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Abstract
Event sequences are common types of data. Several episode mining algorithms have been developed to find episodes
(subsequences of events) that appear frequently in an event sequence, with the aim of discovering useful knowledge for
decision-making and predictions. However, most of these algorithms can only process simple event sequences (where, at
most, one event occurs at each timestamp). In contrast, in many real-life applications, multiple events may occur at the same
timestamp, resulting in complex event sequences. Moreover, numerous episode mining algorithms overestimate the frequency
of episodes by counting the same events multiple times. As a solution, some algorithms have been designed to count only non-
overlapping occurrences. Yet, it can be argued that this definition is too strict and discards many important events. To address
these limitations, this paper presents an algorithm named EMDO (Episode Mining under Distinct Occurrences (EMDO) to
find frequent episodes in a complex sequence by counting distinct occurrences. The proposed concept of distinct occurrences
ensures that each event is not counted more than once but allows distinct occurrences to overlap. A second algorithm, called
EMDO-P, is also presented in this paper to derive strong episode rules in event sequences from episodes found by EMDO. To
the best of our knowledge, this is the first study on mining frequent episodes using a frequency definition based on distinct
occurrences. The experimental results confirm that the proposed algorithms are efficient.

Keywords Complex event sequence · Frequent episode · Episode rules · Distinct occurrence

1 Introduction

Data has become extremely valuable and plays an important
role in daily life. They are captured in various ways such as
through the Internet of Things (IoT) [28] and social networks
[29]. They are used by decision makers, data analysts, and
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engineers to better understand various phenomena and pro-
vide improved services for real-world applications, such as
product recommendation for e-commerce websites, analyz-
ing energy usage in logistics or urban transportation, and
even studying the human behavior in response to some spe-
cific events.

To incorporate the time dimension in data analysis, sev-
eral temporal data-mining algorithms have been proposed in
recent years. These algorithms can analyze a variety of tem-
poral data such as time series and event sequences. An event
sequence is a long sequence of events that are associatedwith
time stamps.

To discover useful patterns in event sequences, Frequent
Episode Mining (FEM) was introduced by Mannila et al.
[8]. This framework has been applied successfully in many
real-life applications, including alarm sequence analysis
in telecommunication networks [8], user-behavior analysis
fromWeb logs [26], and financial event and stock trend anal-
ysis [23]. The input data in the FEM is a single sequence
of events, each of which is characterized by a type and an
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occurrence timestamp. The patterns discovered by an FEM
algorithm are called frequent episodes, which are either sub-
sequences or sets of events that occur frequently in an event
sequence.

Since the seminal work of Mannila et al. [8], many recent
studies have been conducted to improve the performance of
FEM. In general, any FEM algorithm utilizes a frequency
definition to find frequent episodes, which is based on a spe-
cific definition of episode occurrences. Generally, there are
two types of frequency definitions: dependent frequencies
that are based on occurrences which may share some events
between them; and independent frequencies that only count
occurrences that do not share any events between them.

In several studies, frequent episodes have also been used
to derive a related pattern type called episode rules [8]. An
episode rule is an implication that reveals a strong tem-
poral relationship between two frequent episodes, and is
also observed in an event sequence. The interpretation of
an episode rule is that if the left side of the rule occurs in
the sequence, it will trigger the occurrence of the rule’s right
side shortly after with high confidence. Owing to the prac-
tical significance of mining episode rules in finding strong
relationships, many algorithms have been proposed to mine
these rules efficiently. Each algorithm uses a specific fre-
quency definition and considers a given sequence type (either
a simple or complex event sequence).

After reviewing the literature, two key limitations were
identified. First, most FEM algorithms can only handle
simple event sequences (where there can be at most one
event per timestamp). However, it is not uncommon in real-
world applications to encounter multiple events with the
same timestamp, resulting in complex event sequences.
Thus, traditional episode discovery algorithms cannot iden-
tify strong patterns with simultaneous events. Second, most
frequency definitions count an event multiple times if there
are overlapping occurrences, which may result in significant
overestimation of the frequency of episodes. This is illus-
trated by the simple event sequence shown in Fig. 1, which
contains three event types (a, b, c) observed at five times-
tamps (1,2, …5).

A traditional episode mining algorithm considers that
episode a before c appears four times at timestamps (1,4),
(3,4), (1,5), and (3,5); thus, it has a frequency (support) of
4. However, this can be seen as an overestimation because

Fig. 1 A simple event sequence with five events and five timestamps

each event is counted twice. For instance, event a at times-
tamp 1 is shared by occurrences (1,4) and (1,5). To address
this problem, FEM algorithms have been designed to count
only non-overlapping occurrences [10, 13, 19]. However, one
could argue that this definition is too strict and may discard
many important events, which may lead to an underestima-
tion of the frequency of episodes. This is also illustrated
by the sequence shown in Fig. 1. According to the non-
overlapped occurrence-based frequency, episode a before
c appears only once because a set of at most one non-
overlapping occurrence can be found in that sequence, such
as {(1, 4)} or {(2, 4)}. However, this may seem unreason-
able because there are two a that appear before two c in the
sequence.

The extraction of distinct occurrences from complex event
sequences has two major goals: first, to handle real-life phe-
nomena with simultaneous events at a given timestamp.
Hence, the resultant sequence will be a complex event
sequence. This makes the analysis of such a sequence a
challenging task that consumes a huge amount of resources.
Second, the analysis should reveal hidden information with-
out any duplicate occurrences of episodes or duplicate
combinations of events within the set of interesting patterns,
since the purpose is to understand the targeted phenomena
as much as possible. To achieve this, new techniques must
be developed that allow simultaneous events to be taken
into consideration in the calculation of the maximum pos-
sible number of episodes. As a consequence, we propose
an approach to mining frequent parallel episodes in com-
plex sequences under distinct occurrences. The proposed
approach also enables the discovery of episodes that may
occur at one timestamp since it does not consider any order
between the nodes of such an episode.

To the best of our knowledge, no prior studies have
attempted to jointly solve these two limitations. In this paper,
we address them by proposing two new episode mining
algorithms called EMDO (Episode Mining under Distinct
Occurrences) and EMDO-P (EMDO with pruning strategy),
basedon anovel frequencydefinition that is less strict than the
non-overlapped occurrence-based frequency, using a novel
concept of distinct occurrences. Themain intuition is to count
the frequency of episodes by allowing overlapping occur-
rences, but not allowing the same event to be used twice to
reduce the problem of underestimation. For example, in the
sequence illustrated in Fig. 2, the episode a before c has a
set of two distinct occurrences (1,4) and (3,5), since these

Fig. 2 A simple event sequence with 7 timestamps
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occurrences do not reuse the same events, and thus the fre-
quency of that episode is deemed to be two.

The two key contributions of this study are as follows:
First, a novel frequency definition is defined for episodes and
episode rules based on distinct occurrences of complex event
sequences. Second, this definition is integrated into two novel
algorithms, EMDOand EMDO-P, to efficiently find episodes
and episode rules with this new definition, respectively. The
experiments presented in this paper on various datasets show
that the algorithms are efficient for different types of data and
parameter settings.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents pre-
liminaries and reviews the key concepts of frequent episodes
and episode rules. Section 4 describes the studied episode
discovery tasks and the novel algorithms in detail. Results
from an experimental evaluation of the designed algorithms
and a discussion is then presented in Section 5. Finally,
Section 6 concludes the study and discusses future directions
for research.

2 Related work

FEM is a data science task that has drawn the attention of
many researchers, as evidenced by the increasing number of
FEM algorithms. Since the initial study byMannila et al. [8],
several approaches have been proposed to enhance the effi-
ciency of the FEM process by extending previous algorithms
ormining new types of episodes or related patterns that reveal
interesting relationships between events in a sequence.

Mannila et al. [8] introduced the first frequency definition,
known as the window-based frequency. For a given episode,
it counts the number of fixed-width windows in which the
episode appeared at least once. Mannila et al. created an
algorithm calledWINEPI to mine such episodes. In the same
paper, they also presented another algorithm calledMINEPI,
where the frequency is defined as the number of minimal
windows that contain an occurrence of a target episode,
and is called the minimal occurrence-based frequency. To
overcome some of the limitations of previous approaches,
two additional frequency definitions, namely, the head fre-
quency [9] and total frequency [9], were also designed. For
instance, Huang et al. [1] proposed two algorithms, EMMA
and MINEPI+, to overcome the limitations of the window-
based frequency using the head frequency [8].

Other studies have proposed other types of frequen-
cies based on independent occurrences, such as the non-
overlapped occurrences-based frequency [10] and the dis-
tinct occurrences-based frequency [11]. Another recent
study proposed a frequency definition based on the earliest

transiting occurrences [12], which provides a unified view of
all previous frequency definitions. However the algorithm in
[12] is limited to mining serial episodes with distinct occur-
rences using this unified view. This means that simultaneous
events are not permitted, although they are common in many
applications.An algorithmcalledONCE+was also proposed
to mine serial episodes in event streams [27].

Some studies have focused on identifying specific fre-
quent episodes that met some additional conditions(s). In
particular, several episode mining algorithms have been
proposed for retrieving concise representations of frequent
episodes. For instance, Xiang et al. [4] presented an algo-
rithm called LA-FEMH+ that minesmaximal episodes. An
episode is maximal if and only if it has no proper frequent
super-episode. Algorithms were also devised to discover
closed episodes and generator episodes. A closed episode
is a frequent episode with no proper super-episode and the
same support (occurrence frequency). Closed episode min-
ing algorithms include FCEMiner [14], 2PEM [15] under
minimal and non-overlapping frequency, and Clo-episode
[13] under minimal occurrence-based frequency. Genera-
tor episodes are frequent episodes that haveNo sub-episodes
with the same support. The only algorithm thatmines genera-
tor episodes is called Extractor [24]. Another area of research
on episode mining is high utility pattern mining. The prob-
lem of mining high-utility episodes was defined as locating
episodes with high importance, asmeasured by a utility func-
tion. The motivating application of this task is to identify
episodes that are highly profitable. HUE-Span [17] and UP-
Span [16] are efficient algorithms for mining utility episodes
in event sequences.

Another recent variant of episode mining is the discovery
of the top-k most frequent episodes in an event sequence,
where k is a user-defined parameter. A modified version of
the EMMA algorithm [1] called TKE was developed to per-
form this task [18]. Two other notable extensions of FEM
are weighted episode mining [22] and fuzzy episode mining
[25], which consider event sequences with varying weights.
The former allows for the importance of different event types
to be weighted, whereas the latter handles events with quan-
tities using fuzzy sets to deal with imprecise events. These
two extensions can be viewed as forms of high utility pattern
mining.

Some algorithms, such as PFSE [3] and D-PFSE [2] have
also extended the FEM tomodel the data uncertainty of event
sequences by using possible worlds semantics to mine fre-
quent probabilistic episodes in uncertain sequences.

To extract strong relationships between sets of events in a
complex event sequence, FEMwas extended tomine episode
rules that satisfy a minimum confidence constraint. Several
algorithms have been proposed for this task. Generally, they
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discover the set of frequent episodes first and then evaluate
the relationships between pairs of frequent episodes to build
episode rules. Only episode rules with confidence above a
user-defined confidence threshold are considered valid.

Mannila et al. proposed the first procedure for mining
episode rules [8]. Further efficient algorithms have been pro-
posed to handle time-sensitive applications such as program
security trading using an algorithm called PPER [20]. These
two algorithms use theminimal occurrence-based frequency.

In addition, the discovery of episode rules for event
streams has been studied. For instance, the Extractor algo-
rithm of Zhu et al. [24] finds closed episodes and their
generators to identify nonredundant episode rules in an event
stream under minimal and nonoverlapped occurrence-based
frequency. Another technique, called MESELO, has also
been proposed tomine episode rules in event streams too. The
MESELOalgorithmprocesses an event streambydecompos-
ing it into smaller batches.

Recently, several algorithms have been proposed for min-
ing partially ordered episode rules in a complex event
sequence. For instance, POERM [6] uses the non-overlapped
occurrence-based frequency and POERMH [7] is based on
the head frequency. Furthermore, NONEPI [19] is an algo-
rithm that performs a depth-first search to mine episode
rules in simple event sequences using the non-overlapped
occurrence-based frequency.

The analysis of existingworks shows thatmost studies dis-
cover serial episodes in simple sequences, leavingmany areas
unexplored, such as other types of sequences, frequency def-
initions, and episodes.We focus on complex event sequences
and parallel episodes with the distinct occurrence-based fre-
quency definition, which is a very interesting topic in practice
but has not been studied sufficiently. To the best of our knowl-
edge, there is no algorithm that can mine parallel episodes
and episode rules in a complex event sequence under a dis-
tinct occurrences-based frequency.

3 Preliminaries and problem definition

This section reviews the fundamental concepts used in Fre-
quent EpisodeMining (FEM) before giving a clear definition
of the problem that we will be addressing in this paper: min-
ing frequent episodes and valid episode rules in a sequence
under a frequency definition based on distinct occurrences.
The input of FEM is an event sequence.

Definition 1 (Event) An event is a pair (e, t) where e is an
element from a set E (set of all event types) that represents
the event type and t is an integer that indicates the event’s
timestamp.

For instance, in TCP/IP network communication, an event
occurring at a given time may be of type accept, representing
the accept operation from a server receiving connections.

Definition 2 (SimpleEvent Sequence) Given a set E of event
types, a simple sequence S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉
is an ordered set of events (ei , ti ) such that ei ∈ E is the
event type of the i th event and ti is its occurrence time in
the sequence S. The sequence S is ordered, that is, for any
integers i, j if i < j then, ti < t j .

For example, Fig. 2 provides a visual representation of a
simple sequencewith 7 events occurring at seven timestamps.
The event types in this example are denoted by lower case
letters, i.e. E = {a, b, c, d, e}. The formal definition of that
sequence is S = 〈(a, 1), (c, 2), (a, 3), (b, 4), (a, 5), (e, 6),
(d, 7)〉. For instance, this sequence may represent a list of
web pages accessed through a web browser by a user, or its
list of purchases in a web store.

A more general type of event sequence considered in this
work is called a complex sequence and is simply referred to
as sequence in the following.

Definition 3 (Complex Event sequence) Given a set E of
event types, a complex sequence S = 〈(ε1, t1), (ε2, t2), ...,
(εn, tn)〉 is an ordered set of pairs (εi , ti ) such that εi ⊆ E is
a set of event types and ti is the occurrence time of all events
in εi in the sequence S.

An example of a complex sequence is shown in Fig. 3.
This sequence contains 7 event sets and the same event types
as in the previous example: E = {a, b, c, d, e}. The sequence
starts at time t1 = 1 and ends at time t7 = 7.

The sequence illustrated in the previous figure may rep-
resent the logs of a server in which the events are logged
simultaneously. We can observe that the server logs, for each
timestamp, different types of events that represent an action
such as, for example, a request to establish a channel between
a client and a server on a specific port. Here, the same port
may be targeted by several machines. Therefore, the server
should log the incoming requests for a given port at each
timestamp, which clearly form a complex event sequence.

The goal of FEM is to discover patterns called episodes.
A general definition is as follows:

Definition 4 (Episode) An episode α is a triple (V ,<α, gα)

where V is a set of nodes {v1, v2, ..., vn}, <α is an order on

Fig. 3 A complex event sequence with 7 timestamps
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Fig. 4 The three main episode
types

V and gα : V → E is a mapping that associates an event
type to each node.

According to the nature of the order <α , we can distin-
guish between different kinds of episodes:

• if the order <α is total, α is a serial episode. In this case,
α is denoted by α = A1 → A2 → ... → An where each
Ai is an event type. In this case, the events must occur in
the exact order specified by the episode. (see Fig. 4a for
an example)

• If the order is trivial, the episode α is called parallel
episode and it is denoted as α = A1A2...An . In this case,
the events may occur in any order. An example is shown
in Fig. 4b.

• Another type of episodes has been studied, called episode
with general partial order [5–7]. In this case, event occur-
rences are partially ordered. Figure 4c shows an example
of such an episode.

In addition, an episodeα is said to be injective if it does not
contain any repeated event types, that is, for any 1 ≤ i, j ≤ n,
if i �= j then g(vi ) �= v(v j ).

In this study, we focus on discovering parallel injective
episodes. Hence, in the following sections, we use the term
episode to refer to any injective parallel episode.

For instance, establishing TCP/IP communication in a
client/server architecture forms a serial episode. Here, a
TCP connection is a sequence of actions, such as request(),
accept(), send(), and receive(). First, the client sends a request
message requesting a connection to a specific port on the
server. Then, the server must accept the request sent by the
client to allow the sending and receiving of data. Note that
there is a strict order between these events (TCP operations)
to establish a link; hence, it is a typical example of a serial
episode. In contrast, user clicks on a website may constitute a
parallel episode because the user’s behavior may not depend
on the order between the clicks on the website.

In the example sequence, shown in Fig. 3, the events a, b
and c can form an episode in that sequence, and this episode
is denoted by α = abc. Additional definitions are introduced
to formally define how an episode α occurs in a sequence.

Definition 5 (Sub-episode) Let α = A1 . . . An and β =
B1 . . . Bm be two episodes. β is said to be a sub-episode of
α (denoted as β 	 α ) if and only if there exist m integers
i1, i2, . . . , im such that : 1 ≤ i1 < · · · < im ≤ n and B1 =
Ai1 , B2 = Ai2 . . . Bm = Aim .

In other words, β is a subepisode of α if the events of β

are a subset of those of α. Note that if β is a subepisode of α

then it is easy to see that every occurrence of α contains an
occurrence of β. [8].

For instance, consider episodeα = abc from the sequence
of Fig. 3. By Definition 5, episode β = ac is a sub-episode
of α = abc (β 	 α).

The task of FEM consists of identifying all the frequent
episodes in an event sequence. To achieve this, it is first neces-
sary to select a frequency definition to count the occurrence
of an episode. Generally, the number of occurrences of an
episode is called its support, and an episode is frequent if
and only if its support is not less than a user-specified thresh-
old,minsup. The notion of an episode occurrence is defined
as follows:

Definition 6 (Occurrence of episode, Distinct occurrences)
Let S be a sequence and α = A1A2 . . . An be an episode.

• An occurrence of the episode α in the sequence S is a
vector of integers h = [t1t2 . . . tn] such that each ti is the
occurrence time (timestamp) of the i th node (event) of
the episode α, i.e., Ai occurs at time ti in S.

• Given two occurrences h= [t1t2 . . . tn], h′ = [t ′1t ′2 . . . t ′n],
h and h are said to be distinct if and only if ti �= t ′j for all
ti ∈ h and t ′j ∈ h′ and 1 ≤ i ≤ ‖α‖ and 1 ≤ j ≤ ‖α‖.

Then, the maximal (w.r.t. set inclusion) set of distinct
occurrences of an episode is defined as:

Definition 7 (Maximal set of distinct occurrences) Let H be
a set of distinct occurrences of episodeα: H is said to bemax-
imal if and only if for every set H ′ of distinct occurrences,
‖H‖ ≥ ‖H ′‖. The notation do(α) denotes the maximum set
of distinct occurrences of α.

For instance, consider the example sequence in Fig. 3.
The maximal set of distinct occurrences of episode α = abc
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in that sequence is do(α) = {[1 1 2],[3 4 4],[5 7 6]}. FEM
algorithms have been designed to mine frequent episodes
using various frequency definitions, each capturing a notion
of how often an episode occurs in an input sequence. Under
the distinct occurrences-based frequency, the support of an
episode merely corresponds to the maximum number of its
distinct occurrences in the sequence.

Definition 8 (Support of episode, Frequent episode) Let S
be a sequence and α be an episode:

• The support of α under the distinct occurrences-based
frequency definition (denoted by support(α)) is the car-
dinality of the maximal set of its distinct occurrences,
that is support(α) = ‖do(α)‖.

• An episode α is frequent under distinct occurrence-
based frequency if and only if support(α) ≤ minsup
i.e., support(α) = ‖do(α)‖, where minsup is a user-
specified threshold.

Frequent episodes are interesting because they can cap-
ture frequent relationships between events. To find patterns
that are more actionable, several studies have focused on dis-
covering episodes in the form of rules called episode rules
[8, 19]. The concept of the episode rule is similar to that of
association rule used in traditional frequent itemset mining
[30]. Generally, an episode rule is an expression of the form
α ⇒ β where α and β are two frequent episodes. This rep-
resents a binary relationship between two frequent episodes
according to a specific frequency definition. To evaluate such
a rule, the confidence measure, which is the probability that
the consequent of an episode rule appearswhen its antecedent
is observed, is commonly used. An episode rule is said to be
valid if and only if its confidence exceeds the confidence
threshold, denoted by mincon f . Note that the exact defini-
tion of the confidence of an episode rule may vary depending
on the algorithm and type of episode rules that are extracted.

The approach presented in this paper is called EMDO,
which stands for Episode Mining under Distinct Occurrences.
It relies on distinct occurrences-based frequency to capture
how often a rule is frequent. An episode rule is then formally
defined as follows:

Definition 9 (Episode Rule) An episode rule is an implica-
tion of the form α ⇒ β where α and β are two frequent
episodes under the distinct occurrence-based frequency.

As mentioned above, episode rules reveal important rela-
tionships between frequent episodes. The meaning of an
episode rule under Definition 9 is that if an episode α appears
in sequence S, it will trigger the occurrence of episode β.
Since we are using parallel episodes, any event of α can trig-
ger the episode β. To capture the idea that β is a consequence
of α we require that the beginning (resp. the end) of β must

be after the beginning (resp. the end) of α. Therefore, the new
form of episode rules studied in this paper covers many other
works as in [6, 7] thatmines partially ordered episode rules as
well as episode rules under non overlapped occurrence-based
frequency [19].

Definition 10 (Episode RuleOccurrence) Consider an episode
rule α ⇒ β and two occurrences αi and β j of episodes α and
β respectively (αi ∈ do(α) and βi ∈ do(β)). An occurrence
of the rule α ⇒ β is a vector h = [tα1 ...tαn tβ1 ....tβm ]. An
occurrence h is said to be a valid occurrence of the rule if
and only if: Ts(α) < Ts(β j ) and Te(α) < Te(β j ) where Ts
(resp. Te) is a function that takes an occurrence of an episode
as an input and returns its starting (resp. ending) time. The set
of all valid occurrences of an episode rule α ⇒ β is denoted
by occER(α ⇒ β).

For example, consider the sequence shown in Fig. 3 and
the support threshold minsup = 3. We calculate the set
of frequent episodes with respect to minsup. We start with
episodes of size 1. For α = a, the maximal set of dis-
tinct occurrences in sequence S is doα = {[1], [3], [4], [7]};
hence, the support of α is 4. Next, we determine the maximal
set of distinct occurrences of β = b, γ = c, and so on. Then,
by joining the timestamp of each occurrence of any pair of
episodes according toDefinition 6,we obtain the occurrences
of larger episodes.

Based on the concept of episode rule occurrence, the sup-
port of an episode rule α ⇒ β is defined as the number of
all valid occurrences in the sequence.

Definition 11 (Episode Rule Support) The support of an
episode rule α ⇒ β, denoted by supER(α ⇒ β) is defined
as follows:

supER(α ⇒ β) = ‖occER(α ⇒ β)‖

The confidence of an episode rule is defined as in a pre-
vious work, that is, as the ratio between the support of that
episode rule and the support of its antecedent.

Definition 12 (Episode Rule Confidence) The confidence of
an episode rule α ⇒ β is denoted by con f (α ⇒ β) and it is
defined as follows:

con f (α ⇒ β) = ‖occER(α ⇒ β)‖
support(α)

In addition to the set of frequent episodes already demon-
strated, a set of episode rules can be derived in a straightfor-
wardmanner. Consider the confidence thresholdmincon f =
50%. For instance, let α = a and β = d be two fre-
quent episodes, each identified by its distinct occurrence,
as shown in Table 1. According to Definition 10, we can
obtain the set of occurrences of ER = a ⇒ d as
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Table 1 Frequent episodes with minsup = 3

Episode Occurrences Support

a {[1], [3], [4], [5], [7]} 4

b {[1], [4], [7]} 3

c {[2], [4], [6]} 3

d {[2], [3], [7]} 3

ab {[1 1], [3 4], [5 7]} 3

abc {[1 1 2], [3 4 4], [5 7 6]} 3

abcd {[1 1 2 2], [3 4 4 3], [5 7 6 7]} 3

ac {[1 2], [3 4], [5 6]} 3

acd {[1 2 2], [3 3 3], [4 7 7]} 3

ad {[1 2], [3 3], [4 7]} 3

bc {[1 2], [4 4], [7 6]} 3

bcd {[1 2 2], [4 4 3], [7 6 7]} 3

bd {[1 2], [4 3], [7 7]} 3

cd {[2 2], [4 3], [6 7]} 3

occER(a ⇒ d) = {[1 2], [3 7]}; hence, the support of
the rule is suppER(a ⇒ d) = ‖occER(a ⇒ d)‖ = 2.
Therefore, the confidence is straightforwardly calculated by
Definition 12 as con f (a ⇒ d) = ‖occER(a⇒d)‖

support(a)
= 2

4 =
0.5 = 50%. Table 2 lists a subset of episode rules derived
from sequence Fig. 3 with respect to a confidence threshold
mincon f = 50%.

The problem addressed in this paper is the mining
of frequent episodes and episode rules using the dis-
tinct occurrence-based frequency. More precisely, given a
sequence S, a support threshold minsup and a confidence
threshold mincon f , the proposed approach consists of two
tasks:

Table 2 Frequent episodes with mincon f = 50%

Episode Rule α ⇒ β Occurrences conf(α ⇒ β)

a ⇒ d {[1 2], [3 7]} 50%

a ⇒ dc {[1 2 2], [3 6 7]} 50%

a ⇒ dcb {[1 3 4 4], [3 7 6 7]} 50%

a ⇒ dcba {[1 3 4 4 3], [3 7 6 7 5]} 50%

a ⇒ c {[1 2], [3 4], [4 6]} 75%

a ⇒ cb {[1 4 4], [3 6 7]} 50%

a ⇒ cba {[1 4 4 3], [3 6 7 5]} 50%

a ⇒ b {[1 4], [3 7]} 50%

a ⇒ ba {[1 4 3], [3 7 5]} 50%

a ⇒ a {[1 3], [3 4], [4 5]} 75%

da ⇒ d {[2 1 3], [3 3 7]} 66.67%

da ⇒ dc {[2 1 3 4], [3 3 7 6]} 66.67%

da ⇒ dcb {[2 1 3 4 4], [3 3 7 6 7]} 66.67%

da ⇒ dcba {[2 1 3 4 4 3], [3 3 7 6 7 5]} 66.67%

• Finding all frequent episodes under distinct occurrences-
based frequency, i.e., having a support which is greater
or equal to minsup.

• Finding all valid episode rules of the form α ⇒ β such
that α and β are frequent episodes and con f (α ⇒ β) ≥
mincon f .

4 Novel efficient algorithms for episode rule
mining in complex sequences

This section presents the proposed approach for mining fre-
quent episodes and episode rules under distinct occurrences-
based frequency. The proposed approach involves two
main phases: the first phase consists of mining frequent
episodes using a procedure to recognize distinct occur-
rences, whereas the second phase extracts all valid episode
rules in the proposed form, as discussed in the previous sec-
tion.

4.1 Frequent episodemining with distinct
occurrences-based frequency

The first step is to mine the set of all frequent episodes
according to their distinct occurrences. Initially, the func-
tion Mine_frequent_episodes, presented in Algorithm 1
and Fig. 5, scans the input sequence to extract episodes
of size 1 (containing a single event). For each event type
e that occurs at a timestamp tk , tk is added to a variable
doe that stores the distinct occurrences of e. Next, the func-
tion retains only frequent event types (line 1-9). Then, the
algorithm mines larger episodes using a depth-first search
strategy by repeatedly combining each n-node episode with
a single event episode to form larger episodes. Function Dis-
tinct_Occurrence_Recognition (Algorithm 2 and Fig. 6) is
used to find the maximal set of distinct occurrences of each
produced episode.

To avoid exploring all of the search space, the function
for frequent episode generation under distinct occurrences-
based support utilizes the following anti-monotonicity prop-
erty.

Proposition 1 Let α and β be two episodes such that α 	 β.
If the episodeβ is frequent then the episodeα is also frequent.
Equivalently, if the episode α is infrequent then the episode
β is also infrequent.

Proof Since α 	 β, it follows that each occurrence of β in
S includes an occurrence of α. Hence, the number of occur-
rences of episode β is at most equal to the number of occur-
rences of episode β, i.e. support(α) ≥ support(β). There-
fore, if the episode β is frequent, i.e., support(β) ≥ minsup
and since support(β) ≤ support(α) then support(α) ≥
minsup, hence, episode α is also frequent. Consequently, the
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Fig. 5 Frequent Episode Generation function flowchart
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Fig. 6 Maxmimal set of Distinct Occurrences Recognition function flowchart

anti-monotonicity property holds for the distinct occurrences-
based support.

FunctionDistinct_Occurrence_Recognition, which finds
the maximal set of distinct occurrences (Algorithm 2),
receives two input episodes: an episode α to be grown
using a single event episode beta. The output is the distinct
occurrences of the resulting episode doα�β . Several FEM
algorithms perform multiple scans of the input sequence
to calculate the occurrences of an episode. However, these
scans generally consume excessive time and memory. The
proposed algorithm avoids this problem by calculating the
occurrences of any new larger episode of size n + 1 starting
from the set of occurrences of episodes of size n and that of
a single event episode.

For each occurrence, Oi ∈ doα , the algorithm parses the
set of distinct occurrences of β to obtain an occurrence Oj ∈
doβ and builds an occurrence of α�β whose vector of times-
tamps contains timestamps of Oi (i.e., Oi .timestamps from
doα) joined with timestamps of Oj (i.e., Oj .timestamps
from doβ ).

Then, the algorithm compares the new occurrence with all
the occurrences in the set doα�β ; if that new occurrence over-
laps with any other occurrence in the current maximal set of
distinct occurrences of α � β (i.e., the set doα�β ), the algo-
rithm simply checks which occurrence it is to remove from
the set doα or from doβ ; if the timestamp of the event in β

(here, since ‖β‖ = 1, Oj .t imestamps[1] is the occurrence
time of the single event episode β in S) exists in the vector
newocc.t imestamps, then Oj is removed from doβ . Oth-
erwise, one timestamp from Oi .t imestamps surely exists
in newocc.t imestampsj; in this case, Oi is removed from
doα (line 10-16). Here, the function exists(tk, Oi ) returns
true if the integer (timestamp) tk exists in the vector of times
Oi .t imestamps; otherwise, it returns f alse.

4.1.1 An illustrative example

Consider the complex sequence of Fig. 3 as an example,
and let minsup = 3. In the first step of Algorithm 1, each
event type in E is viewed as a single event episode (i.e.,
an episode with one event). Next, the algorithm computes,
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Algorithm 1 Mine_Frequent_episodes.
Require: minsup - a minimum support threshold
Ensure: F - the set of all frequent parallel episodes
1: P ⇐ {};
2: F ⇐ {};
3: α ⇐ ∅;
4: for (each individual event e ∈ E) do
5: doe ⇐ {}
6: end for
7: {% scan the sequence S }
8: for (k ⇐ 1 to n) do
9: {% scan the event set found at time tk %}
10: for ( j ⇐ 1 to m) do
11: e j ⇐ the event found at time tk ;
12: doe j ⇐ doe j ∪ {tk};
13: end for
14: end for
15: for (each individual event e ∈ E) do
16: if (‖doe‖ ≥ minsup) then
17: P ⇐ P ∪ {(e)};
18: end if
19: end for
20: F ⇐ P;
21: for (each individual episode α ∈ F) do
22: for (each individual episode β ∈ P) do
23: doα�β ⇐ Distinct_Occurrence_Recognition(α, β);
24: if (‖doα�β‖ ≥ minsup) then
25: γ ⇐ α � β;
26: doγ ⇐ doα�β ;
27: F ⇐ F ∪ {γ };
28: α ⇐ γ ;
29: end if
30: end for
31: end forreturn F ;

for each episode, the set of its occurrences in each event
set by scanning the complex event sequence, and the support
according to Definition 8 (see line 1-14). Then, the algorithm
removes the non-frequent single event episodes based on the
support threshold (see line 15-19). Table 3 shows the set P
of frequent episodes obtained by executing lines 1-19.

To discover larger episodes, the algorithm creates a copy
of the frequent episodes already obtained and then starts the
search for larger episodes, following a depth-first strategy.
Before deciding whether a new episode α � β is frequent,
the algorithm computes the episode’s distinct occurrences
denoted by doα�β . An example of this process will be given
after. Next, the algorithm checks if the episode’s support
meets the requirement. If so, the episode is added into the set

Table 3 Frequent episodes of size 1 with minsup = 3

Episode Occurrences Support

a {[1], [3], [4], [7]} 4

b {[1], [4], [7]} 3

c {[2], [4], [6]} 3

d {[2], [3], [7]} 3

Algorithm 2 Distinct_Occurrence_Recognition.
Require: episode α - an episode to grow episode β - a single event

episode to be used to grow α.
Ensure: doα�β - the set of distinct occurrences of the new episode α�β

1: j ⇐ 0
2: i ⇐ 0
3: for (each Oi ∈ doα) do
4: f ound ⇐ f alse
5: for (each Oj ∈ doβ and f ound = f alse) do
6: newocc.timestamps ⇐ Oi .timestamps ∪ Oj .timestamps
7: stop ⇐ false
8: k ⇐ 1
9: while (not stop and k ≤ ‖doα�β‖) do
10: if (newocc.timestamps ∩ Ok .timestamps �= ∅) then
11: if (exists(Oj .timestamps[1], Ok .timestamps) =

true) then
12: remove Oj from doβ

13: else
14: remove Oi from doα ;
15: end if
16: stop ⇐ true
17: end if
18: Ok ⇐ Ok+1
19: end while
20: if (not stop) then
21: doα�β ⇐ doα�β ∪ newocc
22: f ound ⇐ true
23: end if
24: end for
25: end for
26: return doα�β

F of frequent episodes and the algorithmcontinues the search
(line 21-28). To perform the step of distinct occurrences
recognition, the algorithm 1 calls Algorithm 2. Consider two
episodes α = a and β = b where doα = {[1], [3], [4], [7]}
and doβ = {[1], [4], [7]}. The first step of each iteration in
Algorithm 2 within the loop is to create a new occurrence
and initialize its timestamps as the union between the times-
tamps of an occurrence of α and those of the occurrence of
β. As explained before, the first occurrences Oα = [1] and
Oβ = [1] will result in an occurrence of α � β such that
newoccα � β.t imestamps = [1 3]. The algorithm continues

Algorithm 3 Extract_Episode_rules.
Require: S: complex event sequence on E (the set of event types)

,minsup: support threshold ,mincon f : confidence threshold
Ensure: R: complete set of episode rules
1: F ⇐ Mine_Frequent_Episodes(minsup)
2: R ⇐ ∅
3: for (each α in F) do
4: for (each β in F) do
5: ruleSupport ⇐ Episode_Rule_Support(α, β);
6: if (

ruleSupport
‖doα‖ ≥ mincon f ) then

7: R ⇐ R ∪ {α ⇒ β}
8: end if
9: end for
10: end for
11: return R
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for the next occurrences Oα = [3] and Oβ = [4] such that
newoccα � β.t imestamps = [3] ∪ [4] = [3 4] and stores
each occurrence in doα � β . However, there is an exceptional
case where an occurrence of α � β does not meet the criteria
of Definition 6 (line 11). In this case, the process uses another
way of selectingd which occurrence to overstep. Therefore,
if the timestamp of the single event episode β exists already
in any old occurrence of α � β then, the algorithm loops
with the same occurrence of α and selects the next occur-
rence of β. Otherwise, the algorithm keeps the occurrence
of β and tests the combination with the next occurrence of
α since it absolutely intersects with any other occurrence of
α � β. For instance, consider two episodes α = a and
β = b. If the algorithm has the occurrence Oα = [3] and
Oβ = [4] then, doα�β = [3 4]. However, the next combi-
nation between Oα = [4] and Oβ = [7] will not be valid
since the timestamp t = 4 already exists in [3 4]. Hence, the
algorithm simply keeps the occurrence Oβ = [7] and moves
to the next occurrence Oα = [5], which gives a valid occur-
rence of α � β such that: doα � β = {[1 1], [3 4], [5 7]}.
When the algorithm terminates, all frequent episodes have
been found. Table 1 shows the final set of frequent episodes
generated by Algorithm 1 for the sequence of Fig. 3.

4.2 Episode rule mining

The following paragraphs present an extension of the algo-
rithm proposed in Section 4.1 to derive all valid episode rules
of the form α ⇒ β where α and β are two frequent episodes
under the distinct occurrences-based frequency.

The episode rule mining process is given by the function
Extract_Episode_Rules described inAlgorithm3 andFig. 7
which takes as input a complex event sequence S, support

Algorithm 4 Episode_Rule_Support.
Require: Two Episodes α and β

Ensure: ruleSupport : The support of the rule α ⇒ β

1: {% Inialization %}
2: ruleSupport ⇐ 0;
3: i ⇐ 1;
4: j ⇐ 1;
5: while (i ≤ ‖doα‖) do
6: stop ⇐ false;
7: while ( j ≤ ‖doβ‖ and not stop) do
8: for (each Ok in doβ s.t: j < k ≤ ‖doβ‖) do
9: if (start(Oi ) < start(Oj ) and end(Oi ) < end(Oj ))

then
10: i ⇐ i + 1;
11: ruleSupport ⇐ ruleSupport + 1;
12: stop ⇐ true;
13: end if
14: end for
15: j ⇐ k;
16: end while
17: end while
18: return ruleSupport ;

thresholdminsup and confidence thresholdmincon f where
the output is the set R of the valid episode rules.

Initially, the function calculates the set of frequent
episodes by calling the Mine_Frequent_Episodes func-
tion (Algorithm 1), and initializes the set of rules (lines
1-2). Then, it iterates on the set of frequent episodes to
capture valid rules using Definition 11. Here, the function
Episode_Rule_Support(α, β) (line 5) calculates the sup-
port of the rule according to Definition 11 (See Algorithm 4)

4.3 Episode rule mining with pruning

The approach presented in the previous subsection allows
finding all episode rules. However, considering all possible
combinations of α and β to form an episode rule leads to
a large search space. To reduce this search space, a prun-
ing technique is applied as follows: For a given single event
episode used as a consequent of an episode rule, only its
super-episodes are candidates to be consequents of valid
episode rules. This is obtained using the anti-monotonicity
property in the rule generation step, as stated byProposition 2
below.

Proposition 2 Let α and β be two frequent episodes under
distinct occurrences-based frequency. If the rule α ⇒ β is
invalid, then every episode rule α ⇒ γ such that β 	 γ is
invalid too.

Proof Proving the correctness of that proposition sim-
ply requires to use the anti-monotonicity of the distinct
occurrences-based support, to show that the confidence of
a rule α ⇒ γ obtained from a single event episode β

such that β 	 γ , will be invalid. Let β 	 γ be two
episodes, and assume that the support of the rule α ⇒ β is
invalid. By the anti-monotonicity property in Proposition 1,
support(β) ≥ support(γ ). It follows that :

con f (α ⇒ β) = ‖occER(α, β)‖
support(α)

≥ con f (α ⇒ γ )

= ‖occER(α, γ )‖
support(α)

.

However, since the rule α ⇒ β is invalid, this means that
con f (α ⇒ β) < mincon f , and therefore, the rule α ⇒ γ

is invalid as well.

Algorithm Extract_Episode_Rules_With_Pruning
(Algorithm 5) integrates a pruning strategy based on Propo-
sition 2 to generate all valid episode rules from the input
complex-event sequence.

Initially, the algorithm calculates the set of all frequent
episodes with respect to the support threshold minsup, ini-
tializes the set R of valid rules to be calculated, and initializes
the set P of frequent single episodes (lines 1-3). Then, for
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Fig. 7 Episode Rules Generation function flowchart

each frequent episode α as an antecedent of rule α ⇒ β,
the algorithm calculates the set of valid consequents with
respect to the confidence threshold mincon f by combin-
ing larger and larger episodes with single event episodes.
First, the algorithm uses the j th single event as a conse-
quence of the episode rule. Here, the episode root in line 8
is used to backtrack the process if there is no other candidate
super-episode of β as a consequence. For each episode β, the
algorithm calculates the episode rule support by calling the
function Episode_Rule_Support(α, β) and calculates its
confidence: If the confidence exceeds the confidence thresh-
old, the algorithmadds the episodeα ⇒ β into R and updates
the root episode for the later combination of the consequents
(lines 11-19). The algorithm stops if there are no other pos-
sible single-event episode candidates; otherwise, it updates
episode β to become larger with the next j th episode from
P (lines 20-23).

4.3.1 An illustrative example

An example is presented to illustrate the process of discover-
ing the set of all episode rules in the sequence S given inFig. 3
for minsup = 3 and mincon f = 50% by applying Algo-
rithm 5. Initially, the algorithm calculates the set of frequent
episodes as explained before (see Table 1). Then, it creates

the set P of frequent episodes of size 1 (line 3) from the
sequence S, i.e., P = {a, b, c, d}. Next, the algorithm will
search for episode rules. Take episode α = a, the algorithm
finds all rules where the antecedent is α = a (α ∈ F) and
then, it considers β = b (β ∈ P) as the first consequent and
the root of potential consequents (line 4 -10), where doα =
{[1], [3], [4], [5], [7]} doβ = {[1], [4], [7]}. Then, the algo-
rithmcalculates the support of the episode rule ER = α ⇒ β

(line 13) according to Definitions 10 and 11. Here, the sup-
port is calculated as follows: for each occurrence Oi ∈ doα ,
Algorithm 4 is applied to find an occurrence Oj ∈β where
doα = {[1], [3], [4], [7]} and doβ = {[1], [4], [5]} such that
start(Oi ) < start(Oj ) and end(Oi ) < end(Oj ). Hence,
for the episode rule ER = α ⇒ β, its first occurrence is
[1 4] and cannot be [1 1] since the occurrence Oα = [1]
and Oβ = [1] do not meet the previous criteria. Thus, the
algorithm jumps to the second occurrence of β (Oβ = [4]),
which produces a valid occurrence of the episode rule. Then,
the algorithm moves to the next occurrences Oα = [3] and
Oβ = [5]ofα andβ respectively,whichmake the vector [35]
a valid occurrence of the episode rule. The set of occurrences
of the rule α → β is ER − occ(α ⇒ β) = {[1 4], [3 7]}
Finally, the support is calculated as supER(α ⇒ β) =
‖occER(α ⇒ β)‖ = 2. Then, Algorithm 5 continues its
process by calculating the confidence on line 14. If the confi-
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Algorithm 5 Extract_Episode_Rules_With_Pruning.
Require: S: complex event sequence on E (the set of event types)

minsup: support threshold mincon f : confidence threshold
Ensure: R: complete set of episode rules
1: F ⇐ Mine_Frequent_Episodes(minsup)
2: R ⇐ ∅
3: P ⇐ {γ s.t. γ ∈ F ∧ ‖γ ‖ = 1}
4: for (each α ∈ F) do
5: j ⇐ 0
6: while ( j < ‖P‖) do
7: β ⇐ P[ j]
8: root ⇐ β

9: k ⇐ j
10: stop ⇐ false
11: while (not stop) do
12: if (β ∈ F) then
13: ruleSupport ⇐ Episode_Rule_Support(α, β)

14: con f ⇐ ruleSupport
‖alpha.occ‖

15: if (con f ≥ mincon f ) then
16: R ⇐ R ∪ {α → β}
17: root ⇐ β

18: else
19: β ⇐ root
20: end if
21: else
22: β ⇐ root
23: end if
24: if (k > ‖P‖) then
25: stop ⇐ true
26: else
27: β = β � P[k]
28: k ⇐ k + 1
29: end if
30: end while
31: j ⇐ j + 1
32: end while
33: end for
34: return R

dence exceeds the mincon f threshold, then, the current rule
is considered as valid and the current consequent β becomes
the root of potential consequents such that it is joined with
the next single event episode γ = c from the set P and the
process is repeated. Notice that, if the consequent is not fre-
quent, the root takes the place of the valid consequent to join.
For mincon f = 50%, the rule a ⇒ β is valid and β = b
is the root for future consequents, hence, it is joined with
episode γ = c. Therefore, the next episode rule to check is
a → bc. if the last rule is not valid with respect tomincon f ,
β = b will be joined with δ = d and so on according the
Proposition 2. Table 2 shows the final set of valid episode
rules found by the algorithm.

5 Experimental study

Several experiments were conducted on both synthetic and
real datasets to evaluate the proposed approach for mining

Table 4 Synthetic datasets parameters

Type Number of event types sequence size
(number of event sets)

Small dataset 15 40000

Medium dataset 15 65000

Large dataset 20 70000

frequent episodes and episode rules. The experiments were
performed on an AMD Ryzen 5 PRO 4650G with Radeon
Graphics 3.70 GHz PC with 16 Gb of main memory and
256 Gb of SSD storage, running the Microsoft Windows 10
operating system. All algorithms were coded in Java. These
experiments only evaluates the designed approach since there
exist no prior work on discovering frequent episodes in com-
plex event sequences using the distinct occurrences-based
frequency definition.

5.1 Data generation

Several synthetic datasets were used for the experiments,
which were randomly generated using three main parame-
ters:(i) the length of the complex sequence (the number of
events), (2) the number of event types, and (3) the maxi-
mal size of event sets in the complex sequence. To evaluate
the proposed approach under different scenarios, three types
of synthetic sequences were considered: short, medium, and
large. Table 4 lists the details of the chosen synthetic datasets
for these experiments. The datasets are available publicly on
GitHub1

Three real datasets were obtained in the form of transac-
tion databases from the SPMF dataset collection.2 For this
purpose, each item is considered an event, and hence each
transaction (itemset) is considered as an event set in the com-
plex sequence. Furthermore, each event set is associated with
an integer (the transaction number) to represent its times-
tamp. The first dataset that was used is called OnlineRetail
with 541880 event sets and 2603 event types, the second
dataset is called FruitHut with 181970 event sets and 9390
event types, and the last one is calledMushroomswhich con-
tains 8416 event sets and 119 event types. These three real
datasets were chosen owing to their different characteristics.

5.2 Results and discussion

The experiments described in this section aim to eval-
uate the performance of two processes: mining frequent

1 https://github.com/Oualidinx/EMDO-synthetic-datasets.git
2 http://www.philippe-fournier-viger.com/spmf/, last accessed on
2022-12-01
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Fig. 8 Influence of minsup on the number of frequent episodes and the size of the largest episode on synthetic datasets

episodes (Section 5.2.1) and generating valid episode rules
(Section 5.2.2).

For frequent episode mining, the performance analysis
considers both synthetic and real datasets and the variation
according to the support threshold of: (1) the runtime (in
seconds), (2) the number of frequent episodes, (3) the size of
the largest frequent episode, and (4) the memory used during
the process.

For episode rule mining, the baseline algorithm (called
EMDO)was comparedwith the algorithm formining episode
rules using the pruning strategy (called EMDO-P), both pro-
posed in this paper, in terms of (1) runtime and (2) memory
cost for both synthetic and real datasets.

5.2.1 Frequent episode mining

The first step of the proposed algorithm is to generate a set
of frequent episodes using Algorithm 1. Figure 8 and 9 show
how the support threshold influences the number of frequent
episodes and maximum episode size on synthetic and real
datasets, respectively.

The variations in the number of frequent episodes with
respect to the support threshold values clearly show that the
anti-monotony property of the distinct occurrence-based fre-
quency is very effective for pruning the search space by the
proposed approach on both synthetic and real datasets.More-
over, the size of the largest frequent episode is much smaller
when the minimum support value is increased. The smaller
minsup values are, the more frequently large episodes occur,
and the greater the number of frequent episodes is for syn-
thetic or real datasets.

Figures 10 and 11 depict the results obtained from the
application of the proposed EMDO algorithm for different
minsup threshold values in terms of runtime (in seconds) and
memory usage (inmegabytes) for synthetic sequences (short,
medium and large size) and real sequences, respectively.

The number of frequent episodes with respect to the min-
sup threshold in Figs. 10 and 11 decrease when the support
increase. Moreover, the memory cost also decreases rapidly
for greater support thresholds. This shows in particular the
efficiency of applying the anti-monotonicity property in the
context of distinct occurrences-based frequency. The prop-
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Fig. 9 Influence of minsup on the number of frequent episodes and the size of the largest episode on real datasets

erty states that the support of an episode is not greater than
that of any of its subepisodes. Consequently, the greater
support threshold values, the less runtime and memory
costs. Therefore, the results show the efficiency of the pro-
posed approach in terms of runtime, memory usage, frequent
episode count, and episode sizes.

5.2.2 Episode rule generation

The second step of EMDO is the generation of valid episode
rules from a derived set of frequent episodes. Because there
are no other algorithms that rely on distinct occurrences-
based support to mine frequent parallel episodes and/or
episode rules in complex event sequences, we focus here on
the comparison between the baseline version of the proposed
EMDO algorithm and the modified version, (EMDO_P)
whichutilizes the pruning techniquedescribed inSection 4.3.
The main objective of this experiment was to evaluate the
efficiency of the proposed pruning technique for generating
valid episode rules. Note that the two versions (EMDO and
EMDO_P) yield the same output, that is, generate the same

valid episode rules. However, they differ in performance, as
explained below. The different minimum support values are
presented in Table 5.

Figures 12 and 13 illustrate the influence of the mincon f
threshold on runtime (in seconds) and memory usage (in
megabytes) for the naive algorithm EMDO and the improved
algorithm EMDO_P on synthetic and real datasets, respec-
tively.

Unsurprisingly, the naive algorithm globally uses less
memory to generate valid episode rules for different values of
the confidence threshold mincon f than the algorithm using
the pruning strategy. This remark is valid both for synthetic
and real datasets. This is not problematic because the increase
in memory cost remains reasonable and does not challenge
the modified algorithm.

However, the modified algorithm EMDO_P is clearly bet-
ter than the naive EMDO algorithm in terms of runtime for
both synthetic and real datasets, particularly when the con-
fidence threshold is increased. This is because the pruning
strategy enables EMDO_P to eliminate many large episodes
that cannot be a consequent of valid rules. This is due to the
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Fig. 10 Influence of minsup for frequent episode generation in terms of execution time and memory usage on synthetic data sets

new episode rule pruning strategy of our algorithm that avoid
the combination of many frequent episodes, when compared
to the naive algorithm.

5.3 Discussion of some discovered patterns

Using the EMDO_P algorithm, several patterns can be
retrieved from datasets that reveal hidden relationships
between events. For instance, we executed the proposed
method on the Fruit Hut dataset, and the resulting set of
episode rules was significant. As example, Table 6 presents
some of the rules extracted from this dataset.

These rules represent strong relationships between pur-
chases made by customers. It is interesting to note that
those rules cannot be generated by the NONEPI algo-
rithm because this latter only generate rules where the
antecedent is a subepisode (predecessor) of the consequent.
However, our approach can combine all episodes to make
rules, rather than only those where an antecedent is a sub-
episode of a consequent.Moreover, the rules generated by the
NONEPI algorithm can be generated using the EMDO_P
algorithm. For instance, the rule Field T omatoes →

Field T omatoes, Banana Cavendish was generated by
both NONEPI and EMDO_P for a confidence threshold of
mincon f = 50%. However, NONEPI cannot generate any
of the rules shown in Table 6 except for the rule previously
mentioned.

These episode rules are interesting as they show the tem-
poral relationships between items such that if some items are
bought in some order, then other items on the left side of such
a rule will also be bought by such a customer, which reveals
the customer’s preference or needs. Consequently, these rules
can be used to develop marketing strategies based on promo-
tions or recommendations.

On the real Fruit Hut dataset, we further performed a
comparison of patterns found by EMDO and other episode
mining algorithms, namely the MINEPI+, NONEPI and
MINEPI algorithms. MINEPI+ uses a frequency defini-
tion called the head frequency whereas NONEPI uses
the non-overlapped occurrence-based frequency to calcu-
late the support of episodes and MINEPI uses the minimal
occurrence-based frequency.

Table 7 shows the comparison of support values of fre-
quent episodes discovered by all algorithms. The table indi-
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Fig. 11 Influence of minsup on execution time and memory usage on real data sets

cates that the support calculated by the proposed algorithm
is greater than that calculated by NONEPI and MINEPI and
less than that calculated byMINEPI+.Consequently,we con-
clude that EMDO can discover the same frequent episodes
but by exploring a smaller search space than MINEPI+ and
may provide a more reasonable view as it captures more
occurrences than NONEPI and MINEPI.

First, the head frequency is greater than any other fre-
quency definitions owing to the duplicate count of the same
events with their timestamps for many windows of length k.
Therefore, for a given episode, the head frequency increase
with the window length. Second, the minimal occurrence
of an episode α is a time interval that contains the occur-
rence of a given episode such that no proper sub-window
contains an occurrence of α, which means that any pair of
occurrences can be distinct, but theymust beminimal; hence,
this additional constraint will eliminate such occurrences
that are not minimal. Consequently, distinct occurrence-
based frequency will be absolutely greater than minimal
occurrences-based frequency since there is no constraint of
the presence of occurrences in such time intervals except that
they do not share common events (timestamps). Finally, the

non-overlapping occurrence-based frequency is the smallest
frequency for episodes because of the strong elimination due
to the condition that occurrences must not overlap, which
eliminates the majority of occurrences of any episode.

Furthermore, Table 8 shows the comparison of the num-
ber of frequent episodes, the number of candidate episodes
and the size of the largest frequent episodes for each algo-
rithm. It is easy to see that the ratio between the number
of frequent episodes to the number of candidate episodes
is larger for EMDO which shows the efficiency of our new

Table 5 The supports value used in the episode rules generation step

Type of dataset Datasets Support threshold value

Synthetic datasets Short dataset 1000

Medium dataset 1750

Large dataset 3000

Real datasets Mushrooms 1050

FruitHut 5000

OnlineRetail 10000
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Fig. 12 Influence of mincon f on execution time and memory usage of episode rules generation on synthetic datasets

approach relative to other algorithms. In other words, EMDO
has to explore less candidates to find each valid pattern on
average.

On overall, the experiments show that EMDO can reveal
significant episodes in real data. Due to its frequency func-
tion, EMDOmay provide a more accurate view compared to
using other algorithms, especially those that use occurrence
definitions that shares common events.

6 Conclusion

Several algorithms have been developed to identify episodes
in an event sequence. Generally, a frequent episode mining
algorithm is designed to utilize a frequency function based on
a specific definition of episode occurrence. Although, several
algorithms for episode mining have been proposed, most of
them consider serial episodes or simple event sequences with
only one event per timestamp. Furthermore, most algorithms
allow for occurrences to overlap,which can result in counting
the same events multiple times, whereas algorithms based
on non-overlapping occurrences tend to underestimate the
frequency of the episodes.

Based on these observations, this paper studied the prob-
lem of episode rule mining in a complex event sequence
using distinct occurrences-based frequency. An efficient
depth-first strategy was proposed for discovering frequent
parallel episodes and valid episode rules, which were inte-
grated into two efficient algorithms, named EMDO and
EMDO_P, respectively. To the best of our knowledge, this is
the first work that identifies parallel episodes with a distinct
occurrences-based frequency in a complex event sequence.

In addition to mining frequent episodes, episode rules
represent another important type of pattern to mine from
the temporal sequences. An episode rule reveals a strong
relationship between frequent episodes that may be used for
different practical purposes, such as prediction and diagno-
sis. In this paper, we propose an adapted strategy for pattern
recognition and use it to propose two approaches for extract-
ing episode rules from complex sequences. The first is a naive
approach that explores the totality of the search space. The
second approach exploits the anti-monotonicity property of
the support under the distinct occurrences-based frequency
to propose a new pruning strategy for reducing the explored
part of the search space. Our pruning strategy is based on the
fact that if an episode rule α → β is not valid with respect to
a confidence threshold, then any episode rule α → β ′ with
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Fig. 13 Influence of mincon f on execution time and memory usage of episode rules generation on real datasets

Table 6 Example of discovered
patterns from Fruit Hut dataset

Rule con f (α → β)

Banana Cavendish,Cucumber Lebanese → Lettuce Iceberg 85.63%

Banana Cavendish,Cucumber Lebanese → Lettuce Iceberg, Beans green 68.63%

Lettuce Iceberg → Apples Pink Lady, Zucchini green 86.14%

Beans green, Onion Spring → Water melon seedless 96.44%

Beans green, Onion Spring, Capsicum red → Field Tomatoes 99.98%

Pear Packham → Apples Pink Lady, Zucchini green, Mandarin Imperial 83.44%

Field Tomatoes → Field Tomatoes, Banana Cavendish 57.08%

Table 7 Example of discovered
episodes by different algorithms
from Fruit Hut dataset

Episode MINEPI+ EMDO NONEPI MINEPI

Lettuce Iceberg, Banana Cavendish 23736 8972 7138 7582

Field Tomatoes, Banana Cavendish 35890 20220 13323 14862

Cucumber Lebanese, Banana Cavendish 27034 10489 8261 8886

Field Tomatoes, Cucumber Lebanese,
Banana Cavendish

16316 10483 / /

Table 8 Statistics of different
algorithms on the Fruit Hut
dataset

MINEPI+ EMDO NONEPI MINEPI

Number of candidate episodes 26642 9959 1942 3993

Number of frequent episodes 992 3243 35 1244

Largest frequent episode size 8 6 2 13
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β 	 β ′ is invalid. Consequently, as soon as the algorithm rec-
ognizes a non-valid episode rule α → β, it stops the search
process for any rule with the form α → β ′ such that β ′ is a
super-episode of β.

To demonstrate the performance of our techniques, we
performedmultiple tests on synthetic and real-world datasets.
For synthetic datasets, we built a generator that produces
random complex event sequences based on three keys: (i)
the length of the result sequence, (ii) the number of event
types, and (iii) the maximum number of events per times-
tamp. For real-world sequences, we used existing real-world
transactional databases and added a timestamp to each trans-
action to obtain a complex sequence. The obtained results
confirm the efficiency of the proposed algorithm in terms
of both the runtime and memory usage. In particular, they
demonstrated the efficiency of the proposed pruning strat-
egy based on the anti-monotonicity property in discovering
episode rules under distinct occurrence-based frequency.

Episode mining and related pattern mining have been
active research fields in recent decades. There are still many
opportunities for further research in this area. In the following
lines, we provide some opportunities for episode and episode
rule mining:

• Building prediction models that are based on existing
techniques including our approach to be used in produc-
tion environments.

• Extend our approach to consider uncertain data and/or
other kindof important episodes like highutility episodes.
This undoubtedly leads to the exploration of new tech-
niques and strategies for pruning search spaces.

• Extending our approach to consider more complex event
sequences like event streams.
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