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Abstract
With the development of Location-Based Social Networks, successive Point Of Interest (POI) recommendation systems have
become a hot spot in the field of recommendation systems. Successive POI recommendation systems suggest to users new
and interesting places to visit. However, in real-life POI recommendation, there are often a small number of users facing
a huge number of POIs. Traditional successive POI recommendation methods are not capable to deal with the large sparse
datasets, as they only consider the simple relationship between users and POIs. They do not use the context information of
users and POIs, which can enable better recommendation results. To utilize the context information, this paper proposes a
novel successive POI recommendation method, SQPMF, which integrates user personal preferences, user social relationships
and POI transition relationships into the system for accurate recommendation of the next POI. Our experimental evaluation
using three real-life datasets, Gowalla, Foursquare and Brightkite, shows that our method SQPMF consistently outperforms all
state-of-the-art methods in recommendation of successive POIs. Compared with other methods, SQPMF improves Precision,
Recall and F1-score by an average of at least 6.1%, 5.8% and 5.7% respectively on three publicly available datasets.

Keywords Successive POIs · Recommendation system · Probability matrix factorization · Location-based social networks

1 Introduction

In recent years, with the rapid development of the Inter-
net, various Location-Based Social Networks (LBSN) such
as Twitter, Facebook, Weibo, and Meituan have emerged.
The rapid development of these social networks has brought
many conveniences to people’s lives and greatly improved
people’s quality of life. People can use their mobile devices
to share check-in information in various situations in their
lives. Using the users’ check-in information to recommend
Points Of Interest (POI) is also a popular development trend
in recent years [1–3]. LBSN can obtain valuable information
by collecting users’ check-in data. A POI refers to a place
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where a user checks in, such as a shopping mall, a cafe, etc.
POI recommendation can effectively alleviate the problem
of overloading location information and improve users’ per-
sonalized experience. At the same time, it helps businesses
to tap potential customers and improve business benefits.
Therefore, POI recommendation has become an important
service in LBSN and one of the core research directions in
the field of LBSN and recommendation systems [4, 5]. An
important challenge that needs to be solved in POI recom-
mendation systems is the problem of data sparsity. There
are thousands of POIs in a LBSN, but users can only go to
a limited number of POIs, which will result in very sparse
check-in data [6, 7]. In real-life, people check in at different
locations anytime and anywhere, leaving a large amount of
feedback data. But for hundreds of millions of POIs, there
is very little explicit data available to users [8–10]. In order
to alleviate the above problem, most recommendation sys-
tems use Collaborative Filtering (CF) to recommend items
or POIs. Most of the current research on POI recommenda-
tion systems only consider the check-in relationship between
users and POIs, ignoring the correlation between POIs that
users visit in sequence. In fact, there is a strong correlation
between a user’s current POI and their next POI to visit. For

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-05196-x&domain=pdf
http://orcid.org/0000-0002-3203-6118


SQPMF: successive point of interest... 681

example, after going shopping in a mall, users usually go to
a restaurant to eat instead of traveling abroad. Therefore, in
the process of building a POI recommendation model, it is
necessary to recommend the next POI to a user based on the
user’s current POI [11–13].

Additionally, in real life, personal preferences have a great
impact on users’ behaviors. The number of visits to each
POI shows a user’s personal interest preferences for the POIs
[14–16]. On the other hand, a user’s personal preferences
are usually influenced by their friends because of similar
preferences. Therefore, if a user has not visited a place yet,
the personal preferences of their social friends could provide
useful information for the recommendations [17–19].

Most existingPOI recommendation systems only consider
the partial relationship between users and POIs, which is not
comprehensive enough. Therefore, in this paper, a successive
POI recommendation method, called SQPMF, is proposed.
It integrates the user’s personal preferences, the user’s social
relationships and the transition relationships between suc-
cessive POIs to improve the accuracy of the recommendation
system.In order to mine the features of user’s social relation-
ships, we study the explicit trust relationships and implicit
trust relationships between users in SQPMF.We use the habit
similarity between users and the sequence similarity between
users to furthermine the hidden information behind the user’s
rating on POIs [20–22]. In SQPMF, we fuse together the
transition frequency between POIs, the geographic distance
between POIs, and the popularity of destination, which also
have a large impact on the recommendation results of the
next POI. We use Probability Matrix Factorization (PMF) to
model and solve the user’s social relationships and the POI
transition relationships in SQPMF. PMF is a popular method
in building recommendation systems. It performs well on
large sparse datasets. In recent years, PMF has attracted
extensive attention of researchers with its good accuracy and
scalability [23, 24] for solving the recommendation problem.
Experimental results show that SQPMF can significantly
improve the accuracy of successive POI recommendations.
The main contributions of this paper are as follows.

(1) We propose a new successive POI recommendation
method, SQPMF, that utilizes the user’s personal pref-
erences, the user’s social relationships and the transition
relationships between successive POIs, to improve the
accuracy of successive POI recommendations.

(2) We prove that SQPMF can most likely produce accurate
recommendations of POIs based onBayes’ Theoremand
the assumptions of PMF.

(3) Several experiments are conducted with real datasets.
The experimental results show that SQPMF has much
better performance than the existing recommendation
methods. It improves Precision, Recall and F1-score by

an average of 6.1%, 5.8%, 5.7% respectively on three
publicly available datasets.

The rest of this paper is organized as follows. Section 2
introduces the relatedwork. Section 3 introduces the notation
and definitions used in this paper, the details of the proposed
SQPMF method, and the derivation of related formulas.
Section 4 presents the experimental setup, results, analysis
and evaluation. Finally, Section 5 concludes this paper.

2 Related work

In the field of POI recommendation, in order to alleviate the
problem of data sparsity, most methods adopt the Collabora-
tive Filter (CF)methods. The CFmethods aremainly divided
into memory-based methods and model-based methods [25,
26]. Memory-based methods have achieved great success in
the POI recommendation system, but many memory-based
methods suffer from data sparsity and cold start problems.
However, with the rapid development of machine learning
technology, model-based methods have emerged. The well-
known models are Bayesian models, clustering models, and
etc. Model-based methods can avoid the shortcomings of
memory-based methods. Among them, the Matrix Factor-
ization (MF) is a typical model-based method. At present,
the basic MF assumes a linear relationship between users
and POIs and has good scalability and flexibility. Since
it can alleviate the problem of data sparsity to a certain
degree, MF is widely used. Rahmani et al. [24] proposed a
POI recommendation method based on a local geographical
model, and integrated this model into MF. This improved the
performance of recommendation to some extent. Seyedho-
seinzadeh et al. [25] proposed a new framework based on the
ideas of CF and MF. It modeled the recommendation prob-
lem of POI based on users and POIs, and partially addressed
the problem of data sparsity.

However, the basic MF method does not take users, POIs,
and contextual features into account formodeling. This short-
coming causes the loss of useful information and limits the
accuracy of the recommendation results. In successive POIs
recommendation systems, a small number of users are often
mapped to a large number of POIs. With hundreds of mil-
lions ofPOIs,MF is facedwith huge computational overhead.
Thus, MF is hard to deal with large datasets. In order to alle-
viate this problem of MF, Mnih et al. [26] proposed the PMF
model. PMF is similar to MF, which is based on the low-
rank approximation of the matrix, except PMF adds Bayes’
Theorem to MF. It adopts the probability linear setting with
Gaussian observation noise, and decomposes the user rating
matrix into two low-rank user feature matrices and two item
feature matrices with the most likelihood. The authors of
[27, 28] have shown that PMF performs well in large-scale,
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sparse datasets. Among them, Davtalab et al. [27] proposed
a method called SSTPMF, which is based on PMF. SSTPMF
utilized information about users and POIs to improve the
accuracy of POI recommendations to a certain extent. How-
ever, the authors failed to use the relationships of users and
POIs sufficiently. For example, when calculating POI simi-
larity, SSTPMF only mapped the POI category score to 0 or
1, which greatly affected the accuracy of the results. In addi-
tion, in mining the social relationships of users, the authors
only used the Jaccard measure representing user social sim-
ilarity. Jaccard measure is generally used to reflect whether
the userwill choose a POI, but cannot reflect the specific pref-
erences of the user related to the POI. In fact, the scores of
social relationships can be expressed more comprehensively
through using other available information. For example,
by considering information such as users’ habit similar-
ity and sequence similarity, we can further understand the
users’ potential preferences for POI, and thus better improve
the accuracy of recommendations. Therefore, our SQPMF
method is proposed to address these issues, and to improve
the performance of the recommendations for successive
POIs.

Though explicit feedback such as ratings can clearly
express the likes and dislikes of users, POI recommenda-
tion systems only have users’ check-in information of the
visited POIs, which do not directly express the user’s pref-
erences. This kind of check-in information is called implicit
data [29–31]. In POI recommendation, only using the explicit
data would result inaccurate recommendations. It is neces-
sary to integrate implicit data of users and POIs in MF. In
order to address this problem, many works [1, 8, 21, 32–34]
considered incorporating rich implicit information into POI
recommendation systems.

For example, in LSBN, there are a lot of connections
between users, which play an important role for accurate
recommendations. Guo et al. [1] proposed a trust-based MF
model, which comprehensively considered the explicit and
implicit trust relationships between users and achieved better
recommendation results. Ma et al. [34] integrated the users’
trust relationships in PMF and used the users’ social net-
work information and rating records to solve the problems
of data sparsity and poor prediction accuracy. They showed
the effectiveness of the trust relationships in improving the
recommendation results. Qian et al. [21] proposed a person-
alized recommendation system based on PMF that combined
users’ personal interests, similarity of interpersonal inter-
ests, and interpersonal influence, which further improved
the accuracy of recommendation. Zhou et al. [8] considered
the strength of user relationships using data-driven methods
to improve POI recommendations. It defined user relation-
ships based on the analysis of user check-in behaviors. They
embedded the user’s social connections into a spatiotemporal
model of POI recommendations.

It is worth noting that the recent application of Knowledge
Graphs (KGs) has been proved to be effective in addressing
the problem of data sparsity. It is mainly used to learn the
characteristics of users and POIs from the check-in records of
users and their friends. Chen et al. [35] used KGs to design a
new spatiotemporal transition relationship and jointly trained
andmodeled the next POI recommendation system in an end-
to-end manner. Hu et al. [36] proposed a translation-based
KG-enhanced multi-task learning framework (TransMKR)
for POI recommendation. TransMKR improved POI rec-
ommendation based on KGs, quantified the relationships
between POIs and their attributes, and thus alleviated the
problem of data sparsity. Though these methods greatly
improved the recommendation quality, there is still much
room for the application of KGs. For example, the current
KGs cannot reflect the dynamic movement of the POIs with
static entities and relationships.

Geographical influence is also an important factor to con-
sider in POI recommendation, since a user’s preference for
a POI is largely influenced by the geographical location of
the POI. Lian et al. [37] proposed a GeoMF model, which
incorporated the spatial clustering phenomenon of users
movements into the factorization model and enhanced the
potential factors of users and POIs in the factorization model
by using the activity area vector of users and the influence
area vector of POIs. This research attracted the attention of
many researchers. Rahmani et al. [16] well considered the
geographical factors of POIs and combined time, social and
other information to develop a POI context fusion method
based on linear regression. Thismethod could effectively find
the optimal context combination from the historical interac-
tions of each user or user group, and improved the accuracy
of POI recommendation.

Unlike the traditional POI recommendations, the next
POI recommendation focuses more on sequence dependen-
cies. Many studies used Markov chain to recommend the
next possible POI. Models based on Markov mainly used
transition matrixes to predict the probability of the next
behavior of a user. For example, PRME (Personalized Rank-
ing Measurement Embedding) [29] was proposed to use
user preferences, POI sequential information and geographic
influence. Although multistage Markov chain can improve
the accuracy of recommendation results to some extent, the
computational complexity increases exponentially with the
increase of Markov order. The high computational com-
plexity makes the Markov models difficult for practical
applications.

Recently, some researchers found that user preferences
change over time, especially the current check-in order,
which has a significant impact on POIs. Therefore, in order
to improve recommendation performance, it is necessary to
consider both long-term and short-term preferences of users
[38–40]. For example, Liu et al. [38] proposed a model based
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on Graph Neural Network (GNN), which integrated users’
long-term and short-term preferences to comprehensively
represent dynamic preferences. Long Short Term Memory
(LSTM), as a variant of Recurrent Neural Network (RNN),
is alsowidely used to recommend the next POI. Liu et al. [39]
proposed a Real-Time Preference Mining (RTPM) model
based on LSTM, which could dynamically mine users’ long-
term and short-term preferences, filtered out unpopular POIs,
and achieved better recommendation results. However, the
GNN/LSTM based methods cannot model the relationships
between two discontinuous POIs.

Table 1 summarizes the related methods and their advan-
tages/disadvantages in POI recommendation.

In summary, existing studies have not considered the indi-
vidual behavioral habits of users. In addition, the previous
works only considered the user’s partial social relationships
in their models. Although these models could alleviate the
problem of data sparsity to some extent, they performed
poorly for extremely sparse user-POI matrices. Likewise, for
POI transition relationships, previous models only consid-
ered the geographic distance or the sequential influence of
successive POIs, which are not sufficient for accurate recom-
mendations.

In contrast, our SQPMF model not only considers users’
sequential preferences, but also integrates their real-time
habits and preferences, which helps to understand their cur-
rent intentions. Therefore, our proposed SQPMF model can
provide better recommendations for next POIs by exploiting
more implicit information of users’ relationships and POI
transition relationships.

3 Method

We propose the SQPMF model by exploiting the users’ per-
sonal preferences, the users’ social relationships and the
transition relationships between successive POIs. Through
model inference, we propose an objective function to learn
the users’ social relationships and POI transition relation-
ships. We then integrate the learned implicit information
into users’ ratings of POIs. We use the Stochastic Gradient
Descent (SGD) method to minimize our objective function
in order to improve the accuracy of the users’ rating of POIs,
according to which a ranked list of recommendations for the
users’ next POIs can be obtained. For the convenience of

Table 1 Related research

Methods Descriptions Advantages Disadvantages

PMF [26] It proposes a PMF model,
incorporating a Bayesian
perspective on the basis of
MF.

It is suitable for large-scale
sparse matrices.

It does not take into account
the potential relationship
between users and POIs.

SSTPMF [27] It is based on a PMF model
tomine information between
users and POIs.

It takes into account user
similarity and POI similar-
ity.

It cannot accurately calcu-
late user similarity and POI
similarity.

TrustSVD [1] It merges user trust relation-
ships into SVD++.

It considers and handles trust
relationships between users.

It sets trust intensity equally
for all users, which leads
to inaccurate recommenda-
tions.

Sorec [34] It is based on PMF model
and incorporates a user trust
relationship matrix.

It takes into account trust
relationships between users
and is suitable for large-scale
datasets.

It does not consider other
social relationships between
users and does not consider
the POI transition relation-
ships.

GeoMF [37] It makes recommendations
based on the geographic
model of the user’s activity
area and POI influence area.

It takes into account the geo-
graphical influence between
users and POIs.

It does not take into account
other implicit information
between users and POIs, and
the impact of user social
relationships.

PRME [29] It utilizes user preferences
and sequential transition of
POIs.

It takes into account con-
text information such as user
preferences and transition
relationships between POIs.

It is based on a multi-stage
Markov chain and is diffi-
cult to scale to large-scale
datasets.

RTPM [39] It proposes a real-time pref-
erence mining model based
on LSTM.

It takes into account users’
long-term and short-term
preferences.

It does not fully explore
the potential information
between users and POIs.
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Table 2 Symbols and definitions used in this paper

Symbols Definitions

W Feature dimension

M The number of users

N The number of POIs

U User feature matrix

V POI feature matrix

F Social feature matrix of users

P Relevance feature matrix of POIs

Ri j User i’s rating for POI j

R
′
i j User i’s predicted rating for POI j

Rz
i j Predicted score of user i for the next POI z when at

POI j

Si f Social score of user i and user f

S
′
i f Predicted social score of user i and user f

Q jk Transition score of POI j to POI k

Q
′
jk Predicted transition score of POI j to POI k

� Objective function

expression and explanation, the symbols used in our model
are listed in Table 2.

3.1 Overall framework

Asmentioned above,MFhas beenwidely used in POI recom-
mendation. Due to the shortcomings of MF, such as unable
to integrate the context information, unable to process large-
scale datasets, PMF has been proposed.

In order to better illustrate our proposed SQPMF, this sec-
tion makes an overall comparison between SQPMF and MF.

As shown in Fig. 1, MF decomposes the initial sparse
matrix R(M × N ) into a user feature matrixU (M × W ) and
a POI feature matrix V (W × N ), where M is the number of
users, N is the number of POIs, and W is the vector dimen-
sion, i.e., the number of features [24, 25].

In Fig. 1, in the initial rating matrix R, users have rated
some POIs. For example, user A rated POI Y as 3.80. The
question mark means that the user has never visited the POI,
e.g. user B has never visited POI Y . In practice, we cannot set
the value here as zero, because zero is also a rating, meaning
the user does not like the POI. Since the user has never visited
the POI, we don’t knowwhether the user likes the POI or not.
Through MF, the matrix R, is decomposed into the user fea-
ture matrix U and the POI feature matrix V . By multiplying
U and V , the predicted rating matrix R

′
can be calculated. In

the predicted ratingmatrix R
′
, the missing values (?) of R are

filled by theMFmethod. Therefore, withMF, the recommen-
dation problem is transformed into the matrix factorization
problem that aims to reduce the discrepancy between R
and R

′
.

However, for POI recommendation,MFcannot effectively
mine the information of users and POIs, which has poor
recommendation performance for extremely sparse user-POI
matrix.

Considering these shortcomings, this paper integrates the
users’ social relationships and the POI transition relation-
ships in our SQPMF model to improve the recommendation
results. Our experimental results show that all the informa-
tion we integrate in SQPMF have a positive impact on the
successive POI recommendations. Figure 2 shows the model
diagram of SQPMF.

Comparing between Figs. 1 and 2, we can see that, based
on the MF model, SQPMF combines the users’ social rela-
tionships and the POI transition relationships. The matrices
S and S

′
represent the initial social relationship matrix and

the predicted social relationship matrix, respectively. Inte-
grating more information of users’ social relationships into
the matrix S will help us to mine more potential preferences
of users and help us make better recommendations. There-
fore, we integrate the trust relationship, the habit similarity
and the sequence similarity into the users’ social relationship
matrix. It can be seen in matrix S that integrating these fac-
tors into the recommendation system can better update the
user feature matrix U . It is worth noting that in the initial
dataset, a user’s social relationship with another user is only

Fig. 1 Matrix factorization model
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Fig. 2 Model diagram of SQPMF

represented by 0 or 1, which cannot well distinguish the
strength of social relationships between users [34]. There-
fore, we propose several different calculation formulas to
model a user’s social relationship, which better fits the real-
life situation. The strength of social relationships between
users affects the final recommendation results. After decom-
posing the social relationship matrix S, it can be divided into
a user feature matrix U and a social feature matrix F .

On the other hand, the matrices Q and Q
′
represent the

initial POI transition matrix and the predicted POI tran-
sition matrix, respectively. Similarly, considering real-life
situations, we want to fuse as much related information
as possible in the recommendation of POIs. Most previous
works only considered partial relationships between POIs,
which was not comprehensive enough. In this paper, the tran-
sition frequency, the geographic distance, and the popularity
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of destination are considered in the POI transition matrix.
This will enable us to learn sufficient information about POIs
and help us better make up for the shortcomings of the sparse
matrix. The POI transition matrix Q can be divided into POI
featurematrix V and relevance featurematrix P of POIs after
decomposing.

By continuously decomposing and learning the initial
sparse matrix, using the information learned from the social
relationship matrix S and the POI transition matrix Q, the
user feature matrix U and the POI feature matrix V are
continuously updated. At the same time, the social feature
matrix F and the relevance feature matrix P are constantly
updated, so that the discrepancy between the matrix S and
the matrix S

′
and the discrepancy between the matrix Q and

the matrix Q
′
are continuously reduced. The update process

iterates until the discrepancy between the initial score matrix
R and the predicted score matrix R

′
is smaller enough. As

a result, the values of R
′
in Fig. 2 are closer to the values

of R than those of R
′
in Fig. 1. This example illustrates that

our method of integrating the social relationship matrix S
and POI transition matrix Q into SQPMF is very effective.
The following section will introduce our mathematical for-
mulas and detailed explanations. Our experimental results
will show that SQPMF is more suitable for large-scale suc-
cessive POI recommendations where the user-POI matrix R
is extremely sparse.

3.2 Metric for user social relationship

In the field of POI recommendation, explicit and implicit
trust relationships are two different ways of expressing rela-
tionships between users. The essential difference between
explicit trust relationships and implicit trust relationships lies
in their different expressions. Explicit trust relationship refers
to the level of trust that users have towards other users or POIs
expressed through clear ratings or feedback. For example,
on social media platforms, users can like, comment on, or
share their content with friends, which directly express trust
and recognition towards their friends. Implicit trust relation-
ship refers to the indirect expression of a user’s level of trust
in other users through user behavior or implicit feedback.
These behaviorsmay include user browsing history, purchase
history, click behavior, etc. By analyzing users’ implicit feed-
back information, it is possible to infer their level of interest
in a particular POI and their trust in other users. Usually the
explicit trust relationships we can obtain in real life are lim-
ited. Therefore, considering both explicit and implicit trust
relationships can effectively represent the trust relationships
and thus helps improve the accuracy of recommendations.

According to the previous research [41, 42], a user’s social
relationship has a significant impact on the user’s activ-
ity trajectories. Recommendation methods based on users’
social relationships can effectively address the data sparsity

problem and improve recommendation results [43, 44]. Tra-
ditionally the social relationship between user i and user f
is represented by 0 or 1. If user i trusts user f , then the
social relationship from user i to user f is represented by
1; otherwise, it is 0. However, expressing the user’s social
relationship with 0 or 1 cannot well represent the strength of
social relationships between users.

Considering the real-life social relationships, our SQPMF
model integrates both the explicit trust relationships and
implicit trust relationships in successive POI recommenda-
tion, to improve the accuracy of the recommendations.

In real life, expressing a user’s social relationship with 0
or 1 hides many details, such as the trust relationship, the
habit similarity and the sequence similarity, between users.
We use a novel social score considering the above factors to
represent the degree of social relationship. The social score
is expressed in (1):

Si f = ηSimp
i f + μShabi f + (1 − η − μ)Sseqi f (1)

where Simp
i f represents the trust degree between users,

Shabi f represents the habit similarity, Sseqi f represents the
sequence similarity, η,μ∈[0,1] represent the weight of dif-
ferent attributes, respectively.

Note that, in real life, a user’s social relationship is usually
related rather than symmetrical. Therefore, the matrix S is
asymmetric, that is, the social score from user i to user f is
not the same as the social score from user f to user i .

Below are the details of Simp
i f , Shabi f and Sseqi f used in (1).

In real life, a user has many friends, some of them have
similar habits to the user, but others may have different habits
from the user. These details could affect the accuracy of the
recommendations. In order to learn as much relevant infor-
mation of users as possible in the recommendation, and to
mine the implicit information in the users’ relationships, we
propose to integrate the habit similarity in a successive POI
recommendation, as shown in (2).

Shabi f =
M∑

i=1

M∑

f ∈F
S∗
i f ×

∥∥Ui j −U f j
∥∥2
F (2)

where Ui j and U f j represent the difference from the ratings
of user i to user f for POI j , S∗

i f represents the original social
relationship of user i to user f , and the larger the value of
Shabi f , the higher the habit similarity from user i to user f .

In successive POI recommendation, each user has its
own historical access sequence. The users’ access to POIs
can describe the users’ preference transition information for
POIs. If the overlap of the historical access sequence is high
between two users, we think that the sequence similarity is
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also high. Therefore, we calculate the sequence similarity in
(3):

Sseqi f = seq2i f
seqi seq f

(3)

where seqi and seq f represent the total number of sequences
of user i anduser f , respectively. seqi f represents the number
of common sequences between user i and user f . The larger
the value of Sseqi f , the higher the sequence similarity from
user i to user f .

Considering the influence of the implicit trust relation-
ship on the trust relationship, it is necessary to improve the
representation of the trust degree. In location-based social
networks, we believe that if user i trusts many users, the con-
fidence of user i’s trust value will decrease. However, if user
f is trusted by many users, the confidence of user f ’s trust
value should increase.We use (4) to express trust degree [31]:

Simp
i f =

√
d−(U f )

d+(Ui ) + d−(U f )
× S∗

i f (4)

where d+(Ui ) ) represents the outdegree of user i , which
is the number of users trusted by user i . d−(U f ) represents
the indegree of user f , which is the number of users who
trust user f . S∗

i f represents the original social relationship
between user i and user f (0 or 1). The larger the value of
Simp
i f , the higher the degree of trust from user i to user f .
It should be noted that the above formula is based

on directed networks. Among the datasets used in our
experiment, Gowalla uses an undirected friendship net-
work, Foursquare uses a directed friendship network, and
Brightkite uses a hybrid network where undirected edges are
used when there is a friendship in both ways. All the original
datasets downloaded from their websites have been already
represented as directed graphs, which is easily applicable to
(4). For example, inGowalla’s original dataset, three columns
of data were used to represent the original trust relationship
between users, namely the user ID, the user’s social friend
ID, and their relationship (1 represents trust, 0 represents dis-
trust). If there is an undirected edge connecting user 2 and
user 4, two records are present in the dataset to represent their
trust relationship as below:

2 4 1
4 2 1
However, in cases where the trust relationships between

users are represented by an undirected graph, the network
can be converted into a directed graph. In the conversion,
each undirected edge is transformed into two directed edges.
For each user or node in the converted directed graph, the
indegree of the user equals the outdegree of the user in such
cases. After the conversion, (4) is applicable to undirected
graphs to calculate implicit trust relationships.

3.3 Metric for POI sequence transition

Likewise, many previous works only utilize partial informa-
tion between POIs when expressing the sequence correlation
between POIs. However, such practice loses useful infor-
mation between POIs, such as the transition frequency,
the geographic distance, and the popularity of destination.
Considering these factors, we propose (5) to evaluate the
transition score:

Q jk = βQ f re
jk + γ Qgeo

jk + (1 − β − γ )Qpop
jk (5)

where Q f re
jk represents the transition frequency score

between POIs, Qgeo
jk represents the geographic distance score

between POIs, Qpop
jk represents the popularity score of desti-

nation, β,γ∈[0,1] represent the weight of different attributes,
respectively.

Likewise, due to the asymmetry of the sequence of POIs
visited by users, the transition score from POI j to POI k is
not completely equivalent to the transition score from POI k
to POI j . So the matrix Q is also asymmetric.

Below are the details of Q f re
jk , Qgeo

jk , and Qpop
jk in (5).

Considering the continuity of the sequence between the
POIs visited by the users, we propose to use the continuity
between the POIs to improve the accuracy of the recom-
mendation. Since a user’s check-in behavior is affected by
the user’s personal living habits and the transition relation-
ships between the POIs, there is a strong correlation between
some sequences of POIs [41]. By processing and studying
the sequence changes between POIs in the datasets, we can
calculate the transition frequency, and obtain the transition
frequency score in (6):

Q f re
jk =

M∑

i=1

Ni ( j, k) (6)

where Ni ( j, k) represents the number of POI transitions for
user i from POI j to POI k. Q f re

jk represents the total number
of POI transitions from POI j to POI k for all users. The
larger the value of Q f re

jk , the higher the transition frequency
score at the given time. Due to the large range of the values,
for the convenience of calculation, we use the normalization
function f (x) = (x − Qmin)/(Qmax − Qmin) to map the
value of Q f re

jk to the range of [0,1].
According to Tobler’s first law of geography, “Everything

is related to other things, but things that are near are more
closely related than things that are far away”, the probability
of users visiting POIs is inversely proportional to the geo-
graphic distance in real life. POIs frequently visited by a
user are likely to be geographically close, or the POIs fre-
quently visited by the same user are relatively close to each
other. Therefore, we calculate the geographic distance score
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to describe the users’ geographic preference. We use the
Haversine formula [45] to calculate the distance between POI
j and POI k, as shown in (7).

d jk = sin−1

√(
sin(�ϕ jk)

2

)2

+ cosϕ j × cosϕk ×
(
sin(�ω jk)

2

)2

(7)

where ϕ j and ϕk refer to the latitude of POI j and POI k in
radians, and ω j and ωk refer to the longitudes of POI j and
POI k in radians. Therefore, the geographic similarity of POI
j and POI k is is shown in (8):

QGeo
jk = 1

1 + (d jk × r)
(8)

where d jk has been calculated above, and r refers to the
radius of the earth. The higher the value of QGeo

jk , the higher
the geographic distance score between POI j and POI k.

Popularity refers to the degree to which a POI is liked by
users. In real life, under the same conditions, users tend to
choose a POIwith higher popularity to visit. Therefore, using
the popularity of destination can also effectively improve the
accuracy and quality of recommendation. Therefore, con-
sidering the popularity factor of the next destination in the
successive recommendation system, we use (9) to calculate:

QPop
jk = N ( j)∑

j ′ ∈V N ( j ′
)

(9)

where N ( j) refers to the number of times the POI j has been
visited, V refers to the set of all POIs, and j

′
is any POI in

V . The higher the value of QPop
jk , the higher the popularity

of the destination.

3.4 Proposed SQPMFmodel

As mentioned above, we transform the recommendation
problem into an optimization problem that reduces the dis-
crepancy between the user’s actual rating and the predicted
rating of the POIs. As shown in Fig. 2, our SQPMF model
uses two additional matrices S and Q to represent the social
relationship matrix and the POI transition matrix [43, 44].
S and Q are created as shown previously and can help us
find more accurate prediction of users’ ratings on POIs, i.e.,
minimizing the discrepancy between the matrices R and R

′

in Fig. 2. In SQPMF, we are trying to minimize our objec-
tive function shown in (10), which includes the discrepancy
between R and R

′
, S and S

′
, Q and Q

′
. It should be noted that

we use the sigmoid function g(x) = 1/(1 + e(−x)) to process
the value of each element in the prediction matrix R

′
, S

′
and

Q
′
. The reason for this is easy to explain: it maps real-valued

input into a continuous linear function that is monotonically
increasing on [0,1] and can handle any number of input val-
ues. In this way, U is informed by S and V is informed by
Q. This means the users’ social relationships and POI tran-
sition relationships are integrated into our SQPMF model to
generate the predicted user rating matrix R

′
for POI recom-

mendation. The objective function used in SQPMF is shown
as (10). The derivation process of the proposed objective
function will be shown in the next section.

�(R, S, Q,U , V , F, P) = 1

2

M∑

i=1

N∑

j=1

I Ri j ((Ri j − g(UT
i V j ))

2)

+ λ2S

2

M∑

i=1

M∑

f =1

I Si f ((Si f − g(UT
i F f ))

2)

+ λ2Q

2

N∑

j=1

N∑

k=1

I Qjk((Q jk − g(V T
j Pk))

2)

+ λU

2

M∑

i

‖U‖2F + λV

2

N∑

j

‖V ‖2F

+ λF

2

M∑

f

‖F‖2F + λP

2

N∑

k

‖P‖2F (10)

Where the first three items are the squared errors of R
and R

′
, squared errors of S and S

′
, squared errors of Q and

Q
′
, and λU = σ 2

R
σ 2
U
, λV = σ 2

R
σ 2
V
, λF = σ 2

R
σ 2
F
, λP = σ 2

R
σ 2
P
, λS = σ 2

R
σ 2
S
,

λQ = σ 2
R

σ 2
Q
are the regularization parameters. ‖·‖2F represents

the Froberius norm of the matrix, which can be calculated by
the sum of the squares of the absolute values of the elements
of the matrix. Its main function is to reflect the discrepancy
between the real matrix and the predicted matrix.

This model combines the original PMF model with the
social relationship matrix S and the POI transition matrix Q
to learn, making full use of the relevant information of users
and POIs. By iteratively minimizing the objective function,
a better recommendation of POIs to users can be achieved.

We use the Stochastic Gradient Descent (SGD) to mini-
mize our objective function [26–28], as shown in (11), (12),
(13) and (14).

∂�

∂Ui
=

N∑

j=1

I Ri j g
′
(UT

i V j )(g(U
T
i V j ) − Ri j ))Vj

+λS

M∑

f =1

I Si f g
′
(UT

i F f )(g(U
T
i F f ) − Si f ))Ff

+λUUi (11)
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∂�

∂Vj
=

M∑

i=1

I Ri j g
′
(UT

i V j )(g(U
T
i V j ) − Ri j ))Ui

+ λQ

N∑

k=1

I Qjkg
′
(V T

j Pk)(g(V
T
j Pk) − Q jk))Pk

+λV Vj (12)

∂�

∂Ff
= λS

M∑

i=1

I Si f g
′
(UT

i F f )(g(U
T
i F f ) − Si f ))Ui + λF F f

(13)

∂�

∂Pk
= λQ

N∑

j=1

I Qjkg
′
(V T

j Pk)(g(V
T
j Pk) − Q jk))Vj + λp Pk

(14)

Iterating on (11), (12), (13) and (14) can keep updating the
user feature matrix U , the POI feature matrix V , the social
feature matrix F and the relevance feature matrix P , until
the objective function converges.

Ui = Ui − α
∂�

∂Ui
(15)

Vj = Vj − α
∂�

∂Vj
(16)

Ff = Ff − α
∂�

∂Ff
(17)

Pk = Pk − α
∂�

∂Pk
(18)

Algorithm 1 SQPMF Model optimization.
Require: Matrix R, S and Q, learning rate α, regularization coefficient

λ feature dimension W , maximum number of iterations i ters;
Ensure: the predicted rating Rz

i j
1: Initialize the feature matrices U , V , F , P � to start SQPMF

training
2: while i �= i ters do � Calculate the derivative by (15) - (18)
3: Ui = Ui − α ∂�

∂Ui
� Update feature matrix U

4: Vj = Vj − α ∂�
∂Vj

� Update feature matrix V

5: Ff = Ff − α ∂�
∂F f

� Update feature matrix F

6: Pk = Pk − α ∂�
∂Pk

� Update feature matrix P
7: end while
8: Compute Rz

i j=Ui
TVz +U f

TVz + Vj
TVz � by (37)

Where α∈[0,1] is the learning rate of the latent feature.
Algorithm 1 describes the procedure of updating matrices

U , V , F and P . The final prediction matrix Rz is obtained by

multiplying U and V . First, the rating matrix R, the social
relationship matrix S and the POI transition matrix Q are
input into the algorithm. The objective function is minimized
step by stepwith SGDonU , V , F and P , assuming they have
W-dimensional features. Finally, the predicted scores for the
POIs can be obtained in Rz .

3.5 Derivation of the objective function

In this section, we prove that minimizing the previous objec-
tive function can maximize the probability of U , V , F , P
that satisfy the matrix factorization of R, S, Q statistically.
According to Bayes’ Theorem:

P(A|B) = P(B|A) × P(A)

P(B)
(19)

In our context, A is U , V , F , P , while B is R, S, Q,
under the conditions of standard deviations of the Gaussion
distribution σ 2

R , σ
2
S , σ

2
Q , σ

2
U , σ

2
V , σ

2
F , σ

2
P .

Therefore, we need to maximize P(U , V , F, P|R, S, Q,
σ 2
R, σ 2

S , σ 2
Q, σ 2

U , σ 2
V , σ 2

F , σ 2
P ), which can be transformed as

below according to the Bayes’ Theorem:

 = P(R, S, Q|U , V , F, P, σ 2
R , σ 2

S , σ 2
Q) · P(U , V , F, P|σ 2

U , σ 2
V , σ 2

F , σ 2
P )

P(R, S, Q|σ 2
R , σ 2

S , σ 2
Q)

(20)

Since R,S,Q are known, P(R, S, Q|σ 2
R, σ 2

S , σ 2
Q) is a

constant, we only need to maximize P(R, S, Q|U , V ,
F, P, σ 2

R, σ 2
S , σ 2

Q) · P(U , V , F, P|σ 2
U , σ 2

V , σ 2
F , σ 2

P ).

Likewise, we can transform P(U , V , F, P|σ 2
U , σ 2

V , σ 2
F ,

σ 2
P ) into P(U |σ 2

U )·P(V |σ 2
V )·P(F |σ 2

F )·P(P|σ 2
P ).

Now we just need to maximize
P(R|U , V , σ 2

R)·P(S|U , F, σ 2
S )·P(Q|V , P, σ 2

Q)·
P(U |σ 2

U )·P(V |σ 2
V )·P(F |σ 2

F )·P(P|σ 2
P ).

We assume that each observation valueUi , Vj , Ff , Pk are
all independent and identically distributed, and the feature
matricesU , V , F and P obey the Gaussian prior distribution
with the mean value of 0 and the variance of σ 2

U , σ
2
V , σ

2
F and

σ 2
P :

P(U |σ 2
U ) =

M∏

i=1

N (Ui |0, σ 2
U )I (21)

P(V |σ 2
V ) =

N∏

j=1

N (Vj |0, σ 2
V )I (22)

P(F |σ 2
F ) =

M∏

f =1

N (Ff |0, σ 2
F )I (23)

123



690 J. Wang et al.

P(P|σ 2
P ) =

N∏

k=1

N (Pk |0, σ 2
P )I (24)

At the same time, it is assumed that the discrepancy
between the real value and the predicted value of the users’
ratings on the POIs obeys aGaussian distributionwith amean
value of 0 and a variance of σ 2

R , then the conditional prob-
ability that the rating matrix R satisfies is shown in (25):

P(R|U , V , σ 2
R) =

M∏

i=1

N∏

j=1

[N (Ri j |g(UT
i V j ), σ

2
R)]I Ri j (25)

Where I Ri j is the indicator function, if the user i has rated
the POI j , then its value equals 1; otherwise, it is 0. g(x)
maps the value of UT

i V j to the interval of [0,1], where
g(x) = 1/(1 + e−x ).

Then the probability distribution function satisfied by
matrices S and Q is:

P(S|U , F, σ 2
S ) =

M∏

i=1

M∏

f =1

[N (Si f |g(UT
i F f ), σ

2
S )]I Si f (26)

P(Q|V , P, σ 2
Q) =

N∏

j=1

N∏

k=1

[N (Q jk |g(V T
j Pk), σ

2
Q)]I

Q
jk (27)

Where I Si f , I
Q
jk are indicator functions.g(x) maps values

to the interval [0,1], likewise, g(x) = 1/(1 + e−x ).
Therefore,

P(R|U , V , σ 2
R)·P(S|U , F, σ 2

S )·P(Q|V , P, σ 2
Q)·P(U |σ 2

U )·P(V |σ 2
V )

·P(F |σ 2
F )·P(P|σ 2

P ) =
M∏

i=1

N∏

j=1

[N (Ri j |g(UT
i V j ), σ

2
R)]I

R
i j ·

M∏

i=1

M∏

f=1

[N (Si f |g(UT
i F f ), σ

2
S )]I

S
i f ·

N∏

j=1

N∏

k=1

[N (Q jk |g(VT
j Pk ), σ

2
Q)]I

Q
jk ·

M∏

i=1

N (Ui |0, σ 2
U I )

·
N∏

j=1

N (Vj |0, σ 2
V I ) ·

M∏

i=1

N (F f |0, σ 2
F I ) ·

N∏

j=1

N (Pk |0, σ 2
P I ) (28)

Take logarithm of each value in combination with proba-
bility distribution function of multivariate Gaussian
distribution:

ln N (Ui |0, σ 2
U I ) = ln

(
− 1

2π
W
2 |σ 2

V I | 12

)
− UT

i Ui

2σ 2
U

= −ln(|σ 2
V I |

1
2 ) − UT

i Ui

2σ 2
U

+ Cu

= −1

2
ln (σ 2W

U ) − UT
i Ui

2σ 2
U

+ Cu

= −W

2
ln(σ 2

U ) − UT
i Ui

2σ 2
U

+ Cu (29)

Similarly, we can get:

ln N (Vj |0, σ 2
V I ) = −W

2
ln(σ 2

V ) − V T
j V j

2σ 2
V

+ CV (30)

ln N (Ff |0, σ 2
F I ) = −W

2
ln(σ 2

F ) − FT
f F f

2σ 2
F

+ CF (31)

ln N (Pk |0, σ 2
P I ) = −W

2
ln(σ 2

V ) − PT
k Pk

2σ 2
P

+ CP (32)

ln N (Ri j |g(UT
i V j ), σ

2
R)

= −1

2
ln (σ 2

R) − (Ri j − g(UT
i V j ))

T(Ri j − g(UT
i V j ))

2σ 2
R

+CR (33)

ln N (Si f |g(UT
i F f ), σ

2
S )

= −1

2
ln (σ 2

S ) − (Si f − g(UT
i F f ))

T(Si f − g(UT
i F f ))

2σ 2
S

+CS (34)

ln N (Q jk |g(V T
j Pk), σ

2
Q)

= −1

2
ln (σ 2

Q) − (Qi j −g(V T
j Pk))

T(Q jk − g(V T
j Pk))

2σ 2
Q

+CQ (35)

Substituting (29) - (35) into (28), the logarithm of the
posterior distribution is shown in (36).

ln P(U , V , F, P|R, S, Q, σ 2
R, σ 2

S , σ 2
Q, σ 2

U , σ 2
V , σ 2

F , σ 2
P )∝

− 1

2σ 2
R

M∑

i=1

N∑

j=1

Ii j ((Ri j − g(UT
i V j ))

2)

− 1

2σ 2
S

M∑

i=1

M∑

f =1

Ii f ((Si f − g(UT
i F f ))

2)

− 1

2σ 2
S

N∑

j=1

N∑

k=1

I jk((Q jk − g(V T
j Pk))

2)
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− 1

2σ 2
U

M∑

i=1

UT
i Ui − 1

2σ 2
V

N∑

j=1

V T
j V j

− 1

2σ 2
F

M∑

i=1

FT
f F f − 1

2σ 2
P

N∑

j=1

PT
k Pk

−1

2

⎛

⎝

⎛

⎝
M∑

i=1

N∑

j=1

I Ri j

⎞

⎠ ln σ 2
R +

⎛

⎝
M∑

i=1

M∑

f =1

I Si f

⎞

⎠ ln σ 2
S

+
⎛

⎝
N∑

j=1

N∑

k=1

I Qjk

⎞

⎠ ln σ 2
Q

⎞

⎠

−1

2
(MW ln σ 2

U + NW ln σ 2
V + MW ln σ 2

F

+NW ln σ 2
P ) + C (36)

where C is a constant, independent of the parameters. Since
the observed noise variance and prior variance are fixed,max-
imizing the log posterior of the latent features is equivalent to
minimizing the sum of squared errors of the objective func-
tion, as shown in (10), except we add some regulators in the
objective function.

3.6 Ranking

Finally, by continuously optimizing the objective function
�, we obtained the ideal matrices U , V , F , P . As can be
seen from the previous description, in our proposed objective
function �, we consider the transition relationship between
users’ social relationships and POIs. Therefore, we can use
the trained potential matrix to calculate a user’s score for the
next POI. Assuming that the current user i is at location j , the
predicted score for the user to visit the next POI z, denoted
as Rz

i j , can be described in (37):

Rz
i j = UT

i Vz +UT
f Vz + V T

j Vz (37)

Where, UT
i Vz represents the user’s personal score for the

next POI z,UT
f Vz represents the user’s friend’s personal score

for the next POI z, and V T
j Vz represents the transition score

of the current POI j , to the next POI z.

3.7 Complexity analysis

In our SQPMF method, the time complexity and space com-
plexity are mainly based on the objective function � to
calculate. In addition, during the optimization process of
SQPMF, when updating the user feature matrix U , POI fea-
ture matrix V , social feature matrix of users F , and relevance
feature matrix P , the loss function and its derivatives need
to be calculated, which is closely related to the dimension of

the feature matrix W . Therefore, the size of W determines
the computational efficiency of SQPMF.

Weuse O(ρR), O(ρS) and O(ρQ) to represent the number
of non-zero elements in the ratingmatrix R, user socialmatrix
S, and POI transitionmatrix Q, respectively.W is the dimen-
sion of the feature matrix. Therefore, The time complexity of
∂�
∂Ui

, ∂�
∂Vj

, ∂�
∂Ff

, ∂�
∂Pk

, is O(ρRW + ρSW ), O(ρRW + ρQW ),
O(ρSW ), O(ρQW ). Thus, the time complexity of our objec-
tive function � is O(ρRW + ρSW + ρQW ).

In our algorithm, the sparse matrices R, S and Q are rep-
resented in a Compressed Sparse Row (CSR) format that
only stores nonzero elements in a sparse matrix [46]. There-
fore, for space complexity, the space occupied by the rating
matrix R is O(ρR), the space occupied by the user social
matrix S is O(ρS), the space occupied by the POI transition
matrix Q is O(ρQ), the space occupied by the feature vec-
tors of users and POIs is O(ρRW ), the space occupied by
the feature vectors of users and users’ friends is O(ρSW ),
and the space occupied by the feature vectors of POIs and
transition POIs is O(ρQW ).Thus, the space complexity is
O(ρRW + ρSW + ρQW + ρR + ρS + ρQ), which can be
simplified to O(ρRW + ρSW + ρQW ).

In summary, the time complexity and space complexity
of SQPMF are both linear, and can be scaled to large-scale
datasets in practical applications.

4 Result and discussion

4.1 Datasets

We evaluate the performance of SQPMF using three pub-
lic datasets, Gowalla1, Foursquare2 and Brightkite3, which
are publicly available (see the links at the footnote). In this
experiment, the data in Gowalla, Foursquare, and Brightkite
are all real-world, public datasets. Among them, Gowalla
was founded in 2009 and allows users to check in and share
information through mobile devices. It is a social network
platform that can provide users with social services. The
Gowalla dataset includes 196,591 users, 1,280,969 POIs,
6,442,890 checkins, and 950,327 links, collected fromFebru-
ary 2009 to October 2010. Foursquare is also a globally
renowned location-based large-scale social service website
launched in 2009. It has become the most popular social
network, with up to 10 million user sets and 3.34 million
daily views. The Foursquare dataset includes 114,324 users,
3,820,891 POIs, 22,809,624 checkins, and 607,333 links,
collected from April 2012 to January 2014. Brightkite is a

1 http://snap.stanford.edu/data/loc-gowalla.html
2 http://www.foursquare.com
3 https://snap.stanford.edu/data/loc-Brightkite.html
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Table 3 Dataset information

Dataset Users POIs Check-ins Links Sparseness

Gowalla 9617 585 95956 269812 98.29%

Foursquare 32158 2409 423675 312397 99.45%

Brightkite 50686 48367 3228563 388180 99.87%

location-based social networking website created in 2007,
allowing users to freely share locations within the commu-
nity. The Brightkite dataset contains 58,228 users, 4,491,143
checkins, 428,156 links, and was collected from April 2008
to October 2010. During the experiment, we select 80% of
the dataset as the training dataset, and the remaining 20% as
the test set.

In order to reduce noise in the datasets, we preprocessed
three datasets. For each dataset, we removed users and POIs
with less than 10 successive check-ins because userswith few
check-ins are inactive. Similarly, POIswith too fewcheck-ins
are not attractive. For the Gowalla dataset, after preprocess-
ing, the number of users is 9617, the number of POIs is 585,
the number of check-ins is 95,956, the number of user rela-
tionships is 269,812, and the sparseness of the user-POIs
check-in matrix is 98.29%. For the Foursquare dataset, after
data preprocessing, the number of users is 32,158, the num-
ber of POIs is 2,409, the number of check-ins is 423,675,
the number of user relationships is 312,397, and the sparse-
ness of the user-POI check-in matrix is 99.45%. For the
Brightkite dataset, after data preprocessing, the number of
users is 50,686, the number of POIs is 48,367, the number
of check-ins is 3,228,563, the number of user relationships
is 388,180, and the sparseness of the user-POI check-in
matrix is 99.87%. The details of the datasets are shown in
Table 3.

4.2 Evaluationmetrics

We use five metrics, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Precision, Recall and F1-score
for performance evaluation. Among them, MAE and RMSE
are the most commonly used metrics to measure the error
of recommendation results in recommender systems. The
smaller the values of MAE and RMSE, the smaller the error
between the real value and the predicted value, and the better
performance of an algorithm. Besides, Precision and Recall
are used to evaluate the accuracy of the recommendation
results. The higher the values of Precision and Recall, the
higher the accuracy of the recommendation and the better
performance of algorithm. The F1-score is theweighted aver-
age of Precision and Recall, with a range of 0 to 1. Generally
speaking, the closer the F1-score is to 1, the better the per-
formance of the recommendation model.

The definitions of the metrics are as follows:
MAE:

MAE =
∑

i, j |(Ri j − R
′
i j )|

N
(38)

RMSE:

RMSE =
√∑

i, j (|(Ri j − R
′
i j )|)2

N
(39)

Precision:

Presion@K =
∑

U |R(U ) ∩ T (U )|
R(U )

(40)

Recall:

Recall@K =
∑

U |R(U ) ∩ T (U )|
T (U )

(41)

F1-score:

F1 − score = 2
Precision · Recall
Precision + Recall

(42)

Among them, Ri j is the rating score of user i on POI j ,
R

′
i j refers to the predicted rating score of user i on POI j , N

refers to the total number of scores in the test set, and R(U ) is
the Top − k list, T (U ) is the number of POIs actually visited
by the user.

4.3 Relatedmodels for comparison

We selected several popular existing models in the field of
PMFandPOI recommendation for comparisonwith SQPMF.
Among them, PMF is a typical PMF model. Sorec and
TrustSVD consider the users’ social trust relationships in the
recommendation. The GeoMF and PRME are both typical
models in the field of POI recommendation. The SSTPMF
and RTPM are the latest method in the field of successive
POI recommendation. A brief introduction of these models
is as follows:

(1) PMF [26]: this method applies probability-related
knowledge inMF, decomposes user-POImatrix into user
feature matrix and POI feature matrix, and assumes that
both user feature matrix and POI feature matrix obey
Gaussian distribution with mean 0.

(2) Sorec [34]: this method is based on the PMF model,
and proposes a new social recommendation framework,
which integrates the user’s trust relationship matrix.

(3) TrustSVD[1]: thismethod incorporates the effect of trust
into SVD++, where the strength of trust is set equally
for all users.

123



SQPMF: successive point of interest... 693

Fig. 3 Precision comparison with different top-k

(4) GeoMF [37]: thismethod uses theMF technique tomake
recommendations based on the geographical model of
the user’s activity area and the influence area of POIs.

(5) PRME [29]: this method combines sequence informa-
tion with personal preferences by mapping each POI
into a low-dimensional Euclidean potential space of the
target, and then uses a metric embedding algorithm to
efficiently compute POI transition in a Markov chain
model.

(6) SSTPMF [27]: this method is based on the PMF model,
and considering POI similarity and user similarity, this
model proposes a multivariable inference approach for
POI recommendation using latent similarity factors.

(7) RTPM [39]: this method proposes a real-time preference
mining model based on LSTM, mining users’ real-time
preferences from long-term and short-term preferences
to recommend the next POI with time constraints.

4.4 Comparison with relatedmodels

In this section, we compare SQPMF with PMF, Sorec,
TrustSVD, GeoMF, PRME, SSTPMF and RTPM in terms of
recommendation Precision, Recall and F1-score. The value
of the abscissa K is the number of POIs recommended to the
user.

According to the experimental results in Figs. 3, 4 and 5,
we took the average of the experimental results from three
datasets, our SQPMF improves Precision, Recall, and F1-
score by at leastmore than 6.1%, 5.8%and5.7%, respectively
compared with the second best RTPM.

Among the comparedmethods, PMF is a direct application
of the PMFmodel. However, the recommendation of PMF is
theworst, because PMFonly considers the users’ preferences
for POIs without using other contextual factors. Sorec and
TrustSVD have integrated the users’ social relationships in

Fig. 4 Recall comparison with different top-k
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Fig. 5 F1-score comparison with different top-k

the recommendation, so they clearly improve the recommen-
dation performance. PRME further integrates the check-in
sequence information and personal preference information,
so it further improves the recommendation performance.
GeoMF and PRME have used POI transition relationships,
which show the impact of POI transition relationships on
recommendation results.

However, the above models only consider partial relation-
ships between users or between POIs, and they do not take
advantage of both relationships simultaneously. Therefore,
our experimental results in Fig. 3 show that they do not per-
form as well as SSTPMF and our SQPMF, which use both
relationships.

SSTPMF considers the relevant impacts of users and
POIs, and therefore has improved the accuracy of POI rec-
ommendations. However, although SSTPMF considers the
relationships between users andPOIs simultaneously, it is not
accurate enough in calculating the similarity between users
and POIs. For example, SSTPMF only uses Jackard similar-
ity to calculate relationships between users, but it does not
consider the users’ habit similarity and sequence similarity
as we do in SQPMF. Similarly, SSTPMF also has the prob-
lem of inaccurate mapping of POI category when calculating
POI similarity.

For large datasets such as Foursquare and Brightkite that
contain more check-in information, SQPMF performs 8.8%
and 10.6% better than RTPM, respectively. This is because
RTPM, while considering the periodicity of user behavior
patterns when constructing long-term preferences, only uti-
lizes the influence of distance between POIs for modeling,
without considering other POI transition relationships.When
constructing users’ short-term preferences, RTPM does not
consider the personal attributes and current location of users
who have a strong impact on the next POI, but only considers
the influence of the public, which greatly affects recom-
mendation performance. Therefore, when there is a large
amount of check-in data in the dataset, there is a large amount

of implicit information between users and POIs, and the
performance of RTPM is average. However, SQPMF takes
full advantage of the social relationships of users and the
sequential transition relationships between successive POIs,
demonstrating better performance.

It is worth noting, in the Gowalla dataset, RTPM performs
slightly better thanSQPMF.This is because, in order to obtain
ratings withminimal errors, SQPMF needs a large number of
social relationships between users and POIs for better train-
ing and prediction. However, the Gowalla dataset has lower
average number of check-in times per user, so there is not
enough check-in data in the Gowalla dataset for SQPMF to
mine the relationships between users and POIs and to exhibit
the best performance. This suggests that SQPMF is better
suited to large sparse datasets with many active users, which
are consistent with reality.

Our SQPMF method better integrates the users’ per-
sonal preferences, the users’ social relationships and the POI
transition relationships between successive POIs in the rec-
ommendation system. From the results, we can see that the
transition of successive POIs also has a significant effect

Table 4 Parameter description and value

Parameter Value Description

W 20 Feature dimension

λ 0.5 Regularization coefficient

η 0.6 The weight of trust degree

μ 0.2 The weight of habit similarity

λS 0.2 The regularization coefficient of the social
relationship matrix

β 0.7 The weight of transition frequency score

γ 0.2 The weight of distance score

λQ 0.1 The regularization coefficient of the POI
transition matrix

α 0.01 Learning rate
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Fig. 6 MAE of SQPMF with different iterations

on the recommendation results. Therefore, SQPMF achieves
the highest Precision, Recall and F1-score values on three
datasets.

It is worth noting that, for all methods, when K becomes
larger, the precision decreases, but the recall increases. This is
because, in real life, when the number of POI recommended
to users increases, the users are more willing to visit new POI
rather than the visited places.

4.5 Impact of parameters on SQPMF

In our previous experiments, the specified feature dimension
W in the SQPMFmodel is set to 20. The regularization coef-
ficient λ is set to 0.5. The weight coefficient η of the social
score is 0.6, μ is 0.2, the regularization coefficient λS of the
social relationship matrix is set to 0.2, the weight coefficient
β of the transition score is 0.7, γ is 0.2, and the regularization
coefficient λQ of the POI transition matrix is set to 0.1. The
regularization coefficients of the features of users, features of
POIs, features of social user, and features of relevance POIs
are all set to 0.001, and the learning rate α is set to 0.01.

These parameters are chosen as they give the best results for
SQPMF. The parameter values are shown in Table 4.

For the dimension of the specified feature W , in order to
find the optimal value, we select the values of 5, 10, 15, 20
and 25 for W . Figures 6 and 7 give the results of MAE and
RMSE on two datasets in relation to the number of latent
features W used in SQPMF.

According to these figures, when W increases, SQPMF
can achieve better performance. We can see that the different
values ofW can makeMAE differ by 2%-4%. This showsW
has a significant impact. Note that when W is set to 20, our
experimental results achieve the best performance. Accord-
ing to the complexity mentioned above, we can know that
the time complexity of the system is closely related to the
value ofW . IfW is too larger, say 25, it does not bring better
recommendation effect, but significantly increases the com-
putational cost. Therefore, we choose 20 for W according to
our experiments.

In the calculation of social scores, η represents the weight
of the trust degree, μ represents the weight of the habit simi-
larity, and (1 − η − μ) represents the weight of the sequence
similarity. According to our experiment, we set η to be in the

Fig. 7 RMSE of SQPMF with different iterations
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Fig. 8 MAE of SQPMF with different η and μ

range of [0.1,0.8], to test the impact ofμ onMAEandRMSE.
Similarly, when calculating the transition score, β represents
the weight of the transition frequency score, γ represents the
weight of the geographical distance score, and (1 − β − γ )

represents the weight of the popularity score of destination.
During the experiment, we set the value of β to be in the
range of [0.1,0.8], change the value of γ . Finally, according
to the experimental results, we determine the optimal values
of the parameters.

From Figs. 8 and 9 we can see that when η increases to
0.6 and μ decreases to 0.2, the recommendation effect is the
best at this time. Similarly, from Figs. 10 and 11, we can find
that when β is 0.7 and γ is 0.2, the MAE and RMSE can
reach the best values.

These results show that in the social relationship matrix,
the trust degree is the most influential in the user’s social
relationship, and the habit similarity and the sequence simi-
larity have similar effects. For the POI transition matrix, the
most influential factor is transition frequency, followed by
geographic distance.

The optimization of the objective function involves the
regularization coefficient λS of the social relationship matrix
and the regularization coefficient λQ of the POI transition
matrix. When λS is set to 0, the system does not consider the
user’s social influence factor in recommendation, but only
considers the user’s personal preferences and the POI transi-
tion relationships. Similarly, when λQ is set to 0, the system
does not consider POI transition relationships in recommen-
dation, but only considers the user’s personal preferences and
the user’s social relationships.

From Figs. 12 and 13, we can see that, when λS and λQ

changes constantly, MAE and RMSE change accordingly.
When λS is set to 0.2, and λQ is set to 0.1, MAE and RMSE
reach to the lowest values, which indicate the performance
is the best at these points.

The learning rate α of gradient descent also has a signif-
icant impact on the performance (MAE and RMSE). From
Fig. 14 we can see that, when α is 0.01, MAE and RMSE
reach to the smallest values. This is because, if α is too small,
there need more iterations to make the objective function

Fig. 9 RMSE of SQPMF with different η and μ
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Fig. 10 MAE of SQPMF with different β and γ

Fig. 11 RMSE of SQPMF with different β and γ

Fig. 12 MAE&RMSE of SQPMF with different λS
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Fig. 13 MAE&RMSE of SQPMF with different λQ

converge. If α is too large, the objective function will fluctu-
ate greatly during the training process, which may miss the
minimum value or is unable to converge.

5 Conclusion

In this paper, we propose a new method, called SQPMF,
that fuses the users’ personal preferences, the users’ social
relationships and the transition relationships between suc-
cessive POIs in POI recommendation. By considering these
contextual information, SQPMF significantly improves the
accuracy of recommendation results. Specifically, we decon-
struct the users’ social relationships into several important
factors and build a social relationship matrix that integrates
trust relationships, user habits, and user sequence similar-
ity. We also deconstruct the transition relationships between

successive POIs into factors such as transition frequency,
the geographic distance, and the popularity of destination,
and build a POI transition matrix that reflects the transition
relationships of successive POI sequences. By embedding
the social relationship matrix and the POI transition matrix
into the solution, SQPMF can effectively predict and recom-
mend the user’s next POI based on three real datasets. Our
experimental results show that SQPMF achieves the high-
est recommendation accuracy for sparse datasets among the
state-of-the-art methods.

SQPMF relies on accurate information about users’ trust
relationships and POI transition relationships. In the field
of successive POI recommendation, there is still a lot of
implicit information that we could further exploit to improve
the prediction accuracy of SQPMF. In future, we expect to
be able to mine more effective implicit information, such as
spatio-temporal information, user dynamic preferences, etc.,

Fig. 14 MAE&RMSE of SQPMF with different α
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to further improve the accuracy of recommendations. In addi-
tion, the issue of cold start is also a highly concerned issue in
the field of successive POI recommendation. SQPMF has not
yet showed good performance in solving cold start problems,
which will be one of our future efforts. Also we will focus
on the privacy protection problem in the POI recommenda-
tion system and hope to better trade off between privacy and
recommendation.

Acknowledgements This work is supported by the National Nature
Science Foundation of China 61370198 and 61300187, and in part by
the Liaoning Provincial Natural Science Foundation of China under
Grant 2019- MS-028.

Author Contributions Jie Wang: Conceptualization, Methodology,
Software, Investigation, Writing-Original Draft. Zhiyi Huang: Formal
analysis, Supervision,Writing-Review&Editing. Zhaobin Liu: Formal
analysis, Methodology, Writing-Review & Editing.

Data availability and access Data will be made available from the cor-
responding author on reasonable request.

Declarations

Informed consent The datasets generated or analyzed during this
study are available in http://snap.stanford.edu/data/loc-gowalla.html,
http://www.foursquare.com, https://snap.stanford.edu/data/loc-
Brightkite.html

Competing Interests All authors have no relevant financial or non-
financial interests to disclose.

References

1. Guo G, Zhang J, Yorke-Smith N (2015) Trustsvd: collaborative
filtering with both the explicit and implicit influence of user trust
and of item ratings. In: Proceedings of the AAAI conference on
artificial intelligence, vol 29

2. Wang H, Shen H, Ouyang W, Cheng X (2018) Exploiting poi-
specific geographical influence for point-of-interest recommenda-
tion. In: IJCAI, pp 3877–3883

3. Lim KH, Chan J, Leckie C, Karunasekera S (2018) Personalized
trip recommendation for tourists based on user interests, points of
interest visit durations and visit recency. Knowl Inf Syst 54:375–
406

4. Guo L, Wen Y, Liu F (2019) Location perspective-based
neighborhood-aware poi recommendation in location-based social
networks. Soft Comput 23(22):11935–11945

5. Islam MA, Mohammad MM, Das SSS, Ali ME (2022) A survey
on deep learning based point-of-interest (poi) recommendations.
Neurocomputing 472:306–325

6. Liu S, Yang L, Zheng W, Xiao Y, Liu L (2022) An ensemble
learningmodel for preference-geographical aware point-of interest
recommendation. Appl Intell 52(12):13763–13780

7. LiX,HuR,WangZ (2022)Next-point-of-interest recommendation
based on joint mining of regularity and randomness. Knowl-Based
Syst 258:110052

8. Zhou Y, Yang G, Yan B, Cai Y, Zhu Z (2022) Point-of-interest
recommendation model considering strength of user relationship
for location-based social networks. Expert Syst Appl 199:117147

9. Qi L, Liu Y, Zhang Y, XuX, BilalM, Song H (2022) Privacy-aware
point-of-interest category recommendation in internet of things.
IEEE Internet Things J 9(21):21398–21408

10. Sun Q, Chiclana F,Wu J, Liu Y, Liang C, Herrera-Viedma E (2023)
Aweight penaltymechanism for non-cooperative behavior in large-
scale group decision making with unbalanced linguistic term sets.
IEEE Transactions on fuzzy systems

11. Naserian E, Wang X, Dahal KP, Alcaraz-Calero JM, Gao H (2021)
A partition-based partial personalized model for points-of-interest
recommendations. IEEETransactions on computational social sys-
tems 8(5):1223–1237

12. Cao G, Cui S, Joe I (2023) Improving the spatial-temporal aware
attention network with dynamic trajectory graph learning for next
point-of-interest recommendation. Information Processing&Man-
agement 60(3):103335

13. Huang L, Ma Y, Wang S, Liu Y (2019) An attention-based spa-
tiotemporal lstmnetwork for next poi recommendation. IEEETrans
Serv Comput 14(6):1585–1597

14. Lu Y-S, Shih W-Y, Gau H-Y, Chung K-C, Huang J-L (2019) On
successive point-of-interest recommendation. World Wide Web
22:1151–1173

15. Baral R, Iyengar SS, Zhu X, Li T, Sniatala P (2019) Hirecs: a
hierarchical contextual location recommendation system. IEEE
Transactions on Computational Social Systems 6(5):1020–1037

16. Rahmani HA, Deldjoo Y, Di Noia T (2022) The role of context
fusion on accuracy, beyond-accuracy, and fairness of point-of-
interest recommendation systems. Expert Syst Appl 205:117700

17. Cai Z, Yuan G, Qiao S, Qu S, Zhang Y, Bing R (2022) Fg-cf:
friends-aware graph collaborative filtering for poi recommenda-
tion. Neurocomputing 488:107–119

18. Choudhary C, Singh I, Kumar M (2023) Sarwas: deep ensemble
learning techniques for sentiment based recommendation system.
Expert Syst Appl 216:119420

19. Li J, Lu K, Huang Z, Shen HT (2019) On both cold-start and long-
tail recommendation with social data. IEEE Trans Knowl Data Eng
33(1):194–208

20. Vitoropoulou M, Tsitseklis K, Karyotis V, Papavassiliou S (2021)
Cover: an information diffusion aware approach for efficient rec-
ommendations under user coverage constraints. IEEETransactions
on Computational Social Systems 8(4):894–905

21. Qian X, Feng H, Zhao G,Mei T (2013) Personalized recommenda-
tion combining user interest and social circle. IEEE Transactions
Knowledge Data Engineering 26(7):1763–1777

22. Xing S, Liu F, Zhao X, Li T (2018) Points-of-interest recom-
mendation based on convolution matrix factorization. Appl Intell
48:2458–2469

23. Liu Y, Wu H, Rezaee K, Khosravi MR, Khalaf OI, Khan AA,
Ramesh D, Qi L (2022) Interaction-enhanced and time-aware
graph convolutional network for successive point-of-interest rec-
ommendation in traveling enterprises. IEEETransactions Industrial
Informatics 19(1):635–643

24. Rahmani HA, Aliannejadi M, Ahmadian S, Baratchi M, Afsharchi
M, Crestani F (2020) Lglmf: local geographical based logistic
matrix factorization model for poi recommendation. In: Informa-
tion retrieval technology: 15th Asia information retrieval societies
conference, AIRS 2019, Hong Kong, China, November 7–9, 2019,
Proceedings 15, Springer, pp 66–78

25. Seyedhoseinzadeh K, Rahmani HA, Afsharchi M, Aliannejadi M
(2022) Leveraging social influence based on users activity centers
for point-of-interest recommendation. Inform Process & Manag
59(2):102858

26. Mnih A, Salakhutdinov RR (2007) Probabilistic matrix factoriza-
tion. Adv Neural Inform Process Syst 20

27. Davtalab M, Alesheikh AA (2021) A poi recommendation
approach integrating social spatio-temporal information into prob-
abilistic matrix factorization. Knowl Inf Syst 63:65–85

123

http://snap.stanford.edu/data/loc-gowalla.html
http://www.foursquare.com
https://snap.stanford.edu/data/loc-Brightkite.html
https://snap.stanford.edu/data/loc-Brightkite.html


700 J. Wang et al.

28. Wu L, Chen E, Liu Q, Xu L, Bao T, Zhang L (2012) Leveraging
tagging for neighborhood-aware probabilistic matrix factorization.
In: Proceedings of the 21st ACM international conference on infor-
mation and knowledge management, pp 1854–1858

29. Feng S, Li X, Zeng Y, Cong G, Chee YM (2015) Personalized
ranking metric embedding for next new poi recommendation. In:
IJCAI’15 Proceedings of the 24th international conference on arti-
ficial intelligence, ACM, pp 2069–2075

30. Bao J, Zheng Y, Wilkie D, Mokbel M (2015) Recommendations in
location-based social networks: a survey. GeoInformatica 19:525–
565

31. AmiratH,LagraaN,Fournier-Viger P,OuintenY,KherfiML,Guel-
louma Y (2023) Incremental tree-based successive poi recommen-
dation in location-based social networks. Appl Intell 53(7):7562–
7598

32. Chen Y-C, Thaipisutikul T, Shih TK (2020) A learning-based
poi recommendation with spatiotemporal context awareness. IEEE
Transaction on cybernetics 52(4):2453–2466

33. Xiong F, ShenW, ChenH, Pan S,WangX,Yan Z (2019) Exploiting
implicit influence from information propagation for social recom-
mendation. IEEE Transactions on Cybernetics 50(10):4186–4199

34. Ma H, Yang H, Lyu MR, King I (2008) Sorec: social recommen-
dation using probabilistic matrix factorization. In: Proceedings of
the 17th ACM conference on information and knowledge manage-
ment, pp 931–940

35. Chen W, Wan H, Guo S, Huang H, Zheng S, Li J, Lin S, Lin Y
(2022) Building and exploiting spatial-temporal knowledge graph
for next poi recommendation. Knowl-Based Syst 258:109951

36. Hu B, Ye Y, Zhong Y, Pan J, Hu M (2022) Transmkr: Translation-
based knowledge graph enhanced multi-task point-of-interest rec-
ommendation. Neurocomputing 474:107–114

37. Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) Geomf:
joint geographical modeling and matrix factorization for point-
of-interest recommendation. In: Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 831–840

38. Liu J, Chen Y, Huang X, Li J, Min G (2023) Gnn-based long and
short term preference modeling for next-location prediction. Inf
Sci 629:1–14

39. Liu X, Yang Y, Xu Y, Yang F, Huang Q, Wang H (2022) Real-
time poi recommendation via modeling long-and short-term user
preferences. Neurocomputing 467:454–464

40. Zhang Z, Dong M, Ota K, Zhang Y, Ren Y (2021) Lbcf: a
link-based collaborative filtering for overfitting problem in rec-
ommender system. IEEE Transactions on Computational Social
Systems 8(6):1450–1464

41. Fang J, Meng X (2022) Urpi-gru: an approach of next poi recom-
mendation based on user relationship and preference information.
Knowl-Based Syst 256:109848

42. Zheng C, Tao D, Wang J, Cui L, Ruan W, Yu S (2020) Memory
augmented hierarchical attention network for next point-of-interest
recommendation. IEEETransactions onComputational Social Sys-
tems 8(2):489–499

43. Wang H, Li P, Liu Y, Shao J (2021) Towards real-time demand-
aware sequential poi recommendation. Inf Sci 547:482–497

44. Ji F, Wu J, Chiclana F, Wang S, Fujita H, Herrera-Viedma E (2023)
The overlapping community driven feedback mechanism to sup-
port consensus in social network group decision making. IEEE
Transactions on fuzzy systems

45. Aliannejadi M, Rafailidis D, Crestani F (2019) A joint two-
phase time-sensitive regularized collaborative ranking model for
point of interest recommendation. IEEE Trans Knowl Data Eng
32(6):1050–1063

46. Borstnik U, Vandevondele J, Weber V, Hutter J (2014) Sparse
matrixmultiplication: the distributed block-compressed sparse row
library. Parallel Comput 40(5–6), 47–58

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Jie Wang is currently working
toward the M.E degree in the
College of Information Science
and Technology, Dalian Maritime
University, China. She received
the B.E. degree from Dalian
Minzu University, China. Her cur-
rently research interests include
machine learning, data mining
and data privacy.

Zhiyi Huang received his PhD
degree in Computer Science
in 1992 from National Uni-
versity of Defense Technology,
China. He is currently a Profes-
sor in the University of Otago,
New Zealand. His research areas
include artificial neural networks,
parallel/distributed computing,
signal processing on EEG data,
machine learning algorithms,
multi-core/manycore architec-
tures, cluster computing, parallel
programming environments, oper-
ating systems, and computer

networks.

Zhaobin Liu is a professor in the
College of Information Science
and Technology, Dalian Maritime
University, China. He received the
Ph.D degree in computer science
from Huazhong University of
Science and Technology, China,
in 2004. His research interests
include big data, machine learn-
ing, cloud computing and data
privacy.

123


	SQPMF: successive point of interest recommendation system  based on probability matrix factorization
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Overall framework
	3.2 Metric for user social relationship
	3.3 Metric for POI sequence transition
	3.4 Proposed SQPMF model
	3.5 Derivation of the objective function
	3.6 Ranking
	3.7 Complexity analysis

	4 Result and discussion
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Related models for comparison
	4.4 Comparison with related models
	4.5 Impact of parameters on SQPMF

	5 Conclusion
	Acknowledgements
	References


