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Abstract
The opposition-based differential evolution (ODE) cannot adaptively adjust the number of individuals partake opposition-
based learning, which makes it difficult to solve complex optimization problems. In this manuscript, we present an innovative
approach for the treatment of variable population ODE (SASODE) by leveraging on adaptive parameters. The core idea of
SASODE is to assign a jumping rate to each individual in the population, which is the key parameter that determines whether
an individual enters a subpopulation or not. The initial rate assignment relies on the empirical mean of a normal distribution.
During the iterative process, themean is adjusted adaptively by taking into account the historical information of the individuals
retained from the preceding generation. At the same time, the variation of this mean directly lead to changing the jumping
rate of individuals and thus to adjusting the subpopulation size. In addition, the constant c and the Lehmer mean together
maintain a balance between exploration and exploitation of SASODE. Experimental results show that the algorithm ranks
first in the Wilcoxon test on 61 benchmarks and three optimization problems in three dimensions. Then, we confirm that
SASODE can achieve an accuracy of 96% or even higher on the feature selection problem. Therefore, SASODE outperforms
the other state-of-the-art algorithms compared in terms of convergence rate and accuracy.

Keywords Differential evolution · Parameter control · Opposition-based learning · Feature selection

1 Introduction

Nowadays, as the complexity of actual optimization prob-
lem increases, efficient and easy implementation algorithms
are essential in solving these problems. Inspired by the
various principles of nature, metaheuristic algorithms are
widely used in various fields such as scheduling prob-
lems [1, 2], routing problems [3], data mining [4], feature
selection [5, 6] and deep learning [7]. Based on differ-
ent principles, the existing metaheuristic algorithms are
divided into four categories [8–10]: Evolutionary compu-
tation, Swarm intelligence, Human-based algorithms and
Physics-based algorithms. Swarm intelligence algorithms
inspired by swarm behavior, and the collaborative effect of
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a population is greater than the sum of the effect of individ-
uals. Evolutionary computation is derived from Darwinism,
where algorithms are designed from an evolutionary perspec-
tive and perform genetic operators (crossover, mutation and
selection) on the population to find global optimal. Evolu-
tionary computationmainly includeGeneticAlgorithm (GA)
[11] and Differential Evolution (DE) [12]. Algorithm such as
Brain Storm Optimization (BSO) [13] is inspired by human
social behavior. SineCosineAlgorithm (SCA) [14] andEqui-
librium Optimizer (EO) [15] are proposed based on the laws
of natural physics.

DE is a classical evolutionary algorithm, it was proposed
by Storn [12] and was inspired by the GA. The Differ-
ential Evolution (DE) algorithm is characterized by three
fundamental parameters, namely the population size N P , the
scaling factor F , and the crossover rateCR. The effectiveness
of DE is contingent upon the utilization of three genetic oper-
ators and three crucial parameters. In [16], Li et al. introduced
a variant of DE that integrates an elite preservation andmuta-
tion strategy. The utilization of elite preservation strengthens
the exploitation capability while mutation strategies were
employed to maintain a balance between exploration and
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exploitation (EE) [17]. Zeng et al. [18] introduced a selection
operator in DE with a novel approach that intended to mini-
mize the effect of stagnation. The three candidate vectorsmay
survive to the next generation if the algorithm is in a state of
stagnation. Rosic et al. [19] proposed a hybrid firefly algo-
rithm for DE (AHFADE). The AHFADE has the capability
of adaptively adjusting parameter settings in order to choose
a suitable mutation operator that can ensure a stable balance
between the processes of diversification and intensification.
According to Deng et al. [20], an adaptive mechanism for
dimensional adjustment based on DE was incorporated to
address the issue of premature convergence or stagnation,
this mechanism greatly reduces the impact of dimensional-
ity on algorithm performance.

Opposition-based learning (OBL) was proposed by
Tizhoosh to improve the probability of identifying superior
individuals in a population [21, 22]. In 2008, Rahnamayan
et al. [23] proposed a new OBL-based DE variant, ODE,
which for the first time used OBL in the DE initialization
phase to accelerate the convergence of DE. Choi et al. [24]
proposed a fast and efficient stochastic OBL (BetaCOBL) to
control the degree of OBL solution, but the excessive com-
putational complexity made it difficult to solve cost-sensitive
optimization problems, so a second generationmethod iBeta-
COBL was generated based on this method, using a linear
diversity time metric to reduce the computational cost, and
experimental results showed that the complexity of the algo-
rithm can be reduced from O(N P2 · D) to O(N P · D).
iBetaCOBL-eig [25], a new version of iBetaCOBL, was
developed in 2023, which improves DE from a dimensional-
ity point of view by using multiple crossover operators based
on eigenvectors, and similarly proved that the advantage of
the algorithm performance. Of course, in addition to the
combination with DE, OBL is now integrated with multiple
approaches. Mohapatra and Mohapatra [26] combined OBL
and random OBL (ROBL) with the Golden Jackal optimiza-
tion algorithm, and statistical tests showed that the algorithm
was optimal on benchmark functions and engineering opti-
mization problems. Wang et al. [27] combined both OBL
and the Q-learning with the heuristic algorithm, which not
only improved the neighbourhood search capability of the
algorithm, but also increased the probability of finding the
optimal and greatly reduced the time cost.

However, research into OBL at this stage has shortcom-
ings. First, the direct manipulation of the population in
initialization phase or during iteration can ignore the diver-
sity of individuals in the population. Second, as the algorithm
iterates, the individuals that can produce the optimal solution
will become more and more concentrated, and the popula-
tion size for performing OBL operations theoretically needs
to become smaller and smaller, which requires providing an
adaptive subpopulation strategy to ensure the equilibrium of
EE and find the optimal of the algorithm faster.

In the age of information, there has been a significant
surge in the volume of data available for analysis, posing a
formidable challenge for classification tasks due to the sub-
stantial increase in samples and features. Redundant features
in the samples not only reduce the classification accuracy, but
also increase the training time and computational complexity
of the classification model [28], and the process of selecting
a specific number of features for classification training is
called data dimensionality reduction. There are two ways of
data dimensionality reduction, one is feature extraction and
the other is feature selection. The former is spatially scoped
to produce a new dimensional mapping of features, and the
latter is a reduction in the number of features to obtain a
new feature subset [29]. As the complexity of the problem
and the quantity of data dimensions augment, the number of
features within the search space will exponentially expand,
whichmakes it a challenging optimization problem. To solve
this problem,most of the early studies used traditional greedy
algorithms such as SFS and SBS to solve the problem, but as
the difficulty of the problem increases, these methods tend
to fall into local optimal and fail to find an effective and
efficient solution. In recent years, heuristic algorithms have
been widely used to solve it due to their powerful global
search capability and robustness [30, 31]. There is also a lot
ofwork on combiningOBLwith heuristic algorithms applied
to feature selection [32, 33], but there is still a lot of room for
development in the field of combining DEwith OBL variants
to jointly solve the feature selection problem. Therefore, in
this paper, we improve the ODE and validate it on the feature
selection problem.

Although there are many performance investigations for
ODE, there are still some drawbacks in practice. Accord-
ing to our research, the traditional ODE may not obtain
better performance because it ignores the individual differ-
ences.This paper presents an approach aimed at overcoming
the constraints that characterize traditional OBL. The pro-
posed strategy seeks to enhance OBL by shifting the focus
from population-based changes to individual-based changes.
The main principal contributions of this paper can be sum-
marized as:

1. A strategic proposal is being presented to enhance the
utilization of theOBLpopulation to their utmost potential
by emphasizing the strengths of each individual member
of the population.

2. Adaptive parameter control is introduced in ODE to
decide the size of the subpopulation according to the
jumping rate of individuals and accelerate the conver-
gence speed of evolution.

3. The concept of subpopulation survived individuals and
historical information is proposed to guide the direction
of SASODE optimization search.
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4. Validation on several benchmarks and feature selection
optimization problem and comparison with several com-
peting algorithms.

The present article is organized as follows: The prelim-
inary review of the DE and OBL is provided in Section 2.
Section 3 presents the proposed SASODE. The experimental
verification is discussed in detail in Section 4. The applica-
tion of feature selection is demonstrated in Section 5. Lastly,
the conclusion is drawn in Section 6.

2 Fundamentals

2.1 Differential evolution

As a population-based algorithm, the population undergoes
three genetic operators (mutation, crossover and selection)
in each iteration [12]. Here, the population is initialized as
follow:

x j
i = (x j

max − x j
min) · rand(0, 1) + x j

min (1)

where x j
min is the lower boundary. x

j
max is the upper boundary.

Then, DE employ mutation operator on the target vector.
In SASODE, we use the most popular mutation DE/rand/1,
it is defined as:

vi = xr1 + F · (xr2 − xr3) (2)

where the indices r1, r2, r3 are numbers randomly selected
from [1, N P]. F is a positive parameter and scales the dif-
ference vector to control the size of search step.

After mutation, DE will perform the cross operator.CR is
the crossover probability and the vectors vi and xi are crossed
based on CR. The detail is outlined as follows:

ui(j) =
{
vi( j) if rand(0, 1) ≤ CR, or , j = jrand
xi( j) otherwise

(3)

Where the variable jrand denotes an integer that is randomly
chosen from the interval 1 to D, D is the dimension size.

The last step in each iteration of theDE is selection.A one-
to-one selection between xi and ui takes place, guided by the
fitness values. The selection approach can be elucidated as
follows:

xG+1
i =

{
uGi if fitness(uGi ) < fitness(xGi )

xGi otherwise
(4)

where f i tness(x) denotes the fitness function.

2.2 Opposition-based learning

Assume the set P = {x(1), x(2), ..., x(D)}, where x( j) ∈
[a( j), b( j)], where j = 1, 2, ..., D. This set contains all
points in a D-dimensional space. The set of opposite points
can be defined as P̆ = {x̆(1), x̆(2), ..., x̆(D)}. The specific
formula is as follows.

x̆( j) = a( j) + b( j) − x( j) (5)

3 Proposed algorithm

Based on the characteristics of OBL and the evolutionary
process of ODE, the advantages of individuals in the popula-
tion are maximized in the proposed SASODE. Furthermore,
the NFL demonstrates that no single algorithm can solve all
problems [34], various problems necessitate distinct parame-
ter configurations, which can be effectively resolved through
the utilization of a self-adaptive approach to parameter set-
ting in the iterative process of the algorithm.

3.1 Motivations

In ODE, the population jump in each generation is contin-
gent upon the jumping rate, and provided that the requisite
jumping condition is fulfilled, all members of the population
produce their opposite individuals. This is a population-based
strategy, however its utilization for the opposite population
shows weakness during the later stages of evolution. There-
fore, how to use the characteristics of individual information
plays a key role in enhancing algorithm performance.

The research of meta-heuristic algorithms places signifi-
cant emphasis on the aspect of parameter control [35], which
has been discussed in Section 1. The primary parameter in
ODE is the jumping rate. To regulate the number of indi-
viduals participating in OBL, subpopulation and adaptive
parameter control mechanisms have been proposed for the
attainment of SASODE via data exchange.

3.2 Subpopulation-based strategy

The most important difference between population-based
and subpopulation-based is the number of opposite individ-
uals in each generation. The detailed description is shown on
Algorithm 1. From line 2 to line 5, we employ (1) to produce
an initialized population that improves the diversity. From
line 8 to line 10, the entire population participates in the oppo-
site operation if a random number is less than Jr (Jr is gen-
erally taken as 0.3). Assume population size is 50, iteration is
100, the total number of individuals required to perform the
opposition operation is approximately 0.3×1000×50. From
line 16 to line 22, the subpopulation is crated by using the
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Algorithm 1 The difference between initialization,
population-based and subpopulation-based.
1: Step 1 Population Initialization
2: Initialize P use (1)
3: Oi, j = a j + b j − Pi, j , i = 1, 2, ..., N P, j = 1, 2, ..., D.
4: Select first N P individuals from {P∪O} to form the initial popula-

tion.
5:
6: Step 2 Population-based Opposition
7: while do
8: if rand < Jr then
9: Oi, j = L j +Uj − Pi, j , i = 1, 2, ..., N P, j = 1, 2, ..., D.
10: Select first N P individuals from {P ∪ O} enter the next gen-

eration.
11: end if
12: end while
13:
14: Step 3 Subpopulation-based Opposition
15: while do
16: Jr = Gauss(μJ , 0.1)
17: J ind = f ind(rand(si ze(Jr)) ≤ Jr)
18: SP = P(J ind, :)
19: for k = 1 : length(J ind) do
20: OSP(k, :)=min(SP(k, :))+max(SP(k, :)) − SP(k, :)
21: end for
22: Select first N P fittest individuals from {P∪OSP} enter the next

generation.
23: end while

probability. Specifically, each individual is accompanied by
a jumping rate and the assignment of jumping rate follows a
Gaussian distribution which the mean is μJ and the variance
is 0.1 (μJ is generally taken as 0.3). The condition for an indi-
vidual to enter a subpopulation is whether its jumping rate is
greater than a random number. In each iteration, if the popu-
lation size is 50, approximately 0.3×50 individuals perform
the opposite operation. In thisway,when the iteration reaches

1000, the total number of individuals involved in OBL is
approximately 0.3×50×1000. Obviously, population-based
and subpopulation-based are very different in the methods of
selecting the opposite individuals, but the number of times
the opposite individuals are calculated is approximately the
same. It indicates that the proposed subpopulation strategy
leads to no extra computational effort.

The approach of subpopulation is motivated by the
dependence mechanism of individuals, which manages the
mutation operators and parameters in accordance with the
fitness value of each individual, with the ultimate objective
of enhancing the convergence and accuracy of DE [36]. The
purpose of this paper is to solve complex single-objective
optimization problems, and how to select suitable individu-
als to create subpopulations is the most important concern at
present. In [37], subpopulations are created according to the
size of fitness value. In [38], NBC uses a neighborhood sub-
population strategy to obtain clustering centers. To embed
parameter control into the subpopulation strategy, SASODE
creates subpopulations based on the size of individual jump-
ing rate. The outlined steps are specified as follows:

1. P = {xi |i = 1, 2, ..., N P} is the initialized popula-
tion. The jumping rate corresponding to each individual
Jr = { j1, j2, ..., jN P } is generated according to the
Gaussian distribution. More detailed description of this
step is shown in Fig. 1.

2. A random number ri between [0, 1] for each individual is
generated according to the uniform distribution, and each
random number with the jumping rate ji is compared. If
the former is smaller than the latter, the individual xi is
a member of the subpopulation SP . The individuals of

Fig. 1 Illustration of step 1 of
the subpopulation strategy
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Fig. 2 Illustration of step 2 of
the subpopulation strategy

the subpopulation are represented by different colored
symbols in Fig. 2.

3. Create the opposite subpopulation OSP according to (5),
combine the original population P with OSP . The sur-
viving individuals are recorded as green yellow circles in
Fig. 3, and select the top N P individuals with the best
fitness into the next generation. SJ represents the jump-
ing rate of individuals retained in the OSP and serves as
a crucial parameter for regulating subpopulation size. SJ
is a significant parameter that enables the adjustment of
subpopulation size, and its values can be modified based
on historical data from the preceding generation, it details
in Section 3.3.

3.3 Self-adaptive parameter control

The jump rate of OBL is a random number between 0 and 1,
but the jumping rate based on subpopulation is a vector. The
vector Jr = { j1, j2, ..., jN P } is generated by a Gaussian dis-
tribution, and the mean value of μJ determines the location
of the distribution of the jumping rate ji for each individual.
The larger the μJ , the larger the value of ji , and the greater
the probability that an individual corresponding to ji will
enter the subpopulation at that time. It can be seen that μJ

can control the size of the subpopulation. In the late evolu-
tionary stage, the parameter control mechanism determines
the balance of algorithm about EE.

Fig. 3 Illustration of step 3 of the subpopulation strategy
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According to the previous analysis, it is clear that there
is a corresponding relationship between the size of subpop-
ulations and μJ . The literature [39] found that an increase in
convergence rate was associated with a reduction in pop-
ulation diversity. To attain a more equitable equilibrium
concerning diversity and convergence rate, Zhang et al. aug-
mented the arithmeticmean employed for adaptive parameter
computation by integrating the Lehmer mean paradigm [40].
The difference between the two is that the calculated value
of the Lehmer is larger than the value of the arithmetic
mean when the variables have the same value. The SASODE
algorithm also extends this method. The specific calculation
formula is as follows:

Lehmer(x1, x2, ...xn) = x21 + x22 + ... + x2n
x1 + x2 + ... + xn

(6)

where n represents the size of SJ , xi , i = 1, 2, ..., n are all
the elements of SJ in each generation.

During the iteration, the size of ji directly determines
whether the individual performs the opposite operation or
not. Asmentioned before, the jumping rate ji of an individual
is generated by Gaussian random numbers, and a Gaussian
distribution with mean μJ and variance 0.1 can generate the
jumping rate randomly and without outliers according to the
location parameter μJ , as shown in the formula for (7). The
same operation as SASODE can also be found in the algo-
rithms JADE [40], SHADE [41], LSHADE [42] and so on.

ji = Gauss(μJ , 0.1) (7)

In the above formula, the initialμJ is 0.3,which is updated
in the evolutionary process using the following formula [23]:

μG+1
J = (1 − c) · μG

J + c · Lehmer(SJ ) (8)

where SJ indicates the set of individual jumping rate ji of
surviving individuals in the opposite subpopulation OSP .
c is a positive number between 0 and 1 that makes a linear
combination of μJ and Lehmer(SJ ) to reach an equilibrium
state.

The (8) consists of two parts, μG
J and Lehmer(SJ ). The

former is the historical information left by the previous itera-
tions, which represents the global information in the previous
generations. The latter is the surviving individuals in the
opposite population, and these surviving individuals repre-
sent the local information that survived the current generation
to the next iteration. In order to avoid that μG+1

J can have a
violent oscillation, which causes the individuals perform-
ing the backward learning to lose control, making μG+1

J
infinitely larger or smaller affecting the performance of the
algorithm. The introduction of a constant c in this formula

and assigning computational weights to the two components
enables a stable state to be reached for both global and local
information. Algorithm 2 is the pseudo code of SASODE.

Algorithm 2 SASODE.
1: Step 1 Initialization
2: Set up F,CR, N P, MaxFEs,G, c, μJ . Generate the population

P0 of NP individuals, P0 = {xG1 , xG2 , ..., xGN P }, with xGi =
{xGi,1, xGi,2, ..., xGi,D}, each individual is in range [a, b].

3: for i = 1 : N P do
4: OP(i, :) = a + b − P0(i, :)
5: end for
6: Select first NP fittest individuals from {P0,OP} as P.
7:
8: Step 2 Evolutionary Process
9: while The termination criterion is satisfied do
10: Step 2.1 Mutation
11: for i = 1 : N P do
12: Jr = Gaussian(μJ , 0.1), randomly choose i �= r1 �= r2 �=

r3 from [1, N P].
13: VG(i, :) = P(r1, :) + F · (P(r2, :) − P(r3, :))
14: Step 2.2 Crossover
15: Generate jrand = randint(1, D)

16: for j = 1 : D do
17: if j = jrand ||rand(0, 1) < CR then
18: UG(i, j) = VG(i, j)
19: else
20: UG(i, j) = PG(i, j)
21: end if
22: end for
23: Step 2.3 Selection
24: if f (UG(i, :)) < f (PG(i, :)) then
25: P(i, :)′ = UG(i, :)
26: else
27: P(i, :)′ = PG(i, :)
28: end if
29: end for
30: Pt = P′
31: Step 3 Opposite Operation
32: J ind = f ind(rand(si ze(Jr)) ≤ Jr)
33: SP = Pt(J ind, :)
34: for k = 1 : length(J ind) do
35: OSP(k, :)=min(SP(k, :))+max(SP(k, :)) − SP(k, :)
36: end for
37: Select first NP fittest individuals from {Pt,OSP}, record survive

individuals as PG+1, record jumping rate Jr of surviving individuals
from OSP as SJ .

38: Step 4 Parameter Control
39: μG+1

J = (1 − c) · μG
J + c · Lehmer(SJ )

40: G = G + 1
41: end while

4 Experimental verification

To further validate SASODE’s performance, we compared
different test functions, unimodal and multimodal functions,
verified the validation algorithm on the CEC2017 optimiza-
tion problem, and tested three engineering problems.
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4.1 Experimental on unimodal andmultimodal test
functions

To validate the effectiveness of SASODE, a total of 32
widely-recognized benchmark functions have been meticu-
lously chosen for the purpose of conducting a comprehensive
numerical experiment. Specifically, 15 unimodal functions
and 17 multimodal functions pertaining to the optimiza-
tion of real-valued data sets have been carefully selected,
as referenced in works by Yao et al. [43] and Askari et al.
[44]. It is noteworthy that the aforementioned benchmark
functions, i.e., f1 − f15 and f16 − f32 respectively repre-
sent unimodal and multimodal functions, the specific details
regarding the aforementioned benchmark functions are pre-
sented in Table 1.

4.1.1 Parameter setting

This paper aims to compare SASODE with six swarm intel-
ligence algorithms, namely GWO [45], WOA [46], MFO
[47], SCA [14], SSA [48], and HBO [44], for the aforemen-
tioned functions. To ensure the reliability of the algorithmic
results, the population size and maximum number of iter-
ations of the comparison algorithm have been fixed at 50
and 1000, respectively. However, the rest of the parameter
settings have been retained from its original research. All
experiments were done on the Windows 10 operating sys-
tem, MATLAB R2018b.

4.1.2 Comparison metrics

The Wilcoxon test for pairwise comparison was utilized to
compare the performance of SASODE and the comparison
algorithm. This statistical analysis was conducted with a sig-
nificant level of α = 0.05 according to [49]. To denote the
correlation between the algorithm under consideration and
the comparative algorithms, we employed the symbols +,
−, and =. A detailed explanation of the specific application
of these symbols is provided below.

1. +: The solutions of SASODE performs better than the
comparison algorithm.

2. =: The solutions of SASODE performs approximately
than the comparison algorithm.

3. −: The solutions of SASODE performs worse than the
comparison algorithm.

4.1.3 The results of unimodal functions

This paper sets four dimensions of 10, 30, 50 and 100 for
experimental comparison, and the 30D results are displayed
visually by iteration curves.

From the results of testing functions f1-f15 in Tables 2,
3, and 4, SASODE has the best performance on 100D, espe-
cially on functions f4, f5, f6, f8, f9, f11, f12, f13, and f14,
with better results for both mean and standard deviation
than other algorithms. The SASODE algorithm may have
certain advantages in solving real-world high-dimensional

Table 1 Unimodal and multimodal test functions

Unimodal Multimodal
f.no Name Range Optimum f.no Name Range Optimum

f1 Sphere [-100,100] 0 f16 Schwefel′s 2.26 [-500,500] 0

f2 Powell Sum [-1,1] 0 f17 Rastrigin [-5.12,5.12] 0

f3 Schwefel′s 2.20 [-100,100] 0 f18 Periodic [-10,10] 0.9

f4 Schwefel′s 2.21 [-100,100] 0 f19 Qing [-500,500] 0

f5 Step [-100,100] 0 f20 Alpine N. 1 [-10,10] 0

f6 Stepint [-5.12,5.12] -155 f21 Xin-She Yang [-5,5] 0

f7 Schwefel′s 2.22 [-100,100] 0 f22 Ackley [-32,32] 0

f8 Schwefel′s 2.23 [-10,10] 0 f23 Trignometric 2 [-500,500] 0

f9 Rosenbrock [-30,30] 0 f24 Salomon [-100,100] 0

f10 Brown [-1,4] 0 f25 Styblinski-Tang [-5,5] -1174.98

f11 Dixon and Price [-10,10] 0 f26 Griewank [-100,100] 0

f12 Powell Singular [-4,5] 0 f27 Xin-She Yang N. 4 [-10,10] -1

f13 Xin-She Yang [-20,20] 0 f28 Xin-She Yang N. 2 [-2pi,2pi] 0

f14 Perm 0,D,Beta [-5,5] 0 f29 Gen. Penalized [-50,50] 0

f15 Sum Squares [-10,10] 0 f30 Penalized [-50,50] 0

f31 Michalewics [0,pi] -29.6309

f32 Quartic Noise [-1.28,1.28] 0
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Table 2 Results of the unimodal functions and multimodal functions from SASODE and six other metaheuristic algorithms on 10D

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f1 Mean 2.07E-100 6.91E-163 2.33E-116 1.51E-59 6.04E-10 3.39E-23 2.87E-30

Std 1.13E-99 3.14E-162 8.49E-116 2.62E-59 2.70E-10 1.86E-22 5.47E-30

f2 Mean 1.09E-88 1.56E-230 2.04E-234 4.72E-117 1.34E-07 1.14E-52 1.10E-63

Std 5.80E-88 0.00E+00 0.00E+00 1.97E-116 7.89E-08 3.86E-52 5.41E-63

f3 Mean 1.43E-12 3.00E-104 5.64E-66 1.59E-36 3.61E-02 9.17E-18 5.10E-18

Std 7.82E-12 1.25E-103 1.20E-65 1.85E-36 1.97E-01 2.86E-17 8.82E-18

f4 Mean 2.12E-26 4.00E-01 2.15E-37 2.43E-09 1.61E-05 2.05E-07 4.23E-01

Std 1.04E-25 1.08E+00 6.57E-37 8.70E-09 5.56E-06 4.98E-07 6.77E-01

f5 Mean 0.00E+00 3.36E-05 9.02E-07 1.03E-34 6.99E-10 3.13E-01 1.33E-30

Std 0.00E+00 3.04E-05 2.99E-07 5.63E-34 2.70E-10 1.30E-01 2.38E-30

f6 Mean -3.50E+01 -3.50E+01 -3.40E+01 -3.50E+01 -3.50E+01 -3.41E+01 -3.50E+01

Std 0.00E+00 0.00E+00 2.48E+00 0.00E+00 0.00E+00 7.76E-01 0.00E+00

f7 Mean 6.15E-22 8.31E-108 1.17E-65 1.36E-36 1.84E+02 3.82E-18 4.67E+01

Std 3.37E-21 4.07E-107 2.94E-65 1.88E-36 4.51E+02 8.87E-18 6.29E+01

f8 Mean 1.24E-208 0.00E+00 0.00E+00 4.16E-181 9.62E-58 3.13E-88 1.27E-77

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.70E-57 1.39E-87 6.98E-77

f9 Mean 1.98E+00 1.07E+01 6.55E+00 1.64E+00 1.15E+02 7.18E+00 2.35E+02

Std 2.40E+00 2.68E+01 6.53E-01 1.72E+00 2.66E+02 3.35E-01 7.63E+02

f10 Mean 1.09E-77 1.46E-167 3.27E-119 1.26E-62 1.55E-12 2.29E-29 3.48E-32

Std 5.99E-77 0.00E+00 1.60E-118 3.76E-62 6.24E-13 7.21E-29 1.67E-31

f11 Mean 1.78E-01 6.67E-01 6.67E-01 6.47E-02 6.24E-01 6.67E-01 4.39E+01

Std 3.00E-01 1.97E-03 2.49E-05 1.98E-01 1.69E-01 4.22E-05 9.84E+01

f12 Mean 1.07E-30 1.18E-05 3.35E-07 2.23E-05 1.44E-03 3.50E-06 1.39E+01

Std 5.89E-30 8.29E-06 5.53E-07 2.00E-05 1.05E-03 1.04E-05 2.77E+01

f13 Mean -1.00E+00 -9.33E-01 1.83E-70 7.57E-78 7.57E-78 7.57E-78 7.57E-78

Std 0.00E+00 2.54E-01 1.98E-70 1.95E-93 1.95E-93 1.95E-93 1.95E-93

f14 Mean 3.61E+00 5.48E+02 8.27E+02 2.62E+00 2.14E+01 4.50E+01 1.77E+01

Std 1.53E+01 9.77E+02 1.66E+03 3.16E+00 3.56E+01 4.42E+01 5.87E+01

f15 Mean 1.33E-47 4.32E-168 1.32E-117 1.64E-61 4.45E-11 3.37E-27 3.33E+00

Std 7.29E-47 0.00E+00 6.95E-117 3.62E-61 1.98E-11 1.20E-26 1.83E+01

f16 Mean 1.27E-05 9.46E+01 1.45E+02 1.27E-05 1.48E+02 1.94E+02 8.86E+01

Std 0.00E+00 5.58E+01 3.64E+01 0.00E+00 3.03E+01 1.35E+01 3.18E+01

f17 Mean 0.00E+00 0.00E+00 1.40E-01 0.00E+00 1.76E+01 1.93E-01 1.99E+01

Std 0.00E+00 0.00E+00 7.65E-01 0.00E+00 5.50E+00 9.40E-01 1.02E+01

f18 Mean 9.00E-01 9.84E-01 1.10E+00 1.01E+00 1.00E+00 1.08E+00 1.52E+00

Std 4.52E-16 4.73E-02 2.76E-01 2.97E-03 3.04E-12 2.84E-01 3.62E-01

f19 Mean 2.90E-17 3.26E-01 7.62E+00 3.36E-06 1.30E-03 5.40E+01 5.98E-27

Std 1.58E-16 4.47E-01 1.13E+01 1.84E-05 5.91E-03 2.60E+01 2.30E-26

f20 Mean 3.13E-05 3.60E-01 4.15E-05 6.48E-09 2.04E-01 5.37E-08 1.48E-01

Std 1.29E-04 7.38E-01 9.31E-05 3.12E-08 4.00E-01 2.90E-07 8.11E-01

f21 Mean 6.23E-49 2.04E-04 1.88E-61 3.64E-38 2.52E-02 1.30E-09 5.58E-03

Std 1.42E-48 1.09E-03 9.26E-61 1.82E-37 4.29E-02 6.98E-09 1.86E-02

f22 Mean 1.78E-12 2.19E-15 3.38E-15 2.66E-15 6.55E-01 1.90E-07 3.85E-02

Std 9.75E-12 1.80E-15 1.45E-15 0.00E+00 8.72E-01 1.04E-06 2.11E-01

f23 Mean 1.00E+00 8.65E+00 3.84E+00 1.00E+00 1.38E+01 1.58E+01 6.79E+00

Std 0.00E+00 6.54E+00 1.43E+00 0.00E+00 7.80E+00 2.95E+00 5.31E+00
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Table 2 continued

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f24 Mean 6.00E-54 1.27E-01 9.99E-02 9.99E-02 1.97E-01 9.99E-02 4.97E-01

Std 3.27E-53 5.83E-02 7.58E-11 2.00E-08 5.56E-02 1.97E-07 2.36E-01

f25 Mean -3.91E+02 -3.87E+02 -3.59E+02 -3.92E+02 -3.50E+02 -3.10E+02 -3.59E+02

Std 3.59E+00 1.01E+01 1.76E+01 0.00E+00 1.93E+01 2.40E+01 1.93E+01

f26 Mean 0.00E+00 5.85E-02 1.45E-02 0.00E+00 2.48E-01 5.26E-02 1.50E-01

Std 0.00E+00 1.09E-01 1.75E-02 0.00E+00 1.40E-01 1.23E-01 9.97E-02

f27 Mean -1.00E+00 -6.67E-02 3.48E-07 6.54E-12 7.43E-16 2.31E-04 3.46E-06

Std 0.00E+00 2.54E-01 1.33E-06 2.74E-11 4.51E-16 7.52E-05 1.32E-05

f28 Mean 0.00E+00 6.46E-04 1.20E-03 5.66E-04 2.14E-03 2.57E-03 2.72E-03

Std 0.00E+00 2.41E-04 1.27E-03 1.36E-10 2.42E-04 1.76E-04 2.18E-04

f29 Mean 7.60E-28 1.11E-03 6.65E-03 1.99E-32 1.83E-03 2.50E-01 3.66E-03

Std 4.00E-27 2.81E-03 2.53E-02 3.47E-32 4.16E-03 6.44E-02 5.27E-03

f30 Mean 9.42E-31 3.21E-03 2.19E-03 4.73E-32 1.38E-01 7.91E-02 9.33E-02

Std 4.90E-30 1.01E-02 5.80E-03 3.34E-34 3.77E-01 4.08E-02 1.85E-01

f31 Mean -9.08E+00 -5.78E+00 -7.80E+00 -9.66E+00 -7.23E+00 -4.04E+00 -7.91E+00

Std 5.84E-01 6.66E-01 1.05E+00 8.54E-03 8.98E-01 5.56E-01 8.07E-01

f32 Mean 4.94E-03 7.61E-04 4.21E-04 2.26E-03 6.39E-03 1.91E-03 6.58E-03

Std 1.64E-03 8.25E-04 3.15E-04 9.06E-04 5.15E-03 1.75E-03 3.46E-03

Table 3 Results of the unimodal functions and multimodal functions from SASODE and six other metaheuristic algorithms on 50D

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f1 Mean 5.49E-89 6.37E-158 8.89E-44 2.16E-10 8.98E-08 1.85E+02 6.03E+03

Std 2.95E-88 3.33E-157 1.14E-43 4.48E-10 2.46E-08 2.93E+02 8.95E+03

f2 Mean 3.95E-19 1.52E-228 4.24E-182 1.31E-34 4.82E-07 6.04E-04 4.18E-09

Std 1.61E-18 0.00E+00 0.00E+00 3.03E-34 2.91E-07 1.06E-03 1.01E-08

f3 Mean 6.74E-29 1.85E-104 4.62E-25 1.85E-07 3.89E+01 1.55E-01 2.47E+02

Std 3.55E-28 9.72E-104 4.48E-25 3.96E-07 2.03E+01 3.36E-01 1.86E+02

f4 Mean 4.06E-24 5.69E+01 2.28E-09 1.78E+01 1.70E+01 5.92E+01 8.32E+01

Std 2.22E-23 2.79E+01 3.54E-09 3.61E+00 3.40E+00 7.18E+00 3.66E+00

f5 Mean 0.00E+00 2.92E-01 2.34E+00 1.12E-10 9.17E-08 7.40E+01 9.04E+03

Std 0.00E+00 2.02E-01 5.67E-01 1.29E-10 2.96E-08 9.07E+01 8.85E+03

f6 Mean -2.75E+02 -2.75E+02 -2.15E+02 -2.75E+02 -2.17E+02 -1.50E+02 -2.75E+02

Std 0.00E+00 0.00E+00 1.29E+01 0.00E+00 1.57E+01 7.98E+00 2.01E+00

f7 Mean 2.96E-27 4.42E-101 7.10E-25 4.20E-07 2.67E+39 1.28E-01 7.83E+02

Std 7.43E-27 2.21E-100 6.22E-25 9.71E-07 1.45E+40 2.28E-01 2.88E+02

f8 Mean 7.56E-294 0.00E+00 5.18E-135 1.04E-16 9.32E-07 4.52E+07 3.61E+03

Std 0.00E+00 0.00E+00 2.44E-134 3.15E-16 3.42E-06 7.61E+07 6.15E+03

f9 Mean 3.71E+01 4.75E+01 4.70E+01 1.18E+02 1.76E+02 1.31E+06 2.70E+06

Std 1.89E+01 5.47E-01 7.59E-01 5.52E+01 2.90E+02 2.27E+06 1.46E+07

f10 Mean 4.02E-87 1.12E-159 2.00E-46 3.97E-13 2.78E-10 6.54E-02 1.52E+02

Std 1.53E-86 6.10E-159 2.57E-46 7.47E-13 1.08E-10 1.32E-01 1.69E+02

f11 Mean 6.44E-01 6.67E-01 6.67E-01 2.13E+00 7.80E+00 4.22E+03 3.69E+05

Std 1.22E-01 3.57E-05 7.13E-07 2.19E+00 9.33E+00 7.53E+03 4.30E+05

f12 Mean 1.60E-06 5.94E-08 9.31E-06 1.68E-01 6.95E+00 1.50E+02 3.08E+03

Std 3.73E-06 3.25E-07 1.15E-05 2.42E-01 4.19E+00 2.90E+02 2.60E+03
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Table 3 continued

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f13 Mean 5.99E-266 -1.33E-01 3.73E-169 0.00E+00 8.32E-280 2.64E-289 0.00E+00

Std 0.00E+00 3.46E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f14 Mean 3.49E+00 6.51E+02 4.13E+02 1.39E+00 2.05E+01 4.20E+01 5.81E+00

Std 1.87E+01 6.62E+02 1.14E+03 1.48E+00 3.60E+01 2.91E+01 1.83E+01

f15 Mean 4.28E-42 4.22E-158 1.38E-44 4.31E-11 4.41E+00 2.14E+01 2.21E+03

Std 2.34E-41 1.53E-157 1.92E-44 1.01E-10 4.50E+00 5.27E+01 1.38E+03

f16 Mean 2.03E+01 9.94E+01 2.34E+02 2.61E+01 1.69E+02 3.18E+02 1.49E+02

Std 3.94E+01 5.47E+01 1.69E+01 9.26E+00 1.94E+01 7.41E+00 2.50E+01

f17 Mean 0.00E+00 3.79E-15 7.77E-01 2.12E+01 8.08E+01 7.86E+01 3.17E+02

Std 0.00E+00 2.08E-14 2.50E+00 3.31E+00 2.39E+01 6.76E+01 6.00E+01

f18 Mean 9.07E-01 1.03E+00 2.32E+00 4.20E+00 1.00E+00 1.09E+01 7.05E+00

Std 2.60E-02 3.29E-01 2.98E+00 9.02E-01 1.72E-10 2.41E+00 1.43E+00

f19 Mean 4.52E+02 3.86E+03 1.07E+04 3.37E-02 7.60E+01 6.08E+08 6.29E+09

Std 3.52E+02 1.67E+03 2.59E+03 1.73E-01 1.04E+02 1.09E+09 1.91E+10

f20 Mean 5.43E-03 1.56E-101 7.18E-05 1.25E-06 7.27E+00 2.56E+00 1.23E+01

Std 6.29E-03 8.56E-101 2.26E-04 1.48E-06 2.58E+00 4.50E+00 8.43E+00

f21 Mean 1.01E-19 1.21E-02 2.83E-43 2.23E+01 1.47E+05 2.75E+07 1.58E+20

Std 3.62E-19 5.90E-02 1.55E-42 1.19E+02 5.30E+05 1.51E+08 6.48E+20

f22 Mean 1.48E-15 1.60E-15 3.01E-14 1.76E-06 3.12E+00 1.55E+01 1.95E+01

Std 1.70E-15 2.31E-15 4.06E-15 1.64E-06 8.19E-01 8.02E+00 7.43E-01

f23 Mean 1.00E+00 1.22E+02 6.08E+01 2.75E+00 4.29E+02 2.07E+03 1.68E+05

Std 0.00E+00 3.01E+01 7.61E+00 1.57E+00 1.11E+02 3.35E+03 2.20E+05

f24 Mean 3.24E-02 1.27E-01 1.97E-01 5.20E-01 2.71E+00 1.70E+00 1.48E+01

Std 4.69E-02 6.40E-02 1.83E-02 7.13E-02 4.33E-01 9.28E-01 4.47E+00

f25 Mean -1.88E+03 -1.91E+03 -1.40E+03 -1.96E+03 -1.67E+03 -8.73E+02 -1.68E+03

Std 1.07E+02 1.03E+02 8.97E+01 5.16E+00 4.67E+01 6.18E+01 6.73E+01

f26 Mean 0.00E+00 0.00E+00 1.10E-03 3.29E-04 3.60E-03 7.05E-01 2.82E+00

Std 0.00E+00 0.00E+00 4.25E-03 1.80E-03 5.12E-03 3.36E-01 2.48E+00

f27 Mean -7.55E-01 -2.00E-01 1.36E-23 6.44E-23 2.10E-24 9.13E-16 3.65E-19

Std 4.28E-01 4.07E-01 1.66E-23 1.95E-22 1.15E-23 1.00E-15 8.76E-19

f28 Mean 4.88E-18 1.52E-20 4.74E-12 3.40E-19 1.65E-18 9.80E-16 1.19E-19

Std 2.55E-17 6.18E-21 1.14E-11 1.21E-19 4.84E-18 1.23E-15 1.65E-20

f29 Mean 1.35E-32 3.86E-01 1.80E+00 7.32E-04 5.85E+01 5.12E+06 8.21E+07

Std 5.57E-48 1.82E-01 3.25E-01 2.79E-03 1.96E+01 1.25E+07 1.99E+08

f30 Mean 9.42E-33 6.77E-03 9.02E-02 2.07E-03 9.86E+00 1.20E+06 2.56E+07

Std 2.78E-48 4.36E-03 3.18E-02 1.14E-02 3.84E+00 2.76E+06 7.81E+07

f31 Mean -2.49E+01 -1.70E+01 -1.96E+01 -2.74E+01 -2.62E+01 -1.08E+01 -3.39E+01

Std 2.52E+00 2.08E+00 5.85E+00 1.58E+00 2.66E+00 1.03E+00 2.83E+00

f32 Mean 9.80E-03 2.04E-03 1.45E-03 3.14E-02 3.09E-01 6.90E-01 1.35E+01

Std 3.11E-03 2.11E-03 7.13E-04 7.80E-03 9.60E-02 5.77E-01 3.14E+01
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Table 4 Results of the unimodal functions and multimodal functions from SASODE and six other metaheuristic algorithms on 100D

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f1 Mean 9.11E-65 2.58E-156 1.98E-29 1.66E-02 2.29E+00 6.84E+03 3.09E+04

Std 4.99E-64 8.51E-156 2.12E-29 3.00E-02 2.12E+00 5.69E+03 1.39E+04

f2 Mean 3.80E-16 1.53E-224 4.83E-137 3.64E-18 8.81E-07 6.39E-02 5.35E-03

Std 2.06E-15 0.00E+00 2.64E-136 1.17E-17 5.15E-07 4.18E-02 2.24E-02

f3 Mean 1.22E-20 1.57E-102 5.23E-17 4.66E-02 2.35E+02 1.73E+01 8.20E+02

Std 3.80E-20 7.12E-102 2.42E-17 4.33E-02 5.53E+01 1.62E+01 2.22E+02

f4 Mean 2.37E-42 6.69E+01 2.46E-03 5.25E+01 2.60E+01 8.70E+01 9.25E+01

Std 1.30E-41 2.80E+01 3.68E-03 5.30E+00 3.60E+00 2.48E+00 2.09E+00

f5 Mean 0.00E+00 1.27E+00 9.08E+00 2.92E-02 2.56E+00 4.84E+03 3.26E+04

Std 0.00E+00 3.14E-01 8.92E-01 4.81E-02 1.98E+00 3.80E+03 1.29E+04

f6 Mean -5.75E+02 -5.75E+02 -3.54E+02 -5.75E+02 -3.77E+02 -2.41E+02 -5.68E+02

Std 0.00E+00 0.00E+00 1.40E+01 0.00E+00 3.22E+01 1.23E+01 9.29E+00

f7 Mean 1.13E-17 9.04E-103 5.92E-17 7.28E-02 9.28E+76 1.60E+01 2.52E+03

Std 6.13E-17 3.37E-102 3.48E-17 6.92E-02 3.68E+77 1.76E+01 3.62E+02

f8 Mean 0.00E+00 0.00E+00 4.42E-84 1.79E-01 1.22E+01 3.73E+09 1.52E+09

Std 0.00E+00 0.00E+00 2.34E-83 2.19E-01 3.14E+01 2.31E+09 2.80E+09

f9 Mean 8.74E+01 9.75E+01 9.73E+01 6.14E+02 2.34E+03 6.91E+07 6.02E+07

Std 2.61E+01 4.43E-01 7.51E-01 5.58E+02 1.93E+03 4.11E+07 5.24E+07

f10 Mean 3.57E-73 1.44E-158 5.19E-32 6.32E-05 1.67E+01 3.64E+00 2.14E+03

Std 1.95E-72 6.65E-158 6.37E-32 6.12E-05 2.02E+01 2.04E+00 8.71E+02

f11 Mean 6.67E-01 6.67E-01 6.67E-01 4.06E+01 1.28E+02 8.09E+05 2.25E+06

Std 4.40E-05 5.16E-05 1.94E-06 9.61E+00 4.31E+01 4.34E+05 1.64E+06

f12 Mean 3.46E-23 8.13E-19 8.21E-06 7.80E+01 3.67E+01 2.11E+03 1.13E+04

Std 1.62E-22 4.45E-18 1.19E-05 1.15E+02 1.55E+01 1.57E+03 5.19E+03

f13 Mean 0.00E+00 0.00E+00 2.43E-245 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f14 Mean 1.77E+00 5.76E+02 3.55E+02 1.85E+00 1.36E+01 4.42E+01 4.33E+02

Std 7.28E+00 1.01E+03 1.08E+03 1.76E+00 2.51E+01 3.05E+01 1.62E+03

f15 Mean 1.94E-47 8.36E-154 7.43E-30 7.90E-03 1.17E+02 1.86E+03 1.69E+04

Std 1.04E-46 4.43E-153 9.08E-30 1.28E-02 3.78E+01 1.54E+03 7.08E+03

f16 Mean 5.70E+01 9.60E+01 2.63E+02 7.43E+01 1.75E+02 3.49E+02 1.71E+02

Std 7.63E+01 5.16E+01 3.64E+01 1.53E+01 1.96E+01 4.71E+00 2.61E+01

f17 Mean 0.00E+00 3.79E-15 3.01E-01 9.60E+01 1.76E+02 2.36E+02 7.57E+02

Std 0.00E+00 2.08E-14 1.16E+00 1.60E+01 4.84E+01 1.35E+02 6.71E+01

f18 Mean 9.12E-01 1.07E+00 1.87E+00 1.12E+01 1.11E+00 2.78E+01 1.44E+01

Std 4.84E-02 6.67E-01 6.72E-01 4.29E+00 2.80E-01 3.12E+00 1.74E+00

f19 Mean 2.67E+04 7.40E+04 1.47E+05 6.39E+03 6.59E+04 4.05E+10 6.84E+10

Std 1.90E+04 1.56E+04 1.73E+04 7.24E+03 6.13E+04 2.15E+10 5.52E+10

f20 Mean 1.92E-02 5.15E-105 3.72E-04 5.63E-02 2.30E+01 1.40E+01 3.97E+01

Std 2.39E-02 2.02E-104 6.94E-04 8.26E-02 5.25E+00 9.50E+00 1.05E+01

f21 Mean 7.83E-16 6.12E-04 3.35E-27 2.00E+18 1.85E+15 3.42E+33 9.62E+50

Std 4.06E-15 1.84E-03 1.83E-26 1.09E+19 6.10E+15 1.87E+34 5.00E+51

f22 Mean 2.66E-15 2.66E-15 1.11E-13 6.74E-01 7.01E+00 1.97E+01 1.98E+01

Std 1.87E-15 2.64E-15 9.35E-15 5.76E-01 1.39E+00 3.47E+00 2.55E-01

f23 Mean 1.00E+00 2.52E+02 1.79E+02 1.35E+02 3.30E+03 1.72E+05 7.96E+05

Std 0.00E+00 5.59E+01 1.36E+01 4.96E+01 4.04E+02 1.49E+05 2.70E+05
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Table 4 continued

Function Stats SASODE WOA GWO HBO SSA SCA MFO

f24 Mean 6.13E-02 1.07E-01 2.27E-01 1.91E+00 8.43E+00 8.97E+00 3.36E+01

Std 4.75E-02 7.39E-02 4.50E-02 2.63E-01 1.06E+00 3.51E+00 3.95E+00

f25 Mean -3.52E+03 -3.83E+03 -2.36E+03 -3.87E+03 -3.24E+03 -1.43E+03 -3.17E+03

Std 4.67E+02 1.92E+02 1.23E+02 2.64E+01 5.57E+01 7.17E+01 1.23E+02

f26 Mean 0.00E+00 9.63E-03 1.19E-03 2.03E-03 1.88E-01 2.27E+00 8.95E+00

Std 0.00E+00 3.74E-02 4.61E-03 4.15E-03 4.45E-02 9.49E-01 4.02E+00

f27 Mean -1.00E-01 -3.00E-01 9.00E-41 1.20E-42 2.44E-42 2.72E-28 6.28E-38

Std 3.05E-01 4.66E-01 2.00E-40 8.31E-44 3.68E-42 4.78E-28 1.31E-37

f28 Mean 1.33E-37 5.53E-42 8.86E-20 7.11E-36 1.16E-37 1.05E-29 9.57E-41

Std 3.90E-37 1.85E-42 1.69E-19 6.78E-36 2.08E-37 1.44E-29 2.51E-41

f29 Mean 1.35E-32 1.36E+00 6.26E+00 1.37E+01 1.87E+02 2.79E+08 2.74E+08

Std 5.57E-48 5.06E-01 5.02E-01 9.49E+00 1.77E+01 1.54E+08 2.34E+08

f30 Mean 4.71E-33 1.27E-02 2.42E-01 8.23E-01 1.66E+01 1.53E+08 9.24E+07

Std 1.39E-48 5.86E-03 5.40E-02 5.28E-01 4.08E+00 9.90E+07 1.38E+08

f31 Mean -4.05E+01 -2.68E+01 -2.55E+01 -3.53E+01 -4.56E+01 -1.79E+01 -6.01E+01

Std 3.79E+00 2.63E+00 6.27E+00 1.15E+00 3.45E+00 1.30E+00 3.01E+00

f32 Mean 1.10E-02 1.75E-03 2.79E-03 1.63E-01 1.33E+00 6.62E+01 1.38E+02

Std 3.71E-03 2.21E-03 9.09E-04 3.31E-02 2.90E-01 4.65E+01 6.55E+01

parameter optimization problems, industrial engineering and
manufacturing optimization problems, and the algorithm is
relatively stable. Making full use of the characteristics and
advantages of each individual in the optimization process and
deciding the surviving individuals based on the size of their
jumping rate is a gap area in the existing ODE research.

In the results of 10D and 50D, the comparison algorithms
perform best on f6, f8, f9, f12, and f4, f5, f6, f8, f13, respec-
tively. The SSA, SCA, and MFO algorithms do not have an
advantage in unimodal functions, except for the algorithm
WOA, which is competitive with SASODE. The analysis
depicted in Fig. 4 indicates that SASODE exhibits a supe-
rior convergence speed and accuracy relative to the other
algorithms assessed over a period of 1000 iterations. For
f12, although the convergence accuracy is slightly worse
than WOA, it has a significant advantage compared with
the accuracy of the remaining five algorithms. Based on
the characteristics of the unimodal function, we conclude
that the SASODE algorithm exhibits remarkable exploitation
capabilities, enhances convergence speed, and demonstrates
robustness as evidenced by the values of the standard devia-
tion.

4.1.4 The results of multimodal functions

Multimodal functions possess multiple local optima, which
distinguishes them from unimodal functions. Moreover, the
count of local optima rises exponentially as the dimensional-
ity increases. The resulting multimodal function serves as a

reliable metric to judge the exploration capacity of the algo-
rithm. The results of SASODE on the multimodal functions
f16-f32 are given in Tables 2, 3, and 4.

Based on the results, it is evident that SASODE exhibits
superior performance in multimodal functions as compared
to unimodal ones. Out of the 17 functions, the algorithm has
secured the first position with regard to both the mean and
standard deviation values for f16, f28, f23, f24, f26, and f27.
In addition, the SASODE function performs better on more
than half of the functions, and in the 10D, the algorithm per-
forms best on f18 and f32 in terms of standard deviation,
ranking first on nine functions. In the 50D results, the algo-
rithmhas the best standard deviation on f25 and the best on 11
functions. And the 100D results conclude that SASODE per-
forms better on f27, ranking highest on 10 functions. All the
above experimental results can demonstrate the advantages
of the adaptive parameter mechanism proposed in SASODE.
As the iteration proceeds, the jumping rate of each individ-
ual in the subpopulation is linearly assigned according to the
jumping rate of the surviving individuals in the previous gen-
eration and the size of the mean of the Gaussian distribution.
This allows historical information to be used directly to guide
the search direction, and also allows the algorithm to jump
out of the local optimum to search in the global domain as
the jumping rate changes. As the complexity of the optimiza-
tion problem increases, this algorithm based on the adaptive
mechanism can be applied to as many different industrial and
engineering optimization problems as possible, such as the
rocket engine design problem [50], which also shows that
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Fig. 4 Convergence graphs of the SASODE and six other optimizers for the selected unimodal functions and multimodal functions at 30D

SASODE has the ideal exploratory ability and advantages in
multimodal problems.

4.1.5 Statistical analysis

This section presents the outcomes of the pair-wiseWilcoxon
test and multiple-wise Friedman test conducted on SASODE
and other algorithms. SASODE is selected as the control

algorithm. The significance outcomes of various algorithms
on distinct benchmark functions are illustrated in Table 5,
which showcases the results of the Wilcoxon test.

1. For unimodal functions f1-f15, SASODE clearly finds
better solutions onmore than half of the functions, and the
algorithm in this paper is significant on all 15 functions
compared to SSA and SCA. Compared with HBO and
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Table 5 Wilcoxon test for unimodal functions and multimodal functions on 30D(SASODE is the control algorithm)

Function vs. WOA vs. GWO vs. HBO vs. SSA vs. SCA vs. MFO
pvalue (+/=/-) pvalue (+/=/-) pvalue (+/=/-) pvalue (+/=/-) pvalue (+/=/-) pvalue (+/=/-)

f1 2.77E-01 (=) 5.57E-10 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f2 3.02E-11 (-) 3.02E-11 (-) 3.02E-11 (-) 3.02E-11 (+) 4.08E-11 (+) 7.38E-10 (+)

f3 3.02E-11 (-) 5.57E-10 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f4 3.02E-11 (+) 5.57E-10 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f5 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+)

f6 1.00E+00 (=) 1.19E-12 (+) 1.00E+00 (=) 1.19E-12 (+) 1.13E-12 (+) 1.00E+00 (=)

f7 3.02E-11 (-) 8.48E-09 (-) 5.57E-10 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f8 8.15E-02 (=) 7.76E-11 (-) 3.16E-12 (+) 3.16E-12 (+) 3.16E-12 (+) 3.16E-12 (+)

f9 2.72E-11 (+) 7.38E-11 (+) 4.18E-07 (+) 2.86E-08 (+) 2.72E-11 (+) 6.75E-10 (+)

f10 2.51E-02 (-) 8.48E-09 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f11 3.02E-11 (+) 3.02E-11 (+) 1.69E-09 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f12 4.38E-01 (=) 9.88E-03 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f13 6.49E-10 (-) 9.40E-12 (+) 2.79E-03 (-) 9.40E-12 (+) 9.40E-12 (+) 2.79E-03 (-)

f14 4.98E-11 (+) 1.41E-09 (+) 2.68E-06 (+) 7.12E-09 (+) 1.61E-10 (+) 4.94E-05 (+)

f15 1.04E-04 (-) 8.48E-09 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f16 1.86E-09 (+) 5.22E-12 (+) 2.36E-06 (-) 5.22E-12 (+) 5.22E-12 (+) 7.21E-12 (+)

f17 1.00E+00 (=) 6.47E-04 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+)

f18 1.97E-05 (+) 1.72E-12 (+) 1.72E-12 (+) 4.56E-11 (+) 1.72E-12 (+) 1.68E-12 (+)

f19 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (-) 2.87E-10 (-) 3.02E-11 (+) 4.64E-05 (+)

f20 7.77E-09 (+) 1.95E-03 (-) 4.80E-07 (-) 3.02E-11 (+) 1.36E-07 (+) 1.17E-03 (+)

f21 7.60E-07 (+) 3.02E-11 (-) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+) 3.02E-11 (+)

f22 1.65E-02 (-) 1.69E-10 (-) 2.84E-10 (+) 1.40E-11 (+) 1.40E-11 (+) 1.40E-11 (+)

f23 1.21E-12 (+) 1.21E-12 (+) 2.20E-06 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+)

f24 4.23E-08 (+) 5.57E-10 (+) 3.02E-11 (+) 3.00E-11 (+) 3.02E-11 (+) 3.01E-11 (+)

f25 4.20E-01 (=) 3.00E-11 (+) 1.52E-06 (-) 3.00E-11 (+) 3.00E-11 (+) 3.00E-11 (+)

f26 8.15E-02 (=) 8.15E-02 (=) 2.15E-02 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+)

f27 3.25E-07 (+) 2.23E-10 (+) 2.23E-10 (+) 2.23E-10 (+) 1.06E-11 (+) 1.01E-10 (+)

f28 9.36E-10 (+) 7.21E-12 (+) 6.48E-12 (+) 1.23E-11 (+) 6.48E-12 (+) 7.21E-12 (+)

f29 1.72E-12 (+) 1.72E-12 (+) 4.56E-11 (-) 1.72E-12 (+) 1.72E-12 (+) 1.72E-12 (+)

f30 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+) 1.21E-12 (+)

f31 4.50E-11 (+) 1.44E-03 (+) 3.82E-09 (-) 3.18E-01 (=) 3.02E-11 (+) 1.02E-05 (-)

f32 1.86E-09 (-) 4.50E-11 (-) 1.73E-07 (+) 3.02E-11 (+) 1.29E-06 (+) 3.02E-11 (+)

total (+/=/-) 17/7/8 19/1/12 22/1/9 30/1/1 32/0/0 29/1/2

MFO, SASODE has a greater advantage on f11 and f13,
respectively. Compared with WOA and GWO, f5 and
f7 are dominant, respectively. In other words, SASODE
performsmuch better on single-peaked functions than all
other algorithms.

2. For multimodal functions f16-f32, SASODE finds bet-
ter solutions compared to all six comparison algorithms.
For example, compared to WOA, GWO, SSA, SCA and
MFO, the results are significant on f12, f15, f17 and
f16, respectively. Although, SASODE does not perform
significantly on six functions compared to HBO, the
algorithm employed in this paper continues to exhibit

exceptional performance when compared to other algo-
rithms. Hence, SASODE surpasses other algorithms on
multimodal functions.

The comparison of the convergence curves of SASODE
with benchmark functions on 30D has been conducted in
conjunction with WOA, GWO, HBO, SSA, SCA, and MFO,
as illustrated in Fig. 4. The horizontal axis of Fig. 4 represents
the number of iterations, while the vertical axis represents
the fitness. Each algorithm was independently run 30 times
with a fixed number of iterations of 1000. In Fig. 4, (a)-
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Table 6 Wilcoxon test for benchmark functions at different dimensions
(SASODE is the control algorithm)

SASODE D=10 D=30 D=50 D=100
vs Algorithms + = - + = - + = - + = -

WOA 20 6 6 17 7 8 14 7 11 13 9 10

GWO 20 2 10 19 1 12 26 1 5 26 1 5

HBO 12 10 10 22 1 9 23 1 8 26 4 2

SSA 30 2 0 30 1 1 28 2 2 28 2 2

SCA 29 0 3 32 0 0 31 0 1 31 1 0

MFO 28 2 2 29 1 2 28 1 3 29 1 2

(f) denotes the convergence curves of unimodal functions,
and (g)-(l) denotes the convergence curves of multimodal
functions. Based on the information presented in Fig. 4, it
can be inferred that the following conclusions can be drawn:

1. Based on the iteration curves of the unimodal functions,
it can be observed that the convergence accuracy of f1,
f4, f8, and f14 is the best among the six algorithms, but
on the f12, the accuracy of the SASODE algorithm is
slightly worse than that of WOA. On f10, despite hav-
ing equivalent convergence speed to GWO and WOA,
the SASODE outperforms both in terms of convergence
precision.

2. Based on the iteration curves of themultimodal functions,
the algorithm is optimal on f16, f18, f21, f22 and f30, both
in terms of convergence speed and convergence accuracy.
For f23, SASODE did not converge during the first 1000
iterations, but the convergence accuracywas significantly
better than the remaining five comparison algorithms.

3. To conclude, SASODE exhibits commendable perfor-
mance on unimodal and multimodal functions for a
dimensionality of 30. The outcomes of multimodal func-
tions are superior to those of unimodal, as demonstrated
by the numerical outcomes pertaining to residual dimen-
sions.

4.1.6 Scalability analysis

To examine the impact of dimensionality on the perfor-
mance of the algorithm, this section conducts experiments
on dimensions of 10, 30, 50, and 100 respectively, and subse-
quently compares the algorithms applied to all test functions.
The Wilcoxon test and Friedman test results are included in
Table 6 and Fig. 5 for analysis. Based on these findings, it
can be concluded that:

1. From the findings presented in Table 6, it is evident that
SASODE ranks first in essentially all dimensions, but the
different dimensions can be divided in detail.

Fig. 5 Friedman mean ranks on
unimodal functions and
multimodal functions
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Table 7 Results of CEC2017 from SASODE and seven other metaheuristic algorithms on 10D

Function Stats SASODE WOA GWO HBO SSA SCA MFO HHO

f1 Mean 0.00E+00 1.29E+06 2.76E+07 4.66E+02 3.52E+03 7.86E+08 4.25E+07 4.20E+05

Std 0.00E+00 1.76E+06 9.03E+07 6.92E+02 3.80E+03 3.27E+08 2.07E+08 4.20E+05

f2 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 Mean 0.00E+00 1.33E+03 9.49E+02 1.41E+01 1.97E-09 1.51E+03 5.25E+03 2.05E+00

Std 0.00E+00 1.49E+03 1.42E+03 6.36E+01 8.11E-10 1.10E+03 8.45E+03 2.05E+00

f4 Mean 3.04E+00 3.33E+01 8.39E+00 4.94E+00 9.20E+00 4.69E+01 1.76E+01 1.91E+01

Std 7.05E-01 4.58E+01 4.40E+00 6.75E-01 1.58E+01 2.87E+01 2.27E+01 1.91E+01

f5 Mean 1.50E+01 5.43E+01 1.38E+01 1.12E+01 1.91E+01 4.70E+01 2.87E+01 4.76E+01

Std 8.23E+00 1.95E+01 7.83E+00 3.58E+00 8.62E+00 6.43E+00 1.02E+01 4.76E+01

f6 Mean 3.03E-14 3.36E+01 8.56E-01 0.00E+00 8.56E+00 1.69E+01 1.78E+00 3.22E+01

Std 5.11E-14 1.21E+01 1.09E+00 0.00E+00 6.52E+00 3.84E+00 3.48E+00 3.22E+01

f7 Mean 3.03E+01 8.14E+01 3.09E+01 2.58E+01 3.49E+01 7.23E+01 3.62E+01 8.56E+01

Std 6.32E+00 1.98E+01 1.41E+01 4.28E+00 1.22E+01 1.03E+01 1.29E+01 8.56E+01

f8 Mean 1.72E+01 4.02E+01 1.37E+01 1.20E+01 2.15E+01 4.10E+01 2.69E+01 3.09E+01

Std 1.02E+01 1.51E+01 6.06E+00 4.64E+00 6.41E+00 6.14E+00 1.02E+01 3.09E+01

f9 Mean 0.00E+00 4.11E+02 1.02E+01 0.00E+00 3.23E+01 1.06E+02 7.51E+01 3.90E+02

Std 0.00E+00 2.30E+02 2.27E+01 0.00E+00 8.17E+01 5.62E+01 1.42E+02 3.90E+02

f10 Mean 3.95E+02 9.78E+02 6.35E+02 6.55E+02 9.27E+02 1.29E+03 9.56E+02 1.03E+03

Std 2.88E+02 3.35E+02 2.69E+02 1.98E+02 2.51E+02 1.86E+02 3.13E+02 1.03E+03

f11 Mean 7.56E-01 1.08E+02 4.00E+01 2.84E+00 7.64E+01 1.00E+02 8.18E+01 7.69E+01

Std 1.00E+00 7.31E+01 4.20E+01 1.23E+00 8.12E+01 4.42E+01 1.05E+02 7.69E+01

f12 Mean 3.76E+01 3.59E+06 5.37E+05 1.17E+05 2.14E+06 1.22E+07 1.39E+06 2.91E+06

Std 5.80E+01 4.16E+06 7.69E+05 1.44E+05 2.20E+06 6.91E+06 2.83E+06 2.91E+06

f13 Mean 4.52E+00 1.81E+04 8.56E+03 1.36E+03 1.33E+04 2.65E+04 1.11E+04 1.35E+04

Std 2.09E+00 1.27E+04 5.69E+03 1.70E+03 1.08E+04 2.14E+04 1.15E+04 1.35E+04

f14 Mean 2.98E-01 9.66E+02 1.32E+03 4.39E+01 1.21E+02 2.14E+02 1.65E+03 1.71E+02

Std 5.32E-01 1.27E+03 1.77E+03 4.06E+01 5.68E+01 1.03E+02 2.15E+03 1.71E+02

f15 Mean 2.74E-01 3.49E+03 3.34E+03 8.96E+01 1.11E+03 6.87E+02 8.34E+03 1.84E+03

Std 3.32E-01 3.28E+03 4.34E+03 1.54E+02 9.86E+02 5.97E+02 9.35E+03 1.84E+03

f16 Mean 7.95E-01 2.45E+02 1.14E+02 1.51E+00 1.12E+02 1.37E+02 1.12E+02 2.24E+02

Std 2.06E+00 1.52E+02 8.93E+01 6.37E-01 1.04E+02 6.53E+01 9.40E+01 2.24E+02

f17 Mean 2.11E+00 9.62E+01 6.26E+01 3.83E+00 6.97E+01 7.30E+01 6.96E+01 8.28E+01

Std 4.47E+00 5.87E+01 2.87E+01 3.67E+00 3.47E+01 1.03E+01 5.00E+01 8.28E+01

f18 Mean 1.53E+00 1.46E+04 2.43E+04 2.59E+03 1.67E+04 1.36E+05 2.12E+04 1.39E+04

Std 5.05E+00 1.34E+04 1.64E+04 2.29E+03 9.10E+03 9.15E+04 1.41E+04 1.39E+04

f19 Mean 6.24E-02 1.94E+04 1.36E+04 4.35E+01 1.08E+03 1.83E+03 1.67E+04 7.53E+03

Std 2.76E-01 2.25E+04 4.70E+04 6.93E+01 2.07E+03 3.21E+03 1.28E+04 7.53E+03

f20 Mean 8.12E-01 1.70E+02 7.16E+01 1.04E-02 6.41E+01 8.76E+01 7.95E+01 1.70E+02

Std 3.03E+00 6.58E+01 5.34E+01 5.70E-02 3.48E+01 2.98E+01 6.10E+01 1.70E+02

f21 Mean 1.43E+02 2.00E+02 1.99E+02 1.52E+02 1.74E+02 1.69E+02 2.18E+02 1.97E+02

Std 5.78E+01 6.37E+01 3.93E+01 5.24E+01 6.05E+01 6.85E+01 3.97E+01 1.97E+02

f22 Mean 9.10E+01 1.18E+02 1.03E+02 9.73E+01 1.03E+02 1.61E+02 9.78E+01 1.14E+02

Std 2.83E+01 1.89E+01 1.69E+01 9.76E+00 2.08E+00 2.18E+01 2.89E+01 1.14E+02

f23 Mean 3.07E+02 3.50E+02 3.17E+02 3.15E+02 3.21E+02 3.52E+02 3.29E+02 3.69E+02

Std 2.27E+00 2.05E+01 9.29E+00 4.41E+00 8.54E+00 7.36E+00 9.06E+00 3.69E+02
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Table 7 continued

Function Stats SASODE WOA GWO HBO SSA SCA MFO HHO

f24 Mean 3.28E+02 3.81E+02 3.48E+02 2.59E+02 3.43E+02 3.78E+02 3.60E+02 4.30E+02

Std 4.33E+01 1.84E+01 1.29E+01 8.96E+01 4.68E+01 3.89E+01 1.12E+01 4.30E+02

f25 Mean 4.15E+02 4.27E+02 4.36E+02 4.08E+02 4.21E+02 4.59E+02 4.33E+02 4.20E+02

Std 2.25E+01 8.88E+01 1.76E+01 1.74E+01 2.41E+01 1.51E+01 2.43E+01 4.20E+02

f26 Mean 3.02E+02 8.74E+02 5.98E+02 2.74E+02 3.48E+02 4.71E+02 4.20E+02 9.45E+02

Std 8.61E+00 4.89E+02 4.52E+02 8.42E+01 2.05E+02 3.17E+01 1.66E+02 9.45E+02

f27 Mean 3.90E+02 4.26E+02 3.99E+02 3.91E+02 3.94E+02 4.03E+02 3.94E+02 4.45E+02

Std 8.57E-01 2.38E+01 1.25E+01 1.54E+00 1.35E+01 1.74E+00 2.17E+00 4.45E+02

f28 Mean 3.87E+02 5.79E+02 5.71E+02 3.80E+02 4.40E+02 4.95E+02 4.92E+02 5.44E+02

Std 1.16E+02 1.56E+02 7.26E+01 4.22E+01 1.48E+02 7.33E+01 9.89E+01 5.44E+02

f29 Mean 2.31E+02 4.53E+02 2.86E+02 2.83E+02 3.05E+02 3.27E+02 3.23E+02 4.29E+02

Std 3.94E+00 1.05E+02 4.85E+01 1.64E+01 5.79E+01 3.64E+01 5.09E+01 4.29E+02

f30 Mean 1.51E+05 1.16E+06 5.08E+05 2.60E+04 1.92E+05 7.84E+05 5.93E+05 1.04E+06

Std 3.50E+05 1.45E+06 6.15E+05 2.29E+04 3.36E+05 4.54E+05 5.05E+05 1.04E+06

2. Analyzing the whole experimental results vertically, in
the case of 10D, WOA and HBO are the second eche-
lon except the SASODE algorithm, SCA and MFO are
ranked after the above two algorithms, and SSA is the
worst performing algorithm. In the 30D, 50D and 100D
cases, WOA is one of the best competitive algorithms for
SASODE, except for GWO and HBO, followed by SSA
and MFO. SCA is the worst algorithm in all three cases.

3. The results of the horizontal comparison show that the
performance of the algorithm gradually improves as the
dimensionality increases and the difficulty in finding the
optimal function increases. From this, we can infer that
SASODE ranks first among the six algorithms in terms
of the overall level of the optimization function in high
dimensions.

4. The results of the Friedman rank on various dimensions
demonstrate that SASODE has a slight edge over HBO,
and outperforms SSA, SCA, andMFO in 10D.Moreover,
the same situation can be observed in 30D and 50D. The
biggest difference is that other algorithms are slightly
inferior to SASODE. However, SASODE exhibits more
statistical significance than other algorithms in 100D,
except for the WOA. It indicates that the performance
gains of SASODE are heightened as the dimensionality
increases.

4.2 Experiments on CEC 2017

To understand the performance of SASODE on different
benchmark test suites. The recently proposed CEC 2017
test suite includes unimodal, multimodal, hybrid, and com-

posite functions that are tested in this section [51]. The
present SASODEalgorithm is evaluated against various lead-
ing algorithms in the field including WOA, GWO, HBO,
SSA, SCA, MFO, and HHO. These algorithms are run inde-
pendently with a maximum iteration count of 1000, and the
process is repeated 30 times. In order to ensure equitable
comparison, fitness evaluations for each algorithmare capped
at 50000, and population size is fixed at 50.

The outcomes pertaining to our study are exhibited in
Table 7. As delineated in the table, SASODEmanifests supe-
rior performance for unimodal functions (f1, f3). Further-
more, with respect to most multimodal functions (f4-f10),
SASODE performs better compared to other algorithms,
except for f5, f7 and f8. It should be noted that the good explo-
ration behavior of SASODE on multimodal functions is due
to the Lehmer mean and variable subpopulation size strate-
gies. For the mixed functions (f11-f20), SASODE ranks first
among all tested functions. The aforementioned outcomes
suggest that SASODE attains equilibrium between EE. In
terms of the amalgamated functions (f21-f30), SASODE
demonstrated superior outcomes on more than fifty percent
of the functions as compared to its counterparts. To sum up,
SASODE demonstrated superior performance relative to its
rivals in CEC 2017.

4.3 The application in engineering optimization
problems

The effectiveness of the proposed algorithm is verified by
three real-world optimization problems such as Parame-
ter estimation for frequency-modulated sound waves (FM),
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Table 8 Results of Real world
optimization problems from
SASODE and GWO, HBO,
HHO and LFD

Function Stats SASODE EO GWO HBO HHO LFD

FM Best 0 0 0.053201 2.76E-25 0.049553 8.865514

Worst 23.97243 20.16705 23.04639 12.56826 21.98638 23.64362

Mean 6.721396 10.05338 14.87228 3.538301 15.20837 16.89727

Std 8.876354 6.521431 5.570155 5.060894 6.126967 4.620611

Median 0.006419 11.79421 13.40932 0.172716 16.33427 17.57606

LJ Best -27.5223 -28.4225 -27.3672 -15.6585 -25.4166 -12.5645

Worst -15.2313 -22.0815 -17.9967 -9.29099 -9.92174 -9.39773

Mean -23.8258 -26.0689 -23.0756 -11.4448 -17.8416 -10.1641

Std 3.453044 1.89422 2.49569 1.331784 4.006767 0.806277

Median -25.0552 -26.4905 -23.1168 -11.3836 -18.3289 -9.90675

SPRP Best 0.5 0.5 0.5 0.5 0.5 0.5

Worst 0.5 0.5 0.5 0.5 0.5 0.505272

Mean 0.5 0.5 0.5 0.5 0.5 0.500264

Std 0 0 0 0 0 0.001179

Median 0.5 0.5 0.5 0.5 0.5 0.5

Lennard-Jones Potential Problem (LJ) and Spread Spectrum
Radar Polly Phase Code Design (SPRP) [52]. The detailed
definitions and mathematical models of these problems can
be found in Appendix A. Moreover, several state-of-the-art
metaheuristics are utilized as the comparison algorithms,
such as EO, MFO, RUN [53], GWO, HBO, HHO, LFD [54],
SCA, SSA and WOA. For the specific parameter settings
of each algorithm, see the corresponding original work. The
comparison algorithms have undergone fitness evaluations
totaling 150000, and each algorithm’s population size is set
at 50. This results in 3000 iterations for these algorithms. It is
worth noting that the effectiveness of the mutation operator
in DE is highly sensitive to the population size. Therefore,

SASODE utilizes a population size of 150. To maintain fair-
ness, the iteration about SASODE is limited to 1000 despite
undergoing the same number of fitness evaluations as the
comparison algorithm. To ensure optimal readability of the
table, the results will be presented across two tables, namely
Tables 8 and 9.

Tables 8 and 9 show the experimental results of FM. The
results depict that SASODE surpasses over fifty percent of
the evaluated algorithms. The statistical values ofmedian and
mean illustrate that SASODEaccomplishes the optimal value
more frequently compared to the other algorithms. The rea-
son is that the adaptive parameter strategy can better adapt to

Table 9 Results of Real world
optimization problems from
SASODE and MFO, RUN,
SCA, SSA and WOA

Function Stats SASODE MFO RUN SCA SSA WOA

FM Best 0 0 6.2E-06 10.39823 2.93E-10 11.49727

Worst 24.94037 25.09711 25.16314 22.86694 25.62236 23.64362

Mean 6.721396 18.58255 15.90388 15.93672 16.06055 18.67931

Std 8.876354 6.735963 6.023931 4.105501 5.941114 4.238271

Median 0.006419 19.6166 19.35855 15.61022 17.51297 19.83866

LJ Best -27.5223 -20.554 -28.4225 -11.0587 -26.7605 -23.7917

Worst -5.06569 -25.5037 -3.22927 -10.1503 -8.08966 -9.39773

Mean -23.8258 -11.278 -26.9948 -8.32382 -16.96 -18.3792

Std 3.453044 3.868638 0.843083 2.482408 4.698715 4.850882

Median -25.0552 -10.7748 -27.3184 -9.24752 -16.1619 -20.0703

SPRP Best 0.5 0.5 0.5 0.5 0.5 0.5

Worst 0.5 0.542243 0.588805 1 0.5 0.663841

Mean 0.5 0.503338 0.50444 0.576355 0.5 0.536747

Std 0 0.01067 0.019857 0.127375 0 0.049517

Median 0.5 0.5 0.5 0.511374 0.5 0.500428
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Table 10 Datasets of the feature selection

No. Datasets Number feature Number sample

1 Ionosphere 34 351

2 Sonar 60 200

3 Credit6000 65 6000

4 Dnatest 180 1186

5 Permission 88 4407

6 Spambase 57 4601

7 SPECTheart 22 267

8 Waveform 40 3345

9 WDBC 30 569

the evolutionary process of this complex problem and make
the algorithm reach the optimum more smoothly.

As shown in Tables 8 and 9, SASODE and some other
algorithms, such as EO, SSA, HBO, HHO and GWO, rank
first in the design of the SPRP. The results indicate that the
problem is relatively easy to solve. There are many algo-
rithms that canbeoptimal, but someare still not stable enough
(such as LFD, MFO, RUN, SCA, and WOA). In general,
SASODE is able to maintain good stability on this problem.

5 Feature selection optimization

To further corroborate the efficacy of SASODE in addressing
practical issues, we have applied the SASODE towards fea-
ture selection problem,which has been proven to belong to an
expensive optimization problem class. As a result, we will
begin with introducing the datasets employed by the algo-
rithm, followed by a parametric analysis of the comparison
algorithm, and conclude by analyzing experimental results.

5.1 Datasets

The datasets utilized in this stage of the experiment are dis-
played in Table 10 and encompass critical information like
dataset name, number of attributes, and samples. It is worth
mentioning that this paper selects eight real datasets sourced
from the UCI Machine Learning Laboratory [55] in addition
to the Permission dataset for Android malicious applica-
tion classification extracted from the literature [56]. From

Table 10 we can see that the number of attributes in the
datasets are all below five hundred, but the number of sam-
ples varies from several hundred to several thousand, and the
attributes are not proportional to the number of samples, and
these characteristics make the datasets a challenging task in
classification.

5.2 Experimental settings

Due to the unbalanced number of samples in the above
datasets,the experimental process employs K-fold cross-
validation methodology. Specifically, the value of k is estab-
lished as 10, and dividing the dataset into ten copies of the
same size, nine of which are used for training data in the
feature selection process and one for testing data. The exper-
imental classifier is KNN classifier.

5.3 Comparison of algorithm parameter settings
and evaluation criteria

The comparison algorithms used in this section include the
differential evolution algorithmwith opposition-based learn-
ing ODE, and variants of ODE, CODE [57], COODE [58],
and QRODE [59], as well as the emerging algorithms HHO,
JAYA [60], and WOA algorithms proposed in recent years
for solving feature selection. To ensure fairer experimen-
tal results, we used the control variables method, and all
algorithms were iterated 100 times and run 20 times inde-
pendently. Table 11 shows the parameter settings of the
algorithm.

Feature selection is a class of discrete optimization prob-
lems, the optimization goal is to improve the accuracy of
the classifier to reduce the number of features selected [61].
Give a dataset with N features, each individual in the pop-
ulation is a binary vectorX = (x1, x2, ....xN ), each bit
xd ∈ {0, 1}, d = 1, 2, ....., N , where 1 denotes the dth fea-
ture is selected,and 0 denotes it is not selected. In this paper,
two different evaluation functions are used. One is the clas-
sifier accuracy rate and the other is the classifier error rate.
Equations (9) and (10) are the calculation formula.

ACC = T P + T N

T P + T N + FP + FN
(9)

Table 11 Parameter settings

Algorithm SASODE CODE COODE HHO ODE QRODE WOA

Parameter values μJ = 0.3, c = 0.01 Jr = 0.3 Jr = 0.3 β = 1.5 Jr = 0.3 Jr = 0.05 b = 1

* Jr is the jumping rate of the ODE. μJ is the initial mean of the Gaussian distribution. c is a positive number, the experiment verifies that the
effect is optimal when c = 0.01
** β is a parameter in the Levy formula in HHO
*** b is a parameter in the update formula in WOA
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Table 12 Comparison of mean
and standard deviation of
different algorithms on different
datasets

Dataset SASODE CODE COODE HHO

Mean± Std Mean±Std Mean± Std Mean± Std

Ionosphere 0.960± 0.022(1) 0.958±0.025(2) 0.951±0.019(4) 0.935±0.028(8)

Sonar 0.974 ±0.024(3) 0.967 ±0.025(6) 0.974±0.024(2) 0.920±0.044(8)

Credit6000 0.864 ±0.007(1) 0.862 ±0.005(5) 0.859±0.007(6) 0.848±0.006(8)

Dnatest 0.895±0.010(3) 0.907 ±0.016(1) 0.894±0.022(5) 0.848±0.032(7)

Permission 0.969± 0.005(2) 0.966 ±0.006(6) 0.969±0.006(1) 0.960±0.009(8)

Spambase 0.940 ±0.006(3) 0.939 ±0.006(5) 0.934±0.008(6) 0.916±0.013(8)

SPECTheart 0.816± 0.008(4) 0.813 ±0.015(7) 0.819±0.025(2.5) 0.809±0.024(8)

Waveform 0.933 ±0.007(2) 0.935 ±0.007(1) 0.925±0.008(6) 0.913±0.009(8)

WDBC 0.968± 0.013(1) 0.961 ±0.016(3) 0.954±0.016(8) 0.957±0.019(6)

Mean Rank 2 4 5 8

Dataset JAYA ODE QRODE WOA

Mean± Std Mean±Std Mean± Std Mean± Std

Ionosphere 0.951±0.024(5) 0.950±0.017(6) 0.952±0.022(3) 0.940±0.016(7)

Sonar 0.973±0.028(4) 0.978±0.019(1) 0.972±0.020(5) 0.930±0.024(7)

Credit6000 0.863±0.006(3) 0.864±0.006(2) 0.862±0.007(4) 0.851±0.004(7)

Dnatest 0.893±0.017(6) 0.895±0.016(4) 0.898±0.018(2) 0.842±0.025(8)

Permission 0.968±0.005(4) 0.968±0.005(3) 0.967±0.005(5) 0.963±0.007(7)

Spambase 0.940±0.008(4) 0.940±0.008(1) 0.940±0.006(2) 0.920±0.012(7)

SPECTheart 0.813±0.017(5.5) 0.824±0.020(1) 0.819±0.015(2.5) 0.813±0.017(5.5)

Waveform 0.930±0.006(5) 0.932±0.006(4) 0.932± 0.008(3) 0.916±0.008(7)

WDBC 0.960±0.017(4) 0.962±0.013(2) 0.956±0.015(7) 0.958±0.016(5)

Mean Rank 5 3 4 7

error
(
K NNclassi f ier

) = 1 − ACC = Wrongnum
Correctnum + Wrongnum

(10)

5.4 Comparison of experimental results

The data displayed in Table 12 represents the mean standard
deviation computations using (9) as the evaluation metric.

The average ranking is presented in the last row of the table,
while the best experimental results are highlighted in bold in
the table. In the analysis of the experimental results, this paper
divides the competing algorithms into two categories. The
first part is the analysis and comparison between SASODE
and different variants of differential evolution algorithms,
and the second part is the comparison between SASODE
and other algorithms.

Table 13 Wilcoxon rank sum
test results

Dataset CODE COODE HHO JAYA ODE QRODE WOA

Ionosphere = = + = + = +

Sonar = = + = = = +

Credit6000 = + + = = = +

Dnatest - = + = = = +

Permission = = + = = = +

Spambase = + + = = = +

SPECTheart = = + = = = =

Waveform = + + = = = +

WDBC = + + = = + +

+/=/- 0/8/1 4/5/0 9/0/0 0/9/0 1/8/0 1/8/0 8/1/0
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5.4.1 Comparison with ODE and its variant

By analyzing the data in Table 12, we can understand
that SASODE has the highest accuracy on Ionosphere,
Credit6000, Permission, and Spambase, which is because
the algorithm can effectively avoid the best individuals in
the population from performing OBL. The traditional OBL
ordinary differential equation algorithm is OBL with less
than jumping probability for all individuals in the popula-
tion, which is tantamount to destabilizing the population,
making the local best individuals in the population elimi-
nated with a certain probability of being the individuals with
poor fitness values. We can see that SASODE has a lower
standard deviation than the other improved DE algorithms
on the remaining eight datasets, except for ODE. According
to the iteration step of the algorithm, it is easy to find that
SASODE selects individuals to join the subpopulation by
comparing each individual with a Gaussian random number

and that the algorithm is significantly more random com-
pared to the traditional ODE, so the algorithm is more stable
during the iteration. The range of the difference was found
to be 0.001, and since the algorithms are all randomized,
the small differences in stability between the algorithms are
negligible while ensuring accuracy. In addition to the com-
parison of mean variances between algorithms, the ranking
analysis shows that among all algorithms, SASODE ranks
first, followed by ODE, CODE, QRODE tied for third, and
COODE ranked fourth.

5.4.2 Comparison with other algorithms

In addition to the comparison with ODE variants, SASODE
has more obvious advantages in accuracy compared with
HHO, JAYA and WOA algorithms, especially WOA algo-
rithm. The results of the Wilcoxon rank sum test are shown
in Table 13, from the table it can be inferred that SASODE

Fig. 6 Convergence behavior of the SASODE and seven other algorithms for the nine UCI datasets
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displays superior performance in comparison toWOA across
all nine data sets. Even though the WOA algorithm has a
superior standard deviation on Ionosphere and Credit6000
compared to SASODE, its accuracy has been underwhelm-
ing when compared to the algorithm introduced in this paper.
Secondly, according to the results of the rank sum test, it can
be inferred that JAYA and SASODE algorithms are simi-
lar. However, when considering both the mean and standard
deviation, JAYA algorithm was found to be notably inferior
to SASODE algorithm. This indicates that SASODE outper-
forms HHO, JAYA, and WOA algorithms.

5.4.3 Convergence behavior

In addition to comparing the results of different algorithms
on different datasets according to (10), we visualize the
algorithm iteration 100 with the evaluation function and
the visualization results as in Fig. 6. It is easy to see by
the iterative curves that the blue curve performs well on
most of the datasets. SASODE converges the least on the
Ionosphere, Sonar, Credit6000, Spambase, Waveform, and
WDBC datasets, which means that the algorithm has the
highest accuracy and the lowest error rate. However, a closer
look also shows that SASODE can converge to better values,
but not as fast as the other algorithms on the Sonar, Permis-
sion andWaveform datasets. This is due to the larger number

of features in the Sonar dataset, the larger number of sam-
ples in the Permission andWaveform datasets, and SASODE
focuses on the jumping rate of each individual in the popu-
lation, which prevents it from simultaneously considering
both the effectiveness and efficiency of the optimization in
the early stage. Therefore, the performance of SASODEmay
not be very good in dealing with high-dimensional large-
sample problems. But in the later stage, the update of the
jumping rate is based on historical information and there is
no need to find the optimal search direction, so as the number
of iterations increases (after 60 generations), the algorithm
gradually finds the optimal solution and converges.

5.4.4 Number of features and running time analysis

Table 14 displays the mean quantity of features that were
chosen by various algorithms across a range of datasets, as
well as the mean time taken by each algorithm to make these
selections. It is evident from Table 14 that SASODE does
not exhibit significant benefits with regard to the quantity of
selected features and the execution time. This is because the
algorithm assigns a jumping rate to each individual in the
population during the iteration process, which theoretically
increases the time cost and leads to a slowdown in the pre-
optimization process, but this operation helps the algorithm
to jump out of the local optimum to increase the probability

Table 14 Comparison results of
different algorithms in terms of
the number of selected features
and time

Dataset SASODE CODE COODE HHO

Size Time Size Time Size Time Size Time

Ionosphere 7.55 40.20 7.35 19.12 8.4 18.79 5.95 27.90

Sonar 19 37.61 17.05 18.37 16.6 17.70 17.3 17.36

Credit6000 28.35 409.93 27.9 170.01 26.6 161.31 19.7 121.67

Dnatest 82.7 88.00 81.8 38.99 86 39.15 83.5 39.72

Permission 37.3 350.97 32.85 140.48 36.55 152.08 52.4 183.78

Spambase 30.9 264.98 30.35 115.31 30.65 113.64 35.95 127.29

SPECTheart 6.95 38.18 7.35 18.50 5.55 18.55 5.8 16.57

Waveform 19.65 114.73 21.3 49.31 20.15 51.28 23.1 54.30

WDBC 4.3 41.22 3.55 19.40 4.55 20.18 5.5 18.56

Dataset JAYA ODE QRODE WOA

Size Time Size Time Size Time Size Time

Ionosphere 8.8 12.34 6.8 18.82 7.2 16.74 4.35 10.85

Sonar 17.35 11.09 18.85 17.96 17.3 15.47 16.15 10.56

Credit6000 28.5 107.80 27.25 169.12 25.9 140.37 18.3 67.91

Dnatest 83.1 24.48 84.1 39.72 83 35.23 81.7 24.02

Permission 33 88.98 38.1 152.64 36.5 133.04 59.85 115.54

Spambase 29.55 69.06 31.2 113.10 30.65 99.57 38.35 81.44

SPECTheart 4.65 11.73 7.35 18.64 6.2 16.48 7.65 10.99

Waveform 20.8 31.91 20.35 51.19 21.4 45.00 25.9 35.80

WDBC 3.55 12.44 4 20.31 4.35 17.40 5.05 11.25
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of finding the globally optimal solution, which explains the
fact that SASODE selects the smallest number of features
on the waveform, but takes a much longer time to find the
optimal solution than JAYA.

Combined with the in-depth analysis of the numerical
results in Table 12, it is apparent that SASODE exhibits
the most superior classification accuracy when the quan-
tity of features is not considered. The features selected by
WOA are few, but have the lowest accuracy rate. In other
words, the features selected by WOA are not representative.
Similarly, the same is true for JAYA. Upon further exami-
nation of the experimental results, it has been deduced that
the variances between the quantities of features chosen by
SASODE, WOA, and JAYA do not exceed three, the time
taken for feature selection does not surpass 50%. Conse-
quently, in instances where high accuracy is ensured, the
difference between these two indicators may be disregarded.
We can even boldly infer that the improved algorithm is appli-
cable to smaller data sets and can guarantee high accuracy
without consuming too much time. In conclusion, SASODE
outperforms other comparison algorithms in terms of com-
prehensive performance.

6 Conclusions

In this paper, a novel evolutionary algorithm, termed
SASODE, is proposed specifically for solving optimization
problems. To distinguish population-based OBL in ODE,
first, SASODE proposes opposite operation based on sub-
population, an idea that fully mobilizes the advantages of
individuals and maximizes the utilization of individuals in
OBLpopulation. Second, an adaptive parameter control strat-
egy is introduced in SASODE to determine the number of
individuals eligible to perform OBL and to adjust the size
of the subpopulation. Finally, the concept of surviving indi-
viduals in subpopulations based on historical information is
proposed to guide the algorithm search in a more favourable
direction for convergence. Experimental results show that
SASODE outperforms state-of-the-art algorithms in recent
years on different types of optimization problems, confirm-
ing the effectiveness and robustness of the new mechanism
in SASODE.

In future research work, ODE still remains much room
for further improvements, and several research directions can
be recommended. The performance impact of subpopulation
strategies in different opposition-based learning. The com-
bination of different adaptive strategies and subpopulation
strategies in DE can be further considered. SASODE is cur-
rently only used in single-objective optimization problems,
and the performance on multi-objective optimization prob-
lems may be an exciting research work.

Appendix A: Engineering optimization
problemmodel

A.1 Parameter estimation
for frequency-modulated sound waves (FM)

The first problem is Frequency modulation sound wave
synthesis (FM) . This problem has six variables, namely,
�X = {a1, ω1, a2, ω2, a3, ω3} are called estimated param-
eters. Additional details regarding this function have been
included below:

y(t) = a1 · sin (ω1 · t · θ + a2 · sin (ω2 · t · θ

+a3 · sin (ω3 · t · θ))) (A1)

y0(t) = (1.0) · sin((5.0) · t · θ − (1.5) · sin((4.8) · t · θ

+(2.0) · sin((4.9) · t · θ))) (A2)

where θ = 2π/100, the range of the FM function lies
between [-6.4,6.35].

f ( �X) =
100∑
t=0

(y(t) − y0(t))
2 (A3)

A.2 Lennard-Jones potential problem (LJ)

The objective of the following multimodal optimization
problem is to minimize the energy of a pure Lennard-Jones
(LJ) cluster. A large number of local optima exist in this prob-
lem [52]. Given M atoms and their Cartesian coordinates
�ai = {�xi , �yi , �zi }, where i ranges from 1 to M , the objective
function can be expressed as follows:

VM (a) =
M−1∑
i=1

M∑
j=i+1

(
r−12
i j − 2 · r−6

i j

)
(A4)

where ri j = ||�ai − �a j ||2 with gradient

∇ j VM (a) = − 12
M∑

i=1,i �= j

(
r−14
i j − r−8

i j

) (�a j − �ai
)
,

j = 1, . . . , M (A5)

The three variables take values in the range x1 ∈ [0, 4], x2 ∈
[0, 4], x3 ∈ [0, π ].The coordinates xi for other atom is given
to be bound in the range

[−4 − 1
4

⌊ i−4
3

⌋
, 4 + 1

4

⌊ i−4
3

⌋]
.
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Fig. 7 Landscape of SPRP (D=2)

A.3 Spread spectrum radar polly phase code
design (SPRP)

The objective function of the SPRP problem is a nonlinear
and non-convex function. The mathematical model of the
problem is shown below [62].

global miny∈Y f (y) = max {φ1(y), ..., φ2m(y)}
Y = {

(y1, ..., yn) ∈ Rn | 0 ≤ y j ≤ 2π, j = 1, ..., n
}

where m = 2n − 1 and

φ2i−1(y)=∑n
j=i cos

(∑ j
k=|2i− j−1|+1 yk

)
, i = 1, ..., n

φ2i (y)=0.5+∑n
j=i+1 cos

(∑ j
k=2i− j |+1 yk

)
, i =1, ..., n−1

φm+i (y) = −φi (y), i = 1, ...,m

(A6)

Figure 7 shows the objective function at D = 2. Since
the problem is NP-hard and the problem is segmented and
smoothed, it cannot be solved efficiently using traditional
optimization algorithms.

Funding The authors are grateful for the support of National key
research and development program of China (2020YFA0908300), and
National Natural Science Foundation of China (21878081).

Availability of data and materials Written informed consent for publi-
cation of this paper was obtained from all authors.

Declarations

Competing interests The author(s) declared no potential conflicts of
interest with respect to the research, author- ship, and/or publication of
this article.

References

1. Gao D, Wang G-G, Pedrycz W (2020) Solving fuzzy job-shop
scheduling problem using DE algorithm improved by a selection
mechanism. IEEE Trans Fuzzy Syst 28(12):3265–3275. https://
doi.org/10.1109/tfuzz.2020.3003506

2. Tirkolaee EB, Goli A, Weber G-W (2020) Fuzzy mathematical
programming and self-adaptive artificial fish swarm algorithm for
just-in-time energy-aware flow shop scheduling problem with out-
sourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783

3. Tirkolaee EB, Alinaghian M, Hosseinabadi AAR, Sasi MB, San-
gaiah AK (2019) An improved ant colony optimization for the
multi-trip capacitated arc routing problem. Comput Electr Eng
77:457–470

4. Alswaitti M, Albughdadi M, Isa NAM (2019) Variance-based dif-
ferential evolution algorithm with an optional crossover for data
clustering. Appl Soft Comput 80:1–17. https://doi.org/10.1016/j.
asoc.2019.03.013

5. Zhang Y, Gong D-w, Gao X-z, Tian T, Sun X-y (2020) Binary dif-
ferential evolution with self-learning for multi-objective feature
selection. Inf Sci 507:67–85. https://doi.org/10.1016/j.ins.2019.
08.040

6. Sharafi Y, Teshnehlab M (2021) Opposition-based binary
competitive optimization algorithm using time-varying v-
shape transfer function for feature selection. Neural Comput
& Applic 33(24):17497–17533. https://doi.org/10.1007/s00521-
021-06340-9

7. Elaziz MA, Dahou A, Abualigah L, Yu L, Alshinwan M, Kha-
sawneh AM, Lu S (2021) Advanced metaheuristic optimization
techniques in applications of deep neural networks: a review.
Neural Comput &Applic 33(21):14079–14099. https://doi.org/10.
1007/s00521-021-05960-5

8. Abualigah L, Yousri D, Elaziz MA, Ewees AA, Al-qaness MAA,
GandomiAH (2021) Aquila optimizer: a novel meta-heuristic opti-
mization algorithm. Comput Ind Eng 157:107250. https://doi.org/
10.1016/j.cie.2021.107250

9. Fausto F, Reyna-OrtaA, Cuevas E,AndradeÁG, Perez-CisnerosM
(2019) Fromants towhales:metaheuristics for all tastes.Artif Intell
Rev 53(1):753–810. https://doi.org/10.1007/s10462-018-09676-2

10. Ser JD, Osaba E, Molina D, Yang X-S, Salcedo-Sanz S, Camacho
D, Das S, Suganthan PN, Coello CAC, Herrera F (2019) Bio-
inspired computation: where we stand and what’s next. Swarm
Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.
04.008

11. Holland J (1975) Adaptation in natural and artificial systems: an
introductory analysis with application to biology. Control Artif
Intell

12. Storn R, Price K (1997) Differential evolution - a simple
and efficient heuristic for global optimization over continuous
spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/a:
1008202821328

13. Shi Y (2011) Brain storm optimization algorithm. In: Advances in
swarm intelligence: second international conference, ICSI 2011,
Chongqing, China, June 12-15, 2011, Proceedings, Part I 2, pp
303–309. Springer

14. Mirjalili S (2016) SCA: A sine cosine algorithm for solving opti-
mization problems. Knowl-Based Syst 96:120–133. https://doi.
org/10.1016/j.knosys.2015.12.022

15. Faramarzi A, HeidarinejadM, Stephens B,Mirjalili S (2020) Equi-
librium optimizer: a novel optimization algorithm. Knowl-Based
Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

16. Li Y, Wang S (2019) Differential evolution algorithm with elite
archive and mutation strategies collaboration. Artif Intell Rev
53(6):4005–4050. https://doi.org/10.1007/s10462-019-09786-5

123

https://doi.org/10.1109/tfuzz.2020.3003506
https://doi.org/10.1109/tfuzz.2020.3003506
https://doi.org/10.1016/j.asoc.2019.03.013
https://doi.org/10.1016/j.asoc.2019.03.013
https://doi.org/10.1016/j.ins.2019.08.040
https://doi.org/10.1016/j.ins.2019.08.040
https://doi.org/10.1007/s00521-021-06340-9
https://doi.org/10.1007/s00521-021-06340-9
https://doi.org/10.1007/s00521-021-05960-5
https://doi.org/10.1007/s00521-021-05960-5
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1007/s10462-018-09676-2
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1007/s10462-019-09786-5


A variable population size opposition-based learning for differential evolution.. 983

17. Vasant P, Zelinka I, Weber G-W (2019) Intelligent Computing &
Optimization. Springer, ???

18. Zeng Z, Zhang M, Chen T, Hong Z (2021) A new selection
operator for differential evolution algorithm. Knowl-Based Syst
226:107150. https://doi.org/10.1016/j.knosys.2021.107150
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