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Abstract
Bayesian network classifier (BNC) allows efficient and effective inference under condition of uncertainty for classification,
and it depicts the interdependencies among random variables using directed acyclic graph (DAG). However, learning an
optimal BNC is NP-hard, and complicated DAGs may lead to biased estimates of multivariate probability distributions and
subsequent degradation in classification performance. In this study, we suggest using the entropy function as the scoring
metric, and then apply greedy search strategy to improve the fitness of learned DAG to training data at each iteration. The
proposed algorithm, called One+Bayesian Classifier (O+BC), can represent high-dependence relationships in its robust DAG
with a limited number of directed edges. We compare the performance of O+BC with other six state-of-the-art single and
ensemble BNCs. The experimental results reveal that O+BC demonstrates competitive or superior performance in terms of
zero-one loss, bias-variance decomposition, Friedman and Nemenyi tests.

Keywords Bayesian network classifier · Multivariate probability distributions · Directed acyclic graph · Classification

1 Introduction

The study on data mining has long been an active research
domain in artificial intelligence and machine learning due to
its theoretical and practical significance. By analyzing data
and performing inductive reasoning on the basis of data min-
ing, researchers expect to extract valuable knowledge and
information from data intelligently and automatically [1–7].
Among numerous data mining algorithms, the Bayesian net-
works (BNs) [8, 9] designed for inference or the Bayesian
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network classifiers (BNCs) [10–12] for classification encode
the probability distribution over a set of random variables
using directed acyclic graph (DAG). The DAG qualita-
tively describes the dependencies (or independencies) among
random variables in the form of directed edges (or inde-
pendent nodes), and then it quantitatively factorizes the
joint probability into the product of a set of conditional
probabilities.

However, how to learn a BNC that can fit data well is NP-
hard [13–15], and the study of restricted BNC has attracted
great attention especially after Naive Bayes (NB) [16, 17]
is ranked as one of the top ten data mining algorithms.
Restricted BNC takes the topology of NB as the skeleton,
and an effective and feasible approach to structure learning is
adding augmented edges to relax the attribute independence
assumption of NB. The newly added directed edges should
help make the multivariate probability distribution encoded
in the local topology approximate the true one. However,
each edge in the DAG, e.g., Xi → X j , is commonly mea-
sured by conditional mutual information (CMI) I (Xi ; X j |Y )

[18]. Thus CMI measures the significance of one single edge
rather than the fitness of the learned topology to data.

High-dependence topology can help the learned BNC
model complex multivariate probability distributions. To
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achieve excellent generalization and classification perfor-
mance, the learned DAG should be robust and simple, and
can represent high-dependence relationships with a lim-
ited number of directed edges. Some researchers proposed
to use I (Xi ; X j |Y ) to measure high-dependence relation-
ships by implicitly assuming that the parent attributes impact
on the children attribute independently rather than jointly
[19]. Thus the learned topology is suboptimal and some-
times high-dependence BNC even performs poorer than
one-dependence BNC.

Given the topology B learned from training data D, the
optimal value of joint probability should correspond to the
maximumvalue of the log likelihood (LL) function LL(B|D)

or the minimum value of the entropy function H(X ,Y |B,D)

[17], where X and Y respectively denote the predictive
attribute set and class variable. Since entropy is commonly
applied to measure the disorder or randomness, if it is intro-
duced as the scoring function for measuring the uncertainty
of the learned topology, then directed edges will have causal
semantics and the topology robustness will be retained when
1-dependence topology is scaled up to represent high-order
dependencies. The variation in training data or noise will not
make the classification performance of the learned robust
BNC vary greatly. The main contributions of this paper are
described as follows,

– We use entropy based scoring criteria to measure the
fitness of learned topology to training data, and then a
novel greedy search strategy is introduced to learn high-
dependencemaximumweighted spanning tree fromdata.
During the learning procedure, the newly added aug-
mented edge should help improve the topology robust-
ness at each iteration. The operations applied include
edge addition and edge reversal. The learned n − 1
directed edges in the topology of B can represent from
1-dependence to arbitrary k-dependence relationships.

– The experimental study proves the effectiveness of the
proposed entropy function on measuring dependencies
and the feasibility of the application of greedy search
strategy on labeled data. The proposed O+BC demon-
strates competitive or superior classification performance
in terms of zero-one loss, bias, variance, Friedman and
Nemenyi test, and it can handle different domains with
distinctive properties.

The rest of the paper is structured as follows. Section 2
reviews relevant theoretical background and research work.
Section 3 outlines the basic idea and details of the proposed
O+BC. Section 4 shows the experimental results of O+BC
and its comparison with six state-of-the-art BNCs. Finally,
Section 5 concludes the paper.

2 Background theory and related
research work

2.1 Directed acyclic graph

A succinct summary of the symbols used in this paper are
listed in Table 1.

The topology of BN graphically represents the dependen-
cies in the form of DAG, which encodes the probability
distributions learned from data. Given a finite set X =
{X1, . . . , Xn} of discrete random variables, a BN for X con-
tains two components, i.e., G and �. G is the learned DAG
with vertices corresponding to the random variables and
edges representing direct dependencies between the vari-
ables. � represents the set of probability distributions that
quantifies the DAG. A BN B defines the joint probability
distribution as follows,

P(x1, . . . , xn|B) =
n∏

i=1

P(xi |�i ) (1)

For restricted BNC, the class variable Y is considered
as the root node of DAG or the common parent of all the
variables in X. The main objective of BNC learning [20] is

Table 1 Summary of the symbols used in this paper

Symbols Description

G the directed acyclic graph

B the Bayesian network

D the training dataset

� the set of probability
distributions

Xi the predictive attribute

xi the value of Xi

Y the class variable

y the value of Y

X = {X1, . . . , Xn} the set of attributes

x =< x1, · · · , xn > the unlabeled testing
instance

�i the parents of node Xi in G
πi the value of �i

y∗ the predicted class label

N the number of training
instances

m the number of class labels

n the number of attributes

v the maximum number of
discrete values per
attribute

k the maximum number of
parents per attribute
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to build DAG for representing the dependency relationships
among these variables, and then compute the posterior prob-
ability of the class given any configuration of the attributes,
P(y|x).

2.2 Semi-naive Baysian classifiers

NB [21] is the simplest BNC without any directed edges
between predictive attributes in its fixed topology. The high-
confidence estimates of the 1-order conditional probability
P(y|xi ) for each attribute help NB exhibit surprisingly com-
petitive classification accuracy, and it performs significantly
better than other more sophisticated BNCs on numerous
datasets especially when there exists no correlation between
attributes [11, 17, 22–24]. Semi-naive Baysian classifiers
(SNBs) [25] take the network topology of NB as the skeleton
and then relax the independence assumption by adding aug-
mented edges. The SNBs can be grouped according to the
maximum number of parent attributes.

Friedman et al. [17] proposed to fully mine one-
dependence relationships from data and the resulting algo-
rithm is the Tree-augmented naive Bayesian network (TAN)
(see Fig.1(a)). Each attribute in the framework of maximum
weighted spanning tree (MWST) can have no more than one
parent attribute and all attributes are required to point outward
from the randomly selected root attribute. This alleviates
NB’s independence assumption to some extent and reduces
the search space at the expense of the reasonability of direc-
tionality. Considering the random selection of root attribute,
Jiang et al. [26] suggested to learn an ensemble rather an
individual TAN by taking each attribute as the potential root
attribute in turn. Based on statistical n-gram language mod-
eling, Feng et al. [27] proposed to employ Markov chain to
model adjacent attribute dependencies.

Sahami [28] further extended NB to represent arbitrary
k-dependence relationships. The resulting algorithm called
k-dependence Bayesian classifier or KDB for simplicity (see

Fig.1(b)) allows every attribute to be conditioned to at most
k parent attributes. Sahami argued that a BNC would be
expected to obtain optimal Bayesian accuracy given enough
data and large k. KDB also disregards the identification
of directionality. KDB compares mutual information (MI)
I (Xi ; Y ) [29] to sort the attributes in descending order, and
only when i < j holds the directed edge Xi → X j possi-
bly exists. To achieve the necessary efficiency and remove
memory size as a bottleneck, Ana et al. [19] proposed to
apply leave-one-out cross validation (LOOCV) to select
attribute subset and appropriate parameter k. Then semi-
supervised KDB (SSKDB) algorithm [30] applied heuristic
search strategy to learn BNCs that can work jointly in the
framework of semi-supervised learning. Jiang et al. [31] pro-
posed to use MI as the weighting metric to assign weights
to SPODE members in AODE. Duan et al. [32] consid-
ered the difference between SPODE members in AODE,
and the weighting metric may vary greatly from instance to
instance.

2.3 The scoringmetrics and directionality
identification

Information-theoretic metrics, e.g., AIC, BIC, MDL and
MML [33–37], can measure the degree of fitness of a DAG
to training data with distinct characteristics, thus the learned
simple and robust topology may achieve excellent general-
ization and classification performance. From the perspective
of information theory, the learned topology aims tominimize
the conditional entropy of each variable given its parents and
then greedy search strategy provides a feasible approach to
find the parents that can give asmuch information as possible
about this variable [38].

The MDL scoring function MDL(B|D) is asymptotically
correct as the size of training data increases since the learned
probability distribution may approximate the true one [39],
and it represents the combined length of the network descrip-

Fig. 1 Examples of (a) TAN (b)
KDB with k = 2
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tion as follows [17],

MDL(B|D) = log N

2
|B| − LL(B|D), (2)

where |B| denotes the number of parameters for B. Thus the
first term can be considered as a constant given B. Given
the joint probability distribution PB over the N instances
{d1, · · · , dN } appearing in the training data D, the second
term in (2), i.e., LL(B|D), is commonly applied to measured
the quality ofB and can be factorized into the following form,

LL(B|D) =
N∑

i=1

log P(di |B) =
∑

X,Y

P(x, y) log PB(x, y)

=
∑

Y

P(y) log P(y) +
∑

X,Y

P(x, y) log PB(x|y)

(3)

Maximizing the log likelihood function LL(B|D) is equiv-
alent to minimizing the entropy functionH(X ,Y |B,D) [17],
and (3) turns to be

H(X ,Y |B,D) = −LL(B|D) = H(Y ) + H(X|Y )

= H(Y ) +
n∑

i=1

H(Xi |�i ,Y ) (4)

where

⎧
⎪⎨

⎪⎩

H(Y ) = −∑
Y

P(y) log P(y)

H(Xi |�i ,Y ) = −∑
Xi

∑
�i

∑
Y

P(xi , πi , y) log(xi |πi , y)

(5)

The entropy function corresponding to NB is

H(X ,Y |NB,D) = H(Y ) +
n∑

i=1

H(Xi |Y ) (6)

Researchers commonly apply greedy search strategy and add
augmented edges between attributes for the obvious com-
putational reasons. The learning procedure starts with the
topology of NB and successively applies local operations
to maximize the score until a local minima is reached. The
difference between (4) and (6), i.e.,

∑n
i=1 I (Xi ;�i |Y ) =

H(X ,Y |NB,D) − H(X ,Y |B,D), measures the quality of
the conditional dependencies between attributes mined from
data. Due to the symmetry form of CMI, we need to make
rule to sort the attributes explicitly or implicitly, and then
determine the directionality of the edge Xi − X j or which
one is the parent for attribute pair {Xi , X j }.

3 Learning robust Bayesian network
classifier with simple topology

For restricted BNCs, as shown in Fig. 2 conditional indepen-
denceBind and conditional dependenceBde are the two basic
local topologies. The CMI is commonly used to measure
the significance of conditional dependence between attribute
pair, and it can be factorized in the form of entropy functions
as follows [40],

I (Xi ; X j |Y ) =
∑

Xi

∑

X j

∑

Y

P(y, xi , x j ) log
P(y, xi , x j |Bde)

P(y, xi , x j |Bind )

=
∑

Xi

∑

X j

∑

Y

P(y, xi , x j ) log P(y, xi , x j |Bde)

Fig. 2 Two basic topologies
depicting a) the conditional
independence and b) the
conditional dependence
respectively
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Fig. 3 Two local topologies
with directed edges a) pointing
to Xi or b) pointing from Xi

−
∑

Xi

∑

X j

∑

Y

P(y, xi , x j ) log P(y, xi , x j |Bind )

= H(Bind ) − H(Bde) (7)

where

{
P(y, xi , x j |Bde) = P(xi , x j |y) = P(xi , x j |y)P(y)

P(y, xi , x j |Bind ) = P(xi |y)P(x j |y) = P(xi |y)P(x j |y)P(y)

(8)

Thus the underlying essence of I (Xi ; X j |Y ) is to evaluate
the extent towhichBde ismore reasonable thanBind ,whereas
I (Xi ; X j |Y ) cannot directlymeasure the extent to whichBde

fits data [41]. Furthermore, the aim to learn the topology
of BNC is to explore complex multivariate probability dis-
tributions from data. Although the 2-dependence topology
shown in Fig. 3(a) and the 1-dependence topology shown
Fig. 3(b) have the same skeleton, considering the impact of
attribute Xk , the significance of Xi → X j and X j → Xi may
vary greatly. Thus I (Xi ; X j |Y ) measures the significance of
one single edge whereas the entropy function H(X ,Y |B,D)

in (4) measures the fitness of the learned topology to data,
and the latter is considered more appropriate to be the scor-
ing function for measuring the robustness of the learned
topology.

3.1 The initial topology of O+BCwith two nodes

For high-dependence BNCs, the number of directed edges or
dependency relationships increases as the topology complex-
ity increases, and the learned high dimensional probability
distributions may fit data better especially while dealing with
large dataset. In contrast, TAN allows at most one parent

for every attribute node, and its 1-dependence topology can-
not represent high dimensional probability distributions, thus
TAN commonly demonstrates superior performance while
dealing with small or medium sized datasets [42]. To prove
the effectiveness of the scoring function in learning high-
dependence topology with a limited number of directed
edges, the proposed algorithmO+BCalso takesn−1directed
edges in the topology as TAN. We will clarify the basic idea
in detail in the following discussion.

O+BC initializes the network topology of B as an empty
topology, and then applies local search operations to add
attribute Xi and the edges connecting to it to the topology
at each iteration. During the learning procedure, the edges
connecting to Xi should help achieve local optimal solution,
or more precisely, the minimum value ofH(X ,Y |B,D). The
operations applied include edge addition and edge reversal.
Assuming that initially there are two attribute nodes {X1, X2}
and the class node Y in the topology, as shown in Fig. 4 the
directed edge between X1 and X2 may be either X1 → X2

or X2 → X1. The entropy functions corresponding to one-
dependence BNCs B12 and B21 are respectively

{
H(B12) = H(Y ) + H(X2|X1, Y ) + H(X1|Y ) = H(X2, X1, Y )

H(B21) = H(Y ) + H(X1|X2, Y ) + H(X2|Y ) = H(X2, X1, Y ).

(9)

Thus H(X1, X2,Y ) = H(B12) = H(B21) always holds,
and the topologies for B12 and B21 are both reasonable and
we can randomly select one of them as the candidate one-
dependence topology of O+BC. The corresponding pseudo
codes are shown as follows,

However, the number of bits encoded in the undirected
edge Xi − {X j , Xk} may be different from that encoded in
{Xi , X j }−Xk for high-dependenceBNC.Thuswhile dealing
with three or more attributes, it is difficult or even an NP-
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Fig. 4 Two kinds of initial
topologies with directed edge a)
X1 → X2 or b) X2 → X1

Algorithm 1 InitialModeling(D).
Input: Training set D with attributes X = {X1, ..., Xn} and

class variable Y .
Output: The DAG G with the attribute set X as nodes.

1 Let G = (V,E) be a directed graph in which V is a set of
vertices and E is a set of directed edges.

2 V = {Y }, E = Ø.
3 Calculate H(Xi , X j , Y ) for each pair of attributes in D(i �= j).
4 Select the attribute pair < Xi , X j > with the minimum value of

H(Xi , X j , Y ).
5 E = E ∪ {Y → Xi , Y → X j }, V = V ∪ {Xi , X j }, X =

X \ {Xi , X j }.
6 Randomly select Xi → X j or X j → Xi and add it to E.
7 return G.

hard problem to capture all appropriate correlations between
attributes [43] and simultaneously differentiate between the
parent attributes and the children attributes.

3.2 High-dependencemaximumweighted
spanning tree

To transform undirected tree to directed one, TAN requires
that the root node point outwards, and this rule helps simplify
the learning procedure whereas restricts the learning flexi-
bility. We argue that the resulting one-dependence topology
may be suboptimal since it fails to consider other possi-
ble transformations. The n − 1 directed edges can represent
from 1-dependence to arbitrary k-dependence relationships.
Since the structure learning complexity increases exponen-
tially with k, we set k = 2 in the following discussion and
experimental study.

The augmented edges pointing to or from the newly added
attribute should help minimize the entropy function at each
iteration. For example, if we need to add one more attribute

node, e.g., X3, to the initial one-dependence topology of
O+BC learned by Algorithm 1, then the attribute set in
the topology includes {X1, X2, X3}. The undirected edge
between X3 and {X1, X2}may be either X3−X1 or X3−X2,
and the resulting four directed topologies are shown in Fig. 5.
The corresponding entropy functions are respectively

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H(B23) = H(Y ) + H(X1|Y ) + H(X2|X1, Y ) + H(X3|X2, Y )

H(B32) = H(Y ) + H(X1|Y ) + H(X2|X1, X3, Y ) + H(X3|Y )

H(B13) = H(Y ) + H(X1|Y ) + H(X2|X1, Y ) + H(X3|X1, Y )

H(B31) = H(Y ) + H(X1|X3, Y ) + H(X2|X1, Y ) + H(X3|Y ).

(10)

The topologies for B23, B13 and B31 are one-dependence,
and only the topology for B32 is two-dependence since
X2 has two parent attributes {X1, X3}. Due to the restric-
tion in structure complexity, k-dependence BNC can select
for each attribute no more than k parents attributes. Sup-
pose that H(X1, X2, X3,Y |B32)< H(X1, X2, X3,Y |B23)<

H(X1, X2, X3,Y |B13) = H(X1, X2, X3,Y |B31) holds,
then the topology for B32 is the optimal one among all,
whereas the topology for B23 is the optimal one among
one-dependence topologies. The description above gives
an example to illustrate the learning procedure after X3 is
selected as the next attribute. In practice, each attribute other
than {X1, X2} in the attribute list will be tested to check if it is
the right one to be added. So we need to test the directed edge
connecting to the candidate attribute, and finally select the
augmented topology which is the most helpful for improving
H(X ,Y |B,D). Thus we apply a greedy search to iteratively
add the attributes and corresponding directed edges to the
topology. The algorithm terminates until all the attributes are
included in the topology of B. The learning procedure of
adding a new directed edge can be summarized as shown in
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Fig. 5 Four types of directed
topologies with three attribute
nodes, including a) the topology
with directed edge X2 → X3, b)
the topology with directed edge
X3 → X2, c) the topology with
directed edge X1 → X3 and d)
the topology with directed edge
X3 → X1

Algorithm 2. The O+BC algorithm is illustrated in Fig. 6 and
described in Algorithm 3.

Given a testing instance x, O+BCcalculates the joint prob-
ability distribution and assigns y∗ to x using

y∗ = argmax
Y

P(y|x)

= argmax
Y

P(x, y)

P(x)
∝ argmax

Y
P(x, y). (11)

At training time, O+BC generates a three-dimensional
table of co-occurrence counts for each pair of attribute val-
ues and each class value, which needs O(Nn2) time. O+BC
selects two attributes to build an initial model by comput-
ing H(Xi , X j ,Y ) in (9), which has a time complexity of
O(m(nv)2). Assuming that each attribute can take a max-
imum of k parent attributes, O+BC then iteratively selects
the attributes and the corresponding directed edges and
adds them to the topology by calculating the corresponding
entropy function H(B) in (4). Hence, the corresponding time

complexity is O(m(nv)k+1). At classification time, O+BC
calculates the joint probability distribution in (11) for classi-
fication and it only requires O(mnk) time.

Algorithm 2 AddingOneEdge(G, Y , k).
Input: G with the attribute set X as nodes, class variable Y and

parameter k.
Output: G with the attribute set X as nodes.

1 Let Q be a |X| × |V| matrix and Q = Ø.
2 for each Xi ∈ X do
3 for each X j ∈ V do
4 Calculate H(B j i ), where B j i is the BNC with

topology G j i and G j i = G ∪ {X j → Xi }.
5 Q[ j][i] = H(B j i ).
6 Calculate H(Bi j ), where Bi j is the BNC with topology

Gi j and Gi j = G ∪ {Xi → X j }.
7 Q[i][ j] = H(Bi j ).
8 end
9 end

10 Select the minimum value of Q[i][ j] in Q, where |� j | < k.
11 V = V ∪ Xi , E = E ∪ {Xi → X j }, X = X \ Xi .
12 return G.
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Fig. 6 The learning process of O+BC

4 Experimental study

For comparison study, the state-of-the-art BNCs described
as follows run on 44 benchmark datasets from the UCI
machine learning repository [44]. Table 2 provides detailed

characteristics of these datasets. The missing values for
numerical attribute and nominal attribute are respectively
replaced by means or modes from the available data. The
MDL [45] discretization method is applied to handle numer-
ical attributes for each dataset.

Table 2 The details of datasets

No. Dataset Inst Att Class No. Dataset Inst Att Class

1 Labor 57 16 2 23 Vehicle 846 18 4

2 Zoo 101 16 7 24 Tic-tac-toe 958 9 2

3 Promoters 106 57 2 25 Led 1000 7 10

4 Iris 150 4 3 26 Diabetic-RD 1151 19 2

5 Teaching-ae 151 5 3 27 Contraceptive-mc 1473 9 3

6 Hepatitis 155 19 2 28 Yeast 1484 8 10

7 Wine 178 13 3 29 Volcanoes 1520 3 4

8 Autos 205 25 7 30 Car 1728 6 4

9 Sonar 208 60 2 31 Mfeat-mor 2000 6 10

10 Glass-id 214 9 3 32 Seismic-bumps 2584 18 2

11 Audio 226 69 24 33 Hypo 3772 29 4

12 Hungarian 294 13 2 34 Abalone 4177 8 3

13 Heart-disease-c 303 13 2 35 Electrical-Grid 10000 13 2

14 Soybean-large 307 35 19 36 Firm-Teacher 10800 19 4

15 Primary-tumor 339 17 22 37 Nursery 12960 8 5

16 House-votes-84 435 16 2 38 Magic 19020 10 2

17 Cylinder-bands 540 39 2 39 Adult 48842 14 2

18 Chess 551 39 2 40 Activity-recognition-with 75128 8 4

19 Balance-scale 625 4 3 41 Waveform 100000 21 3

20 Crx 690 15 2 42 Localization 164860 5 11

21 Breast-cancer-w 699 9 2 43 Skin-Segmentation 245057 3 2

22 Pima-ind-diabetes 768 8 2 44 Donation 5749132 11 2
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Table 3 The W/D/L records of
ZOL for O+BC against 6
algorithms

O+BC vs. TAN WATAN SKDB AODE-SR WAODE-MI IWAODE

W/D/L 19/22/3 18/24/2 22/17/5 20/22/2 16/25/3 19/23/2

p <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Algorithm 3 The O+BC algorithm.
Input: Training set D with attributes X = {X1, ..., Xn} and

class variable Y , parameter k.
Output: The DAG of O+BC.

1 {G} ← I ni tialModeling(D). // See Algorithm 1
2 repeat
3 {G} ← AddingOneEdge(G, Y , k). // See Algorithm 2
4 until X = Ø;
5 return G.

• TAN [17], which extends NB by representing the one-
dependence relationships in the form of MWST.

• SKDB [19], which extends KDB and uses LOOCV to
select the best parameter k.

• AODE-SR [46], which eliminates generalizations at clas-
sification time by using subsumption resolution.

• WAODE-MI [31], which assigns weight to each SPODE
by using MI as the weighting metric.

• IWAODE [32], which defines weights for each SPODE
by using instance-based weighting metric.

Each algorithm is tested for 10 rounds on 44 datasets using
the 10-fold cross-validation method.

TheWin/Draw/Loss (W/D/L) records are used to perform
statistical comparisons, and Tables 3, 4 and 5 summarize the
number of datasets on which the proposed O+BC obtains
better, similar or worse outcomes relative to the alternative
in terms of zero-one loss, bias and variance. The detailed
experimental results are respectively given in Tables 7 – 9
in the Appendix. We assess a difference as significant if the
outcome of a one-tailed binomial sign test is less than 0.05
[46, 47].

4.1 Zero-one loss

Zero-one loss (ZOL) is a common loss function to measure
the classification accuracy.Table 3provides statisticalW/D/L
records in terms of ZOL to show the comparison of O+BC
against its competitors.

We can see in Table 3 that O+BC achieves the best clas-
sification performance among all the BNCs. For example,
O+BC enjoys significant advantages over TAN (19/22/3)
and SKDB (22/17/5), since O+BC could represent high-
dependence relationships and achieve the tradeoff between
data fitness and topology complexity. Among ensemble
BNCs, WATAN represents the same undirected dependency
relationships in its TAN members, and weighted AODEs
don’t differentiate significant dependencies from insignifi-
cant ones due to its unrealistic independence assumptions.
Thus O+BC outperforms WATAN (18/24/2), AODE-SR
(20/22/2), WAODE-MI (16/25/3) and IWAODE (19/23/2).

To further describe the advantage of O+BC, Fig. 7 shows
scatter plots of the experimental results in terms of ZOL,
with each point corresponding to one dataset. The three dot-
ted lines in black, blue and red respectively correspond to
Y = 1.1 ∗ X , Y = X and Y = 0.9 ∗ X , which respectively
denote that O+BC performs significantly better, equally well
or significantly poorer than its competitor in terms of ZOL.
As shown in Fig. 7, O+BC enjoys significant advantages
over TAN, WATAN, SKDB, AODE-SR, WAODE-MI and
IWAODE on 11, 11, 16, 10, 9 and 11 datasets, respec-
tively. And O+BC performs significantly poorer than TAN,
WATAN, SKDB, AODE-SR, WAODE-MI and IWAODE
only on 1, 1, 4, 1, 2 and 2 datasets, respectively. These illus-
trative results prove the effectiveness of our proposedO+BC.

4.2 Bias and variance

The bias-variance decomposition [48] of ZOL provides fur-
ther insights into the analysis of classification performance.
Biasmeasures the resulting systematic error of the learner for
describing the decision boundary, and variance measures the
sensitivity of the learner to random variation in the training
data.

As shown in Table 4, O+BC obtains significantly better
bias compared to other learners. The 0-dependence topol-
ogy for NB requires only one pass through the data. The
implicit independence assumptions make NB fail to repre-
sent high-dependence relationships. The numbers of directed

Table 4 The W/D/L records of
bias for O+BC against 6
algorithms

O+BC vs. TAN WATAN SKDB AODE-SR WAODE-MI IWAODE

W/D/L 17/23/4 18/22/4 19/16/9 20/19/5 18/21/5 24/16/4

p < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

123



29808 L. Wang et al.

Table 5 The W/D/L records of
variance for O+BC against 6
algorithms

O+BC vs. TAN WATAN SKDB AODE-SR WAODE-MI IWAODE

W/D/L 38/2/4 38/2/4 39/2/3 4/11/29 4/9/31 3/8/33

p <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

edges in DAG for TAN and each member of WATAN are
the same, and the same topology skeleton makes them fit
training data to the same extent. Thus O+BC performs much
better than TAN (17/23/4) and WATAN (18/22/4) in terms
of bias. SKDB and weighted AODE can represent more

dependency relationships, whereas complex topology with
insignificant dependencies may bias the estimate of prob-
ability distributions. Thus O+BC also outperforms SKDB
(19/16/9), AODE-SR (20/19/5), WAODE-MI (18/21/5) and
IWAODE (24/16/4).

Fig. 7 Scatter plot of
comparisons in terms of ZOL

123



Exploring complex multivariate probability distributions with simple and robust bayesian... 29809

Table 6 Average ranks of the algorithms

Algorithm ZOL rank Bias rank Variance rank

O+BC 3.0000 3.1023 3.8523

WATAN 3.7159 3.6136 5.5455

TAN 3.8068 4.0227 5.8409

WAODE-MI 4.0341 4.2841 2.6250

IWAODE 4.1477 4.8750 1.9886

AODE-SR 4.2159 4.2841 2.4545

SKDB 5.0795 3.8182 5.6932

Friedman statistic FF 4.4278 3.3790 74.0856

Variance-wise, the weighting metrics and subsumption
resolution can help AODE-SR, WAODE-MI and IWAODE
finely tune the probability estimates whereas their inde-
pendence assumptions reduce the sensitivity to variation in
training data. Thus as shown in Table 5, they demonstrate sig-
nificant advantages over O+BC in terms of variance. TAN
constructsMWST to represent one-dependence relationships
between attributes, and WATAN uses weighting metric to
mitigate the negative effect caused by random selection of

the root attribute. High-dependence topology corresponds to
high-order probability distributions and relatively high risk of
overfitting. Thus O+BC demonstrates significant advantages
over TAN (38/2/4), WATAN (38/2/4) and SKDB (39/2/3).

4.3 Friedman and Nemenyi test

The Friedman test [49] rank the classification performance
of these BNCs in terms of ZOL, bias and variance. The
difference in average ranks under the null-hypothesis can
help statistically investigate the differences among BNCs.
As shown in Table 6, the average ranks of ZOL, bias and
variance are respectively 4.4278, 3.3790 and 74.0856. Based
on the significance level α = 0.05 and the degree of freedom
(7−1)× (44−1) = 258, the critical value for Friedman test
is 2.1338, thus we can reject the null-hypothesis and there
exist significant difference among the compared algorithms.

Since the Friedman test can only conclude whether there
exists difference in metrics for evaluating the classifica-
tion performance of the compared algorithms, we apply the
Nemenyi test [50] as a “follow-up test” to find out which
algorithms have statistical differences in their performance.

Fig. 8 Comparison of 7
algorithms against each other
with the Nemenyi test (a) ZOL
(b) Bias (c) Variance
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Figure 8 depicts the experimental results of 7 algorithms
using theNemenyi test onZOL, bias and variance. TheBNCs
and the matching average ranks are respectively represented
by the left line and the parallel right line. If the difference
is greater than the critical difference (CD) [51], the algo-
rithm with lower average rank is statistically better than the
algorithm with higher average rank. The algorithms will be
connected if the differences among them are not significant.
The higher position corresponds to lower rank and better
performance. The CD value for α = 0.05 is 1.3582 for 44
datasets and 7 algorithms.

In Fig. 8(a), the Nemenyi test differentiates O+BC from
other BNCs and the analysis reveals that O+BC achieves
the lowest average ZOL rank followed byWATAN (3.7159),
TAN (3.8068), WAODE-MI (4.0341). The differences in
ZOL ranks between TAN, WAODE-MI, IWAODE, AODE-
SR and SKDB are small, ranging from 3.8068 to 5.0795.
Figs. 8(b) and (c) graphically show the compared results
of the Nemenyi test on bias and variance. From Fig. 8(b),
the bias rank obtained by O+BC (3.1023) is the lowest fol-
lowed by WATAN (3.6136) and SKDB achieves the third
lowest mean bias rank (3.8182). Although WAODE-MI,
AODE-SR and IWAODE can fully represent the conditional
dependencies due to ensemble learning, some conditional
independencies or weak dependencies may be introduced
into the topology of committee members. Thus WAODE-
MI,AODE-SR and IWAODEachieve highermean bias ranks
than other BNCs (4.2841, 4.2841 and 4.8750 respectively).
Variance-wise, as shown in Fig. 8(c), the top three ranked
algorithms are IWAODE (1.9886), AODE-SR (2.4545) and
WAODE-MI (2.6250), with no significant difference in per-
formance among them due to their fixed structures. O+BC
achieves lower average variance rank (3.8523) when com-
pared to WATAN (5.5455) and SKDB (5.6932). TAN has
the highest mean variance rank (5.8409) since it encodes all
significant dependency relationships in one topology.

4.4 Comparision of running time

We will compare the averaged training and classification
time in milliseconds of 7 algorithms on 44 UCI bench-
mark datasets in this subsection. Each bar in Fig. 9 shows
the logarithmic average running time of the corresponding
algorithm in 10-fold cross validation experimental study.
As shown in Fig. 9(a), AODE-SR and IWAODE require
the least training time among all the algorithms, since
they need no structure learning for training. In contrast,
WAODE-MI needs additional time to calculate MI as the
attribute weights. TAN utilizes CMI to construct MWST.
WATAN constructs n TAN classifiers using n MWSTs.
SKDB needs to select attribute subset and parameter k.
O+BC uses information-theoretic metrics (i.e., conditional
entropy) to order attributes anddetermine thedirections of the
edges and thus it needs the most training time against other
algorithms.

As shown in Fig. 9(b), WATAN uses a weighted average
learning method at classification time thus it needs time to
calculate the weights of MWSTs. AODE-SR and IWAODE
spend more time than WAODE-MI since AODE-SR checks
all attribute-value pairs for generalization relationships and
IWAODE needs to compute the weighting metrics for each
testing instance during classification. TAN, SKDB and
O+BC are single BNCs, thus they need less time to com-
pute the joint probability for classification.

5 Conclusion

The magnificent bloom of the machine learning area
enhances the development of Bayesian learning. Bayesian
network can not only qualitatively describe the implicit
knowledge hidden in data in the form of DAG, but it can
also quantitatively measure the fitness to data in the form of

Fig. 9 Comparison of training and classification time for 7 algorithms on 44 datasets (milliseconds)
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factorized joint probability. In this paper, we prove theoret-
ically the reasonableness and feasibility of the application
of entropy function as the scoring function, and the exper-
imental results demonstrate the efficiency and effectiveness
of the greedy search strategy. The proposed algorithmO+BC
allows to build high-dependence topology with a limited
number of dependency relationships, and it delivers lower
ZOL and bias than single learners (e.g., TAN, SKDB) and
ensemble learners (e.g., WATAN, AODE-SR, WAODE-MI

and IWAODE) at the cost of relatively high variance. The
potential directions for future research include the study on
how to scale upO+BC to represent complexmultivariate dis-
tributions and learn instantiated O+BC to represent distinct
data characteristics hidden in different instances.

Appendix

Table 7 The experiment results of ZOL

Datasets
Learners

TAN WATAN SKDB AODE-SR WAODE-MI IWAODE O+BC

Labor 0.0526 0.0526 0.0702 0.0526 0.0526 0.0526 0.0175

Zoo 0.0099 0.0198 0.0396 0.0297 0.0297 0.0198 0.0198

Promoters 0.1321 0.1132 0.3491 0.1321 0.1415 0.1038 0.1415

Iris 0.0800 0.0800 0.0867 0.0867 0.0867 0.0867 0.0867

Teaching-ae 0.5497 0.5364 0.5232 0.4768 0.4503 0.4570 0.4503

Hepatitis 0.1677 0.1742 0.2194 0.1871 0.1806 0.1742 0.1742

Wine 0.0337 0.0337 0.0674 0.0225 0.0169 0.0169 0.0225

Autos 0.2146 0.2146 0.1951 0.2049 0.1951 0.2098 0.1951

Sonar 0.2212 0.2212 0.2740 0.2212 0.2260 0.2260 0.2019

Glass-id 0.2196 0.2196 0.2103 0.2570 0.2570 0.2196 0.2056

Audio 0.2920 0.3009 0.3097 0.2080 0.1903 0.2301 0.2345

Hungarian 0.1701 0.1735 0.2007 0.1633 0.1565 0.1599 0.1667

Heart-disease-c 0.2079 0.2046 0.2211 0.1980 0.2013 0.1980 0.2046

Soybean-large 0.1107 0.1010 0.1140 0.0814 0.0814 0.0912 0.0749

Primary-tumor 0.5428 0.5428 0.5841 0.5723 0.5752 0.5457 0.5605

House-votes-84 0.0552 0.0529 0.0506 0.0529 0.0506 0.0483 0.0506

Cylinder-bands 0.2833 0.2463 0.2278 0.1852 0.1796 0.1926 0.1648

Chess 0.0926 0.0926 0.0762 0.1016 0.0944 0.1034 0.0889

Balance-scale 0.2736 0.2736 0.2912 0.2832 0.2816 0.2832 0.2816

Crx 0.1478 0.1478 0.1696 0.1377 0.1377 0.1319 0.1377

Breast-cancer-w 0.0415 0.0415 0.0658 0.0358 0.0358 0.0372 0.0343

Pima-ind-diabetes 0.2383 0.2370 0.2500 0.2370 0.2383 0.2370 0.2435

Vehicle 0.2943 0.2943 0.2920 0.2884 0.2872 0.2896 0.3002

Tic-tac-toe 0.2286 0.2265 0.1806 0.2651 0.2724 0.2662 0.1524

Led 0.2660 0.2660 0.2730 0.2680 0.2680 0.2700 0.2680

Diabetic-RD 0.3588 0.3588 0.3658 0.3571 0.3666 0.3640 0.3553

Contraceptive-mc 0.4888 0.4895 0.5363 0.4942 0.4922 0.4942 0.4895

Yeast 0.4171 0.4171 0.4461 0.4205 0.4232 0.4232 0.4286

Volcanoes 0.3316 0.3316 0.3316 0.3316 0.3316 0.3316 0.3316

Car 0.0567 0.0567 0.0556 0.0816 0.0885 0.0851 0.0509

Mfeat-mor 0.2970 0.2980 0.3140 0.3135 0.3130 0.3120 0.2975

Seismic-bumps 0.0720 0.0720 0.0689 0.0778 0.0774 0.0855 0.0724

Hypo 0.0141 0.0130 0.0175 0.0095 0.0101 0.0114 0.0080

Abalone 0.4587 0.4582 0.4680 0.4475 0.4475 0.4482 0.4599

Electrical-Grid 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
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Table 7 continued

Datasets
Learners

TAN WATAN SKDB AODE-SR WAODE-MI IWAODE O+BC

Firm-Teacher 0.1933 0.1934 0.1779 0.2126 0.2103 0.2124 0.1947

Nursery 0.0654 0.0654 0.0291 0.0730 0.0708 0.0735 0.0560

Magic 0.1675 0.1674 0.1718 0.1751 0.1762 0.1744 0.1734

Adult 0.1380 0.1380 0.1532 0.1410 0.1445 0.1502 0.1400

Activity-recognition-with 0.0178 0.0179 0.0183 0.0181 0.0176 0.0177 0.0168

Waveform 0.0202 0.0202 0.0285 0.0181 0.0181 0.0181 0.0187

Localization 0.3575 0.3575 0.3013 0.3596 0.3566 0.3593 0.3354

Skin-Segmentation 0.0030 0.0029 0.0024 0.0038 0.0039 0.0039 0.0029

Donation 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0000

The cells in dark gray and in light gray indicate the performance of the corresponding model is better or equally well compared with other models
on the corresponding dataset
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Table 8 The experiment results of bias

Datasets
Learners

TAN WATAN SKDB AODE-SR WAODE-MI IWAODE O+BC

Labor 0.0211 0.0142 0.0316 0.0347 0.0200 0.0205 0.0242

Zoo 0.0303 0.0270 0.0585 0.0273 0.0273 0.0282 0.0358

Promoters 0.1329 0.1329 0.1251 0.4777 0.5489 0.2840 0.1371

Iris 0.0638 0.0618 0.0560 0.0586 0.0656 0.0664 0.0550

Teaching-ae 0.4566 0.4990 0.4598 0.4370 0.3984 0.4616 0.3940

Hepatitis 0.1712 0.1684 0.1727 0.1649 0.1655 0.1749 0.1627

Wine 0.0507 0.0531 0.0569 0.0346 0.0381 0.0317 0.0425

Autos 0.2356 0.2269 0.2265 0.2165 0.2115 0.2034 0.2113

Sonar 0.1646 0.1646 0.1675 0.1696 0.1722 0.1694 0.1823

Glass-id 0.2756 0.2748 0.2706 0.2785 0.2780 0.2818 0.2738

Audio 0.3617 0.3228 0.3095 0.1753 0.1799 0.2740 0.2635

Hungarian 0.1424 0.1491 0.1592 0.1582 0.1611 0.1597 0.1363

Heart-disease-c 0.1263 0.1265 0.1326 0.1118 0.1092 0.1160 0.1040

Soybean-large 0.1422 0.1151 0.1137 0.0648 0.0655 0.0811 0.0676

Primary-tumor 0.4249 0.4224 0.4413 0.4281 0.4247 0.4188 0.4112

House-votes-84 0.0410 0.0393 0.0304 0.0430 0.0406 0.0493 0.0421

Cylinder-bands 0.3117 0.2193 0.1942 0.1472 0.1501 0.1711 0.1488

Chess 0.1437 0.1398 0.1229 0.1244 0.1286 0.1397 0.1155

Balance-scale 0.1843 0.1843 0.1924 0.1905 0.1827 0.1905 0.1902

Crx 0.1180 0.1148 0.1234 0.0980 0.0953 0.0904 0.0939

Breast-cancer-w 0.0384 0.0349 0.0302 0.0338 0.0327 0.0234 0.0209

Pima-ind-diabetes 0.1946 0.1946 0.1963 0.1935 0.1941 0.1952 0.1952

Vehicle 0.2382 0.2376 0.2568 0.2401 0.2398 0.2435 0.2446

Tic-tac-toe 0.1746 0.1742 0.1266 0.2005 0.2104 0.1994 0.0967

Led 0.2251 0.2242 0.2295 0.2308 0.2331 0.2327 0.2298

Diabetic-RD 0.3206 0.3206 0.3214 0.3261 0.3416 0.3325 0.3217

Contraceptive-mc 0.3425 0.3426 0.3552 0.3811 0.3766 0.3781 0.3552

Yeast 0.3481 0.3479 0.3459 0.3455 0.3453 0.3458 0.3472

Volcanoes 0.2973 0.2973 0.2973 0.2973 0.2973 0.2973 0.2973

Car 0.0478 0.0478 0.0494 0.0556 0.0633 0.0599 0.0405

Mfeat-mor 0.2077 0.2078 0.2061 0.2475 0.2464 0.2492 0.2148

Seismic-bumps 0.0664 0.0664 0.0675 0.0639 0.0662 0.0646 0.0677

Hypo 0.0124 0.0119 0.0089 0.0069 0.0078 0.0080 0.0056

Abalone 0.3126 0.3123 0.3016 0.3199 0.3212 0.3199 0.3119

Electrical-Grid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Firm-Teacher 0.1519 0.1520 0.1247 0.1897 0.1864 0.1897 0.1600

Nursery 0.0521 0.0522 0.0397 0.0651 0.0616 0.0658 0.0490

Magic 0.1252 0.1252 0.1244 0.1534 0.1541 0.1595 0.1294

Adult 0.1312 0.1312 0.1193 0.1378 0.1387 0.1437 0.1332

Activity-recognition-with 0.0179 0.0178 0.0131 0.0195 0.0192 0.0197 0.0142

Waveform 0.0152 0.0153 0.0182 0.0157 0.0158 0.0157 0.0157

Localization 0.3106 0.3105 0.2004 0.3129 0.3068 0.3126 0.2740

Skin-Segmentation 0.0023 0.0023 0.0020 0.0029 0.0031 0.0029 0.0023

Donation 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0000

The cells in dark gray and in light gray indicate the performance of the corresponding model is better or equally well compared with other models
on the corresponding dataset
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Table 9 The experiment results of variance

Datasets
Learners

TAN WATAN SKDB AODE-SR WAODE-MI IWAODE O+BC

Labor 0.0211 0.0142 0.0316 0.0179 0.0221 0.0268 0.0389

Zoo 0.0303 0.0270 0.0585 0.0424 0.0424 0.0445 0.0461

Promoters 0.1329 0.1329 0.1251 0.0994 0.0654 0.1389 0.1657

Iris 0.0638 0.0618 0.0560 0.0374 0.0364 0.0436 0.0430

Teaching-ae 0.4566 0.4990 0.4598 0.1650 0.1776 0.1564 0.1780

Hepatitis 0.1712 0.1684 0.1727 0.0527 0.0541 0.0486 0.0529

Wine 0.0507 0.0531 0.0569 0.0231 0.0246 0.0141 0.0371

Autos 0.2356 0.2269 0.2265 0.1541 0.1503 0.1363 0.1549

Sonar 0.1646 0.1646 0.1675 0.0942 0.1003 0.0929 0.1075

Glass-id 0.2756 0.2748 0.2706 0.1004 0.1051 0.0999 0.1023

Audio 0.3617 0.3228 0.3095 0.1407 0.1401 0.0993 0.1245

Hungarian 0.1424 0.1491 0.1592 0.0255 0.0317 0.0270 0.0473

Heart-disease-c 0.1263 0.1265 0.1326 0.0357 0.0383 0.0305 0.0485

Soybean-large 0.1422 0.1151 0.1137 0.0842 0.0855 0.0738 0.0922

Primary-tumor 0.4249 0.4224 0.4413 0.1826 0.1859 0.1785 0.2189

House-votes-84 0.0410 0.0393 0.0304 0.0094 0.0083 0.0079 0.0186

Cylinder-bands 0.3117 0.2193 0.1942 0.1067 0.1010 0.0828 0.1090

Chess 0.1437 0.1398 0.1229 0.0422 0.0364 0.0379 0.0534

Balance-scale 0.1843 0.1843 0.1924 0.0854 0.0913 0.0854 0.0872

Crx 0.1180 0.1148 0.1234 0.0268 0.0264 0.0240 0.0409

Breast-cancer-w 0.0384 0.0349 0.0302 0.0134 0.0128 0.0122 0.0233

Pima-ind-diabetes 0.1946 0.1946 0.1963 0.0698 0.0700 0.0697 0.0622

Vehicle 0.2382 0.2376 0.2568 0.1287 0.1276 0.1245 0.1420

Tic-tac-toe 0.1746 0.1742 0.1266 0.0513 0.0604 0.0529 0.1105

Led 0.2251 0.2242 0.2295 0.0410 0.0398 0.0372 0.0530

Diabetic-RD 0.3206 0.3206 0.3214 0.0572 0.0522 0.0560 0.0576

Contraceptive-mc 0.3425 0.3426 0.3552 0.1077 0.1106 0.1086 0.1544

Yeast 0.3481 0.3479 0.3459 0.1001 0.0970 0.0967 0.1019

Volcanoes 0.2973 0.2973 0.2973 0.0052 0.0052 0.0052 0.0052

Car 0.0478 0.0478 0.0494 0.0438 0.0427 0.0430 0.0456

Mfeat-mor 0.2077 0.2078 0.2061 0.0679 0.0686 0.0676 0.0973

Seismic-bumps 0.0664 0.0664 0.0675 0.0112 0.0075 0.0128 0.0025

Hypo 0.0124 0.0119 0.0089 0.0047 0.0056 0.0068 0.0044

Abalone 0.3126 0.3123 0.3016 0.1543 0.1543 0.1539 0.1701

Electrical-Grid 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001

Firm-Teacher 0.1519 0.1520 0.1247 0.0179 0.0188 0.0179 0.0433

Nursery 0.0521 0.0522 0.0397 0.0105 0.0111 0.0104 0.0140

Magic 0.1252 0.1252 0.1244 0.0291 0.0289 0.0291 0.0486

Adult 0.1312 0.1312 0.1193 0.0111 0.0113 0.0109 0.0153

Activity-recognition-with 0.0179 0.0178 0.0131 0.0051 0.0055 0.0050 0.0073

Waveform 0.0152 0.0153 0.0182 0.0025 0.0023 0.0024 0.0031

Localization 0.3106 0.3105 0.2004 0.0580 0.0632 0.0577 0.0770

Skin-Segmentation 0.0023 0.0023 0.0020 0.0014 0.0014 0.0015 0.0020

Donation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The cells in dark gray and in light gray indicate the performance of the corresponding model is better or equally well compared with other models
on the corresponding dataset
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