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Abstract
No-reference image quality assessment (NR-IQA) is a fundamental yet challenging task in computer vision. Current NR-IQA
methods based on convolutional neural networks typically employ deeply-stacked convolutions to learn local features pertinent
to image quality, neglecting the importance of non-local information and distortion types. As a remedy, we introduce in this
paper an end-to-end multi-task efficient transformer (METER) for the NR-IQA task, consisting of a multi-scale semantic
feature extraction (MSFE) backbone module, a distortion type identification (DTI) module, and an adaptive quality prediction
(AQP) module. METER identifies the distortion type using the DTI module to facilitate extraction of distortion-specific
features via the MSFE module. METER scores image quality in an adaptive manner by adjusting the weights and biases of
adaptive fully-connected (AFC) layers in the AQP module, increasing generalizability to images captured in different natural
environments. Experimental results demonstrate that METER significantly outperforms existing methods for accuracy and
efficiency across five public datasets: LIVEC, BID, KonIQ, LIVE, and CSIQ, and exhibits remarkable performance with
Pearson’s linear correlation coefficients: 0.923, 0.912, 0.937, 0.978, and 0.982 on respective datasets when compared to
human subjective scores. Additionally, METER also attains higher efficiency (-53.9% Params and -87.7% FLOPs) compared
to the existing transformer-based methods, making it valuable for real-world applications.

Keywords Image quality assessment · Multi-task learning · Efficient transformer

1 Introduction

With the growth of social media and the increasing demand
for imaging services, an increasingly large amount of image
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data is becoming available to consumers, where image qual-
ity refers to the measure of how well an image accurately
represents the visual information contained within it, encom-
passing various factors such as sharpness, clarity, color
accuracy, contrast, and overall visual perception. Since image
signals are subject to quality degradation at all process-
ing steps, i.e., acquisition, compression, transmission, and
display, image quality assessment (IQA) is crucial in deter-
mining whether the acquired image data is reliable and
whether reacquisition or image enhancement is required.

IQA methods can be categorized as subjective or objec-
tive. While the human visual system (HVS) is the ultimate
receiver in most visual communication systems, subjective
IQA is time-consuming, costly, labor-intensive, and cannot
be directly embedded andoptimized in automated systems. In
contrast, objective IQA automatically predicts visual quality
via computer algorithms and is optimizable for timely IQA.
Objective IQA has received increasing attention in recent
years [1–3].

According to the availability of distortion-free reference
images, objective IQA methods can be divided into three
categories: (i) Full-reference IQA (FR-IQA) methods [4–6],
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which rely on the full access to reference images, can be fur-
ther classified as spatial domainmethods [4, 5] and transform
domain methods [6]; (ii) Reduced-reference IQA (RR-IQA)
methods, which rely on partial information from reference
images [7–9]; and (iii) No-reference IQA (NR-IQA) meth-
ods [10–12], the absence of a pristine or original reference
image for comparison during the image quality assessment
process,which aim to evaluate the quality of a distorted image
without having access to the original, unaltered version of the
same image.

In various real-world scenarios, obtaining high-quality
reference images might be impractical, limiting the applica-
bility of FR-IQA and RR-IQAmethods. Therefore, NR-IQA
methods are more suitable for practical applications, includ-
ing image processing in real-time systems, automated image
quality evaluation in surveillance, and quality assessment in
image compression and transmission pipelines, as they can
evaluate image quality using only the distorted image itself
without requiring a pristine reference image.

Image quality is directly affected by the type of distortion.
NR-IQA methods can be further categorized as distortion-
specific or distortion-agnostic. Distortion-specific methods
can estimate the perceived quality of a distorted image only
if the type of distortion (e.g., JPEG compression [13, 14],
blurring, and noise [15, 16]) is known beforehand. They are
less generalizable across distortions, leading to IQA failure in
real-world applications where distortion types are typically
not known in advance. More attention has been recently ded-
icated to developing distortion-agnostic NR-IQA methods,
which are typically based on natural scene statistics (NSS)
[17–19] and HVS models [10, 20, 21]. Most NSS methods
measure the distribution of image statistics by fitting a NSS
model.However, distortion not only changes image statistics,
but also disrupts statistical regularity in natural images, lead-
ing to mismatch between the fitted NSSmodel and the actual
distribution of image statistics [22]. HVS methods mainly
relate the characteristics of the HVS to amathematical model
to mimic human subjective IQA. Although the HVS model
can resolve the inconsistency of subjective and objective IQA
to some extent, it is limited by high computational complex-
ity and low accuracy.

Recently, learning-based general-purpose models [23–
26] have demonstrated great potential in NR-IQA, as they
can automatically extract IQA-pertinent features and regress
the quality score in an end-to-end fashion. While convolu-
tional neural networks (CNNs) [1, 27, 28] have demonstrated
promising performance, they suffer from three main draw-
backs: 1) Most CNNs learn local but ignore non-local
distortion features, leading to quality prediction that is incon-
sistent with theHVS; 2)Most CNNs are inconsistent with the
perceptual order by which the HVS evaluates image quality,
i.e., understanding image content (e.g., objects in a scene)
before recognizing whole image information; and 3) Unlike

subjective IQA, information on the type of distortion is typi-
cally neglected in most CNN-based methods, leading to poor
IQA performance and low generalizability.

Unlike CNNs that have a strong bias towards learning
local features, the transformer [29–31] is effective for learn-
ing long-range dependencies. The ability to capture pairwise
interactions enhances the sensitivity of the transformer to
local distortions and global contents. Transformers can there-
fore mimic HVS for accurate IQA in a holistic manner.
Despite its great potential, the transformer has high memory
and computational costs, since it scales quadratically with
spatial or embedding dimensions, resulting in vast overheads
in training and inference.

In this paper, we draw inspiration from previous work [1,
2, 32] and propose the end-to-end multi-task efficient trans-
former (METER) forNR-IQA, predicting simultaneously the
distortion type and the quality score. The key features of
METER are as follows:

(i) To improve the accuracy and efficiency of NR-IQA, we
propose a novel method called METER, which is based
on an efficient multi-task transformer and consists of
three main components: a multi-scale semantic feature
extraction (MSFE) module, which extracts both global
and local features at multiple scales; an adaptive quality
prediction (AQP) module, which performs IQA using
adaptive fully connected (AFC) layers; and a distor-
tion identification (DTI) module, which predicts image
distortion type to facilitate the extraction of distortion-
specific IQA-pertinent features. METER extracts and
aggregates local and global features, and incorporates
the identified distortion type as an additional input for
quality regression.

(ii) To efficiently extract multi-scale features for better qual-
ity prediction, we introduce the MSFE module based on
efficient transformer blocks (ETBs) in four stages. In
each stage, we employ patch embedding for resolution
reduction and channel dimension extension, position
encoding, and ETB for self-attention feature extraction.
We also introduce a local distortion aware (LDA) mod-
ules to capture multi-scale local features from outputs of
different stages, which are then assembled with global
features to construct multi-scale IQA-pertinent repre-
sentations for subsequent distortion type identification
and quality regression.

(iii) Tomimic theperceptualmodel ofHVS,weproposeAFC
layers, whose hyperparameters, i.e., weight and bias,
are learned from global features for content-aware AQP.
Since distortion type is an important factor in determin-
ing image quality, we employ a multi-task framework
to merge AQP with distortion-type probabilities pre-
dicted by the DTI module for further improvement of
IQA accuracy.
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The remainder of this paper is organized as follows. In
Section 2, we briefly review related work on multi-task IQA
and transformers for IQA, aswell as the efficient visual trans-
former. In Section 3, we describe the overall architecture
of METER and module details. In Section 4, we evaluate
METER in comparison with state-of-the-art methods and
perform ablation studies. In Section 5, we discuss the rela-
tionship between METER and existing methods and analyze
the main limitations. Finally, we conclude in Section 6.

2 Related work

2.1 Multi-task IQA

In visual communication systems, all imaging steps, i.e.,
acquisition, processing, compression, transmission, and de-
compression, can introduce distortions that can have differ-
ent effects on image quality. In comparison with single-task
IQA methods [33–35], multi-task IQA has a wider range
of functionality and usefulness. Most multi-task IQA meth-
ods can be classified into two categories: sequential methods
[1, 36], which assess image quality by first determining
the distortion type, and parallel methods [3, 27, 37], which
determine the distortion type and assess the image quality
simultaneously. Our work is inspired by MEON [1], a paral-
lel multi-task method that incorporates distortion prediction
into an IQA network to guide quality prediction. In addition,
the types of distortions that METER specifically tackles in
this paper are JPEG-2000 Compression (JP2K), JPEG Com-
pression (JPEG),White noise (WN),Gaussian blurring (GB),
Fast Fading Rayleigh (FF), additive white Gaussian noise
(AWGN), global contrast decrements (CC) and additive pink
Gaussian noise (FN), which are mainly present in the LIVE
and CSIQ datasets.

2.2 Transformers for IQA

CNNs are typically used as the main backbone for feature
extraction in the majority of IQAmodels [2, 28, 38], but they
have a strong locality bias and is ineffective in capturing non-
local information.

Transformers, introduced by Vaswani et al. [29], lever-
age self-attention mechanisms [39] to aggregate information
from an entire data sequence, making them effective for
natural language processing and computer vision tasks [40–
42]. However, the application of transformer to NR-IQA is
not fully explored. Concurrent with our work, transform-
ers were used for NR-IQA [43] by feeding features from
the last layer of a CNN to a transformer for quality predic-
tion. A hybrid approach taking advantage of a CNN and the
self-attention mechanism in a transformer was leveraged to
extract both local and non-local features from the input image

for NR-IQA [30]. Unlike these methods [30, 31, 44], we use
the transformer to learn the mapping between an input image
and multi-scale semantic features for adaptive NR-IQA that
mimics the HVS.

2.3 Efficient visual transformer

To model long-range contextual information, self-attention
[29, 45, 46] has been introduced in transformers for visual
recognition tasks to learn dependencies across channels or in
space by appending self-attention layers atop convolutional
networks. However, the nature of self-attention in transform-
ers causes greater computational overhead over conventional
CNNs. In view of this, efficient variants have been pro-
posed, such as Unified transFormer (UniFormer) [47] and
flexible transformer (FlexFormer) [48], aiming to trade off
between accuracy and efficiency in optimizing transformers
for real-world applications. This allows lightweight efficient
transformers to be employed for image super-resolution [49,
50], semantic segmentation [51, 52], and object detection
[53, 54]. In this work, we draw inspiration from an efficient
multi-scale vision transformer, called ResT [32], for multi-
scale, memory-efficient, and multi-head self-attention.

3 Method architecture

Figure 1 shows an overview of METER, which consists
of a multi-scale semantic feature extraction (MSFE) mod-
ule, a distortion-type identification (DTI) module, and an
adaptive quality prediction (AQP) module. The MSFE mod-
ule extracts multi-level local and global features, which are
then merged into two mutually collaborative modules, i.e.,
AQP and DTI. The DTI module encodes degradation-style
features and predicts the distortion type. The AQP module
incorporates the predicted distortion type for final QA by
adaptively learning weights and biases of adaptive fully-
connected (AFC) layers. Details on the METER will be
described next.

3.1 Overview of meter

Deep learning-based IQA models typically learn a nonlinear
mapping f between an input image x and its quality score q:

q = f (x). (1)

Tomimic human visual perception, we extract multi-scale
features and identify the distortion type to guide IQA in a
multi-task framework. We extract multi-scale semantic fea-
tures R = [r1, · · · , rm] = fr (x) via a nonlinear mapping fr
learned with the MSFE module in each stage, where m = 4.
Based on R, the DTI module classifies the distortion into
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Fig. 1 Overview of METER. Given an image, we first extract multi-
level local and global features using a multi-scale semantic feature
extraction (MSFE) module and merge them in two mutually collab-
orative modules, i.e., a distortion-type identification (DTI) module and
an adaptive quality prediction (AQP) module. The DTI module encodes

degradation-style features and predicts the distortion type, and the
AQP module incorporates the predicted distortion type for final qual-
ity prediction by adaptively learning weights and biases of adaptive
fully-connected (AFC) layers

multiple types, giving a distortion-type probably vector p.
To adapt to different image contents and distortion types,
AQP embeds R using AFC layers, with weights and biases
dynamically learned from global features rm , and incorpo-
rates p to regress the image quality score, i.e., q = fq(R, p).
The objective of METER is therefore:

minL = min
n∑

i=1

Li
{
qi , q∗

i

}

= min
n∑

i=1

Li
{
fq (Ri , pi ) , q∗

i

}
, (2)

where n is the batch size, rmi is the m-th element of Ri =
[r1i , · · · , rmi ] obtained from the xi via the MSFE module, xi
is the i-th image in the batch, q∗

i is ground-truth quality score
of xi . The loss Li measures the difference between qi and
q∗
i . Next, three modules of METER are described next.

3.2 Multi-scale Semantic Feature Extraction (MSFE)
backbonemodule

The MSFE backbone module (Fig. 1) consists of two sub-
modules: 1) an efficient vision transformer (EVT, gray in
Fig. 1), consisting of a stem module applied for low-level
information extraction, followed by four stages to capture
multi-scale feature maps. Each stage consists of a patch
embedding block, a position encoding block, and an efficient
transformer blocks (ETBs); and 2) four local distortion-
aware (LDA, yellow in Fig. 1) blocks for multi-scale feature

alignment (Fig. 3), where a 1 × 1 convolution followed by
an averaging pooling (AvgPool) layer and a fully connected
layer are utilized to construct LDA blocks 1 to 4. LDA block
4 omits the 1 × 1 convolution.

Efficient Vision Transformer (EVT): To effectively extract
low-level features, we first adopt a stemmodule that consists
of two 3 × 3 standard convolution layers with respectively
strides 2 and 1 followed by batch normalization [55], ReLU
activation [56], and a 3 × 3 standard convolution layer with
stride 2. We consider the extracted low-level features as a
sequence and then introduce four stages to extract local and
global semantic features.

Specifically, in Stage 1, we first utilize a simple and
effective pixel attention (PA) module for position encoding,
applying a 3 × 3 depth-wise convolution (DWConv) and a
sigmoid activation σ(·) [57] to calculate pixel-wise weights,
which are combined with the encoded input z to generate
position encoding features ẑ:

ẑ = PA(z) = z ∗ σ(DWConv(z)). (3)

We then take the position encoding features as input tokens
and encode them using efficient transformer blocks (ETBs),
as illustrated in Fig. 2. Each ETB consists of 1) efficient
multi-head self-attention (EMSA, blue in Fig. 2), which
employs query (Q) - key (K) - value (V) decomposition to
model global relationships between sequence tokens; and 2)
feed-forward network (FFN, gray in Fig. 2), which employs
a residual framework to transform features and learn more
complete representations.
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Fig. 2 Overall architecture of each stage in Fig. 1. (Green) We take the
position encoding features as input tokens and encode them using effi-
cient transformer blocks (ETBs), which consists of two parts: (Blue)
Efficient multi-head self-attention (EMSA), which employs a query
(Q) - key (K) - value (V) decomposition to model global relationships
between sequence tokens, and (Gray) feed-forward network (FFN),
which employs a residual framework to transform features and learn
wider representations

In Stages 2–4, patch embedding implemented via a 3 ×
3 standard convolution and batch normalization (BN) [55]
are employed before position encoding to reduce the spatial
dimension by 4× and expand the channel dimension by 2×.

For EMSA, the 2D input token ẑ ∈ R is first linearly
projected to query Q using a fully-connected layer. Simul-
taneously, the 2D input token is reshaped to 3D along the
spatial dimension to compress computational memory and
then employ a DWConv to further reduce the height and
width dimensions by a factor of α, which is adaptively set by
the number of EMSA head k, i.e., α = 8/k. Accordingly, the
kernel size, stride, and padding are set to α + 1, α, and α/2,
respectively. Then the key K and value V of self-attention
can be obtained from a linear projection. The self-attention
function of Q, K and V are computed as follows:

EMSA(Q, K , V ) = IN

(
Softmax

(
Conv

(
QK�
√
dk

)))
V ,

(4)

where Conv(·) denotes the standard 1 × 1 convolution,
Softmax(·) is the softmax activation [58], and dk is the output
dimension. Instance normalization [59], IN(·), is employed
on the dot product matrix to maintain the diversity ability of
multi-heads. The outputs of all heads are then concatenated
and linearly projected to construct the final output of EMSA.
In addition, EMSA is followed by FFN and the output for

each ETB can be obtained as

y = z′ + FFN
(
LN

(
z′

))
, (5)

where z′ = ẑ + EMSA(LN(ẑ)). Layer normalization (LN)
[60] is applied before EMSA and FFN to ensure the stability
of the data feature distribution for training.

Unlike the traditional MSA that is computationally inten-
sive, EMSA compresses the memory by a simple depth-wise
convolution operation. In addition, we compensate short-
length limitations of the input token for each head by
projecting the interaction across the dimension of attention-
heads while keeping the diversity ability of multi-heads.

Local Distortion-Aware (LDA) block: To incorporate
multi-scale features extracted by EVT, we introduce an LDA
module to encode distortion-aware features from local fea-
tures at each level, as illustrated in Fig. 3. Each LDA is
constructed by a fully connected layer, an average pooling
layer, and a 1×1 standard convolution layer. LDA4 iswithout
the convolution layer. We take the extracted local semantic
features at each stage as input to the corresponding LDA, and
then merge the outputs of LDAs, rmi (m ∈ [1, 4]), to obtain
the multi-scale semantic features Ri = [

r1i , · · · , rmi
]
of xi .

3.3 Distortion Type Identification (DTI) module

To identify the distortion type for enhancing IQA (orange-
pink in Fig. 1), we introduce a distortion type identification
module (DTI) to predict the distortion-type probability vec-
tor, which indicates the likelihood of each distortion type
and will be a partial input to AQP (see Section 3.4). With
the multi-scale semantic features Ri extracted from MSFE
as input, DTI utilizes three fully connected layers with
ReLU activation to encode multi-scale semantic features to
distortion-type pertinent features and employs dropout [61]
to prevent overfitting. The final probability vector of distor-
tion types pi is obtained via a softmax function:

p j
i (xi ) = exp ( fd ( fr (xi )))∑C

j=1 exp ( fd ( fr (xi )))
, j ∈ [1,C], (6)

where fr and fd are the nonlinear mappings of MSFE and

DTI, respectively. pi = [
p1i , · · · , pCi

]T
is a C-dimensional

probability vector of the i-th input in a mini-batch, indicating
the probability of each distortion type, and is fed to AQP to
predict the overall perceptual quality score.

3.4 Adaptive Quality Prediction (AQP) module

For accurate IQA of images with various contents and
different distortion types, we propose an adaptive quality
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Fig. 3 Architectures of LDA and AFC. (Yellow) An LDA module to
encode distortion-aware features from local features at each level,where
each LDA is constructed with a fully connected layer, an average pool-
ing layer, and a 1×1 standard convolution layer (except LDA4). (Green)
An adaptive fully connected (AFC) layer, withweight and bias hyperpa-
rameters learned from theglobal semantic features of theMSFEmodule.

Each AFC layer utilizes two 1 × 1 standard convolutions with ReLU,
a 3 × 3 standard convolution with reshape or fully connected layer to
respectively learn its weight matrix and bias vector from global seman-
tic features (except AFC layer 5). The weight and bias of AFC layer 5
are learned by an average pooling layer and fully connected layers

prediction (AQP) module, which is constructed by five
adaptive fully-connected layers, and a merging layer for
distortion-type probability and image quality regressor, as
illustrated in Fig. 1.

To adapt to various image contents, we propose an adap-
tive fully connected (AFC) layer (Fig. 3), with weight and
bias hyperparameters learned from the global semantic fea-
tures of theMSFEmodule. EachAFC layer utilizes two 1×1
standard convolutions with ReLU, a 3 × 3 standard convo-
lution with reshape or fully connected layer to respectively
learn its weight matrix and bias vector from global seman-
tic features (except AFC layer 5). The weight and bias of
AFC layer 5 are learned by an average pooling layer and
fully connected layers. The output channels of the convolu-
tion and fully connected layers used for AFC are determined
according to the dimensions of corresponding layers for size
matching. With five AFC layers followed by a sigmoid acti-
vation, AQP module produces a scoring vector si .

In the fusion layer, with the predicted distortion-type
probability vector pi and scoring vector si as input, the
overall perceptual quality score qi for xi is predicted using
probability-weighted summation [62]:

qi = p�
i si =

C∑

i=1

pi · si . (7)

4 Experiments

4.1 Experimental settings

4.1.1 Datasets

As summarized in Table 1, we used three realistically dis-
torted image datasets, including LIVE Challenge (LIVEC)
[63], KonIQ [64], and BID [65] for evaluation. LIVEC
contains 1162 real-world images taken by different photog-
raphers with various cameras. covering complex distortions.
KonIQ consists of 10073 images selected from the large pub-
lic multimedia dataset YFCC100m [66], covering a wide
range of quality in terms of brightness, colorfulness, con-
trast, and sharpness. BID contains 586 images with realistic
blur distortions such as motion and out-of-focus blur.

Table 1 Summary of IQA datasets

Dataset Distorted Img. No. Distortion Types No. Source

LIVE 799 5 Synthetic

CSIQ 866 6 Synthetic

BID 590 1 Authentic

LIVEC 1162 − Authentic

KonIQ 10073 − Authentic
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Apart from authentic image datasets, we also tested our
model on synthetic image datasets LIVE [67] and CSIQ
[68], which respectively contain 779 and 866 synthetically
distorted images, as summarized in Table 1. Among them,
LIVE has five different distortion types, i.e., JPEG-2000
Compression (JP2K), JPEG Compression (JPEG), White
noise (WN), Gaussian blurring (GB), Fast Fading Rayleigh
(FF) and CSIQ has six different distortion types, i.e., JPEG-
2000 Compression (JP2K), JPEG Compression (JPEG),
additive white Gaussian noise (AWGN), Gaussian blurring
(GB), global contrast decrements (CC), additive pink Gaus-
sian noise (FN). For each dataset, we randomly split them
into a training set and a test set according to the ratio of 8 :
2.

4.1.2 Compared methods

Todemonstrate the effectiveness ofMETER, ten state-of-the-
art NR-IQA methods from three categories were employed
for comparison:

• Handcrafted featuremethods, i.e., integrated local natural
image quality evaluator (ILNIQE) [33], and high order
statistics aggregation (HOSA) [34];

• Deep learning synthetic IQA methods, i.e., blind image
evaluator based on a convolutional neural network
(BIECON) [35], and weighted average deep image qual-
ity measure (WaDIQaM) [69];

• CNN-based authentic IQA methods, i.e., semantic fea-
ture aggregation (SFA) [28], probabilistic quality repre-
sentation (PQR) [38], deep bilinear convolutional neural
network (DBCNN) [27], hyper-network IQA (Hyper-
IQA) [2], distortion graph representation learning for
IQA (GraphIQA) [3].

• Transformer-based authentic IQA methods, i.e., trans-
formers, relative ranking, and self consistency (TReS)
[30], swin transformer IQA (SwinIQA) [44], and multi-
dimension attention network image quality assessment
(MANIQA) [31]. MANIQA was ranked first in the final
private test phase in the NTIRE 2022 Perceptual IQA
Challenge Track 2: No-reference.

To verify the effectiveness of the LDA, DTI and AQP
blocks in METER, we compared with 5 ablated versions of
METER:

• EVT+DTI: The global features are extracted using EVT,
and then the distortion types are identified by DTI;

• EVT+LDA+DTI: LDA block added to EVT+DTI to
extract multi-scale features;

• EVT+AQP: The global features are extracted by EVT,
and then combinedwith AQP to dynamically learn image
content features and perform quality prediction;

• EVT+LDA+AQP: LDA block added to EVT+AQP for
multi-scale feature extraction;

• EVT+LDA+QP+DTI: QP added to EVT+LDA+DTI
to perform quality prediction, and the QP module is
composed with general FC layers without adaptive pre-
diction capability.

Note that METER is a EVT+LDA+AQP+DTI network.
The ablated networks were trained in a fashion similar to the
METER.

4.1.3 Evaluation metrics

We adopted two commonly used metrics [70], i.e., Spear-
man’s rank order correlation coefficient (SROCC) and Pear-
son’s linear correlation coefficient (PLCC), to measure the
monotonicity and accuracy of IQA results. Both of them
range between 0 and 1, and a higher value indicates better
performance. Before calculating PLCC, logistic regression is
first applied to remove nonlinear effects on the rating caused
by human visual observation, as suggested in the report from
the Video Quality Expert Group (VQEG) [70]. These met-
rics are to measure the correlation between a set of estimated
visual quality scores Qest and a set of human subjective
quality scores Qsub:

SROCC (Qest, Qsub) = 1 − 6
∑

d2i
N

(
N 2 − 1

) , (8)

PLCC (Qest, Qsub) = cov (Qsub, Qest )

σ (Qsub)
, σ (Qest) (9)

where N is the number of images in the evaluation dataset,
di is the rank difference of i-th evaluation sample in Qest

and Qsub, cov(·) represents the covariance between Qest

and Qsub, σ(·) represents the standard deviation. In addi-
tion, to evaluate the accuracy of DTI in classifying distortion
types, we introduce a distortion classification evaluation
index (ACC), which is expressed as

ACC = Ncorrect

Ntotal
× 100%, (10)

where Ncorrect is the number of correct prediction distor-
tion types, Ntotal is the total number of predicted distortion
types. All the results are tested on datasets with 10 random
splittings, and the average results (SROCC and PLCC val-
ues) are reported. Furthermore, we introduce three efficiency
evaluation metrics, namely Parameters (Params), Floating-
point Operations (FLOPs), and Frames Per Second (FPS),
to assess the efficiency performance of different methods.
Lower Params and FLOPs are preferred, indicating reduced
computational andmemory requirements,while a higher FPS
is favored, reflecting better real-time performance.
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4.1.4 Implementation details

METER was implemented using Pytorch [71]. Training and
testing of METER were based on a machine with a CPU
(Intel Xeon Silver 4210) and three GPUs (NVIDIA RTX
A6000 48GB). Following the training strategy from [2], we
randomly sample and horizontally flip 25 patches with size
224×224 pixels from each training image for augmentation.
The training patches inherit quality scores from the source
image. We minimize the multi-task loss over the training set:

L (pi , qi ) = 1

N

∑

i

[
λq Lq

(
qi , q

∗
i

) + λpL p
(
pi , p

∗
i

)]
,

(11)

where the distortion-type classification loss L p and quality
regression loss Lq are cross entropy loss and smooth L1
loss respectively, i is the index in a mini-batch and pi is
the predicted probability of distortion type, qi is the pre-
dicted image quality score, and p∗

i and q∗
i are ground-truth

labels of distortion type and quality assessment respectively.
The hyperparameters λp and λq were set to balance the per-
formance of distortion type classification and image quality
regression. For training models on authentic image datasets,
we set λp = 0 due to the lack of annotations of distortion
types.

We usedAdam [72] optimizer with weight decay 5×10−4

to train our model for 15 epochs, with mini-batch size of 384.
Learning rate was first set to 1 × 10−3 for the DTI module,
2 × 10−5 for the other modules, and reduced by 10 after
every 5 epochs. For faster convergence, the pretrained model
on ImageNet [73] was used for MSFE, and the un-pretrained
layers of ourmodelwere initializedusingXavier [74].During
testing phase, 25 patches with 224 × 224 pixels from test-
ing image were randomly sampled and their corresponding
predictions were average-pooled to arrive at the final quality.

4.2 Comparison with the state-of-the-art methods

WecomparedMETERwith state-of-the-art (SOTA)NR-IQA
methods, including hand-craft feature based methods [33,
34], deep learning based synthetic IQA methods [35, 69]
and deep learning based authentic IQA methods [2, 3, 27,
28, 30, 31, 38]. All experiments were conducted 10 times to
avoid bias.

4.2.1 Performance comparison

Table 2 shows the evaluation results in terms of SROCC
and PLCC of the testing underwater images, using different
UIE methods, i.e., BRISQUE, ILNIEQE, HOSA, BIECON,
WaDIQaM, SFA, PQR, DBCNN, HyperIQA, GraphIQA,

TReS,MANIQA,METERwithoutAFCandMETER,where
bold entries in black and blue are the best and second-best in
terms of performance, respectively. From Table 2, METER
outperforms all the SOTA methods for both SROCC and
PLCC on all authentic image datasets except KonIQ, on
which it achieves second-best performance of PLCC eval-
uations. This suggests that learning image multi-scale and
long-range features first assists in perceiving image quality,
when image data covers a wide range of variety. Although
there is no modules for synthetic image feature extraction,
our method still achieves competing or superior performance
to the SOTA methods on two synthetic image datasets LIVE
and CSIQ. Compared with the SOTAmethods, METERwith
normal FC instead of AFC (denoted as Ours (w/o AFC) in
Table 2) can still perform comparably on most datasets.

We further conducted performance comparison of differ-
ent methods on individual distortion types. Since the distor-
tion types of images are unavailable in authentic datasets,
we evaluated the performance on synthetic image datasets,
i.e., LIVE and CSIQ, as summarized in Table 3. Likewise,
bold entries in black and blue are the best and second-best
performances, respectively. Compared with other methods
that introduce specific modules to handle synthetic IQA task,
such as ILNIQE [33], HOSA [34], BIECON [35],WaDIQaM
[69], PQR [38],DBCNN[27],METERoutperforms the other
compared methods on all distortion types except JPEG type
in LIVE and GB type in CSIQ, but the performance differ-
ence is quite slight. This demonstrates that METER is not
sensitive to the effects of individual distortions.

4.2.2 Generalizability comparison

To verify the generalizability of METER, we conducted
cross-dataset performance comparisons on intra either authen-
tic or synthetic datasets. We selected the most competing
three methods in above experiments, i.e., DBCNN, Hyper-
IQA and TReS for comparison, and the quantitative results
are summarized in Table 4, where bold entries in black are
the best in terms of performance. From the testings across six
authentic datasets (i.e., LIVEC-BID, LIVEC-KonIQ, BID-
LIVEC, BID-KonIQ, KonIQ-LIVEC and KonIQ-BID) in
Table 4, our method METER achieves four times of the top
performance of compared methods. For the testings across
synthetic datasets, i.e., LIVE-CSIQ and CSIQ-LIVE, our
method METER still performs competitively to other algo-
rithms, indicating the strong generalizability of METER.

4.2.3 Efficiency comparison

To verify the efficiency of METER, we performed a effi-
ciency comparison of different methods on images with the
same resolution. In order to ensure the fairness, we selected
three recently transformer-based IQA methods, i.e., TReS
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Table 2 Performance comparison on different public datasets

SROCC PLCC
Method LIVEC BID KonIQ LIVE CSIQ LIVEC BID KonIQ LIVE CSIQ

ILNIQE [33] 0.432 0.516 0.507 0.902 0.806 0.508 0.554 0.523 0.865 0.808

HOSA [34] 0.640 0.721 0.671 0.946 0.741 0.678 0.736 0.694 0.947 0.823

BIECON [35] 0.595 0.539 0.618 0.961 0.815 0.613 0.576 0.651 0.962 0.823

WaDIQaM [69] 0.671 0.725 0.797 0.954 0.955 0.68 0.742 0.805 0.963 0.973

SFA [28] 0.812 0.826 0.856 0.883 0.796 0.833 0.840 0.872 0.895 0.818

PQR [38] 0.857 0.775 0.880 0.965 0.873 0.882 0.794 0.884 0.971 0.901

DBCNN [27] 0.851 0.845 0.875 0.968 0.946 0.869 0.859 0.884 0.971 0.959

HyperIQA [2] 0.859 0.869 0.906 0.962 0.923 0.882 0.878 0.917 0.966 0.942

GraphIQA [3] 0.863 0.837 0.907 0.976 0.943 0.886 0.844 0.922 0.976 0.956

TReS [30] 0.851 0.858 0.915 0.968 0.922 0.871 0.868 0.928 0.968 0.942

MANIQA [31] 0.885 0.896 0.923 0.982 0.968 0.916 0.897 0.942 0.983 0.961

METER (w/o AFC) 0.849 0.864 0.912 0.965 0.966 0.890 0.882 0.925 0.967 0.968

METER 0.896 0.899 0.929 0.977 0.982 0.923 0.912 0.937 0.978 0.982

[30], SwinIQA [44], and MANIQA [31] for comparison,
and the quantitative results are summarized in Table 5. In
the efficiency comparison experiment, all models are evalu-
ated on 224×224 resolution, FPS (images/s) is measured
on a single RTX A6000 GPU. From Table 5, METER out-
performs all the comparisonmethods for Params, FLOPs and
FPS, achieves the best performance of efficiency evaluations.
This suggests that METER has good efficiency while main-
taining accuracy, which is valuable for real-world scenario
applications.

4.3 Interpretation and visualization

In order to validate the effectiveness of METER more intu-
itively, we interpret and visualize the MSFE features and

AFC weights to further explain the role of the different mod-
ules in the METER.

4.3.1 Interpretation of MSFE features

We randomly sampled 10 images from the KonIQ [64], and
use group score-weightedClassActivationMapping (Group-
CAM) [75] to visualize the attentions at the last stage of
the MSFE using heatmaps, as shown in Fig. 4. It can be
observed from Fig. 4 that the proposedMSFE can adaptively
produce attentionmaps according to the image contents. This
demonstrates that METER understands the image content
(e.g., objects in a scene) before recognizing global image
information, which is more consistent with the perceptual
order by which the HVS evaluates image quality.

Table 3 SROCC comparisons of various distortion types on the LIVE and CSIQ datasets

Dataset LIVE CSIQ
Type JP2K JPEG WN GB FF JP2K JPEG AWGN GB CC FN

ILNIQE [33] 0.894 0.941 0.981 0.915 0.833 0.906 0.899 0.850 0.858 0.501 0.874

HOSA [34] 0.935 0.954 0.975 0.954 0.954 0.818 0.733 0.604 0.841 0.716 0.500

BIECON [35] 0.952 0.974 0.980 0.956 0.923 0.954 0.942 0.902 0.946 0.523 0.884

WaDIQaM [69] 0.942 0.953 0.982 0.938 0.923 0.947 0.853 0.974 0.979 0.923 0.882

PQR [38] 0.953 0.965 0.981 0.944 0.921 0.955 0.934 0.915 0.921 0.837 0.926

DBCNN [27] 0.955 0.972 0.980 0.935 0.930 0.953 0.940 0.948 0.947 0.870 0.940

HyperIQA [2] 0.949 0.961 0.982 0.926 0.936 0.960 0.934 0.927 0.915 0.874 0.931

GraphIQA [3] 0.965 0.966 0.984 0.930 0.954 0.939 0.921 0.939 0.947 0.927 0.919

TReS [30] 0.962 0.904 0.923 0.937 0.960 0.948 0.931 0.940 0.942 0.832 0.937

MANIQA [31] 0.967 0.979 0.983 0.986 0.956 0.953 0.958 0.941 0.959 0.928 0.985

METER 0.978 0.972 0.997 0.989 0.990 0.980 0.985 0.985 0.978 0.945 0.987
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Table 4 Generalizability comparison of cross-dataset testing on
SROCC

Training Testing DBCNN HyperIQA TReS METER

LIVEC BID 0.762 0.756 0.713 0.858

KonIQ 0.754 0.772 0.734 0.787

BID LIVEC 0.725 0.770 0.779 0.748

KonIQ 0.724 0.688 0.671 0.687

KonIQ LIVEC 0.755 0.785 0.786 0.798

BID 0.816 0.819 0.825 0.833

LIVE CSIQ 0.758 0.744 0.761 0.769

CSIQ LIVE 0.877 0.926 0.884 0.901

4.3.2 Visualization of AFC hyperparameters

To verify the effectiveness of the weight generation process
in AFCs, we extracted the weights and biases of the first AFC
in AQPmodule for several image pairs that are with the same
background and object type but different object appearances,
e.g., shapes and dressings, and then used PCA transforma-
tion [76] to plot them in 3D space for visualization in Fig. 5.
FromFig. 5, it is observed that each image can be located by a
weight and a bias, and weights and biases differ with image
pairs. Also, image pairs generate near spatial distances in
a horizontal plane, which indicate similar adaptive weights
of AFCs, and the spatial distances of weights for different
pair of images are obvious to distinguish. Besides, the cor-
responding biases are also distinguished from each other for
image pairs, such as the planes, animals, plants and athletes in
Fig. 5. The analysis above shows that METER understands
high-level image content features and avoid image quality
errors due to changes of image contents.

4.3.3 Visualization result of each dataset

We performed quality prediction for all images in the five
datasets and visualized the best and worst results in each
dataset, as shown in Fig. 6. The best quality prediction results
have clearer content features, and even though the images in
LIVE and CSIQ are affected by JPEG and FN distortions,

Table 5 Efficiency comparisons with different transformer-based IQA
methods

Method Resolution Params ↓ FLOPs ↓ FPS ↑
TReS [30] 224 × 224 152.45M 16.8G 50.44

SwinIQA [44] 224 × 224 30.81M 51.35G 40.72

MANIQA [31] 224 × 224 127.74M 108.61G 55.44

METER 224 × 224 14.18M 2.06G 73.05

METER can still discriminate the distortion amount based on
the DTI module to ensure the accuracy of quality prediction.
As for theworst results, the content information of the images
is not clear. Specifically, the image in LIVE suffers from
chromatic aberration and deformation due to FF distortion,
which affects the semantic feature extraction of METER.
In addition, the images of CSIQ and LIVEC are so blurred
that they cannot effectively adjust the quality scores based
on the content information, and the image features of BID
and KonIQ are dominated by irregular landscapes, which
sometimes causes the quality prediction logic of METER to
be inconsistentwithHVS, and thus results in predicted scores
that differ significantly from the labels.

4.4 Ablation study

Toverify the effectiveness of LDA,DTI andAQP inMETER,
we conduct several ablation experiments on the LIVEC,
LIVE and CSIQ datasets. We first use a pretrained MSFE
on Imagenet [73] as our backbone model and analyze the
effect of each individual component by comparing SROCCs,
PLCCs and ACCs. The results are shown in Table 6, where
bold entries in black are the best in terms of performance.

Effectiveness of LDA module: Compared with EVT+DTI
and EVT+LDA+DTI, the LDA block improves the ACC
of distortion-type classification on the LIVE and CSIQ
datasets by over 1.2%and1.4%, respectively. Comparedwith
EVT+AQP and EVT+LDA+AQP, the LDA block improves
the SROCC and PLCC of IQA on the LIVEC, LIVE
and CSIQ datasets by over 1.2%, 2.1%, 1.0% and 1.2%,
1.1%, 0.7%, respectively. This indicates that the multi-scale
features extracted by LDAmodules facilitate both distortion-
type classification and IQA of authentic images.

Effectiveness of DTI module: Compared with EVT+LDA
+AQP and EVT+LDA+AQP+DTI (i.e., the proposedmethod),
we can see that the DTI module makes SROCC and PLCC
further improved to the highest value of 0.977, 0.978 on the
LIVE dataset and 0.982, 0.982 on the CSIQ dataset, respec-
tively. This demonstrates that the classification of distorted
types by the DTI module can contribute to improvement of
IQA accuracy.

Effectiveness of AQPmodule:Comparedwith EVT+LDA
+QP+DTI and EVT+LDA+AQP+DTI, we can see from the
comparison that AQP has a significant improvement for IQA
results, which verifies the effectiveness of theAQPmodule in
adaptively encoding multi-scale features for quality regres-
sion of authentic images with various contents.

5 Discussion

In this section, we first summarize the main differences
between our proposed METER method and previous studies
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Fig. 4 MSFE semantic features
interpretation on KonIQ dataset HeatmapInput HeatmapInput

Fig. 5 AQP weights 3D space
map after PCA transformation

Weight

Weight

Bias
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Predict:   55.6976 
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Predict:   50.3099 

GT label: 50.2941

Predict:    54.9416 
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Predict:    0.5984; FN 

GT label: 0.5985; FN

Predict:    0.1112; GB

GT label: 0.3505; GB

CSIQ

Fig. 6 Best and worst IQA results for each dataset

onNR-IQA.We also point out the limitations of our proposed
method as well as potential solutions to deal with these lim-
itations in the future.

5.1 Comparison with previous work

Compared with the conventional NR-IQA methods [10, 14–
16, 22, 77–82] and learning-based NR-IQAmethods [23–26,
30, 31, 83], METER adopts an end-to-end multi-task effi-
cient transformer for NR-IQA, predicting the distortion type
and the quality score simultaneously. Specifically, METER
integrates automatic feature extraction, distortion classifica-
tion and quality prediction into a unified framework, enabling
these interdependent tasks to bemore effectively coordinated
in a task-specific manner. In addition, METER produces
multi-scale attention features according to image contents
and fuse distortion classification information for adaptive
quality prediction, which is more consistent with the per-
ceptual process by which the HVS evaluates image quality.

Table 7 shows the quantitative comparison results of var-
ious state-of-the-art methods, which can be divided into two

categories according to the adopted framework. METER, as
a unified end-to-end optimized framework, has the advan-
tage of incorporating both feature extraction and quality
regression, making it stand out from conventional two-stage
NR-IQA methods [84–87]. Unlike other NR-IQA methods
that are based on a multi-task framework, such as IQA-
CNN++ [37], MEON [1], DBCNN [27], GraphIQA [3],
METERutilizes transformers to extractmulti-scale and long-
range features that cooperatively increase global and local
interactions between different regions of the image, which is
essential for IQA. Furthermore,METER can further improve
IQA accuracy by adapting to image contents through the
adjustment of weights in its fully connected layers. Although
several methods, such as RankIQA [89], HyperIQA [2], and
MANIQA [31], extract multi-scale features in the backbone
network, none of them take the effect of image distortion
types on IQA into account. Additionally, although Hyper-
IQA [2] uses the similar adaptive fully-connected layer, it
does not consider the effects of distortion types and long-
range features on IQA. While transformer-based methods
[30, 31, 43, 90] have been demonstrated to be effective for

Table 6 Ablation results on authentic and synthetic datasets

Components LIVE Challenge LIVE CSIQ
SROCC PLCC SROCC PLCC ACC(%) SROCC PLCC ACC(%)

EVT+DTI – – – – 97.78 – – 97.62

EVT+LDA+DTI – – – – 98.94 – – 98.98

EVT+AQP 0.885 0.912 0.956 0.964 – 0.962 0.969 –

EVT+LDA+AQP 0.896 0.923 0.976 0.975 – 0.972 0.976 –

EVT+LDA+QP+DTI – – 0.965 0.967 98.02 0.966 0.968 97.81

EVT+LDA+AQP+DTI – – 0.977 0.978 98.06 0.982 0.982 97.85
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learning long-range dependencies, METER’s methodology
is more comprehensive and relevant to the perceptual pro-
cess of HVS, as evidenced by the comparison presented in
Table 7.

5.2 Limitations and future work

Although METER achieves remarkable performance in
authentic NR-IQA, its performance and generalizability
could be further improved in the future by carefully deal-
ing with the following limitations or challenges.

Currently, METER is designed based on transformers,
which lack some of the inductive biases inherent to CNNs,
such as translation equivariance and locality, thus yield-
ing low generalizability with insufficient training data. To
make full use of training data, some strong data augmenta-
tion and regularization techniques can be incorporated into
METER to improve its generalizability. Furthermore, cur-
rently the identification of distortion type is used for synthetic
images, ignoring the fact that the distortion type annota-
tions of authentic images are always unavailable. To facilitate
the quality regression of authentic images, an automatic and
anti-label-noise labeling model can be incorporated into our
framework to identify the distortion type as additional input
to AQP module.

6 Conclusion

In this paper, we introduce an end-to-end multi-task effi-
cient transformer (METER) to handle two challenging tasks
of distortion type identification and NR-IQA. Our method
METER employs a semantic feature extraction module to
capture global and local features at multiple scales, incorpo-
rates distortion type identification into IQA via a multi-task
learning framework, and uses an adaptive fully connected
layer to construct an adaptive quality prediction module with
distortion-type probabilities for accurate IQA of authentic
images. Furthermore, METER can cope with IQA of authen-
tic imageswith various contents andmultiple distortion types
effectively, affording accurate distortion type identification,
and adaptive attention to various objects. Extensive experi-
ments on benchmark datasets have shown that METER has
remarkable performance and great generalizability, achieves
higher efficiency than existing transformer-based methods,
which is valuable for real-world scenario applications.
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