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Abstract
Cross-modal hashing has attracted noticeable attention in the multimedia community. Two-stage methods often show impres-
sive performance by first learning hash codes for data instances from different modalities, then learning hash functions that
map the original multimodal data to the low dimensional hash codes. However, most existing two-stage methods can hardly
obtain satisfactory hash codes at the first stage, as the commonly used coarse-grained similarity matrix fails to capture the
differentiated similarity relationships between the original data instances. Besides, such methods cannot obtain satisfactory
hash functions at the second stage, where the learning of hash functions is treated as a multi-binary classification problem. In
this paper, we propose a novel two-stage hashing method for cross-modal retrieval. At the first stage, we capture the differen-
tiated similarity relationships between data instances by designing a fine-grained similarity matrix and add an Autoencoder to
mine the semantic information. At the second stage, we introduce a similarity sensitivity learning strategy under the guidance
of the similarity matrix to train the hash functions. This strategy makes the training process sensitive to the similar and hard
pairs, boosting the retrieval performance. Comprehensive experiments on three benchmark datasets validate the effectiveness
of our method.

Keywords Cross-modal retrieval · Deep hashing · Fine-grained similarity · Focal loss

1 Introduction

With the explosive growth of multimedia data, multimodal
applications are attracting increasing attention, such as Image
Captioning [17],VisualQuestionAnswering [39], andCross-
modal Retrieval [27, 32, 44, 56]. Unlike unimodal retrieval
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[1], cross-modal retrieval aims to search semantically similar
samples from one modality with a given query from another
modality (e.g., from image to text). However, it is nearly
impossible to perform exact nearest neighbor search for real-
world large-scale multimedia data due to the cost of time
and storage involved. Many methods have been proposed to
address this problem, such asApproximateNearestNeighbor
(ANN) search. Hashing is one of the most promising tech-
niques among the ANN-based methods [35, 45]. Recently,
hashing-based ANN search has become popular because of
its low computational cost and fast retrieval speed. The aim
of hashing is to learn hash functions to project data instances
from the original feature space into a compact Hamming
space, where the data instances from different modalities
can be represented by binary hash codes of a certain length.
In the Hamming space, the similarity between original data
instances can be represented by the Hamming distance. This
requires the hash codes to preserve the similarity relation-
ships between the data instances in the original feature space.

Data instances from different modalities are heteroge-
neous. Their features may have different distributions. To
narrow such a gap, many cross-modal hashing methods
have been proposed to mine the semantic relationships
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between different modalities and preserve them in a common
Hamming space. According to whether supervised informa-
tion (i.e., semantic labels) is used or not, recent existing
methods can be generally divided into unsupervised hash-
ing [46] and supervised hashing [55]. Supervised methods
usually achieve superior performance to unsupervised meth-
ods by learning the correlations betweenmultimodal data via
semantic labels. However, most of them are shallow hashing
methodswhich use hand-craft features. The hand-crafted fea-
tures may not be optimal discriminative representations of
data instances.

Deep learning based methods have meanwhile achieved
promising performance. Typical deep learning based meth-
ods, such as DVSH [5], CMDVH [16] and TVDH [42], train
hash codes and hash functions simultaneously. They are also
called one-stage hashing methods with end-to-end training
scheme. One advantage of suchmethods is that the joint opti-
mization of hash codes and hash functions can lead to better
retrieval accuracy compared to two-stagemethods. However,
the hash codes must be retrained when the hash functions are
changed. Moreover, the alternating training of hash codes
and hash functionsmakes them impact each other, potentially
leading to suboptimal performance. The pairwise-based [19,
21, 55] or triplet-based [12] training strategies also limit them
to preserving only local similarities due to computational
constraints.

To improve the flexibility and address the above limita-
tions, two-stage methods are proposed, which decouple the
training of hash codes and hash functions [22, 26, 31, 48].
Hash codes are first learned independently. Hash functions
are then trained to map new queries to the pre-trained hash
codes. This makes it easier to optimize hash codes and hash
functions separately. At first, the retrieval accuracy of such
methods is not as good as that of the one-stage methods.
Nearly all of the two-stagemethods only use a coarse-grained
similarity matrix Sc = sci j , where s

c
i j = 1means that the data

instances xci and xcj are similar and sci j = 0 means dissim-
ilar. Obviously, it will cause substantial loss of information
before generating the hash codes, because this similarity
matrix cannot capture the differentiated similarity relation-
ships between the training data at the first stage.At the second
stage, most of the two-stage methods treat the learning of
hash functions as a multi-binary classification problem. In
fact, each bit of a hash code does not necessarily corre-
spond to a partition in the feature space. The learning of hash
functions at this stage should focus on preserving as much
discriminative information as possible. In other words, this
should be a result of similarity calculation rather than clas-
sification. In addition, separate training is no longer limited
to mini-batches, enabling preservation of global similarities.

Based on the above observations, we propose a novel
two-stage method for cross-modal retrieval, called Deep
Cross-modal Hashing with Fine-grained Similarity (DFGH).

It effectively explores the differentiated similarity relation-
ships between the training data and utilizes them to assist the
learning of hash codes and hash functions. When performing
hash code inference at the first stage, we use semantic labels
to build a fine-grained similarity matrix by assuming two
instances are more similar if they share more labels. In this
way, we can represent the differentiated similarity relation-
ships between the training data. When performing hash code
mapping at the second stage, we design a similarity sensitiv-
ity strategy to learn the hash functions. In this strategy, we
employ a mapping loss to fit the hash codes and a classifica-
tion loss to retain the semantic information. Importantly, we
further design a similarity preserving loss based on the above
fine-grained similarity matrix to preserve the differentiated
similarity information.

The main contributions of our work are summarized as:

1) We propose a novel two-stage hashing method for cross-
modal retrieval with the fine-grained similarity matrix.
The learning of hash codes and hash functions are linked
up without affecting each other by utilizing the matrix.

2) At the first stage of the method, we preserve the
distinguishable similarity relationships between data
instances with the similarity matrix. At the second stage,
the similarity-preserving loss is designed so that the
hash functions can preserve the fine-grained similarity
information.

3) We conduct extensive experiments on three benchmark
datasets to demonstrate the effectiveness of the proposed
DFGH. The results show its superiority to the state-of-
the-art methods especially on large-scale image datasets
(e.g., MS-COCO).

2 Related work

Different from unimodal hashing, cross-modal hashing aims
to realize the retrieval when queries and samples to be
retrieved have different modalities. It is crucial to narrow
the semantic gap between different modalities when extend-
ing unimodal hashing to cross-modal hashing. Cross-modal
hashing methods can be divided into two categories in terms
ofwhether supervised information is used during the learning
process, i.e., unsupervised and supervised.

Unsupervised methods learn hash functions by captur-
ing the correlations between different modalities without
supervised information. One common way is to preserve
the structure of original features. For example, Inter-Media
Hashing (IMH) [43] learned hash functions by exploring both
intra-media consistency and inter-media consistency. PDH
[40] maintained the predictability of binary hash codes and
optimized the objective function by iterative method. CMFH
[14] learned hash codes by collective matrix factorization
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with a latent factor model from different modalities. LSSH
[57] used sparse coding to capture the salient structure of
images and matrix factorization to obtain the latent concepts
of texts, and then projected the learned semantic features
into a common space. MSAE [47] learned hash functions
by capturing the intra-media and inter-media semantic rela-
tionships between data from heterogeneous sources. LCMH
[58] aimed at learning hash functions from large-scale train-
ing datasets, while considering both the intra-similarity in
eachmodality and the inter-similarity across differentmodal-
ities. Fusion Similarity Hashing (FSH) [32] modeled the
fusion similarity among different modalities by constructing
an undirected asymmetric graph. Unsupervised Knowledge
Distillation (UKD) [18] utilized a similarity matrix as well.
As an unsupervisedmethod, it estimated the similaritymatrix
using the original features of image and text, i.e., it utilized
the distance between the features of instances. Our similarity
matrix in this paper is different from theirs, and our method
focuses on the utilization of supervision information, i.e.,
labels of instances.

Supervised methods explore the correlations between het-
erogeneous data to train hash functions using supervised
information. Thus, they can usually obtain better accuracy
than unsupervised methods. For example, Semantic Corre-
lation Maximization (SCM) [53] tried to train hash codes
by a semantic similarity matrix that was calculated by
label vectors. Cross-Modality Similarity-Sensitive Hashing
(CMSSH) [4] modeled the learning of hash functions as a
binary classification problem and used a boost algorithm dur-
ing the learning process. CVH [24] learned hash functions
by projecting similar data instances from different modalities
into similar hash codes.

Many deep hashingmethods have been proposed recently.
Most of them are called one-stage methods, which means
that they combine the learning of hash codes and hash
functions in an end-to-end manner. For example, Deep
Cross-Modal Hashing (DCMH) [21] integrated the learn-
ing of deep features and hash codes into an end-to-end
framework, and used pairwise-based object function to train
the framework. PRDH [52] integrated different types of
pairwise constraints to learn the hash codes. Deep Semantic-
Preserving Ordinal Hashing (DSPOH) [23] learned hash
functions by using deep neural networks to explore the
ranking structure of feature dimensions. Self-Supervised
Adversarial Hashing (SSAH) [25] used two adversarial net-
works to maximize the semantic correlation and consistency
of representations between different modalities. Asymmet-
ric Supervised Consistent and Specific Hashing (ASCSH)
[37] presented a multimodal mapping learning strategy and
a discrete asymmetric learning framework. It extracted the
pairwise similarity and semantic labels tomake full use of the
supervised information.Multi-Level CorrelationAdversarial
Hashing (MLCAH) [36] designed a multi-level correlation

hashing model with a label-consistency attention mecha-
nism to excavate the local and global correlation information.
DeepMultiscale FusionHashing (DMFH) [38] adoptedmul-
tiscale fusion models to enhance semantic relevance and
improved hash code representativeness. Asymmetric Corre-
lation Quantization Hashing (ACQH) [37] used real-valued
query embeddings and stacked database quantization embed-
dings for improved retrieval. Fast Discriminative Discrete
Hashing (FDDH) [33] presented an efficient closed-form
solution and online strategy to learn discriminative hash
codes. It introduced an orthogonal basis to regress hash
codes and relaxed label values to minimize quantization
loss, and an orthogonal transform to ensure semantic consis-
tency. Modality-Invariant Asymmetric Networks (MIAN)
[54] introduced probabilistic alignment to capture intra- and
inter-modal similarities, bridging semantic and heterogene-
ity gaps. Multi-Label Semantic Supervised Graph Attention
Hashing (MS2GAH) [15] designed an end-to-end framework
that integrates graph attentionnetworks andmulti-label anno-
tations to bridge the semantic modality gap.

Different from the one-stage methods, two-stage methods
divide the learning of hash codes and hash functions into
two stages. The pioneering framework [28] decomposed the
hash learning into two stages. Semantics-PreservingHashing
(SePH) [31] generated unified binary hash codes byminimiz-
ing the KL-divergence, and then learned hash functions by
kernel logistic regression with a sampling strategy. Super-
vised Discrete Manifold-Embedded Cross-Modal Hashing
(SDMCH) [34] generated hash codes by using semantic
labels. It exploited a nonlinear manifold structure of data
and constructed the correlations among multiple heteroge-
neous modalities. Two-Step Cross-modal Hashing (TECH)
[10] learned hash codes by preserving the similarity in the
original space and exploiting the label correlations in the
label space at the first stage, and then learned hash functions
by leveraging the similarity relationships between training
instances at the second stage. Discrete Latent Factor Hashing
(DLFH) [22] designed a discrete latent factor model to learn
the hash codes and proposed a method called out-of-sample
extension to the hash function. Fast Cross-Modal Hashing
(FCMH) [49] used global and local similarity embedding
and efficient discrete optimization for improved accuracy
and scalability. Compared with those one-stage methods,
two-stage methods are flexible enough to change the hash
functions if needed. They take less time to train hash codes
and hash functions, and can achieve comparable retrieval
performance. However, existing two-stage methods attempt
to map similar data instances to the same hash code, and
assume that two data instances are similar as long as they
share one label. Such coarse-grained similarity definition
will produce suboptimal hash codes and impact the retrieval
accuracy.WeproposeDFGHwhich defines fine-grained sim-
ilarity to generate better hash codes and hash functions at
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the first and second stage respectively, by considering that
the more labels two data instances share, the more similar
they are.

In many one-stage methods, cross-entropy [21] is adopted
to preserve the pairwise similarity relationships between data
instances in the Hamming space. Besides, different types of
loss functions are proposed. For example, Transfer Adver-
sarial Hashing (TAH) [7] adopted a hybrid deep architecture
which incorporated a pairwise t-distribution cross-entropy
loss to learn hash codes. HashGAN [6] used a cosine cross-
entropy loss to learn hash functions. However, most of them
treat the hard and easy examples equally and enforce the
same penalization on them, which may lead to suboptimal
hash codes. To address this issue, some previous methods
[8, 51] attempted to assign higher weights to more impor-
tant examples for prioritization. However, they just assigned
the priority via the coarse-grained similarity information.
In comparison, our DFGH transfers the cross-entropy loss
from one-stage to two-stage framework to preserve the sim-
ilarity relationships in the Hamming space, and designs a
fine-grained similarity matrix to assign different weights to
different pairs, making the learning of hash functions more
sensitive to similar pairs.

3 Methodology

3.1 Formulation

Without loss of generality, we focus on cross-modal retrieval
for bimodal data (i.e., image and text), as other modalities
should be similar. Firstly, we introduce the notations and
problem definition. We use bold uppercase letter W to rep-
resent a matrix and bold lowercase letter w to represent a
vector. WT represents the transpose of the matrix W ; || · ||F
represents the Frobenius norm of a matrix; W i∗ denotes the
i-th row of W ; 1 denotes a vector with all elements being 1;
and sign(·) denotes a sign function, which is defined as:

sign(x) =
{

−1 x < 0

+1 x ≥ 0
(1)

Let O = oi ni=1 denote a cross-modal dataset with n
instances, where oi = (xi , yi , l i ) is the i-th instance. Specif-
ically, xi ∈ R

1×dx represents the original image feature;
yi ∈ R

1×dy represents the original text feature; and l i =
[l i1, . . . , l ic] is the multi-label assigned to oi , where c is the
number of classes. If oi belongs to the j-th class, l i j = 1,
otherwise l i j = 0. Hence, we can use X, Y , L to represent
the image-feature matrix, text-feature matrix, and semantic
label matrix, respectively.We use Bx and By to represent the
matrices composed of the binary hash codes corresponding to

Table 1 Main notations

Notations Explanation

O = oi ni=1 The dataset

X ∈ R
n×dx Image feature matrix

Y ∈ R
n×dx Text feature matrix

L ∈ {0, 1}n×c Semantic label matrix

Bx ∈ {−1, 1}n×k Image hash code matrix

By ∈ {−1, 1}n×k Text hash code matrix

S ∈ R
n×n Fine-grained similarity matrix

W ∈ R
c×k Transformation matrix

n Length of dataset

dx Dimension of image features

dy Dimension of text features

c Number of classes

k Length of hash codes

the image and text feature, respectively. Table 1 summarizes
the main notations used in this paper.

The objective of DFGH is to learn two sets of modality-
specific hash functions to map the features from different
modalities into a commonHamming space, i.e., f x (x; θx ) ∈
{−1, 1}k for images and f y (

y; θy
) ∈ {−1, 1}k for texts,

where k denotes the length of hash code and θ denotes the
parameters of the hash function to be learned. In the Ham-
ming space, the similarity between two binary hash codes
is evaluated by the Hamming distance. For two binary hash
codes bi and b j , there is a natural relationship between the
Hamming distance and their inner product, which is defined
as:

Hdist
(
bi , b j

) = 1

2

(
k − bi bTj

)
(2)

The larger the inner product is, the smaller the Hamming
distance is. Thus, we can use the inner product instead of the
Hamming distance to quantify the similarity between two
binary hash codes in the Hamming space.

3.2 Overview

The architecture of DFGH is shown in Fig. 1, which contains
two main components, i.e., Hash Code Inference with Fine-
grained Similarity and Hash Code Mapping with Similarity
Sensitivity. In essence, what we need to do is to generate
hash codes for the training set at the first stage, and then at
the second stage, utilize these generated hash codes to super-
vise the training of the hash functions. At the first stage, a
fine-grained similarity matrix is designed to generate a set of
discriminative hash codes which preserve the differentiated
similarity relationships between the training data. Besides,
we use an Autoencoder to encourage hash codes to preserve
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Fig. 1 The overall architecture of our proposed DFGH model. Refer to Section 3 for detail

the semantic information of labels. At the second stage, we
employ two deep neural networks (ImgNet and TxtNet) to
learn hash functions for the image and text modality, respec-
tively. The output dimension of both networks is the length of
hash code. We also design a similarity-preserving loss based
on the similarity information (i.e., our similarity matrix), to
enable the training of hash functions being more sensitive to
the pairs with higher degree of similarity.

3.3 Hash code inference with fine-grained similarity

Fine-grained similaritymining At this stage,we need to infer
a set of hash codes which can best preserve the differentiated
similarities between the original training data. Firstly, we
construct a fine-grained similarity matrix with the semantic
labels to represent the differentiated similarities. As analyzed
previously, most hashing methods just use a coarse-grained
similarity matrix S̄ to describe the similarities between the
original data instances. Specifically, in a multi-label setting
where a data instance oi can be associated with multiple
labels, it defines S̄i j = 1 if oi and o j share at least one label,
indicating they are semantically similar, and S̄i j = 0 oth-
erwise, where i, j ∈ {1, . . . , n}. However, discrete values
cannot fully describe the differentiated similarity informa-
tion. As shown in Fig. 2, when data instances A and B have
common labels, they will be mapped to the same point in
the Hamming space, irrespective of their potential associa-
tions with different semantic label vectors. Besides, despite

the fact that a data instance C shares more labels with A
than with B, C and B will be mapped to the same point in
the Hamming space. It reveals that the similarity between C
and A is the same as the similarity between B and A in the
Hamming space, though C is semantically closer to A in the
original feature space.

To tackle these issues, we introduce a fine-grained simi-
larity matrix Ŝ, with its elements defined as follows:

Ŝi j = l i lTj
1lTi + 1lTj − l i lTj

(3)

where l i and l j are semantic label vectors of data instances

oi and o j , respectively. The value of Ŝi j is larger if oi and
o j share more labels, which indicates that oi and o j have a

higher degree of similarity. It is obvious that the value of Ŝi j
is 0 if oi and o j share no common labels. For the convenience
of calculation, we make the hash codes belong to {−1, 1}k ,
so their correct inner product for the dissimilar pairs should
be closer to −1 instead of 0. To construct the relationship
between the similarity matrix and the dot product of hash
codes, we convert Ŝi j from [0, 1] to [−1, 1]. We then get the
final fine-grained similarity matrix S as:

Si j =
{
Ŝi j Ŝi j > 0

−1 Ŝi j = 0
(4)
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Fig. 2 An illustration of using
coarse-grained similarity

A
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When the instances oi and o j share at least one label,
which means that they have a certain degree of similarity,
we set the value of Si j to be greater than 0 and expect that
the Hamming distance between the two hash codes is not
too large. Conversely, if no labels are shared, we aim for a
maximized Hamming distance between the hash codes. We
use the inner product of two hash codes to reconstruct the
original relationship and define the similarity reconstruction
loss as:

min
B

∥∥∥∥1k BBT − S

∥∥∥∥
2

F
s.t. B ∈ {−1, 1}n×k (5)

The designed loss pushes the generated hash codes to be
discriminative and to preserve the differentiated similarities
between the training data.

Semantic information mining To enable the hash codes to
preserve the semantic information of labels, we consider to
establish connectionbetween thehash codes and the semantic
labels.

B = LW , L = BWT, W ∈ R
c×k (6)

This additional Autoencoder pushes the hash codes to
preserve the information contained in the original seman-
tic labels. Besides, the learning of hash codes is supervised
by the fine-grained similarity reconstruction loss. Thus, there
are no adverse consequences even when the number of nodes
in the hidden layer (i.e., the number of bits in each hash
code) exceeds the number of nodes in the input layer (i.e.,
the number of bits in each semantic label) within the Autoen-
coder. Our aim is to minimize the reconstruction error, and
the objective function is formulated as:

min
W

∥∥∥L − LWWT
∥∥∥2
F

s.t. LW = B (7)

This enables the generated hash codes to preserve the seman-
tic information of labels. We use a learnable parameter α to
decide the importance of reconstruction. Then, the total loss

function of the first stage is defined as:

min
B,W

∥∥∥∥1k BBT − S

∥∥∥∥
2

F
+ α

∥∥∥L − LWWT
∥∥∥2
F

s.t.B ∈ {−1, 1}n×k , LW = B (8)

Thus we obtain optimal hash codes which preserve the dif-
ferentiated similarity relationships between training data and
the semantic information of labels.

Optimization Next, we proceed to derive the optimization
process for the objective function. To optimize (8), we first
rewrite it as:

min
B,W

∥∥∥∥1k BBT − S

∥∥∥∥
2

F
+ α

∥∥∥L − BWT
∥∥∥2
F
+ λ ‖B − LW‖2F

s.t.B ∈ {−1, 1}n×k (9)

where λ is a parameter used to adjust the weight of the
last term. Equation (9) is a Mixed Integer Programming
(MIP) problem, which is usually NP-hard due to the binary
constraints. To address this issue, we convert the binary con-
straints B ∈ {−1, 1}n×k into two conditions B ∈ Sb and
B ∈ Sp, where Sb and Sp are the sets of [−1, 1]n×k and{
B| ‖B‖2F = nk

}
, respectively [41]. We introduce two vari-

ables Z1 and Z2 to absorb these constraints. Therefore, the
constrains in (9) can be converted into B = Z1, Z1 ∈
Sb and B = Z2, Z2 ∈ Sp. Building on such transfor-
mation, we design an Alternating Direction of Multipliers
(ADMM) algorithm [3], and iteratively solve the augmented
Lagrangian function of (9) as:

min
B,W ,Z1,Z2,Y ,Y2

∥∥∥∥1k BBT − S

∥∥∥∥
2

F
+ α

∥∥∥L − BWT
∥∥∥2
F

+λ ‖B − LW‖2F
+δSb (Z1) + δSp (Z2) + ρ1

2
‖B − Z1‖2F

+ρ2

2
‖B − Z2‖2F
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+Tr
(
YT
1 (B − Z1)

)
+Tr

(
YT
2 (B − Z2)

)
(10)

where δS (Z) is an indicator function which equals to zero if
Z ∈ S and +∞ otherwise; Y1 and Y2 are the dual variables;
ρ1 and ρ2 are the penalty variables. The specific process for
updating these variables is shown as below.

1) B-Step: Through fixing all the variables except B, we
can update B by minimizing the following objective func-
tions:

min
B

L =
∥∥∥∥ 1k BBT − S

∥∥∥∥2
F

+ α

∥∥∥L − BWT
∥∥∥2
F

+ λ ‖B − LW‖2F
+δSb (Z1) + δSp (Z2) + ρ1

2
‖B − Z1‖2F + ρ2

2
‖B − Z2‖2F

+Tr
(
YT
1 (B − Z1)

)
+ Tr

(
YT
2 (B − Z2)

)
(11)

Such a sub-problem can be iteratively solved by the
LBFGS-B method, with the gradient calculated as:

∂L
∂B

= 4

k2
BBTB − 4

k
SB + 2α

(
BWT − L

)
W

+2λ (B − LW) + (ρ1 + ρ2) B + Y1 + Y2

−ρ1Z1 − ρ2Z2 (12)

2) Z-Step: Through fixing all the variables except Z, we
can update Z1 and Z2 by the proximal minimizing methods.
In particular, we eliminate δSb (Z1) and δSp (Z2) in (10) first
and set the derivative with respect to Z1 and Z2 to 0.We then
get the closed-form solutions of Z1 and Z2, and project Z1

and Z2 into the sets Sb and Sp, respectively. The updating
process for Z1 and Z2 is formulated as:

Z1 = 5Sb

(
B + 1

ρ1
Y1

)
(13)

Z2 = 5Sp

(
B + 1

ρ2
Y2

)
= √

nk
B + 1

ρ2
Y2∥∥∥B + 1

ρ2
Y2

∥∥∥ (14)

where 5Sb and 5Sp are two projection operators, 5Sb projects
values above 1 to 1 and values below −1 to −1., and 5Sp
forces Z2 to satisfy the condition ‖Z2‖2F = nk.

3) Y -Step: Through fixing all the variables except Y , we
can update Y1 and Y2 by performing gradient ascent on the
dual problem, which is formulated as:

Y1 = Y1 + ρ1 (B − Z1) (15)

Y2 = Y2 + ρ2 (B − Z2) (16)

4)W -Step: Through fixing all the variables exceptW , we
can updateW by taking the derivative of (10) with respect to
W and setting it to 0. Thus, we obtain the following equation:

αWBTB + λLTLW = αLTB + λLTB (17)

We can solve such a Sylvester equation efficiently by the
Bartels-Stewart algorithm [2].

The above iterative optimization is described inAlgorithm
1. Here, the sign function is not utilized until the final hash
code is obtained in the last step. Therefore, the derivation of
sign function is not involved in this process.

Algorithm 1 The learning strategy of Hash Code Inference.
Input: Labels of training instances {l i }ni=1; Code length k; Parameters
α, γ, ρ1, ρ2
Output: Binary hash code for the training instances B
1: Randomly initialize B.

2: Set Y1 = B and Y2 = B.
3: repeat
4: Update B by solving (11) with the LBFGS-B algorithm;
5: Update Z1 and Z2 with (13) and (14);
6: Update Y1 and Y2 with (15) and (eq16);
7: Update W by solving (17) with the Bartels-Stewart algorithm;
8: until convergence
9: return B
10: Get the binary hash code B = sign(B).

3.4 Hash codemapping with similarity sensitivity

Similarity sensitivity learning At the second stage, we aim
to learn hash functions to project new query samples onto
appropriate hash codes. Following the conventionswithin the
cross-modal hashing field, we choose a Convolutional Neu-
ral Network (CNN) for images and aMulti-Layer Perception
(MLP) for texts to perform themapping. The outputs of these
two networks can be denoted by Fx

i∗ = f x (xi ; θx ) ∈ R
1×k

and Fy
i∗ = f y( yi ; θy) ∈ R

1×k , where θx and θy are
the parameters of the image network and the text network,
respectively. The loss function of the second stage can be
divided into the mapping loss, classification loss and simi-
larity preserving loss.

Considering that the above two networks (i.e., the CNN
for images and the MLP for texts) should map the images
and texts into a common representation space, we employ
the following mapping loss to measure the error between
these representations and the first-stage hash codes.

J1 = ∥∥Fu − B
∥∥2
F (18)

where u can be x or y, x for image modality and y for text
modality.
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Just as anAutoencoder is employed to ensure the preserva-
tion of semantic label information within hash codes during
the first stage, we aspire to maintain the distinctiveness
between data instances with different semantic labels in the
common space. To predict the labels of the representations
(i.e., the hash codes), two linear classifiers are attached to the
top of the image network and the text network, respectively.
The classification loss in the label space is defined as:

J2 = ∥∥FuV − L
∥∥2
F , V ∈ R

k×c (19)

where V is the parameter of the linear layer. This layer maps
the hash code to class label for loss calculation.

The retrieval performance can be improved when the
output of the network is close to the semantically similar
data instances but far away from the dissimilar ones in the
common representation space. Therefore, we introduce a
similarity preserving loss. Firstly, we convert Si j from the
range of −1 to 1 back to the range of 0 to 1, which means
that we convert −1 to 0 in S. A coarse-grained matrix S̃ is
then utilized to calculate its probability under the condition
Fu , which is formulated as:

p(̃Si j |Fu
i∗, F

u
j∗) =

{
ϕ(ψi j ) S̃ = 1

1 − ϕ(ψi j ) S̃ = 0
(20)

where ϕ (x) = 1
1+e−x and ψi j = 1

2 (F
u
i∗)(F

u
j∗)

T; S̃i j = 1
means that the data instances oi and o j form a similar pair,
and S̃i j = 0meansoi ando j formadissimilar pair. The larger
the inner product of two data instances is, the more similar
they are. Thus, we formulate the negative log likelihood of
the similarities as:

J̃3 = −
n∑

i, j=1

(̃Si j log (ϕ(ψi j ))+(1− S̃i j )(log (1 − ϕ(ψi j )))

(21)

Motivated by Focal Loss (FL) [30], we assign differ-
ent weights to different data pairs. For a similar pair,
the more similar the pair is, the larger weight it will be
assigned. Because the loss decreases as the Hamming dis-
tance decreases, we assign larger weights to significantly
penalize the similar pairs with a small Hamming distance,
i.e., hard similar pairs. Therefor, the loss is more sensitive to
the pairs with higher degree of similarities, and then super-
vise the model to provide close representations for similar
instances. To meet the above expectations, the weight is
defined as:

W i j = (
γ1Si j

)S̃i j (
k + μi j

k
γ2

)1−S̃i j
(22)

where μi j = sign
(
Fu
i∗

)
(sign(Fu

j∗))
T; γ1 and γ2 are hyper-

parameters that adjust the weights W and deal with the class
imbalance problem. By taking the priority weight in (22), the
similarity preserving loss is rewritten as a weighted cross-
entropy loss:

J3 = −
n∑

i, j=1

W i j (̃Si j log (ϕ(ψi j ))

+(1 − S̃i j )(log (1 − ϕ(ψi j ))) (23)

With this loss function, the mapping has the ability to pre-
serve the differentiated similarity relationships between the
original data. In addition, the weights used for the cross-
entropy makes the training process sensitive to the hard
similar pairs. The whole loss function of the second stage
is therefore:

J = J1 + β1J2 + β2J3 (24)

where β1 and β2 are hyper-parameters to adjust the weights
of J2 and J3. J2 is related to the length of hash code k
and the number of classes c. It can be easily derived that the
longer the hash code is, the easier the hash code can pre-
serve the classification information. By contrast, the larger
the number of classes is, the more difficult for the hash code
to get the correct class. In conclusion, longer hash code and
smaller number of the classes will lead to a smaller classifi-
cation loss. Therefore, we put k in the numerator and c in the
denominator. Finally, as the scale of this ratio is controlled

by logarithm, β1 is empirically set as ln
(
e + ( k

c

)2) − 1.

Optimization. At the second stage, we need to learn the
parameters θx , θy and V , which are updated by the Back-
propagation (BP) algorithm with the Stochastic Gradient
Descent (SGD) method. The derivatives of the loss function
are computed as:

∂J
∂Fu

i∗
= 2

(
Fu
i∗ − Bi∗

)
+1

2
β2W i j

∑
j :̃Si j∈S̃

(ϕ(ψi j ) − S̃i j )Fu
j∗

+1

2
β2W j i

∑
j :̃S j i∈S̃

(ϕ(ψ j i ) − S̃ j i )Fu
j∗ (25)

∂J
∂V

= 2β1

((
Fu)T FuV − (

Fu)T L
)

(26)

The gradients are then fed back to update the network
parameters. The derivation of sign function is not involved
in the process of back-propagation.
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4 Experiments

4.1 Datasets

MIRFlickr-25K [20] consists of 25,000 images collected from
Flickr. Each image is associatedwith a number of textual tags
and labeledwith at least one of the 24 unique semantic labels.
We select the images with at least 20 textual tags, and obtain
20,015 image-tag pairs. For each pair, the textual instance
is represented as a 1,386-dimensional Bag-of-words (BOW)
vector. We randomly sample 2,000 pairs as the query set, and
the remaining 18,015 pairs are used as the database where we
randomly sample 10,000 pairs as the training set. It is worth
mentioning that in this task, such spilt strategy is widely used
and random selection does not have a significant impact on
the results.

NUS-WIDE [11] is a real-world image dataset containing
269,648 images. Each image is associated with a number
of textual tags labeled with at least one of the 81 unique
concept labels. We only select the image-tag pairs which
belong to the 21 most frequent concepts. For each pair, the
textual instance is represented as a 1,000-dimensional BOW
vector. 100 pairs per concept label are randomly sampled
as the query set, and the remaining 500 pairs per concept
label are randomly sampled as the training set. In total,
there are 2,100 pairs for query set and 10,500 pairs for
training set.

MS-COCO [29] contains 82,783 training images and 40,504
validation images, and is also a multi-label dataset. In our
experiments, 117,218 data instances are used. Each text is
represented as a 2,000-dimensional BOW vector. We ran-
domly sample 5,000 instances as the query set, and the
remaining are used as the database where we randomly sam-
ple 10,000 instances as the training set.

4.2 Evaluationmetrics

In general, we experiment with two typical retrieval tasks for
cross-modal hashing methods, i.e., Image-to-Text Retrieval
(I → T ) and Text-to-Image Retrieval (T → I). We adopt
two commonly used protocols in cross-modal retrieval, i.e.,
Hamming ranking and hash lookup. Hamming ranking sorts
the data instances in a database and returns the data instances
with the highest similarity to a given query. The top-N -
precision curve and Mean Average Precision (MAP) are
widely used to measure the Hamming ranking task. Hash
lookup returns all the data instances within a certain Ham-
ming radius given the query instance. The precision-recall
curve is widely used to measure the hash lookup task. To
obtain the MAP score, we need to calculate the Average Pre-

cision (AP) for each query, which is defined as:

AP = 1

N

R∑
r=1

p (r)×relr (27)

where N is the number of relevant data instances in the
database; p(r ) represents the precision of the top-r returned
data instances; relr = 1 if the r -th returned data instance is
relevant to the query and relr = 0 otherwise. We can then
calculate theMAP score by averaging the APs for all queries.
Here, we choose MAP@R=500.

4.3 Implementation details

For image modality, following the method GCH [50], we
adopt CNN-F [9] for image modality due to its excel-
lent capability on image feature extraction. It is pre-trained
on ImageNet [13]. We keep the five convolutional layers
conv1-conv5 and the next two fully-connected layers fc6-
fc7 unchanged and then replace the eighth layer fc8 with a
new fully-connected layer which has k nodes tomap the deep
image features into the Hamming space.

For text modality, we first use the BOW representation to
transform each text into a vector, and then use a simple MLP
to map the BOW vectors into the Hamming space. The MLP
consists of three fully-connected layers with 512, 512 and k
nodes, respectively.

For our proposed method, we set the hyper-parameters as
α = λ = 1, ρ1 = ρ2 = 0.01, β2 = 10, γ1 = 1, γ2 =
0.05 for MIRFlickr-25K, γ1 = 0.5, γ2 = 0.1 for NUS-
WIDE, and γ1 = 0.1, γ2 = 0.5 for MS-COCO. To learn
the neural network parameters at the second stage, we adopt
Adam solver and set the learning rate within 10−3 and 10−4,
and the batch size to 64. We implement our method with
PyTorch on a single NVIDIA GTX 1080Ti GPU.

4.4 Comparison with state-of-the-art approaches

We compare our proposed method with the state-of-the-art
cross-modal hashing methods, including CMSSH [4], SCM
[53], STMH [46], SePH [31], DCMH [21], SSAH [25],
GCH [50], DLFH [22], MLCAH [36], ASCSH [37], FCMH
[49], MIAN [54] andMS2GAH [15]. Among these methods,
CMSSH, SCM, STMH, SePH and DLFH are shallow meth-
ods, and the rest are deep methods. The deep networks for
our proposed DFGH are the same as the previous work. They
all use the CNN-F network for image modality and MLP for
text modality. Besides, SePH, DLFH and FCMH are also
two-stage methods.

Table 2 reports the MAP scores of all ten methods and
our DFGH for two cross-modal retrieval tasks with the hash
codes varying from16 bits to 64 bits. For fair comparison,we
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follow the setting of GCH in [50], as it reported the highest
metric scores over all the comparison methods. In [50], the
author reported the scores of CMSSH, SCM, STMH, SePH
andDCMH. The comparisons between our method and these
SOTA methods are under the same settings. We also dis-
cuss other methods, e.g., DLFH, MLCAH, ASCSH, FCMH,
MIAN and MS2GAH. To the best of our knowledge, these
methods did not release the source code to the public, making
it hard to reproduce the results under the same settings. For-
tunately, according to existingworks [25, 36, 50], the random
sampling strategymakes little influence on the results. Under
a similar scaling partition of the training and test set, the
results of the same methods are almost the same. Therefore,
we cite the results directly from the original papers. Further-
more, we use “SUM” to represent the sum of theMAP scores
for the tasks of Image-to-Text Retrieval and Text-to-Image
Retrieval. Figures 3, 4 and 5 show the top-N -precision and
precision-recall curves with 64-bit hash codes on the three
datasets. Because SSAH, MLCAH and MS2GAH have not
released their source codes and the original papers did not
give the experimental results under the same settings as those
listed in thiswork, there are no corresponding curves for these

twomethods in Figs. 3–5. Similarly, there are no correspond-
ing curves for DLFH and ASCSH in Fig. 5.

As shown in Table 2 and Fig. 3–5, our DFGH outper-
forms most of the compared methods in terms of different
datasets and different lengths of hash codes. Specifically, on
MIRFlickr-25K, compared to GCH and MS2GAH, which
get the top three highest scores in “SUM”, DFGH achieves
a slight lower performance on the MAP score with 32-
bit and 64-bit hash codes, while a significant improvement
with 16-bit hash codes. It means that the reduction of the
hash code length may have less impact on DFGH, because
DFGH uses a fine-grained similarity matrix and a similarity
preserving loss function to capture the differentiated sim-
ilarity relationships, which is also effective for short hash
codes. On both NUS-WIDE and MS-COCO, DFGH sig-
nificantly outperforms the other methods. Compared with
MIRFlickr-25K, NUS-WIDE andMS-COCO aremore com-
plex and contain larger amounts of data, and the tasks
are thus more challenging. The excellent performance on
both datasets demonstrates that DFGH performs well in
complex scenarios where it is more demanding to cap-
ture the differentiated similarity relationships between the

Fig. 3 The top-N -precision and precision-recall curves with 64-bit hash codes on MIRFlickr-25K
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Fig. 4 The top-N -precision and precision-recall curves with 64-bit hash codes on NUS-WIDE

original data instances and preserve them in the Hamming
space.

On these three benchmark datasets, for one-stage deep
methods DCMH and GCH, the results of Text-to-Image
Retrieval are generally better than those of Image-to-Text
Retrieval, indicating that it is more difficult to capture the
semantic similarity relationships between image modality
and text modality via image query. For one-stage methods,
the learning of hash codes is affected by both image features
and text features. Thegenerated hash codesmaycontainmore
semantic information of text modality, because it is more
difficult to capture the hidden semantic information from an
image than from texts. Different from the one-stagemethods,
the results for Image-to-Text Retrieval by our DFGH are gen-
erally slightly better than those for Text-to-Image Retrieval
on MIRFlickr-25K. The reason may be that the two-stage
methods only generate hash codes from the semantic labels
without using the image features and text features at the first
stage. Moreover, the training set is almost half the size of the
entire dataset on MIRFlickr-25K, which makes the image
and text networks have similar ability to map the original
data to hash codes. However, on NUS-WIDE, the training set

is only a small portion (less than 4%) of the entire dataset,
making it more difficult to preserve the similarity relation-
ships between different modalities for image modality. In
the results of another recent two-stage method (i.e., FCMH),
we can also observe a similar outcomes, while our approach
further enhances performance. Additionally, with texts com-
posed of sentences, MS-COCO has higher quality in text
modality than the other two datasets. Therefore, it is much
easier to capture the hidden semantic information from texts
in MS-COCO. Different from SePH, our DFGH uses MLP
for text modality, which has a stronger ability to extract text
features.

The above experimental results have shown that the pro-
posed DFGH outperforms the state-of-the-art cross-modal
hashing methods. We now compare our DFGH with the
two-stage method TECH [10] on MIRFlickr-25K. Because
TECH used different settings from the other methods, we
conduct another experiment by following the experimen-
tal protocols provided in TECH. Specifically, we randomly
select 2,000 data instances as the query set and the remain-
ing 18,015 instances as the training and retrieval set. Deep
CNN-F features are extracted for TECH, and theMAP scores
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Fig. 5 The top-N -precision and precision-recall curves with 64-bit hash codes on MS-COCO

are adopted for all query instances. The related experimen-
tal results are reported in Table 3. It can be seen that DFGH
outperforms TECH in most cases. From the MAP scores
of DFGH, we can also find that the extracted text repre-
sentations can preserve the similarity relationships between
different modalities better than image representations. The
greater performance boost in shorter code length proves the
effectiveness of the preserved similarity relationships again.
It should be noted that, in the task of text-to-image, our

Table 3 MAP scores with different lengths of hash codes for TECH
and DFGH on MIRFlickr-25K

Task Method MIRFLICKR-25K
16 bits 32 bits 64 bits

I→T TECH [10] 0.806 0.819 0.839

Our DFGH 0.807 0.821 0.833

T→I TECH [10] 0.799 0.815 0.837

Our DFGH 0.839 0.853 0.863

SUM TECH [10] 1.605 1.634 1.676

Our DFGH 1.646 1.674 1.696

method outperforms TECH significantly. Our method sur-
passes the TECH by 0.040, 0.038, 0.026 respectively in 16
bits, 32 bits, and 64 bits. In fact, the task of text-to-image is
far more widely used than the task of image-to-text in prac-
tice. For the latter task, the technique of image captioning
is more common. In terms of computational complexity, the
length of hash code is the determining factor. It is worthwhile
to spend more time in the training process to obtain higher
accuracy.

4.5 Ablation study

Effects of main components To verify the effectiveness of
the main components in our DFGH model, we conduct the
ablation study experiments on three benchmark datasets, as
shown in Table 4. We aim to explore four variants of DFGH:
1) DFGH-NAE is a DFGH variant without Autoencoder at
the first stage; 2) DFGH-UWXE is a DFGH variant that
uses unweighted cross-entropy loss at the second stage; 3)
DFGH-MBC is a DFGH variant that uses multi-binary clas-
sification to train the hash functions at the second stage; and
4) DFGH-CGM is a DFGH variant that uses the coarse-
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Table 4 MAP scores of DFGH and its variants on three benchmark datasets

Task Method MIRFLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T DFGH-NAE 0.871 0.883 0.890 0.745 0.766 0.780 0.702 0.764 0.793

DFGH-UWXE 0.867 0.879 0.885 0.744 0.770 0.785 0.709 0.764 0.793

DFGH-MBC 0.861 0.875 0.886 0.743 0.769 0.780 0.703 0.757 0.796

DFGH-CGM 0.855 0.869 0.881 0.737 0.764 0.770 0.693 0.751 0.791

DFGH 0.876 0.887 0.893 0.762 0.779 0.806 0.722 0.777 0.808

T→I DFGH-NAE 0.878 0.878 0.879 0.783 0.812 0.815 0.769 0.884 0.924

DFGH-UWXE 0.873 0.874 0.881 0.786 0.811 0.816 0.783 0.869 0.924

DFGH-MBC 0.872 0.873 0.875 0.780 0.808 0.818 0.785 0.873 0.928

DFGH-CGM 0.860 0.868 0.875 0.784 0.799 0.813 0.755 0.862 0.904

DFGH 0.881 0.882 0.884 0.799 0.828 0.834 0.813 0.893 0.940

SUM DFGH-NAE 1.749 1.761 1.769 1.528 1.578 1.595 1.471 1.648 1.717

DFGH-UWXE 1.740 1.753 1.766 1.530 1.581 1.601 1.492 1.633 1.717

DFGH-MBC 1.733 1.749 1.761 1.523 1.577 1.598 1.488 1.630 1.724

DFGH-CGM 1.715 1.737 1.756 1.521 1.563 1.583 1.448 1.613 1.695

DFGH 1.757 1.769 1.777 1.561 1.607 1.640 1.535 1.670 1.748

DFGH-NAE: a DFGH variant without Autoencoder; DFGH-UWXE: a DFGH variant with an unweighted cross-entropy loss; DFGH-MBC: a
DFGH variant using multi-binary classification; and DFGH-CGM: a DFGH variant that uses the coarse-grained similarity matrix

grained similarity matrix at the first stage and unweighted
cross-entropy loss at the second stage.

As expected,DFGHoutperformsDFGH-NAE,which ver-
ifies the effectiveness of the added Autoencoder at the first
stage. Comparing DFGH with DFGH-UWXE, we find that
the unweighted pairwise cross-entropy loss may lead to sub-
optimal performance. Themain reason is that this loss assigns
the same weight to each pair, causing the learning pro-
cess to be equally sensitive to each pair. In contrast, our
DFGHmodel uses thefine-grained similaritymatrix to assign

different weights to different pairs, making the training pro-
cess sensitive to similar and hard pairs and further enabling
the hash codes in Hamming space to preserve the differ-
entiated similarity relationships between the original data.
DFGH-UWXE significantly outperforms DFGH-CGM. The
only difference between these two variants is the similar-
ity matrix used at the first stage. This comparison shows the
effectiveness of the fine-grained similarity matrix and further
demonstrates the importance of fully capturing the similarity
information.

Table 5 MAP scores of models without J1, J2 and J3 on three benchmark datasets

Task Method MIRFLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I → T w/o J1 0.560 0.517 0.547 0.363 0.354 0.443 0.190 0.288 0.298

w/oJ2 0.856 0.868 0.872 0.743 0.768 0.780 0.705 0.765 0.802

w/oJ3 0.852 0.865 0.868 0.732 0.767 0.772 0.704 0.754 0.793

All 0.876 0.887 0.893 0.762 0.779 0.806 0.722 0.777 0.808

T→I w/oJ1 0.545 0.433 0.491 0.268 0.313 0.374 0.188 0.301 0.247

w/oJ2 0.865 0.870 0.873 0.780 0.805 0.815 0.783 0.875 0.927

w/oJ3 0.855 0.864 0.869 0.786 0.804 0.818 0.776 0.877 0.924

All 0.881 0.882 0.884 0.799 0.828 0.834 0.813 0.893 0.940

SUM w/oJ1 1.105 0.950 1.038 0.631 0.667 0.817 0.378 0.589 0.545

w/oJ2 1.721 1.738 1.745 1.523 1.573 1.595 1.488 1.640 1.729

w/oJ3 1.707 1.729 1.737 1.518 1.571 1.590 1.480 1.631 1.717

All 1.757 1.769 1.777 1.561 1.607 1.640 1.535 1.670 1.748

“w/o” means without the corresponding loss. “All” means all the losses are used
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Effects of loss functions in Stage 2 Further, to verify the
effectiveness of the components of the loss function at the
second stage, we conduct the ablation study experiments on
three benchmark datasets, as shown in Table 5. We report the
MAP scores of the model without J1, J2 and J3 on three
benchmark datasets, respectively. On the whole, J1 is the
most crucial loss. There is a dramatic drop in performance
without J1. This proves the effectiveness of the pipeline of
our two-stage method. The most important thing for hash
function learning is to get guidance on the hash codes inferred
from the first stage. For J2 and J3, there is an improvement
of an average of 0.02 for each task. Note that the improve-
ment brought by doubling the hash code length is about 0.02
here, so such improvement is significant. It indicates that the
design of classification loss and weighted similarity preserv-
ing loss can well boost the retrieval performance, proving
the effectiveness of preserving the semantic information of
labels and similarity information in hash codes.

4.6 Parameter sensitivity analysis

We analyze parameter sensitivity on the most used datasets
MIRFlickr-25K and NUS-WIDE. We design experiments
with both retrieval tasks and fix the hash code length as 64
bits empirically. There are eight hyper-parameters in DFGH,
i.e., α, λ, γ1, ρ1, ρ2, γ2, β1 and β2. As mentioned before, β1

is related to the length of the hash code k and the number
of classes c, thus we construct the value of β1 empirically.
In addition, we follow the previous work SADH in [41] and
set the value of two dual variables ρ1 and ρ2 to 0.01. There-
fore, we only present the experimental results about α, λ, and
β2 in Figs. 6, 7 and 8. Here, we use “Average” to represent
the average score for Image-to-Text Retrieval and Text-to-
Image Retrieval. Overall, the influence of the parameters on
the results tends to be clearer and more stable. This means
that in the parameter selection process, we can get the most
suitable parameters without too much effort.
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Fig. 6 Parameter analysis of α and λ on MIRFlickr-25K and NUS-WIDE
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Fig. 7 Parameter analysis of γ1 and γ2 on MIRFlickr-25K and NUS-WIDE
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Fig. 8 Parameter analysis of β2 on MIRFlickr-25K and NUS-WIDE

123



Deep cross-modal hashing with fine-grained similarity 28971

Parametersα andλ represent the importance of the Autoen-
coder loss. From Fig. 6, we observe that the average
MAP scores of DFGH first increase and then drop with
α and λ in [0.5, 10] on MIRFlickr-25K, but keep rela-
tive stable on NUS-WIDE. It indicates that the semantic
information of labels is helpful to improve the retrieval per-
formance, but too much intervention of Autoencoder may
make the learning of hash code worse on a small-scale
dataset.

Parameters γ1 and γ2 adjust the coarse-grained matrix and
deal with the class imbalance problem. From Fig. 7, we can
observe that on MIRFlickr-25K, the average MAP scores
first increase steadily with γ1 in [0.05, 0.7], and then remain
stable with γ1 in [0.7, 1.0]. Besides, the averageMAP scores
first keep relatively stable with γ2 in [0.7, 1.0], and then drop
rapidly. Different from those onMIRFlickr-25K, the average
MAP scores on NUS-WIDE are not sensitive to the hyper-
parameters γ1 and γ2 in [0.05, 0.7], and drop when γ1 and
γ2 are greater than 0.7.

Parameter β2 controls the similarity preserving loss. As
shown in Fig. 8, on MIRFlickr-25K the average MAP scores
first increase steadily with β2 in [1, 10], indicating that the
similarity preserving loss is necessary to learn the hash
functions. However, when β2 becomes too large, the aver-
age MAP scores also drop. Different from the average
MAP scores on MIRFlickr-25K, those on NUS-WIDE first
increase steadily with β2 in [1, 10], and then keep stable over
a wide range of values. Besides, the best retrieval perfor-
mance can be achieved under different settings on different
datasets.

5 Conclusion

In this paper, we introduce a two-stage deep hashing method
(i.e., DFGH) for cross-modal retrieval. To generate better
hash codes, we design a fine-grained similarity matrix to
explore the differentiated similarity relationships between
data instances. An autoencoder is utilized to preserve the
semantic information of labels. To obtain better hash func-
tions, we design a similarity sensitivity learning strategy and
a similarity preserving loss. They enable the hash codes gen-
erated by the hash functions to preserve the differentiated
similarity relationships in the Hamming space. The adoption
of such fine-grained similarity matrix obviously promotes
the retrieval performance, demonstrating the importance of
exploring fine-grained similarity information. In the future,
it is promising to utilize more information besides of labels
to mine more similarity information for the construction of
the similarity matrix.
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