
Applied Intelligence (2023) 53:29758–29780
https://doi.org/10.1007/s10489-023-05092-4

Exploring the potentials of online machine learning for predictive
maintenance: a case study in the railway industry

Minh-Huong Le-Nguyen1,2 · Fabien Turgis2 · Pierre-Emmanuel Fayemi2 · Albert Bifet1

Accepted: 6 October 2023 / Published online: 3 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This study addresses data-driven predictive maintenance, an area in which machine learning has received considerable atten-
tion. Traditionally, a machine learning model is trained on static data before being put into production to predict failures on
incoming data. However, new data typically present novelties that were not included in the training data, such as unexpected
anomalies or faults. Such novelties reduce the model accuracy and require model retraining, which we consider to be a
suboptimal practice.Therefore, we propose to leverage online machine learning as an adaptive and continuous alternative to
implement efficient predictive maintenance on systems that produce data continuously. The literature on predictive mainte-
nance concentrates primarily on failure prediction, whereas there are multiple stages in a standard predictive maintenance
framework, such as data preprocessing and diagnostics, that require attention. In this study, we propose a modular pipeline
consisting of three modules to execute many stages inside a predictive maintenance solution. Each module represents one of
our original contributions. Firstly, because a system generates repeating patterns in the form of cycles when performing its
functions, we construct an online active learning-based framework to extract these cycles from a stream of sensor data (cycle
extraction with InterCE). Secondly, we implement an autoencoder for encoding the extracted cycles into feature vectors (fea-
ture learning with LSTM-AE). Thirdly, we develop an adaptive scoring function to compute the health of any system at any
time using online clustering on the stream of feature vectors (health detection with CheMoc). These three contributions estab-
lish our framework for processing raw sensor data for predictive maintenance. We evaluate our methods using a real-world
data set provided by SNCF, the French national railway company. For each experiment, we simulate a data stream consisting
of sequentially arriving data from the provided data set to test our online algorithms. The experimental results demonstrate
that (i) InterCE is able to extract cycles from a high-speed stream with greater accuracy than a hand-crafted expert system, (ii)
LSTM-AE can identify meaningful features from the extracted cycles, and (iii) CheMoc can discover clusters that represent
physical anomalies of the systems and capture the health evolution of the monitored systems. Due to a lack of ground-truth
data at the time of writing, we have not implemented the prognostics method and will reserve this for future works. This study
confirms the potential of online machine learning as an adaptive and lifelong learning solution for predictive maintenance.

Keywords Predictive maintenance · Online machine learning · Railway, data stream

1 Introduction

The railway facilitates long-distance mass transit and alle-
viates the burden of rush-hour traffic. As the most carbon-
neutral mode of terrestrial mass transportation, the railway
will continue to grow in the coming decades, thus demanding
efficient maintenance.

B Minh-Huong Le-Nguyen
huong.le14895@gmail.com

Extended author information available on the last page of the article

In the railway, corrective maintenance and preventive
maintenance are prevalent (Fig. 1). The former fixes a system
after it fails, which incurs expensive costs and disrupts ser-
vice; the latter conducts regular inspections to reduce the fre-
quency of failures at the expense of a higher inspection cost.

Recently, a novel maintenance strategy known as predic-
tivemaintenance (PdM) has emerged [38]. PdMmonitors the
systems to predict critical failures, enabling near-corrective
maintenance prior to the occurrence of a failure. PdM also
identifies functional degradation and equipment maladjust-
ment in order to optimize preventive maintenance.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-05092-4&domain=pdf
http://orcid.org/0000-0002-5333-6785

Exploring the potentials of online machine learning... 29759

Fig. 1 Unlike corrective and
time-based maintenance,
predictive maintenance raises an
alert only when an anomaly is
detected, allowing for optimal
maintenance planning

We focus on data-driven PdM, for which machine learn-
ing (ML) has become a major player [10]. ML comprises
statistical learning algorithms that learn to perform a spe-
cific task on a set of observational data D = {xi , yi }i=1...N ,
xi ∈ X , yi ∈ Y . An ML model is trained by learning a func-
tion f (X ; θ) such that the parameters θ are adjusted on D
over multiple iterations until f (X ; θ) provides an accurate
mapping from the input space X to the output space Y . This
is the principle of supervised learning, for which we always
have one label yi for each observation xi . In the context of
PdM, xi can be a vector of sensor measurements recorded at
a given time i , and yi the state of the system at i (healthy,
degraded, faulty, etc.). In some cases, there may not be any
labels yi , i.e., D = {xi }i=1...N , possibly because a system is
newly commissioned and its data are not yet labeled. This
fits into the scenario of unsupervised learning, for which the
main goal is to detect data structure via clustering or anomaly
detection.

To use ML for PdM, it is standard practice to train an
ML model on existing data, such as sensor signals, mainte-
nance records, or past failure alerts. The trainedmodel is then
deployed in production to predict failures on incoming data.
The model parameters θ do not change unless the model is
retrained to learn θ from scratch. This is the offline approach
to machine learning, as the model is trained on a fixed quan-
tity of data and only begins making predictions after training
is complete.

Although the offline approach has proven effective for
many PdM applications [8], we deem it suboptimal, for the
following reasons.

First of all, new generations of complex railway systems
are typically outfitted with sensors that continuously record
their physical measurements, thus producing an infinite data
streamover time.Using the offline approach,wemust sample
data from the stream, but we do not know if this sample is
representative of the stream’s actual data distribution. If the
majority of the data in the sample is produced by systems
operating under normal conditions, a model trained on these
ideal data will be inaccurate when used on data generated by

degraded systems. As a result, the model must be retrained
once the incoming data deviate largely from the data used
for training. This is known as data drifting that commonly
occurs in streaming data [14] and may manifest in different
forms:
• concept drift (the relation between X and Y changes),
• concept evolution (Y has more possible values),
• feature drift (X changes, by changing its value range),
• feature evolution (X receivesmore or fewermeasurement
variables).
When data drifting occurs, the current model becomes

obsolete and must be retrained on a new data set, which
consists of either only new data collected since the occur-
rence of the drift or a combination of both new and old data.
A model trained solely on new data will discard previous
knowledge, but continuously adding new data to the train-
ing set is impractical due to the unboundedness of the data
stream. In addition, training a complicated MLmodel can be
computationally expensive.

Secondly, a data stream impedes the creation of labels.
A label is the intended output value for an ML task and is
individually assigned to every example. In aPdMapplication,
a label may represent the estimated time until failure or the
current condition of the system. To recognize the relationship
between the target class and input variables,machine learning
is notoriously data-hungry and requires a large number of
training examples. In practice, labels are scarce for a variety
of reasons: rare failure data (critical systems are frequently
maintained and rarely fail), inaccurate labels, lack of human
labelers, etc. This difficulty is exacerbated by the fact that
manual labeling cannot keep up with the pace and volume of
a data stream.

Also, in the railway, each occurrence of a failure is
followed by the FRACAS1 procedure to prevent it from re-
occurring, and this failure label will not be given2 again.

1 Failure reporting, analysis, and corrective action system.
2 It does not necessarily mean the failure will never occur again, but if
it does, the domain experts will likely not label it again.

123

29760 M.-H. Le-Nguyen et al.

Fig. 2 Various stages in a condition-based/PdM solution [20]

Consequently, these issues impede the application of
supervised learning techniques that require voluminous
labeled data. We must therefore turn to unsupervised learn-
ing approaches, the goal of which is to identify insights or
patterns in the incoming data.

Given that connected systems producing infinite amounts
of data are already a reality on new generations of connected
trains, the offline approach cannot keep up with this new
horizon. Instead, online machine learning (OML) is an alter-
native learning paradigm that employs continuous learning to
incrementally adjust a model based on new data. This allows
for data drift adaptation. Its inherent incremental nature also
enables OML to integrate a feedback loop to collect new
feedback from humans, which serves as a label source.

ThebodyofPdMliterature strongly favors offlinemachine
learning, and the few works that use online machine learn-
ing only concentrate on prognostics (failure prediction).
Meanwhile, a PdM solution requires the implementation of
multiple stages (Fig. 2). To the best of our knowledge, there is
no priorwork that employs onlinemachine learning to imple-
ment all core PdM functionality from data preprocessing to
failure prediction.

Therefore, our research question is to investigate if OML
could be used to implement the core functionality of a
PdM solution for complex railway systems. Our solution is
a modular pipeline (Fig. 3) that accepts as input a data stream
containing raw sensor signals from a fleet of M systems and
outputsmaintenance alerts to the technicians. Eachmodule is
implemented using online machine learning techniques and
represents one of our contributions.

Our first contribution is the Interactive Cycle Extraction
(InterCE) framework, which extracts operational cycles gen-
erated by any system as it executes its functions. Because a

cycle reflects the condition of a system, it is of the utmost
importance to accurately extract all cycles from the input data
stream in order to prepare for the subsequent analysis. This
module outputs a stream of cycles.

Our second contribution is a Long Short-term Memory
Autoencoder (LSTM-AE) that learns to identify discrimina-
tive features from the extracted cycles. Although it is possible
to analyze the cycles directly to determine the condition of
a system, a cycle is inherently a multivariate time series,
and time series analysis is typically time-consuming and
resource-intensive, which conflicts with the requirement for
efficient computation on a rapid data stream. Additionally,
analyzing a sequence of time series (a stream of cycles) is
even more challenging. Therefore, we simplify the problem
by transforming each cycle into a feature vector that retains
only the most relevant attributes of the original cycle. The
output of this module is a stream of feature vectors.

Our third contribution is the Continuous Health Mon-
itoring using Online Clustering (CheMoc) method, which
uses online clustering to capture a set of collective health pro-
files of the systems as evolving clusters. A system’s health
profile may indicate either a normal or an abnormal con-
dition. On the basis of these profiles, we then propose an
adaptive scoring function for computing the health score of
any system at any time. The output of this module is a stream
of health scores.

Weexpecteachmethod(InterCE,LSTM-AE, andCheMoc)
to bemore accurate than an expert system,which is a program
created by a domain expert using fixed rules that perform the
same tasks. Thus, an expert system represents human-level
accuracy. Our objective is to demonstrate that online adaptive
learning algorithms perform better than this baseline perfor-
mance. The primary obstacles are the absence of labeled data

Fig. 3 A modular pipeline for PdM, where each module is implemented with OML

123

Exploring the potentials of online machine learning... 29761

and, potentially, data drifting. Hence, our methods deal with
dynamic and unlabeled streaming data in an unsupervised
and incremental manner.

This article is organized as follows. Section 2 reviews the
existing literature on the use of OML for PdM. Section 3
presents the case study we used to evaluate our meth-
ods on a representative class of complex railway systems.
Section 4, 5, and 6 respectively describe InterCE, LSTM-
AE, and CheMoc along with the experimental results of our
case study. Section 7 concludes our work and outlines key
research directions for future improvements.

2 Summary of existing literature

In the data-driven PdM literature, there is a strong prefer-
ence for offline ML across many industries [16, 24, 32, 37].
Nonetheless, OML has begun to attract the interest of prac-
titioners in the field.

The state of a system at a given time can be classified using
supervised or semi-supervised techniques. Feng et al. [12]
estimated the state of Li-ion batteries online by comparing
new charging data to the support vectors learned offline on
clean data from fresh battery cells, but their solution must
be trained offline on a clean set of data before it can be
deployed online to predict on incoming data. Ben Ali et al.
[4] monitored the high-speed bearings of wind turbines using
Adaptive Resonance Theory 2 (ART2) to categorize the
turbines as healthy, degraded, or faulty. ART2 is online-
compatible, but it does not offer a more granular view of
system degradation. In addition, it assumes that a defined set
of possible machine states is known in advance, whereas in
reality, a machinemay be affected by a number of unforeseen
anomalies.

Anomaly detection is the most commonly used technique
for dealing with unlabeled data, but it only detects the pres-
ence of an anomalywithout providing additional information
such as the nature or severity of an anomaly or monitoring
how one or multiple anomalies impact a system. Aydemir
and Acar [3] detected anomalies in machinery using a sim-
ple control chart monitoring called CUSUM and issuing an
alert when signal values exceeded the predefined threshold
for normal operations. However, CUSUM is too simplistic
for complex systems because it onlymonitors a single perfor-
mance parameter at a time. Tian et al. [34] performed online
damage detection using one-class support vectormachines to
classify new data as normal or anomalous. Ribeiro et al. [28]
predicted failures of automatic train doors using sequential
anomaly detection, with an emphasis on the temporality of
anomalies. Putina and Rossi [26] leveraged online cluster-
ing to detect anomalies in network telemetry data streams.
Although not explicitly associated with PdM, their work

entails anomaly detection, which is a component of machin-
ery monitoring.

There are also works that emphasize the development of
an online-compatible processing pipeline using offline ML
algorithms. Canizo et al. [5] implemented a PdM applica-
tion for wind turbines using various big data technologies,
such as Apache Spark, HDFS, Apache Mesos, and Apache
ZooKeeper, but the models were trained offline and did not
adapt to new data. Su and Huang [33] predicted hard-disk
drive failures in data centers usingApacheSpark for real-time
data analytics and Hadoop for batch processing. The mod-
els were trained offline using random forest and remained
constant despite the arrival of novelties in the data stream.
Sahal et al. [30] reviewed open-source big data solutions and
their applicability to PdM, exemplified by two case studies
on railway and wind turbine maintenance.

In general, works in this vein either propose novel OML
algorithms to address a single functionality of a PdM frame-
work (primarily, failure prediction) or adapt existingmethods
to implement a streaming-based solution for PdM. Our
research tends towards the latter. Rather than proposing
entirely novel algorithms, we combine existing techniques
and algorithms to address the core functionality of a PdM
application: data preprocessingwith InterCE andLSTM-AE,
and diagnostics with CheMoc. When necessary, we mod-
ify existing OML algorithms to align them with railway
operational constraints, whilemaintaining their accuracy and
effectiveness on data streams.

3 Case study: the passenger access systems

We design and evaluate our methods using sensor data from
the passenger access system (PAS), which is the automatic
train door system on a fleet of passenger trains. The data set
is supplied by a French national railway company. We chose
the PAS because its complexity is reflective of many other
systems in the railway. If we are able to develop a viable PdM
solution for the PAS using OML, we will be able to apply
OML to other types of complex railway systems.

A PAS enables passengers to enter and exit the train
by opening and closing at each station stop. Each PAS is
equipped with a control unit that processes the train’s central
commands and records sensor signals. When a train enters
a station and all PASs receive the opening authorization
command, the data acquisition begins. All PAS signals are
recorded until the PASs are completely closed and locked,
and the train is ready to depart. The signals are encoded and
written into a binary file. Each PAS produces a single file
(Fig. 4). This fleet of passenger trains contains 7000 PASs,
each of which opens and closes every three minutes.

123

29762 M.-H. Le-Nguyen et al.

Fig. 4 Every time a train enters and leaves a station, each PAS produces one file

Each file contains a multivariate time series with both
analog and boolean variables. There are over 60 boolean vari-
ables and three analog variables associated with the electric
motor’s position, voltage, and current intensity in a PAS.
The PASs on a train in operation continuously produce data.
Over time, a fleet of multiple trains generates a fast and infi-
nite data stream comprised of sensor signals from thousands
of PASs. This scenario makes OML a suitable approach to
enable continuous learning.

Our methods are designed to work with the data originat-
ing from any systems in the same fleet. Please note that we
only analyze the data from systems of the same type (e.g., all
PASs) and do not combine data fromvarious types of systems
(e.g., PASs and batteries). We denote S = { S1, . . . , SM }
the fleet of M systems being monitored, where Sm ∈ S is
the ID of a system (for example, train 1/car 2/left
door).

4 Cycle extraction

A PAS exhibits cyclic behavior because it executes its func-
tions repeatedly. When a train enters a station, a PAS opens
and closes to allowpassengers to embark and exit. Each open-
ing and closing of the PAS generates a cycle that records the
behavior of a PAS when it performs a function. The under-
lying condition of the PAS can be revealed through these
cycles. The first task is to extract all cycles from the sensor
data stream.

A cycle CT
Sm

created by a system Sm ∈ S at a time T is a

sequence of N timesteps, such that each timestep a(i)
1�i�N

is a vector of D variables. In other words, a cycle is a mul-
tivariate time series, in which each timestep is a record of
multiple measurements.

CT
Sm = [a(1), . . . , a(N)] where a(i) ∈ R

D (1)

Figure 5 illustrates an example where two cycles, an open-
ing and a closing of a PAS, are extracted from an input
sequence s = [a(1), . . . , a(N ′)] (N ′ � N) containing raw
sensor signals from a system Sm . Each input sequence comes
from one data file produced by one PASwhen the train enters
a station (Fig. 4).

Cycle extraction involves two steps: cycle detection and
identification. The former detects the presence of a cycle in
raw signals, while the latter assigns the detected cycle to a
system function, such as “door opening” or “door closing”.

4.1 InterCE

Several techniques exist for online cycle extraction, including
change point detection [2], motif discovery [35], and dis-
cretization [22]. All of these techniques, however, have the
same flaw: they detect cycles based on statistical changes or
detectable patterns in the data, but they disregard the seman-
tics of the cycles. A cycle is not merely a recurring motif;
rather, it must represent a known function of the system,
which cannot be learned from sensor data alone. Therefore,

Fig. 5 Example of two cycles
extracted from an input file (not
exhaustive)

123

Exploring the potentials of online machine learning... 29763

human understanding of the anticipated cyclesmust be incor-
porated into the learning process.

From this observation, we develop the framework InterCE
(Interactive Cycle Extraction) based on the active learning
paradigm [31] to query for human feedback on inputs that
InterCE does not know how to process, and extracts cycles
automatically otherwise (Algorithm 1). Given a new input
sequence s, InterCE first feeds it to an ensemble E containing
various cycle detection algorithms to obtain the candidate
cycles C(s) (line 1). Then, InterCE’s memory M checks if
s is similar to an input sequence that InterCE has processed
in the past (and thus already has the knowledge to extract
cycles from similar inputs). If such is the case, InterCE uses
its knowledgeK to automatically detect and label cycles (line
2-4). Otherwise, if s is a sequence with novel motifs, InterCE
sends a new query Qr(s) to a domain expert (line 7-9).

Algorithm 1 InterCE (managing queries).

Input: A sequence s = [a(1), . . . , a(N ′)]
Output: The extracted cycles Ĉ(s) or a query Qr(s)

1 C(s) ← E .extract(s) /* get the candidates
from s */

2 if M.hasSeen(s) is True then /* whether s is a
novel motif */

3 if M.hasProcessedQueryOf(s) is True then
4 Ĉ(s) ← K.selectCycles(C(s))
5 else /* redundant query, buffering

instead of sending */
6 Qr(s) ← M.createBufferedQuery(s, C(s))
7 else /* create a new feedback to the human

*/
8 Qr(s) ← M.createOfficialQuery(s, C(s))
9 sendToHuman(Qr(s))

However, it may happen that, while waiting for the feed-
back of a query Qr(s), another sequence s′ that is very similar
to s arrives from the data stream.At thismoment, InterCE has
not received the feedback to Qr(s), therefore it does not have
the knowledge to process s′ and will create a query Qr(s′)
that is redundant to Qr(s). To avoid redundant queries, we
distinguish between official queries (line 8) that are sent to
the humans, and buffered queries that are very similar to an
official query but are queued in line rather than sent to the
humans (line 5-6).

In parallel, InterCE continuously listens for new feedback
(Algorithm 2). A feedback contains the cycles that the human
wants to keep from the candidates C(s). When a feedback
for a query Qr(s) is received from the domain expert, first,
InterCE uses it to solve the official query Qr(s) (line 2).
Then, InterCE retrieves all the buffered queries Q that are

Algorithm 2 InterCE (processing feedback).
Output : The cycles to an official query Qr(s) and to the

linked buffered queries
// infinitely listening for new human

feedback
1 while new feedback Fb(Qr(s)) becomes available do

// select the cycles from C(s) as
instructed by Fb(Qr(s))

2 Ĉ(s) ← K.solveOfficialQuery(Qr(s)) ;
// use Fb(Qr(s)) to process the buffered

queries of Qr(s)

3 Q ← K.getBufferedQueriesOf(Qr(s)) ;
4 foreach Qr(s′) ∈ Q do
5 Ĉ(s′) ← K.selectCycles(Qr(s′))

linked to the official query Qr(s) and solves them in bulk
using the same feedback (line 3-5).

Ensemble of extractors

Rather than using a single extractor, we employ an ensem-
ble of J extractors E = [E1, . . . , EJ] to make InterCE
more robust against noises through ensemble learning [25],
because preliminary findings suggest that a single extrac-
tor cannot always capture all intended cycles (Fig. 6). We
develop three extractors for the ensemble E . This supple-
mentary material contains the complete description of the
extractors [19].

Let CE j (s) = {C (j,1)
Sm

(s), . . . ,C
(j,n j)

Sm
(s) } be the set of

cycles extracted from s by an extractor E j ∈ E , for instance,
C (j,1)
Sm

(s) denotes the first cycle detected by the extrac-
tor E j from the input sequence s. The candidates C(s)
extracted by all the extractors in E from s is thus C(s) ={ CE1(s), . . . , CEJ (s)

}
. The next step is to retain only the

most correct cycles from the candidates C(s)

Memory

The memory M stores a set of unique data motifs, denoted
P , to determine whether an input s can be automatically
processed or if a query must be issued. Because a system
performs a fixed number of functions, inputs containing a
repeating pattern are frequently present in the data. Com-
monly, a PAS opens and closes when a train stops at a station;
thus, there aremultiple input sequences with only an opening
cycle followed by a closing cycle.

In light of this observation, and in an effort to reduce the
number of queries, InterCE issues queries only for novel data
motifs. A data motif is the entirety of an input sequence’s
series. Additionally, InterCE stores each novel data motif in

123

29764 M.-H. Le-Nguyen et al.

Fig. 6 On various inputs, the same extractor does not always produce accurate results. Each column represents an input sequence, and each row
represents the extraction results of an extractor applied to each sequence. The highlighted boxes indicate the optimal extraction for each input

P . For instance, in Fig. 6, the three input sequences are con-
sidered three distinct motifs because they differ substantially.

Knowledge

The knowledge K maintains the feedback as clusters and
automatically selects cycles from C(X) when the memory
M determines that a new query is not necessary (i.e., InterCE
has already learned how to process an input s). To learn the
typical shape of a function, we cluster the cycles based on

Algorithm 3 Selecting cycles from C(s) automatically.
Data: The candidates C(s)
Output : The final cycles Ĉ(s)

1 dist ← ∅ ;
2 foreach candidate CE j (s) do
3 dist[E j] ← 0 ;

4 foreach cycle C (j,i)
Sm

(s) in CE j (s) do

5 c ← K .findClosestCluster(C (j,i)
Sm

(s)) ;

6 dist[E j] ← dist[E j] + distance(C (j,i)
Sm

, c) ;

7 dist[E j] ← dist[E j]
J ;

8 Ĉ(s) ← argmin dist, ∀CE j ∈ C(s) ;
9 R ← ∅ ;

10 foreach cycle CT
Sm

∈ Ĉ(s) do
11 c ← K .findClosestCluster(CT

Sm
(s)) ;

12 yTSm ← c.getLabel() ;

13 R ← R ∪ {(CT
Sm

, yTSm)} ;
14 return R

their label. Only the cycles from human feedback are used
to build the clusters. To avoid undesirable clustering errors,
we refrain from using an algorithm to automatically group
the feedback cycles. Instead, we assume that human experts
always provide accurate feedback and we simply categorize
the cycles in the feedback Fb(Qr(s)) by their label. Conse-
quently, all cycles with the same label are put in the same
cluster. Ultimately, the number of clusters equals the number
of functions a system is capable of performing. For the PASs,
there are two clusters: one for door opening and one for door
closing.

Upon receiving new cycles, the centroid of a cluster is
recalculated by averaging across the timesteps of all cycles
in this cluster. We store the clusters directly in memory to
enable fast access whenK selects the cycles. This could pose
a storage problem as InterCE works on an infinite stream.
Nevertheless, because the systems perform a limited number
of functions and generate a limited number of unique cycle
types, the clusters should be kept at a reasonable size.

Algorithm 14 describes how K selects cycles from the
candidatesC(s). First,K computes the average distance of all
the cycles by each extractor E j ∈ E to the feedback clusters
(line 1-7). The extractor with the lowest average distance is
considered the best one, and all the cycles it proposes are
selected as the most correct cycles Ĉ(s) (line 8). The cycles
are labeled with the label of their closest cluster (line 10-13).
For now,K selects the cycles proposed by a single extractor.
In the future, we will allow K to select cycles from different
extractors.

123

Exploring the potentials of online machine learning... 29765

Fig. 7 Number of cycles correctly extracted by the expert system and
by InterCE

4.2 Experimental results

To evaluate InterCE, we compare its extraction accuracy to
that of a hand-crafted expert system for the PAS data set. We
include the expert system as a baseline performance in the
ensemble E of InterCE.We expect that InterCE will substan-
tially outperform the expert system (Section 4.2.1). We also
analyze InterCE’s processing time per input and query ratio
to determine its online compatibility (Section 4.2.2).

4.2.1 Extraction accuracy

We set up an experiment with 1000 data files and a human
actively answering InterCE’s queries. Then, we manually
inspect the extraction results of these files and record the

number of correct cycles by InterCE and by the expert sys-
tem. The accuracy score of each method is calculated by
dividing the number of cycles correctly extracted by the total
number of cycles that must be extracted (ground-truth).

Figure 7 shows the accuracy of InterCE and of the expert
system, alongwith the number of correct cycles by individual
extractors in E . Because InterCE integrates the expert system
in E , it naturally achieves the accuracy level of the expert sys-
tem. The autoencoder-based extractor significantly improves
the accuracy of InterCE. The activity-based extractor never
selects the optimal cycles due to its inability to recognize a
variety of input sequence patterns due to its simplicity.

4.2.2 Efficiency

We evaluate the efficiency of InterCE based on the num-
ber of official queries and the processing time by executing
InterCE on 100,000 input files without providing any feed-
back. Figure 8a illustrates the execution time per input file.
The time required byM to identify similar motifs predomi-
nates over the time required by E to extract cycles, which is
negligible. The time required to identify motifs decreases as
the number of novel motifs stabilizes.

Figure 8b depicts the number of queries and the ratio of
the number of queries to the number of input files. The num-
ber of queries is negligible relative to the number of input
sequences, with only 40 queries issued over 100,000 input
files (0.04% of total queries). As the growth rate of the vol-
ume of input sequences is significantly greater than that of the
number of queries, the query ratio decreases over time and
approaches zero as the number of inputs approaches infinity.

Fig. 8 Efficiency evaluation of
InterCE

123

29766 M.-H. Le-Nguyen et al.

Discussion

The results demonstrate that InterCE substantially improves
the expert system’s accuracy and achieves a processing rate of
one file per second with a decreasing query ratio. However,
InterCE has two major drawbacks. First, although InterCE
is updatable on human feedback, it only adapts the knowl-
edge K and not the extractors in the ensemble E , which
would be advantageous for enhancing the overall detection
accuracy. Second, as the number of motifs increases, the bot-
tleneck of motif matching will deteriorate. The accuracy of
motif matching is also important in order to avoid redundant
queries.

These issues stem from the fact that InterCE memorizes
the data rather than truly learning from them. Instead of
memorizing the data motifs, the memoryM could learn the
features of these motifs to quickly determine if a motif has
been encountered, thereby re-framing motif matching as a
classification problem rather than a search problem. Then,
instead ofmerely storing the cycle shapes and labels, InterCE
could use a classifier and/or a clustering algorithm to perform
amore accurate mapping inK. In particular, the learners in E
should be updatable. Either we enable InterCE to update the
extractors’ hyperparameters on new feedback, or the extrac-
tors themselves must adapt to changes in the stream.

5 Feature learning

After extracting the cycles, we can analyze them to deter-
mine the current condition of the systems. However, it is
inefficient to analyze the cycles as time series. Element-wise
comparison of millions of cycles is computationally expen-
sive, whereas a cycle can be summarized by retaining only its
most significant features, such as cycle length, average value,
and skewness. Therefore, we transform each cycle CT

Sm
to a

feature vector XT
Sm

of P real-valued numbers (2).

XT
Sm = (x1, ..., xP) ∈ R

P (2)

We implement a long short-term memory autoencoder
(LSTM-AE) to derive representative features from the cycles.

An autoencoder is a neural network that is incrementally
updatable with new data, making it appropriate for online
learning. From each cycle CT

Sm
of N timesteps and D vari-

ables, the LSTM-AE derives a feature vector XT
Sm

of P
variables, such that P � N × D to ensure compactness.

5.1 LSTM-AE

An autoencoder is a neural network that learns to reconstruct
its own input. It is composed of an encoder f and a decoder
g with weights θ f and θg respectively (Fig. 9). We denote
θ = [θ f , θg] the weights of the entire network.

The encoder receives an input x and feeds it to the next
layers, compressing x through the layers via non-linear trans-
formations. The last layer of the encoder produces the final
features h = f (x; θ f). The decoder passes h through its own
layers to reconstruct x at the final layer, i.e., x̂ = g(h; θg) =
g(f (x; θ f); θg). The reconstruction error between x and x̂
is propagated backward in the network to update θ in order
to reduce the reconstruction error in the next iteration. Train-
ing an autoencoder means adjusting θ iteratively to optimize
an objective function. Typically, the objective function is the
mean of the reconstruction errors (mean squared errors) over
all the n training examples.

J (θ; X) =
n∑

i=1

(
x (i) − x̂ (i)

)2

=
n∑

i=1

(
x (i) − g(f (x (i); θ f); θg)

)2
(3)

The weights θ are adjusted by the backpropagation algo-
rithm. After each iteration, the weights take one gradient
step toward the direction of the optimum, using the gradient
calculated from the objective function. In (4), η is the learn-
ing rate, dictating how large a weight update step should be
with respect to the gradient of the cost∇θ J (θ; X). When the
reconstruction errors cannot be further reduced, the autoen-
coder has found the optimal weights that allow it to identify
representative features.

θ = θ − η∇θ J (θ; X) (4)

Fig. 9 A basic autoencoder

123

Exploring the potentials of online machine learning... 29767

Fig. 10 The joint architecture of
the LSTM-AE that connects the
decoder and the context
classifier to the encoded features

We choose a recurrent architecture for handling sequential
data as we work with time series (cycles). Among existing
recurrent architectures, we select the long short-term mem-
ory architecture (LSTM) [15] because our experiments show
that the LSTM is capable of overcoming the exploding gradi-
ent phenomenon. We implement a symmetrical architecture
with a final encoder layer size of 40 (Fig. 10). We opt for
this architecture empirically by comparing the reconstruc-
tion capacity of various architectures with different numbers
of layers and layer sizes, and then selecting the architecture
with the best reconstructions.

Furthermore, the operational context, such as the outside
temperature or the train station, can cause noises in the cycles,
which make normal cycles appear abnormal. To make the
LSTM-AE robust against contextual noises, we construct a
joint architecture with a classifier gc of weight θc that maps
a cycle to its own context (Fig. 10). The intuition is that the
autoencoder learns to derive features fromacycle that are rep-
resentative (good reconstruction) andmapwell to the context
inwhich this cyclewas generated (good context recognition).
The encoder’s weight θ f is adjusted by both the reconstruc-
tion accuracy and the context classification accuracy.

According to a railway expert, the train stations are a sig-
nificant context factor that produces noises in the cycles.
Thus, we choose the train stations as the target label for clas-
sification. Since the station information is always available
for each cycle, the labels necessary to train the classifier are
always available. Therefore, no annotation effort is needed.

Let Lg be the loss function of the decoder, Lc the loss
function of the classifier, n the number of training examples,
P the dimension of the feature vectors, and C the number of
class labels (the number of train stations), we use the mean
squared error (MSE) forLg because the decoder outputs real-
valued vectors, and categorical cross-entropy (CCE) for Lc

to optimize θc for multiclass classification. Let x (i) be the i th

training cycle, x̂ (i) its reconstruction, y(i) the true station of
the i th training cycle, ŷ(i) the classification output.

The original formula of the MSE is:

MSE(xi , x̂i) = 1

n

n∑

i=1

(xi − x̂i)
2

but because a cycle is a multivariate time series, the MSE
of a cycle and its reconstruction is the average of the MSE
of each univariate series in the cycle, and the MSE of each
univariate series is the averaged MSE over N timesteps3 in
the cycle (5). The CCE loss is computed on the probability
p(i)
c associated to each cth train station of the i th example

(1 � c � C) (6).

Lg

(
x (i), x̂ (i)

)
= 1

D

D∑

j=1

MSE(i)
j

3 As cycles may differ slightly in length, we pad them with 0.0 to have
equal-length cycles.

123

29768 M.-H. Le-Nguyen et al.

= 1

DN

D∑

j=1

N∑

k=1

(
x (i)
j,k − x̂ (i)

j,k

)2
(5)

Lc

(
y(i), ŷ(i)

)
= −

C∑

c=1

p(i)
c log p̂(i)

c (6)

To find the optimal parameters θ = [θ f , θg, θc] of the
LSTM-AE, the objective function is the sum of the MSE and
CCE losses over all the training examples (7). To update the
weights θ at each iteration, the gradient used for backprop-
agation is the gradient of the sum of the two losses, and by
linearity, is the sum of the gradient of each loss. The decoder
and classifier are used to optimize the weights θ , but we only
use the encoder to extract features from cycles after training.

J (θ; X , y) = 1

n

n∑

i=1

[
Lg(x

(i), x̂ (i)) + Lc(y
(i), ŷ(i))

]
(7)

5.2 Experimental results

The LSTM-AE is implemented with tensorflow [1]. The
training set contains clean cycles. The testing set has both
noisy and clean cycles. We train one LSTM-AE for each
cycle type and independently evaluate the features of each
type. Table 1 shows the size of the training and testing sets
of each cycle type.

To evaluate the features learned by the LSTM-AE, we
compare them to the indicators identified by the expert sys-
tem (Table 2). The expert indicators include statistics that
can be extracted from a cycle, such as the mean, the standard
deviation, and the minimum/maximum values. Because the
cycles cannot be reconstructed from the expert indicators,
we cannot directly measure the amount of information loss
to evaluate the quality of the features. Instead, we conduct
a ranking evaluation: if the features are learned accurately
from the cycles, anomalous cycles will produce anomalous
features, while normal cycles will produce normal features.
As a result, the top-kmost anomalous cyclesmust correspond
to the top-k most anomalous feature vectors.

Let Ck = [C (1), . . . ,C (k)] and Xk = [X (1), . . . , X (k)]
be the ranking of the top k most anomalous cycles and top k
most anomalous feature vectors respectively, such that for all

Table 1 Number of training and testing cycles

Door opening Training 13,456

Testing 21,181

Door closing Training 14,224

Testing 11,851

Table 2 Size of the feature vectors and expert indicator vectors

Door opening LSTM-AE 40

Expert indicators 83

Door closing LSTM-AE 40

Expert indicators 70

i < j , C (i) is more anomalous than C (j), and similarly for
X (i) and X (j). Our goal is to verifywhether the ordering of Ck
and of Xk match, i.e., ∀i ∈ [1, k], X (i) is indeed the feature
vector derived fromC (i). We denote the ranking of the expert
indicators4 as X E

k and that of the LSTM-AE features as X L
k .

Let C be the profile5 of clean cycles used to train the

LSTM-AE, X
E
and X

L
the profile of clean expert indicators

and of clean LSTM-AE features extracted from the same
set of clean cycles. The ranking of the cycles, of the expert
indicators, and of the LSTM-AE features are obtained as
follows.

• The abnormality of a cycle is based on the area under
the curves6 (AUC) of this cycle to C (greater area means
higher abnormality).

• The abnormality of an expert indicator vector is the

Euclidean distance between this vector to X
E
(greater

distance means higher abnormality).
• The abnormality of an LSTM-AE feature vector is the

Euclidean distance between this vector to X
L
(greater

distance means higher abnormality).

Figure 11 explains the evaluation setting. The ground-
truth ranking C is obtained by sorting the cycles in the test
set Ctest by their AUC to C in the descending order. The
ranking of the LSTM-AE features X L

k is obtained by the

distance of the test feature vectors X̂ L to X
L
, and similarly

for X E
k to X̂ E and X

E
. The LSTM-AE features are better

at information preservation than the expert indicators if X L
k

matches with C better than X E
k does.

To compare two rankings, we use the normalized dis-
counted cumulative gain (nDCG) [17] that evaluates an
algorithm-based ranking with respect to a ground-truth rank-
ing by a score in the interval [0, 1], with a score of 1 indicating
the perfect match. The nDCG is frequently used in informa-
tion retrieval: an item with a high relevance score (its gain)

4 In this context, an expert indicator is short for a vector of expert
indicators, and similarly for the LSTM-AE feature vectors and features.
5 The profile of a set of cycles is the average computed at each timestep
over all the cycles.
6 A curve is a univariate time series in a cycle. The AUC of one cycle
is the average of the areas of all its univariate series.

123

Exploring the potentials of online machine learning... 29769

Fig. 11 Experiment setting of
the cycle-feature ranking
evaluation

is more relevant to the user’s query and should be put near
the top of the ranking.

The discounted cumulative gain (DCG) of the top k items
is computed by summing, for each position from 1 to k, their
relevance score divided by a logarithmic rank-based discount
factor (8). The ideal discounted cumulative gain (iDCG) is
calculated similarly, but the relevance score Gi at each posi-
tion i is replaced by the relevance score of the ground-truth
ranking. The iDCG returns the highest possible gain of the
correct ranking. The nDCG is obtained by dividing DCG by
iDCG.

DCG@k =
k∑

i=1

Gi

log2(i + 1)
(8)

We rank the test cycles Ctest by their AUC to C , the
test indicator vectors X̂ E and the test feature vectors X̂ L by

their Euclidean distance to X
E
and X

L
, respectively. Once

we have the ranking C, X L
k , and X E

k , we use the AUC of
the cycles as the relevance scores for the nDCG. The ideal
relevance scores are the ranked AUC of the cycles in C .
Then, we compare nDCG@k(X E , C) to nDCG@k(X L , C)
on k = [100, ..., 1000] (Fig. 12, top row) and on k =
[1000, ..., 10000] (Fig. 12, bottom row). The LSTM-AE fea-
tures outperform the expert indicators in all cases. Therefore,
the LSTM-AE is able to produce features that are better than
the expert systemat preserving the information of the original
cycles.

Discussion

In a ranking evaluation, the LSTM-AE features outperform
the expert indicators. Future works will include conducting

more robust evaluations, having more than 40 features, and
addingmore contextual variables other than the train stations.

Nevertheless, we discover a fundamental issue in the
underlying principle of autoencoders: they erase input per-
turbations in favor of a smoother reconstruction. Because
autoencoders strive to learn the most representative abstrac-
tion of the inputs, they are insensitive to input disturbances
(e.g., a sudden peak in the signals). However, such noises
could be indicative of a system anomaly. Moreover, the lim-
ited interpretability of the LSTM-AE features is an issue of
equal importance. Possible improvements include (i) adding
explainability to the LSTM-AE to interpret the magnitude of
change in the features with respect to the perturbations in the
cycles, (ii) customizing the loss function and/or the network
architecture to retain relevant perturbations, and (iii) adjust-
ing the LSTM-AE architecture to further improve the feature
quality.

6 Health detection

Each feature vector represents a cycle and is used to analyze
the condition of the systems. To predict the failures in a sys-
tem, we must first identify its current condition, or health.
From the literal definition of “health”, we define the health
of a system as the extent to which it is free of anomaly, quan-
tified by a score in the interval [0, 1], with 1 representing
the worst health (full of anomalies) and 0 representing the
best health (free of anomaly). Because the railway operating
constraint requires that the majority of the fleet be opera-
tional at all times, the majority of data from the fleet defines
normal health. A system is afflicted with an anomaly if it
exhibits behavior that deviates from what is expected. The

123

29770 M.-H. Le-Nguyen et al.

Fig. 12 Cycle-feature ranking
quality via nDCG@k

health score of a system is calculated based on the cumulative
effect of the anomalies affecting it and the severity of each
anomaly.

We aim to identify the health profiles of the fleet from the
data, such that one health profile is constructed from the data
of systems that in under the same health condition, for exam-
ple, one health profile for PASs that fail to open and one for
PASs that close more slowly than expected. A health profile
can be normal (representing good health) or anomalous (rep-
resenting degradation). Because the systems are designed to
function in a unique normal state, we have a unique normal
health profile, also known as the reference profile, as well as
multiple anomaly profiles (Fig. 13).

6.1 CheMoc

To determine the current health of the systems from the
stream of feature vectors, we propose Continuous Health
Monitoring using Online Clustering, or CheMoc, to discover
the collective health profiles of the fleet, upon which the
health of each system is computed individually and adap-
tively. In the following, we refer to “feature vectors” and
“data points” interchangeably.

6.1.1 Fundamental concepts

Let D(T) = { Xt
Sm

| Sm ∈ S, 1 � t � T } be a stream of fea-
ture vectors from the beginning (when the first cycle arrives)
until T . From D(T), a set G(T) = {G1(T), . . . ,GK (T) } of
K health profiles can be discovered and updated incremen-
tally, which is why G(T) andGk(T) ∈ G(T) are functions of
time. The reference profile is denoted G(T) and is included
in G(T).

Each health profile has a severity ωk(T) ∈ [0, 1], with
higher values indicating more severe anomalies. The refer-
enceG(T) always hasω(T) = 0. The severity of an anomaly
profile depends on how different it is from G(T). To quan-
tify the difference, we store in Gk(T) (and G(T)) a feature
matrix Fk (F(T)) that incrementally updates the statistics of
the data points falling in this profile. The deviation �k(T)

of a profile Gk(T) from G(T) is the Frobenius of Fk(T) and
F(T) (9). We divide �k(T) by the maximum �k′(T)1�k′�K
to obtain the severity ωk(T) bounded in [0, 1] (10).
�k(T) = ∥∥Fk(T) − F(T)

∥∥
F > 0 (9)

ωk(T) = �k(T)

max
k′ �k′(T)

(10)

Fig. 13 Examples of health
profiles as clusters captured
from multiple indicators [36]

123

Exploring the potentials of online machine learning... 29771

From the health profiles and their severity, we quantify the
degree to which an anomalyGk(T)manifests in a system Sm
at T via an anomaly score ASm

k . Intuitively, the more data Sm
has in an anomaly profile, the more severe this anomaly is
affecting Sm . Let G

Sm
k (T) be the set of feature vectors from

a system Sm in Gk at T , and G
Sm

(T) for G(T), the anomaly
score is obtained by:

ASm
k (T) = |GSm

k (T)|
|GSm

k (T)| + |GSm
(T)|

∈ [0, 1] (11)

However, (11) disregards the recency of the data and only
considers the number of data points produced by a system
in a cluster up until T. Meanwhile, old data on a data stream
become less relevant over time. To account for this temporal
decay, we add a decay factor f (t) = 2−λt (λ > 0, higher
λ means faster decay) to each feature vector in GSm

k (T) and

G
Sm
k (T). Adjusting λ is application-dependent. The anomaly

score ASm
k (T) thus becomes:

ASm
k (T) =

GSm
k (T)∑

i
f (Tm−Ti)

GSm
k (T)∑

i
f (Tm−Ti) +

G
Sm
k (T)∑

j
f (Tm−Tj)

(12)

where Tm is the timestamp of the last cycle created by Sm
on D(T), Ti and Tj the creation time of each cycle of Sm in

GSm
k (T) and G

Sm
k (T), respectively.

The health score HSm (T) is the average of all the anomaly
scores of Sm at T , weighted by the severity of each anomaly,
so that a low anomaly score in a severe anomaly profile still
casts a large impact on the health score (13). We omit the
reference profile from the health score formula because we
only consider the anomalies manifesting in the system.

HSm (T) = 1

|G(T) \ G(T)|
∑

k∈G(T)\G(T)

ωk(T)ASm
k (T) (13)

6.1.2 Learning the health profiles with online clustering

From the fundamental concepts, we seek a suitable online
clustering algorithm that enables us to discover the evolv-
ing health profiles of the systems. Because we lack a ground
truth for the PASs’ health profiles, the first phase is to obtain
a baseline using a simple, easy-to-manage online cluster-
ing algorithm. Once the baseline has been validated, we can
experiment with other clustering algorithms for improve-
ments.

Among existing online clustering algorithms,7 such as
DenStream [6], D-Stream [9], ESA-Stream [21], ClusTree
[18], FlockStream [13],we implementDenStreamas the core
clustering of CheMoc for the following reasons.

First, DenStream is a density-based algorithm that does
not need a predefined number of clusters, making it suitable
for online scenarios where the exact number of anomalies
is unknown in advance. Secondly, DenStream makes use
of a lightweight data structure that is efficiently and incre-
mentally updatable on fast data streams. Thirdly, although
new algorithms have been introduced since the publication
of DenStream in 2006, DenStream remains a foundation for
numerous online algorithms (e.g., SDSStream [27], rDen-
Stream [23], C-DenStream [29]).

We will begin by describing the underlying principle of
DenStream and how we adapt it to make it compatible with
the specific operational constraints of the railway.

DenStream DenStream is a two-phase clustering algorithm.
During the online phase, DenStream captures statistics from
the stream in the form of lightweight micro-clusters. During
the offline phase, DenStream converts the centroid of these
micro-clusters to virtual points, on which it performs a tra-
ditional clustering using DBSCAN [11] to return the official
clusters.

A micro-cluster mci at a time t for a group of n points
pi1 , . . . , pin created at timestamps Ti1 , . . . , Tin is defined by
a tuple of cluster features { w,LS, SS } in which w is the
weight (14), LS is the linear sum (15), and SS is the squared
sum (16). Then, we can easily compute its centroid c (17)
and radius r (18) (|.| denotes the L1 norm). The radius of
mci must be lower than ε which defines the desired density
of any micro-clusters. The function f (t) = 2−λt (λ > 0) is
the exponential decay function that dictates the importance
of a data point at a time t . Higher λ means faster forgetting.

w =
n∑

j=1

f (t − Ti j) (14)

LS =
n∑

j=1

f (t − Ti j)pi j (15)

SS =
n∑

j=1

f (t − Ti j)(pi j)
2 (16)

c = LS

W
(17)

r =
√

|SS|
W

−
(|LS|

W

)2

< ε (18)

7 We refer to these excellent surveys for more details on online cluster-
ing algorithms [7, 39].

123

29772 M.-H. Le-Nguyen et al.

A micro-cluster mci is updated when it receives a new
point p at t (19), or when it does not receive any new points
after an interval�t and decays (20). In both cases, the cluster
features can be incrementally updated using simple opera-
tions, which make micro-clusters efficient to maintain on a
data stream.

mci = { w + 1, LS + p, SS + p2 } (19)

mci = { 2−λ�tw, 2−λ�t LS, 2−λ�t SS } (20)

A micro-cluster can be a potential micro-cluster (PMC)
or an outlier micro-cluster (OMC) depending on its weight.
Let μ be the minimum weight of a dense micro-cluster and
0 < β � 1 the outlierness threshold, a PMC must satisfy
w � βμ, or else it is an OMC. Only the PMCs become
virtual points for offline clustering.

On a data stream, a PMC degrades to an OMC if it does
not receive data for an extended period of time, or an OMC
evolves into a PMC if it receives sufficient data to become
dense. An OMC that does not receive any new data is con-
sidered a noise and will be discarded.

DenStreamperforms periodic pruning every interval Tp =⌈
1
λ
log(β

βμ−1)
⌉
to decay the micro-clusters, then demotes

PMCs and discards OMCswhoseweight is below the accept-
able threshold.

The weight threshold of a PMC is βμ, and of an OMC is

ξ(t, to) = 2−λ(t−to+Tp)−1
2−λTp−1

, which is as a function of the OMC’s
creation time to and of the current time t .

Adapting DenStream to CheMoc The original implementa-
tion of DenStream is incompatible with the railway scenario.
We will describe how we modified DenStream to correct the
misalignment.

(a) Offline clustering omitted
Specifically, DenStream has two offline procedures. One

is a warm-start, which initializes DenStream on a limited
amount of data to produce the initial micro-clusters. The sec-
ond performs a standard DBSCAN clustering on PMCs as
virtual points. Experiments have shown that the warm-start
process stabilizes the growth of clusters in CheMoc. With-
out it, DenStream tends to generate an excessive number of
OMCs and is unable to identify meaningful micro-clusters.
As the warm-start uses a small amount of data and completes
rapidly, it is not a bottleneck in DenStream.

We omit the second offline process. DenStream employs
offline clustering to eliminate outdated OMCs in the hopes
of finding a noise-free set of clusters. In the railway, a sys-
tem can only be in a finite number of health profiles and a
system changes from one profile to another gradually; there-
fore, abrupt changes in the data distribution are uncommon.
Even if a sudden change occurs, the resulting effect will be

attenuated by the data coming fromother systems inS, result-
ing in stable micro-clusters during the online phase.

During the offline clustering phase, each micro-cluster is
transformed into a single virtual point representing its cen-
troid. As a result, this offline clustering phase is not only
unnecessary, as previously explained, but it can also be detri-
mental because a meaningful micro-cluster representing a
health profile is collapsed into a single virtual point, which
causes information loss. In addition, the clusters obtained
between each offline clustering are disconnected and their
temporal evolution is difficult to observe. This disrupts the
inherent continuity of evolving micro-clusters.

Considering these factors, we only maintain the warm-
start and the online phase of DenStream. From now on, we
regard a micro-cluster to be an official cluster.

(b) Dynamic density threshold
In DenStream, ε defines the desired density of the clusters

(18). Nevertheless, it is difficult to guess the true density
of a data stream. A high ε to find clusters on sparse data
can lead to excessively large clusters that mistakenly group
data from different health profiles when the data become
denser. Ideally, ε should be dynamically adjusted based on
the current density of the stream.

To do so, we implement the adaptive scheme proposed by
Putina andRossi [26], by revising ε continuously basedon the
radius of the clusters. Let r be a random variable that records
the radii of all clusters maintained thus far, r and σr the mean
and the standard deviation of r computed incrementally, the
new density is set to:

ε = r + kσr with k > 0 (21)

We set k = 3 as recommended by Putina and Rossi [26].
(c) Pruning omitted
DenStream periodically prunes PMCs and OMCs that

have not been updated recently in order to eliminate obsolete
clusters. However, clusters that depict health profiles should
not be discarded. A cluster that has not received data for
some time is not inherently outdated, but rather because no
system fits that profile during a particular time period. This
commonly happens in the railway. Ifwe discard inactive clus-
ters, CheMoc loses knowledge of these health profiles and
must relearn them if these profiles are activated in the future,
resulting in suboptimal performance. Therefore, we remove
the periodic pruning from DenStream. As a reminder, Den-
Stream only decays the clusters’ weight during the pruning
phase. Omitting the periodic pruning implies that the clusters
will not decay over time.

Yet, we must track the temporal evolution of the system’s
health. Although the clusters do not lose their relevance, the
system’s data do. The data produced by a system long ago

123

Exploring the potentials of online machine learning... 29773

Fig. 14 The system SB enters a depot center at TB and stops producing
data, whereas the system SA continues to operate until TA. The recency
of SB ’s data is not dependent on t (the current timestamp), but rather
on TB (the last time SB produced data)

no longer reflect its current health (for example, the system
was healthy a few weeks ago but has since degraded). This
means the decay must occur on the data, such that older
data contribute less to the anomaly scores than more recent
data. This is effectively captured by (12) that incorporates the
decay factor into the computation and lowers the influence
of old data over time, thereby ensuring the adaptability of
CheMoc.

(d) Varying anchor timestamp by system
The weight of a cluster mci of n data points is w =∑n
j=1 f (t − Ti j), where Ti j is the timestamp of the point

pi j in mci and t the current time. Normally, t applies to all
points in mci such that a point pi j is less relevant the farther
its timestamp Ti j is to t .

However, a system that does not produce new data does
not necessarily have less relevant data than one that does. It
is possible that the former is at rest and stops producing data,
while the latter continues to operate (Fig. 14). The recency of
the data of a system is not determined by a global timestamp,
but by the timestamp of the most recent data point of each
system. Therefore, a global timestamp t cannot be used to
decay the data of different systems within a cluster; instead,
t must vary by system. This results in a new definition of a
cluster mci .

As a reminder, S = { S1, ..., SM } is the set of M systems
being monitored. Let ψ(p) be a function that maps a point
p to the system that produces it.

For a clustermci , we define Si as a set of Mi systems such
that each system Sim ∈ Si produces at least one data point in
mci (Sim ∈ Si , Mi � M , Si ⊆ S) (22).

We denote Pim as the set of nim data points produced by
a system Sim in Si (23).

Si = { Sm ∈ S | ∃p ∈ mci , ψ(p) = Sm } (22)

Pim = { p ∈ mci | ψ(p) = Sim } (23)

Letmcim = { wim ,LSim , SSim } be the tuple of cluster fea-
tures computed on the data points produced by each system
Sim ∈ Si inmci such thatwim is the weight by Sim (24), LSim

the linear sum by Sim (25), SSim the squared sum by Sim (26),
and tm the timestamp of the latest point produced by Sim on
the stream. Because the latest timestamp tm of a system Sm
is not local to any cluster, the index i is omitted.

wim =
nim∑

j=1

f (tm − T j
im

) (24)

LSim =
nim∑

j=1

f (tm − T j
im

)p j
im

(25)

SSim =
nim∑

j=1

f (tm − T j
im

)(p j
im

)2 (26)

The cluster features of mci is the sum of all tuples by
system in Si (27).

mci = { w,LS, SS } =
⎧
⎨

⎩

Si∑

Sim

wim ,

Si∑

Sim

LSim ,

Si∑

Sim

SSim

⎫
⎬

⎭

(27)

Thenewdefinition still enables incremental cluster updates.
Let us consider two cases: (i)mci receives a new point p and
(ii) mci decays.

If p is added tomci , pmay ormay not come from a system
that already has data in mci . We distinguish two sub-cases,
where ψ(p) ∈ Si and ψ(p) /∈ Si .

• If ψ(p) = Sim ∈ Si , the latest timestamp tm of Sim
is updated to T when Sim produced p at T . The decay
factor when p is merged in mci becomes f (tm − T) =
f (0) = 1, and mcim thus becomes:

{ wim + 1, LSim + p, SSim + p2 }

Following (27), mci after merging p is:

mci = { w + 1, LS + p, SS + p2 } (28)

• If ψ(p) = Sl /∈ S, the cluster features of Sl is:

mcil = { wil , LSil , SSil } = { 1, p, p2 }

Following (27), mci after merging p (and Sl) is:

mci = { w + 1,LS + p, SS + p2 } (29)

For the second case, decaying a cluster means decaying
its cluster features. For each system Sim ∈ Si , let �tim =
tm − Tim be the time interval from the latest point by Sim on
the stream (tm) to the latest point of Sim in a specific cluster
mci (Tim). To decaymci , we sum the decayed cluster features

123

29774 M.-H. Le-Nguyen et al.

of each system in mci . For example, the decayed linear sum
LS′ of mci becomes:

LS′ =
Si∑

Sim

LS′
im =

Si∑

Sim

nim∑

j=1

f (�tm + tm − T j
im

)p j
im

=
Si∑

Sim

nim∑

j=1

2−λ(�tm+tm−T j
im

) p j
im

=
Si∑

Sim

nim∑

j=1

2−λ�tm2−λ(tm−T j
im

) p j
im

=
Si∑

Sim

2−λ�tm

nim∑

j=1

2−λ(tm−T j
im

) p j
im

=
Si∑

Sim

2−λ�tm LSim

SS′ and w′ are decayed similarly. Therefore, it suffices
to multiply the features { wim ,LSim , SSim } of each system
Sim ∈ Si to η = 2−λ�tm and sum the decayed features of all
the systems in mci to decay mci incrementally (30).

mci =
⎧
⎨

⎩

Si∑

Sim

ηwim ,

Si∑

Sim

ηLSim ,

Si∑

Sim

ηSSim

⎫
⎬

⎭
(30)

In conclusion, the new definition of cluster features by
system still enables on-the-fly cluster updates via (28), (29),
and (30).

Full algorithm Algorithm 12 describes CheMoc step-by-
step. W is the buffer size to warm-start CheMoc, M is the
online clustering algorithm (DenStream in our case), and θ

is the hyperparameters of the clustering algorithm that vary
depending on M .

Algorithm 4 CheMoc.
Data: A stream of data points D(T)

Input: Buffer size W , clustering hyperparameters θ

1 M.init(θ) /* init DenStream */
2 WS ← ∅ /* init warm start buffer */

3 while stream D(T) is active do
4 x ← new data point from D(T)

5 if not yet warm started then /* warm start */
6 if |WS| = W then M.warmStart(WS)
7 else WS ← WS ∪ {x}
8 else
9 M.process(x) /* update G(T) */

10 if is update time after an interval Tu then
11 M.reassessClusters()
12 M.updateHealth()

First, M is initialized on θ . An empty buffer WS is
allocated to store the data for warm-starting CheMoc. The
warm-start follows the procedure described in [6]. After
the warm-start (line 5-7), CheMoc updates the clusters on
each new data point (line 9). At every interval Tu ,8 CheMoc
reassesses the clusters and recomputes the health score of
the systems. During the reassessment, the cluster with the
most data points is elected to be the reference profile G(T)

(line 11). OnceG(T) is identified, the severityωk(T) of each
cluster Gk(T) is recomputed using (9) and (10). Then, the
health score of each system is updated using (12) and (13)
(line 12).

6.2 Experimental results

We test CheMoc on 1,074,272 feature vectors. To simulate
a data stream, we input the data points to CheMoc sequen-
tially in chronological order. Instead of performing the health
update for each data point (line 10-12 in Algorithm 12), we
use a micro-batch approach: each time CheMoc receives a
batch of one-week data, it updates the clusters on every data
point in this batch, reassesses the clusters, and updates the
health scores. Since we log the changes within CheMoc in a
database for post-analysis, micro-batching reduces the bot-
tleneck caused by database operations.

6.2.1 Experimental setup

We use the number of cycles as the time unit in CheMoc
because, in the railway industry, the number of cycles is more
significant than time expressed in seconds or hours. A sys-
tem only degrades when it is in operation, during which it
continuously produces new cycles. An inactive system, on
the other hand, generates no data and does not degrade over
time. Therefore, in CheMoc, all notions of time are expressed
in the number of cycles.

Because CheMoc uses DenStream as its core clustering,
four important hyperparameters are the desired density ε, the
decay factor λ, the outlierness threshold β, and the minimum
weight μ of a dense cluster (Table 3).

To select the initial value of ε, we compute the mean and
standard deviation of the pairwise distances on a random
data sample and set ε0 = �μdist + σdist
. This value of ε is
continuously adjusted on the data stream (21).

The decay factor λ is computed such that a cycle is for-
gotten after a window of 100 next cycles, as suggested by a

8 This can be carried out for every new data point or by micro-batch.
Updating on every point is compatible with the principle of real-time
monitoring, but it can cause data communication bottleneck if the
traces must be saved in a database. This choice is therefore application-
dependent.

123

Exploring the potentials of online machine learning... 29775

Table 3 Hyperparameters of CheMoc

Parameters Value Meaning

ε 15 The initial density for the
warm-start

λ 0.06 Forgetting a cycle after the
100 next cycles

β 0.4 Outlierness threshold of a
cluster

μ 5 Minimum number of points
per system in a cluster

domain expert. We set this window to be �t = 100 and rule
that a cycle is forgotten if its relevance drops to 0.01, i.e.,
2−λ�t = 0.01. Hence, we have 2−λ�t = 2−100λ = 0.01 ⇒
λ ≈ 0.06.

The outlierness thresholdβ determines if a cluster is dense
enough to become a PMC (βμ). The higher the value of β,
the denser a clustermust become to be considered a PMC.We
pick the value 0.4 to be on the tolerant side when promoting
an OMC to a PMC.

We modify the semantics of the minimum weight μ such
that it imposes the least number of points a systemmust have
in a cluster to be allowed to update the cluster’s features. The
aim is to eliminate noises from systems that have very few
data points in a cluster.

The data we stored in the statistic matrices Fk(T) and
F(T) are the mean of all data in a cluster, which is simply its
centroid. CheMoc is warm-started on the first batch of data
with 1589 data points. The warm-start finishes after three
seconds.

6.2.2 Cluster analysis

In total, CheMoc captures 12 clusters, including 11 PMCs
(G, G1-G10) and one OMC (G11). We project the full data

on a 3D space using Principle Component Analysis. The data
exist in a large cloudwith significant outliers scattering on the
border, but they do not exhibit intricate topology (Fig. 15a).

CheMoc discovers a set of tight-knit clusters (Fig. 15c).
The cluster distribution implies that when a system degrades,
its health deviates gradually from the reference profile but
does not become completely separated. A small ε is therefore
better to detect such gradual trajectory of a system’s data
via small clusters that change their position over time. The
temporal trajectory of the clusters confirms that the clusters
stabilize after the first fewbatches andmove slowly afterward
(Fig. 15b).

Then, dynamically adjusting ε makes it increasingly
smaller (Fig. 16b), which means the clusters become denser
over time. Their radii concentrate around 0.7 to 1.5 (Fig. 16a).
The data have a stable structure and CheMoc has converged
to a set of known health profiles, positively confirmed by a
domain expert.

To track the evolving health of the systems, we randomly
pick one system (denoted Sm) to analyze its health evolution.
Figure 17plots the health score HSm (T)updated at eachbatch
against the amount of data by Sm in each cluster. Because Sm
mostly produces data in anomaly profiles, HSm (T) is rela-
tively high and rises as Sm produces more data in anomalous
clusters.

To examine the anomalies that impacted Sm , we select one
batch and visualize the data in the clusters that contribute to
HSm . We choose the batch just before 03/05/2021, when HSm
starts rising. In this batch, Sm appears in multiple clusters, so
we visualize the most notable ones, namely orangeG1, G3,
G4, and G6 (Fig. 18). We compute the profile (thick line)
and envelope (colored region) of these clusters based on the
cycles they contain, using the three most relevant measure-
ments: the current, the voltage, and the position of the electric
motor in the PAS. We plot both the profile of a cluster Gk

and that of the reference cluster G for comparison.

Fig. 15 Visualization of one-year data (a), of the cluster trajectory (b), and of the final clusters (c)

123

29776 M.-H. Le-Nguyen et al.

Fig. 16 Dynamically adjusted ε

via the mean rk and standard
deviation σrk of the clusters’
radii

Fig. 17 Health score of Sm
versus the amount of data from
Sm in the clusters

Fig. 18 The profiles of G1, G3, G4, and G6, via the current, voltage, and position measurements

123

Exploring the potentials of online machine learning... 29777

Fig. 19 Processing time and
memory usage of CheMoc

Figure 18 shows that G1, G3, G4, and G4 display behav-
iors different from that of the normal profile G (light gray),
especially G4. The presence of Sm’s data in these clusters
means that Sm deviated from good health, which in turn
increases its health score.

Besides the accuracy of cluster discovery and health
assessment, monitoring a significant number of systems
continuously requires efficiency. Figure 19 depicts the pro-
cessing time and memory usage of CheMoc on each batch
with respect to the batch size. The execution time of CheMoc
is dominated by that of DenStream, with a minor gap for
cluster reassessment and health score recomputation. The
warm-start for the first batch is completed in three seconds.
Overall, the processing time is proportional to the batch size.

The memory usage of CheMoc increases slowly. When
data from a new system arrive, CheMoc must store the clus-
ter features of the new system in the clusters, resulting in a
gradual increase in memory consumption. Nonetheless, pro-
cessing one year of data from an entire fleet requires only
600 MB. As the number of systems is finite, memory con-
sumption will not increase indefinitely.

Discussion

CheMoc is capable of capturing health profiles by clustering
an unlabeled data stream and estimating the health scores
of monitored systems while remaining computationally effi-
cient. However, it has two significant flaws.

Currently, CheMoc maintains the relevance weights of
all data points in memory in order to rapidly compute the
anomaly scores (12). Although only the weight of each point
rather than its entire content is stored, this solution is not
scalable on an unbounded data stream. To avoid storing indi-
vidual relevance weights, we can transform (12) as follows.

Let dGSm
k = ∑|GSm

k (T)|
i f (tm −Ti) be the sum of the rele-

vanceweights of all the points from Sm inGk(T), where tm is

the latest timestamp of Sm on D(T) and Ti is the timestamp
of the point pi of Sm in Gk(T).

dGSm
k =

GSm
k (T)∑

i

f (tm − Ti) =
GSm
k (T)∑

i

2−λ(tm−Ti)

=
GSm
k (T)∑

i

2−λtm2λTi

= 2−λTc

GSm
k (T)∑

i

2λTi (31)

The term 2λTi in (31) can be computed incrementally by
cumulatively summing 2λTi for every new point pi from
Sm at Ti in Gk(T), eliminating the need of storing individ-
ual relevance weights. However, computing 2λTi becomes
numerically infeasible as Ti → ∞. To amend this, we can
introduce a “landmark” timestamp To:

dGSm
k =

GSm
k∑

i

f (tm−To−Ti+To) = 2−λ(tm−To)
GSm
k∑

i

2λ(Ti−To)

such that Ti − To should be much smaller than Ti . Moreover,
To brings an additional subtlety: all the data recorded before
To are considered obsolete and are ignoredwhenwe calculate
(12). For instance, we can set To to be the moment of the last
maintenance that restored a system. Then, Ti − To becomes
the interval from the last-known time of good health of a
system until Ti . Without an explicit To, Ti implies that a
system’s last-known time of good health is at 0, which is the
start of its lifecycle. Yet, To is difficult to obtain, because
maintenance feedback is not always accessible in practice.

The second problem is that CheMoc lacks a feedback
loop. The resulting clusters are as good as they could be

123

29778 M.-H. Le-Nguyen et al.

without any input from experts. When evaluating CheMoc,
we gather batch-by-batch cluster footprints and present them
to a domain expert. They validate the clusters using their
knowledge of the systems. We make adjustments to CheMoc
based on their feedback in an effort to discover better clusters.
This procedure is repeated for every experiment.

We recognize that it is preferable to incorporate the feed-
back directly into CheMoc, forming a feedback loop that
enables CheMoc to improve itself, similar to what we did for
InterCE. A feedback may prompt CheMoc to re-evaluate its
hyperparameters, divide or merge clusters. Finally, the goal
of CheMoc is not to replace domain experts, but to serve as
a tool to aid them in their decision-making process.

7 Conclusion

To address predictive maintenance of railway systems on
real-time data streams, we devise three methods: InterCE,
LSTM-AE, and CheMoc, which address automatic cycle
extraction, learning features, and machinery health mon-
itoring. Our methods are evaluated using real-world data
provided by SNCF, the French national railway company.

InterCE surpasses the baseline extraction accuracy of the
expert system, achieves a nearly constant processing time per
input (approximately 1.5s), and has a low query ratio (0.04%
over 100,000 inputs).

The LSTM-AE generates features that are more com-
pact and better at conserving information than the indicators
identified by the expert system. Nevertheless, the LSTM-AE
tends to attenuate minor perturbations that may be associated
with system degradation. This issue requires further investi-
gation.

CheMoc is capable of discovering a set of relevant health
profiles of the systems using the collective data from a fleet
and adaptively assessing the system’s healthwith satisfactory
efficiency.

Thesemethods demonstrate the potential of onlinemachine
learning for predictive maintenance and showcase the ben-
efits of continuous, lifelong learning over static offline
learning. The proposed methods will be improved in future
studies.

Acknowledgements We are grateful to the SNCF for providing us with
the data used to develop and evaluate our methods.

Author Contributions All authors contribute to the manuscript equally.

Funding Funded by the Association Nationale de la Recherche et de la
Technologie (ANRT) de la France.

DataAvailability Due to the confidential obligation imposed by the data
supplier, we cannot publish our data.

CodeAvailability The source code implementing themethods described
in this article is available at https://tinyurl.com/ms4bvj5k.

Declarations

Competing interests We declare that there is no competing interests
among the authors.

Author approbation All authors have approved the manuscript for sub-
mission.

References

1. Abadi M, Agarwal A, Barham P et al (2015) TensorFlow: Large-
scale machine learning on heterogeneous systems. https://www.
tensorflow.org/, software available from tensorflow.org

2. Aminikhanghahi S, Cook DJ (2017) A survey of methods for
time series change point detection. Knowl Inf Syst 51(2):339–367.
https://doi.org/10.1007/s10115-016-0987-z

3. Aydemir G, Acar B (2020) Anomaly monitoring improves remain-
ing useful life estimation of industrial machinery. J Manuf Syst
56:463–469

4. BenAli J, SaidiL,HarrathS et al (2018)Online automatic diagnosis
ofwind turbine bearings progressive degradations under real exper-
imental conditions based on unsupervised machine learning. Appl
Acoust 132:167–181. https://doi.org/10.1016/j.apacoust.2017.11.
021

5. Canizo M, Onieva E, Conde A et al (2017) Real-time predictive
maintenance for wind turbines using big data frameworks. In: 2017
IEEE international conference on prognostics and health manage-
ment (ICPHM). pp 70–77. https://doi.org/10.1109/ICPHM.2017.
7998308

6. Cao F, Ester M, Qian W et al (2006) Density-based clustering over
an evolving data stream with noise. In: Proceedings of the 6th
SIAM international conference on data mining, April 20-22, 2006,
Bethesda, MD, USA, https://doi.org/10.1137/1.9781611972764.
29

7. Carnein M, Trautmann H (2019) Optimizing data stream repre-
sentation: An extensive survey on stream clustering algorithms.
Business & Information Systems Engineering 61(3):277–297.
https://doi.org/10.1007/s12599-019-00576-5

8. Carvalho TP, Soares FAAMN, Vita R et al (2019) A systematic
literature review ofmachine learningmethods applied to predictive
maintenance. Computers & Industrial Engineering 137:106024

9. Chen Y, Tu L (2007) Density-based clustering for real-time stream
data. In: Proceedings of the 13th ACMSIGKDD international con-
ference on knowledge discovery and data mining. Association for
Computing Machinery, San Jose, California, USA, KDD ’07. pp
133–142. https://doi.org/10.1145/1281192.1281210

10. DavariN,VelosoB,DeAssis CostaG et al (2021)A survey on data-
driven predictive maintenance for the railway industry. Sensors
21:5739. https://doi.org/10.3390/s21175739

11. Ester M, Kriegel HP, Sander J et al (1996) A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: Proceedings of the 2nd international conference on knowl-
edge discovery and data mining. AAAI Press, Portland, Oregon,
KDD’96, pp 226–231

12. Feng X, Weng C, He X et al (2019) Online state-of-health esti-
mation for li-ion battery using partial charging segment based on
support vector machine. IEEE Transactions on Vehicular Technol-
ogy 68(9). https://doi.org/10.1109/TVT.2019.2927120

13. Forestiero A, Pizzuti C, Spezzano G (2009) FlockStream: a bio-
inspired algorithm for clustering evolving data streams. In: 2009
21st IEEE international conference on tools with artificial intel-
ligence. pp 1–8, https://doi.org/10.1109/ICTAI.2009.60, iSSN:
2375-0197

123

https://tinyurl.com/ms4bvj5k
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1016/j.apacoust.2017.11.021
https://doi.org/10.1016/j.apacoust.2017.11.021
https://doi.org/10.1109/ICPHM.2017.7998308
https://doi.org/10.1109/ICPHM.2017.7998308
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1007/s12599-019-00576-5
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.3390/s21175739
https://doi.org/10.1109/TVT.2019.2927120
https://doi.org/10.1109/ICTAI.2009.60

Exploring the potentials of online machine learning... 29779

14. Gomes HM, Read J, Bifet A et al (2019) Machine learning for
streaming data: state of the art, challenges, and opportunities. ACM
SIGKDDExplorationsNewsl 21(2):6–22. https://doi.org/10.1145/
3373464.3373470

15. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.
1997.9.8.1735

16. Inturi V, Shreyas N, Chetti K et al (2021) Comprehensive fault
diagnostics of wind turbine gearbox through adaptive condition
monitoring scheme. Appl Acoust 174:107738

17. Järvelin K, Kekäläinen J (2002) Cumulated gain-based evalua-
tion of IR techniques. ACM Transactions on Information Systems
20(4):422–446. https://doi.org/10.1145/582415.582418

18. Kranen P, Assent I, Baldauf C et al (2009) Self-adaptive anytime
stream clustering. In: 2009 9th IEEE international conference on
data mining. pp 249–258. https://doi.org/10.1109/ICDM.2009.47,
ISSN: 2374–8486

19. Le Nguyen MH, Turgis F, Fayemi PE et al (2021) A complete
streaming pipeline for real-time monitoring and predictive mainte-
nance. In: Proceedings of the 31st European safety and reliability
conference. pp 2119, https://doi.org/10.3850/978-981-18-2016-
8_400-cd

20. Lebold M, Reichard K (2002) OSA-CBM architecture develop-
ment with emphasis on XML implementations. In: OSA-CBM
architecture development with emphasis onXML implementations

21. Li Y, Li H, Wang Z et al (2020) ESA-Stream: efficient self-
adaptive online data stream clustering. IEEE Transactions on
Knowledge and Data Engineering pp 1–1. https://doi.org/10.1109/
TKDE.2020.2990196, conference Name: IEEE Transactions on
Knowledge and Data Engineering

22. Lin J, Keogh E, Lonardi S et al (2003) A symbolic representation
of time series, with implications for streaming algorithms. In: Pro-
ceedings of the 8th ACM SIGMOD workshop on Research issues
in data mining and knowledge discovery. Association for Comput-
ingMachinery, NewYork, NY, USA, DMKD ’03, pp 2–11, https://
doi.org/10.1145/882082.882086

23. Liu Lx, Huang H, Guo Yf et al (2009) rDenStream, A clustering
algorithm over an evolving data stream. In: 2009 international con-
ference on information engineering and computer science. pp 1–4,
10.1109/ICIECS.2009.5363379, iSSN: 2156-7387

24. MiticiM,HenninkB, PavelM et al (2023) Prognostics for Lithium-
ion batteries for electric Vertical Take-off and Landing aircraft
using data-driven machine learning. Energy and AI 12:100233

25. Polikar R (2012) Ensemble learning. In: Zhang C, Ma Y (eds)
Ensemble machine learning: methods and applications. Springer
US, Boston, MA, pp 1–34. https://doi.org/10.1007/978-1-4419-
9326-7_1

26. Putina A, Rossi D (2021) Online anomaly detection leveraging
stream-based clustering and real-time telemetry. IEEE Transac-
tions onNetwork and ServiceManagement 18(1):839–854. https://
doi.org/10.1109/TNSM.2020.3037019, conference Name: IEEE
Transactions on Network and Service Management

27. Ren J, Ma R (2009) Density-based data streams clustering over
sliding windows. In: 2009 6th international conference on fuzzy
systems and knowledge discovery. pp 248–252. https://doi.org/10.
1109/FSKD.2009.553

28. Ribeiro RP, Pereira P, Gama J (2016) Sequential anomalies: a study
in the railway industry. Mach Learn 105(1):127–153. https://doi.
org/10.1007/s10994-016-5584-6

29. RuizC,Menasalvas E, SpiliopoulouM (2009)C-DenStream: using
domain knowledge on a data stream. In: Gama J, Costa VS, Jorge
AM et al (eds) Discovery science. Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, pp 287–301, https://doi.org/
10.1007/978-3-642-04747-3_23

30. Sahal R, Breslin JG, Ali MI (2020) Big data and stream processing
platforms for Industry 4.0 requirements mapping for a predictive
maintenance use case. J Manuf Syst 54:138–151

31. Settles B (2009) Active learning literature survey. Technical
Report, University of Wisconsin-Madison Department of Com-
puter Sciences

32. Shen J, Li S, Jia F et al (2020) A deep multi-label
learning framework for the intelligent fault diagnosis of
machines. IEEE Access 8:113557–113566. https://doi.org/10.
1109/ACCESS.2020.3002826, Conference Name: IEEE Access

33. Su CJ, Huang SF (2018) Real-time big data analytics for hard disk
drive predictive maintenance. Computers & Electrical Engineering
71:93–101

34. Tian H, Khoa NLD, Anaissi A et al (2019) Concept drift adaption
for online anomaly detection in structural health monitoring. In:
Proceedings of the 28th international conference on information
and knowledge management, CIKM ’19. pp 2813–2821, https://
doi.org/10.1145/3357384.3357816

35. Torkamani S, Lohweg V (2017) Survey on time series
motif discovery. WIREs Data Mining and Knowledge Dis-
covery 7(2):e1199. https://doi.org/10.1002/widm.1199, https://
onlinelibrary.wiley.com/doi/abs/10.1002/widm.1199

36. Turgis F, Audier P, Nemoz V et al (2022) Health state character-
ization using clustering algorithms for railway maintenance. In:
World Congress on Railway Research 2022, Birmingham, United
Kingdom

37. Zhao R, Yan R, Chen Z et al (2019) Deep learning and its appli-
cations to machine health monitoring. Mech Syst Signal Process
115:213–237

38. Zonta T, daCostaCA, daRosaRighiR et al (2020) Predictivemain-
tenance in the Industry 4.0:A systematic literature review.Comput-
ers & Industrial Engineering 150:106889. https://doi.org/10.1016/
j.cie.2020.106889, http://www.sciencedirect.com/science/article/
pii/S0360835220305787

39. Zubaroğlu A, Atalay V (2021) Data stream clustering: a review.
Artif Intell Rev 54(2):1201–1236. https://doi.org/10.1007/s10462-
020-09874-x

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1145/3373464.3373470
https://doi.org/10.1145/3373464.3373470
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/582415.582418
https://doi.org/10.1109/ICDM.2009.47
https://doi.org/10.3850/978-981-18-2016-8_400-cd
https://doi.org/10.3850/978-981-18-2016-8_400-cd
https://doi.org/10.1109/TKDE.2020.2990196
https://doi.org/10.1109/TKDE.2020.2990196
https://doi.org/10.1145/882082.882086
https://doi.org/10.1145/882082.882086
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1109/TNSM.2020.3037019
https://doi.org/10.1109/TNSM.2020.3037019
https://doi.org/10.1109/FSKD.2009.553
https://doi.org/10.1109/FSKD.2009.553
https://doi.org/10.1007/s10994-016-5584-6
https://doi.org/10.1007/s10994-016-5584-6
https://doi.org/10.1007/978-3-642-04747-3_23
https://doi.org/10.1007/978-3-642-04747-3_23
https://doi.org/10.1109/ACCESS.2020.3002826
https://doi.org/10.1109/ACCESS.2020.3002826
https://doi.org/10.1145/3357384.3357816
https://doi.org/10.1145/3357384.3357816
https://doi.org/10.1002/widm.1199
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1199
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1199
https://doi.org/10.1016/j.cie.2020.106889
https://doi.org/10.1016/j.cie.2020.106889
http://www.sciencedirect.com/science/article/pii/S0360835220305787
http://www.sciencedirect.com/science/article/pii/S0360835220305787
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1007/s10462-020-09874-x

29780 M.-H. Le-Nguyen et al.

Authors and Affiliations

Minh-Huong Le-Nguyen1,2 · Fabien Turgis2 · Pierre-Emmanuel Fayemi2 · Albert Bifet1

Fabien Turgis
fturgis@ikosconsulting.com

Pierre-Emmanuel Fayemi
pefayemi@ikosconsulting.com

Albert Bifet
albert.bifet@telecom-paris.fr

1 INFRES, Telecom Paris, 19 Place Marguerite Perey,
Palaiseau 91120, France

2 Ikos Lab, IKOS Consulting, 155 Rue Anatole France,
Levallois-Perret 92300, France

123

http://orcid.org/0000-0002-5333-6785

	Exploring the potentials of online machine learning for predictive maintenance: a case study in the railway industry
	Abstract
	1 Introduction
	2 Summary of existing literature
	3 Case study: the passenger access systems
	4 Cycle extraction
	4.1 InterCE
	Ensemble of extractors
	Memory
	Knowledge

	4.2 Experimental results
	4.2.1 Extraction accuracy
	4.2.2 Efficiency
	Discussion

	5 Feature learning
	5.1 LSTM-AE
	5.2 Experimental results
	Discussion

	6 Health detection
	6.1 CheMoc
	6.1.1 Fundamental concepts
	6.1.2 Learning the health profiles with online clustering

	6.2 Experimental results
	6.2.1 Experimental setup
	6.2.2 Cluster analysis
	Discussion

	7 Conclusion
	Acknowledgements
	References

