40 M/52.96% 3h31min

ACP(PSO) [31] 92.98/0.28 59.03 M/53.74% 0.40 M/53.24% 2h10min

Ours(RSGA) 93.41/-0.15 57.68M/54.79% 0.39M/54.33% 1h27min

result with ResNet110

Baseline 93.50/0.00 257.09M/0.00% 1.73M/0.00% -

ABCPruner(ABC) [29] 93.86/-0.36 107.39 M/58.23% 0.73 M/58.01% 6h11min

ACP(PSO) [31] 93.73/-0.23 110.51 M/ 57.01% 0.86 M/50.49% 4h46min

Ours(RSGA) 93.95/-0.45 106.44M/58.60% 0.69M/60.07% 2h45min
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Table 8 The influence of
reverse operation

ResNet56 ResNet110
Reverse operation Pruned Acc/% Flops.drop/% Pruned Acc/% Flops.drop/%

✘ 92.72 52.97 93.78 49.73

✔ 93.45 51.64 94.15 53.67

Where “✘” means the operation is not used and “✔” means the operation is used

the baseline. Compared with ABCPruner [29], AMC [25],
SST [32] and AACP [34], which also search for pruning
ratio, our method outperforms these algorithms with similar
pruning ratio. Compared with the newly released algorithms
FPSC [22] andCSHE [21], ourmethod improves accuracy by
0.19% when considering the pruning ratio of Flops (52.35%
vs 52.60% vs 50.00%) and Params (54.42% vs 54.20% vs
42.40%), while the accuracy of FPSC [22] and CSHE [21]
decreases by 0.45% and 0.15%, respectively.

For ResNet110, even removed 54.27% Params and 54.65%
Flops, the accuracy of the pruned model is 0.58% higher
than the baseline, which is slightly better than other meth-
ods. Among the compared methods, AFPruner outperforms
CHSE [21] in all respects, CSHE [21] has the lowest prun-
ing ratio and the classification accuracy of the pruned model
decreased by 0.06%. Although the accuracy of ABCPruner
[29] and CLR-RNF [19] is still improved compared to the
baseline at high compression ratio, the improvement is not
significant, which further illustrates thatAFPruner can obtain
the optimal pruning ratio.

Comparison on ILSVRC-2012 Table 6 shows the com-
parison of ResNet18/34/50 results on ILSVRC-2012. For
ResNet18, AFPruner achieves the best results in terms of
Flops, Params and Top-1 accuracy. In particular, compared
with Azadeh [12], which also adopts genetic algorithm, our
method compresses 48.22% of Flops and achieves 68.01%
of Top-1 accuracy, while Azadeh [12] compresses 20.30%
of Flops and achieves only 67.82% of Top-1 accuracy. For
both ResNet34 and ResNet50, AFPruner still slightly outper-
forms existing methods with similar pruning ratio. Although
Azadeh [12] slightly outperforms our method in terms of
accuracy, its Flops compression ratio is only half of ours.

The comparisons of the experimental results on different
datasets show that AFPruner achieves better performance in

Table 9 Cluster analysis of ResNet56 on CIFAR-10

clustering reverse operation Pruned Acc/% Flops.drop/%

✘ ✘ 92.21 51.27

✘ ✔ 92.98 50.97

✔ ✘ 93.22 46.97

✔ ✔ 93.45 51.64

both the compression ratio of Flops and Params after prun-
ing. Even though the accuracy metric is slightly lower than
individual pruning algorithms on some models, its pruning
ratio is higher than these algorithms, which indicates that
AFPruner better considers the structural integrity and global
correlation of CNN layers in the filter pruning process, and
thus can better prune the redundant structure of the model.
The experimental results show the effectiveness and superi-
ority of the AFPruner.

4.4.2 Time complexity

We further compare the effective running time, including
search time and fine-tuning time of the algorithms. Specifi-
cally, we focus on comparing the algorithmsABCPruner [29]
and ACP [31], which all also use a population intelligence
optimization approach to search pruning ratio. The results
are reported in Table 7, where ABCPruner [29] employs an
artificial bee colony(ABC) algorithm and ACP [31] employs
particle swarm optimization(PSO) algorithm. To ensure the
fairness of the comparison results, we use the same baseline
for different algorithms on CIFAR-10. During the experi-
ments, the same parameter configurations were set up for a
total of 10 rounds of searching, with a final fine-tuning of
160 epochs, and all the experiments are performed on Tesla
V100-SXM2-32GB. (Note: Because the original paper did
not have running time, the data in Table 7 are not from the
original paper, and are reproduced by ourselves using the
same parameters).

As can be seen in Table 7, for the same model, our algo-
rithm takes less time to run, and the final fine-tuned accuracy
is higher.

Table 10 Comparison of different similarity calculations on CIFAR-10

Model Type Pruned Acc/% Pruned Flops/%

ResNet56 cos 93.32 51.64

euclidean 93.45 51.64

ResNet110 cos 94.05 53.67

euclidean 94.15 53.67

VGG16 cos 93.34 67.75

euclidean 93.55 67.75
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4.5 Ablation study

Reverse operation To demonstrate the effectiveness of the
reverse operation during population iteration, we compare
the improved genetic algorithm with the traditional genetic
algorithm in Table 8. The result of the improved genetic algo-
rithm is better because the reverse operation can increase the
diversity of the population, which is more conducive to con-
vergence.

Cluster analysis We take ResNet56 on CIFAR-10 as an
example and analyze the influence of introducing clusters in
Table 9. Intuitively, the results of adding clusters are better,
indicating that the clustering operation can further improve
the population diversity of the genetic algorithm and alleviate
the “prematurity” convergence, thus effectively improving
the convergence.

Similarity calculation In order to verify the effect of
different similarity methods on the results, we use cosine dis-
tance instead of euclidean distance to calculate the similarity
between feature maps. On CIFAR-10, the same individual
is trained in different distances, and other parameters are
consistent during the training process. As can be seen from
Table 10, the results of euclidean distances outperform cosine
distances in all threemodels. In addition, in the previouswork

FPSC [22], it is also proved that the euclidean distance is bet-
ter than the cosine distance.

4.6 Visualization and analysis

We visualize some individuals generated during the search
process of ResNet56 on CIFAR-10. Figure 6 shows the effect
of hierarchical pruning on these individuals, and Table 11
shows the differences between them.

From Fig. 6, it can be found that the filter pruning ratio
varies for different individuals in different layers. It also is
indicated that our pruning algorithm adjusts the appropriate
pruning ratio based on the pruning sensitivity of each layer
during the search process.Additionally, for residual networks
such asResNet, excessive pruning of filters in the early stages
leads to a decrease in accuracy, and the accuracy of pruned
models is usually low when the residual blocks at the begin-
ning or end of each stage (as shown in the figure 9/10/18/19
layers) are too pruned. Specifically:

(1) As shown in Table 11, the classification accuracy of indi-
viduals (a), (c), and (d) after fine-tuning is relatively low.
Comparing with Fig. 6, it can be seen that individual (a)
prunes too many filters in the early stages and the 9-th

Fig. 6 Some individuals are in the iterative pruning process of
ResNet56 on CIFAR-10. Red represents the number of filters in each
layer of the original network, and purple represents the number of fil-
ters in each layer of the sub-network after pruning. A represents the test
classification accuracy after two rounds of fine-tuning, P represents the

param compression ratio, and F represents the Flops compression ratio.
(a) is the worst individual in P0; (b) is the optimal individual in P0; (c)
and (d) are the intermediate individuals in P3 and P6, respectively; (e)
is the worst individual in P9 ; (f) is the optimal individual in P9 (that is,
the optimal individual finally obtained)
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Table 11 Comparison of some
individuals generated during the
search on CIFAR-10 for
ResNet56

Individual Acc/% Param.drop/% Flops.drop/%

The worst individual in P0(a) 65.13 43.37 48.08

The optimal individual in P0(b) 80.00 50.71 56.26

The intermediate individual in P3(c) 64.13 66.95 60.30

The intermediate individual in P6(d) 67.88 52.64 51.87

The worst individual in P9(e) 73.18 49.30 50.52

The optimal individual in P9(f) 83.69 58.42 51.64

and 10-th layers; the 10-th and 19-th layers of individual
(c) are over-pruned; the 19-th layer of individual (d) is
over-pruned;

(2) For the two contemporary optimal individuals (b) and
(f), it can be seen that the 9/10/18/19-th layers are not
over-pruned, which results in higher testing accuracy at
the appropriate compression ratio.

(3) Furthermore, compared with the worst individual (a) in
the initial population, the worst individual (e) in the final
generation has a larger Flops and Param compression
ratio, and its testing accuracy after fine-tuning is even
better. This is because individual (e) preserves more fil-
ters in 10-th and 19-th layers, and evolves towards a
better direction in seeking a balance between compres-
sion ratio and accuracy.

The reason for the above phenomenonmay be that the first
residual block in each stage downsamples the features and
requires more filters for feature extraction to avoid infor-
mation loss. In the subsequent pruning process, specific
processing can be performed for these layers to guide net-
work pruning more effectively.

5 Conclusion

This paper introduces a novel algorithm named automatic
filter pruning algorithm via feature map average similarity
and reverse search genetic algorithm(AFPruner) for auto-
matically searching the optimal combination of pruning ratio
in convolutional neural networks. We use reverse search
and clustering to enhance population diversity and acceler-
ate convergence, and utilize the average Euclidean distance
between feature maps to calculate their similarity during
the pruning process, thereby selecting filters. The experi-
ment results show that AFPruner has excellent performance,
achieves a high pruning ratio and model accuracy, and out-
performs most current pruning algorithms. In addition, we
also found that over-pruning has a significant impact on
accuracy during feature downsampling, which suggests that
specific treatment of these layers can be applied in subse-
quent pruning processes. In future research, we will consider

the following methods: optimizing the search space for net-
work pruning, leveraging faster optimization methods, and
extending model pruning to additional tasks, such as object
detection.
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