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Abstract
Vehicle routing (VRP) and traveling salesman problems (TSP) are classical and interesting NP-hard routing combinatorial 
optimization (CO) with practical significance. While moving forward with artificial intelligence, researchers are paying 
more and more attention to applying machine learning to classical CO problems. However, traditional reinforcement learn-
ing faces challenges like reward sparsity and unstable training, so it is necessary to assist agents in finding high-quality 
routings in the initial model training stage to obtain more positive feedback. This paper proposes a novel Monte Carlo Tree 
Search (MCTS)-based two-stage multi-agent reinforcement learning training pipeline (MCRL) in which we also design a 
multifunctional reward function, improving efficiency, accuracy, and diversity to guide agents to learn the routings over 
graphs better. Besides, previous approaches are frequently too sluggish in runtime to be useful in contexts with sparsely con-
nected networks and uncertain traffic. As an alternative, we design a model based on graph neural networks that can execute 
multi-agent routing in a sparsely connected graph with constantly changing traffic circumstances. Also, the agents are better 
equipped to collaborate online and adjust to changes thanks to our learned communication module.

Keywords  NP-hard problems · Combinatorial optimization · Graph neural networks · Reinforcement learning · Monte 
Carlo Tree Search

1  Introduction

Combinatorial optimization (CO) problems [1] (Fig.  1 
illustrates an example of VRP) usually include NP-hard and 
P-problems, and fast solving them is of central theoretical 
significance and practical application value. Traditional 
approaches primarily design corresponding approximation 
or heuristic algorithms tailored to specific problems (e.g., 
ant colony, genetic, simulated annealing, etc.) [2–5], but 
they cannot effectively use previous experience for different 

instances of similar problems. There are inherent similarities 
between problems occurring in the same application area 
[6], but traditional approaches do not systematically take 
advantage of this.

Therefore, people hope to find a general way to address 
optimization problems, dig out the essential information on 
the problems with offline learning and improve the efficiency 
and quality of solving problems by automatically updating 
the solution policy online. Deepmind has revolutionized 
artificial intelligence by showing that deep learning and 
reinforcement learning [7] can solve some CO problems 
since playing Go [8], resource allocation [9], and matrix 
decomposition [10] are about searching for solutions across 
large combinatorial spaces. We can also establish an appro-
priate mathematical model for CO problems, apply deep 
neural networks for feature representation, and use appro-
priate search strategies to reduce the solution space [11]. We 
can gradually accumulate experience to guide the solutions 
of future (unknown) instances. For example, some recent 
works adopt the encoder-decoder paradigm based on the 
attention mechanism [12] to deal with the node sequences 
in CO problems [13–15]. Some works apply graph neural 
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networks (GNNs) [16] to aggregate the information on nodes 
and edges to learn the topological structure of CO graph 
instances [17–19]. Then they apply reinforcement learning 
with a search strategy to optimize the model’s parameters 
and output solutions.

Deep reinforcement learning regards general graph rout-
ing optimization problems as data points under a given dis-
tribution. After learning the probability distribution of data 
points, it can be generalized to other problem instances with 
a similar distribution. Traditional heuristic algorithms based 
on expert experience tend to fall into local optimality with-
out realizing it, but deep reinforcement learning can break 
through this limitation. Solving problems one-to-many in 
an automated manner is attractive and can bring substantial 
economic benefits and eliminate inefficient manual work, 
which may be one of the core goals of artificial intelligence. 
Despite showing promising results, existing learning-based 
works have several significant limitations. For example, 
in modeling, the number of traditional GNN parameters 
increases with the graph instances size [20], which may lead 
to being too heavy to be trained effectively. Recurrent neu-
ral network (RNN)-based approaches [14, 15, 21] may also 
affect parallel computation as the size of graphs increases. 
Reinforcement learning improves the model’s generaliz-
ability, but its accuracy is currently inferior to supervised 
learning [22]. More importantly, reinforcement learning is 
notoriously unstable, and it often encounters the problem of 
sparse rewards in the initial training phase.

Moreover, the generated solutions are not diverse 
enough, as existing methods can only train one construc-
tion policy and apply sampling or beam search to create 
solutions from the same policy. The only source of diver-
sity is a relatively deterministic probability distribution, 

which is far from sufficient. Previous methods’ multi-agent 
settings are rarely explored and frequently evaluated on 
rudimentary planar graph benchmarks. Moreover, none 
of these approaches were intended for dynamic settings 
where online communication might be quite valuable. 
This is a challenging issue with several fleet management 
applications to accomplish the same objective, including 
ride-sharing and robot swarm mapping.

We intend to address these challenges by contribut-
ing to modeling, training, and coordinating the routing 
of multiple agents. Specifically, we first design an atten-
tional policy network by combining a message-passing 
neural network and a transformer’s encoder. Then, we 
increase the diversity of the generated solutions by inte-
grating multi-agent communication and multiple decoders. 
Finally, we designed a training pipeline to train the policy 
network using supervised learning followed by reinforce-
ment learning.

In contrast to previous pure reinforcement learning-
based approaches, we started training a supervised 
learning policy that provides fast and efficient learning 
updates, high-quality gradients, and immediate feed-
back throughout the training process. CO has many 
similarities with the game of go (GO for short), such 
as exploring a vast solution space and a clear objective 
function and constraints to evaluate the current policy. 
AlphaGo series [23] has proven the MCTS sufficient for 
large-scale combinatorial space, so it should also be a 
reasonable choice to introduce MCTS into CO. So, we 
apply reinforcement learning with the MCTS to improve 
the supervised policy network, which will adjust the 
policy to find the best solution.

To summarize, the contributions of this paper are 
threefold:

•	 We propose the Multi-Agent GNN policy network, a 
distributed deep neural net, to coordinate a swarm of 
moving objects toward a predetermined objective. Spe-
cifically, each agent engages in local planning within 
a learned GNN that uses inter-agent communication 
using a cutting-edge learned communication protocol 
that employs an attention mechanism.

•	 We propose a training pipeline suitable for routing 
optimization, effectively integrating supervised learn-
ing, reinforcement learning, and MCTS, and improved 
algorithm accuracy and training stability. In addition, 
we use multiple decoders for multiple agents to further 
enhance the diversity of policies.

•	 We propose a precise reward function for routing opti-
mization, combining global, length, and efficiency. In 
addition, we use the classic A* algorithm to fine-tune 
the reward function and MCTS further to improve the 
power and accuracy of the search algorithm.

Fig. 1   A simplified diagram of the relative location of customer 
points and a service center point, where vehicles (their cargo capac-
ity) may differ, with different requirements for each customer point



25883Routing optimization with Monte Carlo Tree Search‑based multi‑agent reinforcement learning﻿	

1 3

2 � Related work

More and more researchers are applying machine learn-
ing, especially deep learning, and reinforcement learning, 
to CO to solve sequential decision problems in graphs by 
combining the perceptual ability of deep learning and the 
inference ability of reinforcement learning. According 
to the differences in deep learning modeling, we broadly 
classify learning-based construction heuristics into atten-
tion-based and GNN-based. Next, we present some rep-
resentative methods in recent years. Bengio et al. [1] and 
Wang et al. [12] extensively surveyed the application of 
deep reinforcement learning in CO.

Recent deep learning models such as pointer networks 
[13], transformers [12], and others based on RNN and 
attention are gradually applied to routing optimization 
problems. Bello et al. [21] pioneered using reinforcement 
learning (an actor-critic algorithm) to train a pointer net-
work in an unsupervised manner, taking each instance as 
a training sample and using routing length to make unbi-
ased Monte Carlo estimates of the policy gradient. Nazari 
et al. [14] improved the pointer network and combined 
it with the actor-critic algorithm to design an end-to-end 
framework for solving VRP beyond classical heuristics 
and Google’s OR-Tools for medium-sized instances. 
Kool et al. [15] designed a model based on an encoder-
decoder structure using the transformer, which first applies 
an encoder to obtain node context information via node 
embedding and message passing using the graph as input. 
Then they apply the REINFORCE with rollout baseline to 
greedily decode the node sequence. Following Kool et al., 
Xin et al. [24] proposed a multi-decoder attention model 
to train various policies. Compared with existing methods 
that only train one policy, it increases the finding of rea-
sonable solutions.

GNNs [16] have been powerful tools used to process 
graph data in recent years, and they can effectively aggre-
gate and learn the structure information of graphs. Dai 
et al. [13] applied structure2vec to embed graph instances, 
models that reflect combinatorial structures better than 
those based on sequence-to-sequence. Then they used 
the DQN algorithm [6] to construct feasible solutions 
by continuously adding nodes and maintaining feasible 
solutions to meet the graph constraints of problems [20]. 
Some works [25, 26] combine the advantages of super-
vised learning and reinforcement learning. Still, they are 
two-stage or completely independent learning processes, 
whereas our training pipeline “seamlessly” links super-
vised learning and reinforcement learning using shared 
parameters of the Monte Carlo policy gradient.

In addition, more and more works focused on itera-
tively improving the quality of solutions by learning 

improvement heuristics or exact algorithms in solution 
solvers. Chen et al. proposed NeuRewriter [25] to learn 
a policy to select heuristics and rewrite local components 
of the current solution to improve it until convergence 
iteratively. They divided the policy into region and rule 
selection components, applied a neural network to param-
eterize each component, and trained the neural network 
using the actor-critic algorithm. The L2I [26] proposed 
by Lu et al. has two parts, namely the improvement con-
troller (operators) and the perturbation controller (opera-
tors), which complement each other to update and iterate 
the initial solution. Given a random initial solution, L2I 
learns to iteratively finalize with an improvement operator 
selected by the controller based on reinforcement learning. 
Zheng et al. [27] proposed a variable policy reinforcement 
learning method that combines three types of reinforce-
ment learning (Q-learning, Sarsa, and Monte Carlo) and 
the famous Lin-Kernighan-Helsgaun (LKH) algorithm. 
Delarue et al. [28] developed a deep reinforcement learn-
ing framework with a value function. It has a combinato-
rial action space in which the action selection problem is 
clearly expressed as a mixed-integer optimization prob-
lem. Cappart et al. [29] proposed a general hybrid method 
based on deep reinforcement learning and constraint pro-
gramming for combinatorial optimization. The core is the 
dynamic programming formulation, which serves as a 
bridge between these two technologies. Similar methods 
include [30–36], etc. Although these methods improve 
solution quality, they rely too much on known initial solu-
tions or take too long to train iteratively.

Compared with previous reinforcement learning meth-
ods, our method is different in the following aspects: (1) 
We use multiple agents to simulate multiple vehicles and 
design a communication mechanism to enable multiple 
agents to transmit information to each other, which enables 
each agent to have a global vision and is more condu-
cive to the exploration on the graph instance (environ-
ment). (2) The design of the reward function is vital for 
reinforcement learning because it directly affects learn-
ing efficiency and effectiveness. Therefore, we tailor 
a multi-agent reward function that balances global effi-
ciency and accuracy. (3) We design a novel graph neural 
network based on a message-passing network for multi-
agent communication to effectively process the dynamic 
node sequence, which aligns more with real-life routing 
optimization. (4) We design a training pipeline combining 
supervised learning and reinforcement learning to stabi-
lize training and improve accuracy and introduce the A* 
algorithm into MCTS so that it can further fine-tune the 
reinforcement learning and search algorithm together with 
the reward function, which can make the reward function 
control agents more effectively.
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3 � Methodology

3.1 � Problem definition

VRP (as illustrated in Fig. 1) means vehicles can drive 
orderly through appropriate routings to minimize the total 
cost under certain constraints [37]. Usually, the optimal 
route for multiple vehicles is the one that minimizes the 
total distance traveled. Assume that the optimal solution is 
equivalent to assigning only one vehicle to access all nodes 
and finding the shortest path for that vehicle. In this case, it 
becomes the traveling salesman problem (TSP).

We first give the mathematical model of TSP, specifically:

where (1) represents the objective function, the shortest dis-
tance. dij represents the distance between node vi and node 
vj ; xij represents the decision variable (5), and when its value 
is 1, it means that the node vj and node vj are adjacent in the 
path—constraints (2) and (3) guarantee that each node is 
visited only once. Constraint (4) guarantees that there will 
be no subrings in the tour (if S nodes form a loop, then at 
least S edges are needed, thus avoiding the generation of 
subrings). I represents the collection of all nodes. Note that 
the symbols in the above definition are not directly related 
to the following.

We then represent an instance of VRP by an undirected 
weight graph G(V ,E,

∏
) , where V  represents the set of all 

nodes; we employ vi to represent each node in the graph, and 
vi ∈ V  , E represents the set of all edges in the graph, and 
eij = (vi, vj) ∈ E , 

∏
 is the adjacency matrix.

3.2 � Markov decision process

To apply reinforcement learning to VRP and TSP, we need 
to model these two problems as the Markov decision process 
(MDP). We define a deterministic MDP as (S,A,P,R) , where 
S is the state space, namely the set of all states. A refers to the 
space of the actions performed by the agent, which come from 
the state s ∈ S , P ∶ S × A → S refers to the deterministic state 

(1)min
∑

i,j∈I
dijxij

(2)
∑

i∈I,i≠j
xij = 1,∀j ∈ I

(3)
∑

j∈I,j≠i
xij = 1,∀i ∈ I

(4)
∑

i∈S

∑
j∈S,j≠i

xij ≤ |S| − 1,∀S ⊂ I, 2 ≤ |S| ≤ n − 1

(5)xij ∈ {0, 1}

transfer function (the state changes after the execution of the 
action). R is the immediate reward function.

Actions  Starting from the start node v0 , the agent follows the 
policy network to take an action that selects the next node 
vi as part of a promising path (v0, v1,… , v0) , to expand its 
paths at each step to guide it back to v0 . Then, it set out to 
find the paths that have not been traveled until all nodes in 
the graph have been traversed.

States  We define the part of the tours that the agent finds 
as S , and a set of termination states as Send . Given a state s , 
the agent repeatedly selects actions from A and moves to the 
next state until it stops when s ∈ Send.

Transition  When an action ( vi ) is added to part tours, the 
state changes from s to ś , and P(s, a, ś) = 1.

Rewards  The immediate reward for the agent at each time 
step is rt . The path length is the reward for a general rout-
ing problem, but several factors affect the path quality the 
agent finds. To better apply the reward function to control 
the agent to find the optimal routing (path), we divide the 
total reward function ( rtotal ) into the following parts:

Global: From a global perspective, if the agent performs 
a series of actions from the central node and then returns 
to the central node, it will be considered successful:

Length: (For TSP) When all nodes in the graph G are 
traversed, the ordered sequence Ŝ = {v0, v1,… , vn} can 
be calculated by weights on the edges:

(For VRP) We can choose to apply the subgraph sampling 
algorithm [38] to divide the graph into subgraphs that all 
contain the central node ( v0 ). At this point, the problem is 
transformed into solving TSP on each subgraph.

When the node v is added to S , the length of the par-
tial sequence S̃ = S ∩ v can be calculated by the following 
formula:

Efficiency: From a local perspective, we also hope that 
the agent can choose a short path each time, and a shorter 

(6)rG =

{
+1, if all nodes are traversed

−1, otherwise

(7)Lv =
∑|||Ŝ

|||−1
i=0

wi,i+1 + w|||Ŝ
|||,0

(8)rL = 1

/
Lv

(9)lv =
∑|||S̃

|||−1
i=0

wi,i+1
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path can improve the efficiency of reasoning by limiting 
the interaction length between reinforcement learning and 
the environment, specifically:

Multi‑Agent  To learn more diversified policies, we have 
introduced multi-agents [39, 40] to represent vehicles sepa-
rately and assume that each agent can broadcast to other 
agents in the fleet to deliver messages. For example, one 
agent vi

a
 of K agents {va}

K

i=1
 takes action ai

t
 at time step t  , 

and its state changes from si
t
 to si

t+1
 , and its policy includes 

communication messages {cjt} sent by other agents.

3.3 � Attentional policy network

In principle, we can apply any GNNs to parameterize the 
policy function ��(a|s) ), which maps the state vector s to 
the probability distribution of all possible actions. Still, tra-
ditional GNNs are often limited in computational efficiency 
and are difficult to extend to large-scale graphs. Therefore, 
we propose a novel GNN, graph message passing pointer 
network (GMPPN) (as illustrated in Fig. 2), specifically for 
dynamic sequence decision tasks on graphs. The encoder 
generates a representation of all input nodes in graph G , 
and the decoder selects a routing sequence among the input 
nodes through pointers, where the constraints are realized 
by masking.

(10)rE = 1

/
(Lv−lv)

Encoder  We first combine the message-passing neural net-
work (MPNN) [16] and the encoder in the transformer [12] 
to design our encoder. Through the feature xi of the node in 
the graph, we apply linear transformation to get its hidden 
feature:

Wi(i = 1, 2, 3, 4, 5, 6, 7) and bi(i = 1, 2, 3, 4) represent 
the parameters of the corresponding dimension. We update 
the node embedding through the self-attention layer. Each 
self-attention layer comprises two sub-layers: a multi-head 
self-attention layer and a feedforward layer. After process-
ing, we can obtain the hidden features of the current layer 
H(l) = (h

(l)

1
, h

(l)

2
,… , h(l)

n
) . We obtain the node embedding 

E = W2H by linear transformation and obtain the self-atten-
tion score by the following equation:

We stitch the results after M self-attention (multi-head 
attention) and then pass through the fully connected feedfor-
ward layer to get the final node embedding of the multi-head 
attention mechanism, specifically:

where headi represents the result of the i − th self-attention:

(11)h
(0)

i
= W1x1 + b1

(12)SelfAttention(E) = softmax

�
EET

√
d

�
E

(13)Ĥ(l) = [head1;… ;headM]W3

Fig. 2   GMPPN’s demonstration includes an encoder, communication models, and multiple decoders (take four decoders as an example)
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where H(l−1) is the output of the previous encoder layer. 
The feedforward layer sublayer is composed of two lin-
ear transformations with a rectified linear unit (ReLU) 
activation:

In addition to the general GNN functionality, we also 
want to give GMPNN the ability to handle dynamic 
node sequence problems. Specifically, for n nodes, at 
different time steps (or layers), the input is a sequence 
O(1),O(2),… ,O(l) , where O(l) = (o

(l)

1
, o

(l)

2
,… , o(l)

n
) , o(l)

i
 repre-

sents operations on the node i in layer l (adding or delet-
ing edges). Our task is to predict the vector y(l) (readout 
function) through the sequence O(1),O(2),… ,O(l) . For each 
propagation, we combine the operation o(l)

i
 of the current 

layer with the hidden feature h(l−1)
i

 of the upper layer to 
obtain the latent space vector z(l)

i
:

Here we apply a fully connected neural network with 
nonlinear activation ReLU, and W2 , b2 are parameters. At 
this point, we get the initial representation of the current 
layer Z(l) =

(
z
(l)

1
, z

(l)

2
,… , z(l)

n

)
 , then we apply the adjacency 

matrix 
∏(l−1) and Z(l) to update H(l):

Here we integrate the adjacency matrix 
∏(l−1) of the 

previous layer to learn the association information between 
nodes. We introduce MPNN to set the mapping f  , that is, 
the original node information and the edge information 
obtained by 

∏(l−1) , specifically:

Here M̂ is message functions, and Û is vertex update 
functions.

Multi‑decoder  We have learned more diversified policies 
with multi-agents, so we apply multi-decoders to generate 
diversified solutions accordingly. We use M to represent the 
number of decoders (corresponds to the number of agents) 
with the same structure and m to index each decoder. The 
model selects the next node visit probability according to an 
attention-pointing mechanism at each step. Following Xin 
et al. [24], the formal definition of decoders indexed by m 
is as follows:

(14)headi = SelfAttention(W4H
(l−1))

(15)h
(l)

i
= W6ReLU

(
W5

̂
h
(l)

i
+ b2

)
+ b3

(16)z
(l)

i
= ReLU

(
W7

[
o
(l)

i
;h

(l−1)

i

]
+ b4

)

(17)H(l) = f
(
Z(l),

∏(l−1)
)

(18)h
(l)

i
= Û(z

(l)

i
, max∏(i−1)

�� =1

M̂(z
(l)

i
, z

(l)

j
))

where hc is the context embedding, h is the mean of the node 
embedding, ĥ is the starting node embedding, and ht−1 is the 
current node’s embedding. We also adopt maximizing the 
Kullback-Leible (KL) divergence between the output prob-
ability distributions of multiple decoders as a regularization 
in the training process:

Here pi(y|X, s) denotes the probability decoder i selects the 
node y in the state s for the instance X.

Communication  For reinforcement learning, it is beneficial 
for agents to communicate their expected trajectories, thus 
encouraging more cooperative behavior. We propose a com-
munication model based on attention, which can only realize 
dynamic communication between agents when necessary.

We use Fa
i
 to represent the feature of each agent, which 

are guided by basic domain knowledge (such as agent type or 
location). We define the communication encoding function 
Ec() , which is applied to all agent features to generate encod-
ing ec

i
 and attention vectors 

⇀

ai . Ec() is implemented by fully 
connected neural networks (FCNs):

For each agent, we calculate the pooled feature Pf

i
 , which is 

the interaction vector from other agents, weighted by attention:

w h e r e  �j=i = 0  m e a n s  s e l f - i n t e r a c t i o n ,  a n d 
Softmax(−‖ai − aj‖2) gives a measure of the interaction 
among agents. The pooled-feature Pf

i
 is connected with the 

original feature Fa
i
 to form an intermediate feature Ci:

Here C = {c1, c2,… , cK} , and K is the number of agents. 
Through linear transformation, we can transform the 

(19)hc = Concat(h, ĥ, ht−1)

(20)gm
c
= Multihead(Wm

gQ
hc,W

m

gK
h,Wm

gV
h)

(21)qm, km
i
= Wm

Q
gm
c
,Wm

K
hi

(22)um
i
= Dtanh((qm)Tkm

i
∕
√
d)

(23)pm
(
yt|X, y1,… , yt−1

)
= softmax(um)

(24)DKL =
∑

s

∑M

i=1

∑M

j=1

∑
y
pi(y|X, s)logp

i(y|X, s)
pj(y|X, s)

(25)Ec
(
Fa
i

)
= (ec

i
,
⇀

ai)

(26)P
f

i
=
∑

j
ec
j
∗ Softmax(−�

⇀

ai −
⇀

aj �

2

) ∗ �j=i

(27)Ci = (P
f

i
, ec

i
)
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communication vector into a query Qc , key Kc , and value 
vector Vc , and then calculate the aggregated communication 
as Ca

i
 (as part of the node feature input):

3.4 � Training pipeline

For a typical VRP, the reinforcement learning agent will face 
hundreds or thousands of possible states or actions. Rein-
forcement learning often suffers from severe reward sparsity 
problems in the initial stages of training. Inspired by the 
imitation learning pipeline used by AlphaGo [23], we design 
a training pipeline (illustrated in Fig. 3) that starts training 
from a supervised policy to alleviate this challenge. It is 
hard for the direct training agent to select actions from the 
initial action space, so AlphaGo first applied the actions of 
the experts to train a supervised policy network.

AlphaGo’s Core Technology  AlphaGo trains the neural net-
work with a “pipeline” of two machine learning stages. First, 
it trains the supervised learning policy network directly from 
expert actions, which provides fast and efficient learning 
updates with immediate feedback and high-quality gradi-
ents and sample actions quickly during the first presentation 
(rollouts). Then, it trains a reinforcement learning policy 
network to improve the supervised learning policy network 
by optimizing the outcome of the self-play game. This 
adjusts the strategy towards the correct goal of winning the 
game rather than maximizing prediction accuracy. Finally, 
AlphaGo trains a value network that predicts the winner of a 
reinforcement learning policy network playing against itself. 
AlphaGo combines the policy and value networks with the 
MCTS.

Supervised learning  In the first training phase, we apply 
supervised learning to predict the heuristic function, learn-
ing the parameters in the policy �(s;�) obtained using 

(28)Ca
i
=
∑

j
softmax(QcKc) ⋅ Vc

GMPPN. We apply the Monte Carlo policy gradient with 
supervised policy learning to update the parameters (for 
agent i ) to maximize the expected cumulative rewards.

Here J(�) is the expected reward for each episode, + 1 
reward is given for each step of a successful episode. We 
update the approximate gradient of the policy network by 
inserting the paths found by MCTS:

where r(i)t  belongs to the node sequence.

Reinforcement learning  The first stage of the training pipe-
line is the supervised learning described above, which can 
be simplified as follows:

The second phase of the training pipeline aims to improve 
the policy network through policy gradient reinforcement 
learning, which can also be expressed as:

The reinforcement learning policy network and the super-
vised policy network are identical in structure. Their weights 
can be initialized to the same value, so we apply the same � 
to represent the parameters to be learned.

We designed a path inference algorithm controlled by 
the reward function (defined in Section 3.2) to retrain the 
supervised policy network. We treat the two adjacent nodes 
and their edges as one episode. According to the policy � , 
agents start from the central node to select nodes accord-
ing to the policy, which is the probability distribution of all 
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Fig. 3   The complete flow diagram of the training pipeline, in which we apply policy gradient descent for supervised learning after processing 
GMPPN and then pass the parameters into reinforcement learning and Monte Carlo Tree Search (MCTS) for retraining with reward function
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nodes to expand inference paths. Since this action may result 
in finding a new node or nothing, the failed step will result 
in the agent receiving a negative reward. Compared with the 
Q-learning algorithm, the stochastic policy makes the agent 
not fall into an endless cycle due to repeated wrong steps 
but keeps the state unchanged. We give an upper limit for 
the episode to constrain its maximum length ( T  ) to improve 
training efficiency. If the agent cannot find the target node 
in T  , the episode ends. We employ the following gradient to 
update the policy network at the end of each episode:

MCTS with WU‑UCT​  MCTS combines the optimal first search 
tree with the Monte Carlo method, which applies known or 
trained environmental models to try and play in many envi-
ronmental models to find better policies. Liu et al. propose a 
novel parallel MCTS algorithm, WU-UCT (watch the unob-
served in UCT) [41], which achieves linear acceleration with 
little performance loss. The core of the WU-UCT algorithm 
is to maintain an extra statistic to record how many work-
ers are simulating it on each node and adjust the selection 
algorithm with it:

(34)∇�J(�) = ∇�

∑
t
log�(a(i) = r

(i)
t |s(i)t ;�)rtotal − kKL∇DKL

(35)az = argmax
Q̃i

⎛⎜⎜⎝
Q̃i + �

�
2 log(Nz + Oz)

Ni + Oi

⎞⎟⎟⎠

Here Nz and Ni are the number of accesses to nodes z and 
i in the tree, respectively, and Os is the newly added statistics 
used to calculate the number of rollouts initiated but not 
completed [41]. To better integrate MCTS into our training 
pipeline, we introduce the classical A∗ algorithm [42] to fine-
tune and control policy learning with the reward function.

In formula (15), Q̃i is defined as follows:

where Lv and lv have been defined in the reward function. lv is 
unknown and is the optimal path from the current node v to 
the target node (see Section 3.2). Q̃i is the best reward under 
the subtree of node i . We illustrate the detailed process of 
retraining the policy network using reinforcement learning 
and MCTS in Algorithm 1.

4 � Experiments

In this section, we conduct a series of experiments and per-
form a detailed experimental analysis. First, we present the 
dataset (generated data distribution), experimental setup 
(hyperparameter settings for deep reinforcement learning), 
and the results of the method proposed in this chapter on 
a small-scale TSP (including a comparison of results with 

(36)�(v)= Lv + lv

(37)Q̃i =
1
/
�(v)

Algorithm 1   Retraining with 
Rewards
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different methods, ablation studies, learning curves, etc.). 
Finally, the results of a more complex CVRP (capacity-con-
strained VRP) are presented (including comparative studies, 
MCTS analysis for parametric analysis, etc.).

4.1 � Data sets and settings

We generate instances with 20, 50, and 100 nodes and use 
the two-dimensional Euclidean distance to calculate the dis-
tance between two cities [15]. We sample the city location 
coordinates of the two dimensions from a uniform distri-
bution [0, 1]2 . For CVRP with 20, 50, and 100 nodes, the 
vehicle capacity is fixed at 30, 40, and 50, respectively. We 
sample the demand of each non-warehouse city from the 
integer {1…9}.

We embed nodes in the element projection of the 
128-dimensional vector. The transformer encoder has three 
layers of 128-dimensional features and eight heads. Each 
decoder takes a 128-dimensional vector and eight headers. 
In the training phase of algorithm 1, we set the batch size 
to 512, the number of epochs to 100, and the number of 
training steps to 2000. We set the KL value to 0.01, made 
the Adam optimizer have 10−3 learning rate and 0.96 learn-
ing rate delay, with 32 small batches of 50 gradient descent 
step each iteration. The MCTS performs 300 simulations 
per move. We store the reward function in a dataset, and 
MCTS fine-tunes the policy for training. We apply the solu-
tion solver LKH3 to get the label data needed for supervised 
learning in the training pipeline. In our experiments, we only 
need a tiny amount of label data to drive stable training of 
the entire framework and get good results, as we will specify 
later in the experimental task.

We give ample training time to instances of differ-
ent sizes to gain insight into the data distribution and 
unlock the model’s potential. We have given the maxi-
mum training time in which learning usually converges. 
In terms of implementation conditions, as the number 
of problem instances increases, the computing resources 
required also increase, and the (training) effect of the 
learning method is closely related to the hardware. For 
example, we can observe that the training speed increases 
significantly with the number of parallel GPUs. So we 
ran all our experiments on four parallel NVIDIA GeForce 
GTX1080Ti GPUs.

We chose some classic heuristics and more recent meth-
ods based on learning as our baselines. Given the difficulty 
of replicating the previous work (such as requiring a large 
number of computing resources and time), we tried to select 
experimental tasks and parameter settings similar to those 
of previous works to facilitate comparison. We extracted the 
baseline experimental results of the comparison experiment 
from published papers.

4.2 � Effects on small‑scale TSP

We first trained and tested MCRL with only one agent on 
small-scale instances, i.e., TSP20, TSP50, and TSP100 
instances, with a training time of 10 min per epoch on TSP20 
(with 3 min for supervised learning), 30 min on TSP50 (with 
10 min for supervised learning), and TSP100 with a training 
time of 60 min (of which 20 min for supervised learning). 
We compare the performance of MCRL on small-scale TSP 
with previous works and show the results in Fig. 4a, where 
the approximate ratios of the different methods to the opti-
mal solution are compared (closer to 1 means closer to the 
optimal solution).

Figure 4a shows that MCRL outperforms traditional algo-
rithms and representative learning-based approaches for 
small-scale TSP instances. It demonstrates the efficiency and 
effectiveness of the network architecture and training algo-
rithm proposed in the essential state (with only one agent). 
Traditional heuristics such as 2-opt, Cheapest, and Closest 
have significantly lagged behind learning-based methods 
regarding performance due to their singularity of function-
ality (2-opt is an improvement heuristic that improves the 
quality of the solution by swapping the order of the nodes 
of a given solution. So it results in a higher quality of the 
solution relative to other traditional construction heuristics), 
especially since the performance degradation is more evi-
dent as the instance size increases. The optimal solutions 
in the experiments are obtained by a solution solver, which 
usually integrates multiple exact and heuristic algorithms 
to enhance solving power and adaptability. Solution solvers 
can obtain optimal solutions in small-scale instances but, 
like traditional algorithms, are limited by the problem size 
and can only solve specific problem instances.

MCRL differs significantly from previous learning-based 
approaches in that we design a GNN suitable for dynamic 
sequences on graphs. Multi-agent communication mecha-
nisms are effective when two or more bits of agent focus 
more on message passing and global information on the 
graph (including nodes and edges). Then the proposed train-
ing pipeline is more controllable (through a well-designed 
reward function) and stable (with supervised learning at the 
beginning of the training phase to alleviate reward sparsity) 
than pure reinforcement learning. These differences may be 
why the accuracy of MCRL is more advantageous in small-
scale instances.

We selected the learning curves of MCRL in the first five 
epochs of the TSP20 training process (the learning curve 
changes as the time step increases). From Fig. 4b, we can 
see that learning curves show a significant gradient decrease 
at the beginning of the first epoch and soon stabilize. At the 
same time, they become more and more stable in the subse-
quent epochs and gradually converge to the optimal value. 
It is known that the training of reinforcement learning is 
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not easy, especially at the beginning of the training phase, 
which is prone to the reward sparsity problem, and the train-
ing of reinforcement learning is not very stable compared to 
supervised learning.

The results show that applying supervised learning 
(requiring only a small number of optimal solutions as label 
data) in the training pipeline for “hot start” is significant. 
Because the training pipeline gives positive and sufficient 
feedback to the agent at the beginning, there is no “wander-
ing” and trial and error or the stuck or stagnant phenomenon 
that often occurs in previous works. Another critical aspect 
of the stability of the training process is the reward function 
designed in the Markov decision process for routing optimi-
zation. In particular, we elaborated a reward function with 
global and local horizons combined with the MCTS to con-
trol the whole training process jointly and can be effectively 
integrated with the designed GNN. A critical function of the 
proposed GNN is to obtain global and local information on 
routing optimization problems).

To further validate the role of the training pipeline, we 
removed supervised learning (MCRL without supervised 
learning as MCRL-RL) and compared the change of the 
learning curves as the epoch grows on TSP100. Figure 5a 
shows that MCRL with the training pipeline is more stable 
and converges faster than MCRL with only reinforcement 
learning (which is evident at the beginning stage), which 
proves that the training pipeline can make the training more 
stable to some extent, making the agent more goal-oriented 
in finding paths.

The learning curves during training show that the agents 
in MCRL can effectively interact with the environment 
and learn the data distribution of the problem instances. 
Learning-based methods can be tested on new instances as 

long as they are sufficiently trained, but only if the training 
and testing sets have similar data distributions, which is the 
underlying motivation for learning-based methods. So using 
the trained model for inference and testing on unknown 
instances is a vital evaluation task. We use the MCRL trained 
on TSP100 to test on a new TSP100 instance and select the 
first six epochs to observe how the learning curves change as 
time increases. Figure 5b shows the inference (test) curves 
of MCRL. It shows that the learning curves of all six epochs 
fluctuate and converge in a relatively small range (as the 
epoch increases). Such volatility is average and reasonable 
for reinforcement learning. Since the data distribution of the 
two TSP100 instances is different, the agents need to interact 
with the new environment interaction to adapt and reason 
out the correct paths. This demonstrates the efficiency and 
effectiveness of the proposed training pipeline in testing.

MCTS is one of the core techniques of the AlphaGo fam-
ily (even many people believe that MCTS is more practical 
with deep learning than reinforcement learning), and it is 
also one of the core techniques of MCRL because of its 
strong ability to traverse and search huge combinatorial 
spaces. Therefore, a hyperparametric analysis of the MCTS 
is performed on the TSP50 instance to study the MCTS in 
MCRL qualitatively and quantitatively. MCTS has two cru-
cial hyperparameters: rollout simulations and search hori-
zons. We first fix the number of rollout simulations of the 
MCTS to 128 and observe the optimal solutions obtained by 
MCRL corresponding to different search horizons. Figure 6a 
shows that MCRL is insensitive to the search horizon of the 
MCTS, and its performance is better when the search hori-
zon is 6. Then we fix the search range to 6 and observe the 
variation of the optimal solutions obtained by MCRL when 
the number of rollout simulations of the MCTS is 64, 128, 

Fig. 4   The left figure a shows the approximate gap of different meth-
ods relative to the optimal solutions on TSP20/50, where AM [15], 
GPN [43], S2V-DQN [20], Pointer Network [13] are learning-based 

methods, and 2-opt and Random Insertion are traditional heuristic 
algorithms. The right figure b  shows the learning curves of the first 
five epochs trained on TSP20
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and 256, respectively. Figure 6b shows that MCRL’s MCTS 
is sensitive to rollout simulations and performs optimally 
at many rollout simulations of 128. Adjusting the hyper-
parameters has a relatively significant effect on the MCTS, 
which indicates that the MCTS in MCRL is valuable and 
practical and plays a relatively significant role in the overall 
framework.

4.3 � Effects on CVRP

As mentioned, MCRL can transform the (basic) VRP into a 
TSP using a subgraph sampling algorithm with little change 
in the Markov decision process. The difficulty of VRP is 
much greater than that of TSP because the former’s data dis-
tribution is much more complex. On the other hand, previous 

learning-based approaches purely learn the distribution of 
VRP instances, which is not sufficient for the complexity of 
the VRP because we cannot guarantee that the training set is 
equally distributed with the test set. So it is necessary to pre-
process the data using data mining to get a fuller picture of 
the data distribution (e.g., decomposing a large-scale graph 
instance into subgraphs of controlled size). It is possible to 
have multi-agent communication mechanisms (a single agent 
can also operate independently), so it is necessary to verify 
the multi-agent role in MCRL. We trained and tested MCRL 
on CVRP instances with 20, 50, and 100 nodes (with one, 
two, and five agents, respectively) with different methods 
(including the solution solver LKH3, the traditional heu-
ristic method RandomCW, PRL (greedy) [21], AM (greedy 
with sampling) [15], NeuRewriter [25]) (the results of the 

Fig. 5   The left figure a  shows the average route lengths obtained 
in the first 20 epochs when MCRL and MCRL without supervised 
learning (MCRL-RL) are trained on TSP100 (one hour training time). 

The right figure b shows the learning curves of the first six epochs of 
the trained MCRL (TSP100) tested on the unknown TSP100

Fig. 6   The left figure a shows the MCRL performance changes as the search horizon grows. The right figure b shows the MCRL performance 
changes as the rollout simulations change
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comparison methods are taken from previous work [15]). 
The training times of MCRL on CVRP20, CVRP50, and 
CVRP100 are 10 min, 30 min, and 1 h, respectively.

Table 1 shows the experimental results of MCRL (with a 
different number of agents) and other methods. The results 
show that MCRL with different agents obtains good experi-
mental results regarding solution quality and inference time 
(MCRL is more advantageous in accuracy than other learn-
ing-based methods). The state-of-the-art LKH3 solver has 
achieved optimal solutions. Still, it is so time-consuming 
(all in hours) that it can only exist in experiments as a refer-
ence baseline or provide some optimal solutions as label data 
while applying it to real problems (which are more complex 
and more significant in scale) is still used challenging. The 
LKH3 solver is based on exact algorithms and improvement 
heuristics, so this is not fair to methods based on construc-
tion heuristics since improvement heuristics often require 
a given initial feasible solution. NeuRewriter learns the 
improvement heuristic, which continuously improves the 
quality of the solution by iteratively improving the initial 
solution over and over. Although NeuRewriter significantly 
improves the quality of solutions, testing takes relatively 
longer because the iterative selection and improvement pro-
cess consumes more time. The internal operating mechanism 
of improvement heuristics is to exchange the order of nodes 
in the solution continuously, that is, to improve the quality 
of solutions through continuous perturbation and rearrange-
ment. However, this creates a lot of unwanted redundant 
perturbations.

Instead, the construction heuristics generate solutions 
from nothing by decoding. Traditional heuristics such as 
RandomCW are no longer advantageous. After all, they are 
relatively homogeneous and cannot deal with more com-
plex problems more effectively. But learning construction 
heuristics shows the flexibility and accuracy that traditional 
heuristics do not have when faced with complex problems. 
Moreover, the learning methods based on the construction 

heuristic require a short testing time because it is easy to 
test on similar problems as long as the distribution of the 
problem is fully learned. For example, the state-of-the-art 
construction heuristic-based learning method AM [107] 
models problem instances by transformer [17], uses a pointer 
mechanism to output probability distributions, and uses rein-
forcement learning with baselines to train decoding policy 
forming a mainstream paradigm for solving routing prob-
lems. The results show that the solutions obtained by AM 
using the sampling algorithm are of higher quality than the 
greedy algorithm. Still, it also consumes more time, prob-
ably because the sampling algorithm requires more explora-
tion and observation of the data, while the greedy algorithm 
is more biased in selecting the locally optimal solution.

The results show that the training pipeline with MCTS is 
more efficient and stable than pure reinforcement learning 
methods with greedy or sampling than other learning-based 
construction heuristics. Analyzing the reason, we feel that 
MCRL’s two-stage training pipeline combines the precision 
of supervised learning with the generalization of reinforce-
ment learning. We only need a small amount of label data 
to make the supervised training learn a good initial policy, 
effectively avoiding the problem of sparsity and instabil-
ity of rewards in the initial stage of reinforcement learning 
training. The parameters learned from supervised training 
can also guide subsequent reinforcement learning agents 
to find and reason more effectively. Besides, MCRL has a 
reward function that controls the entire framework training, 
the reward function combined with the A* algorithm fine-
tunes the MCTS, which are factors that contribute to the 
quality of the solution.

The results in Table 1 show that MCRL with one, two, 
and five agents are competitive with other methods in terms 
of solution quality and testing time, and the higher the qual-
ity of the solutions obtained, the shorter the time required 
as the number of agents increases. This indicates that the 
multi-agent and communication mechanism in MCRL is 

Table 1   MCRL vs. baselines in 
CVRP instances

“Obj.” represents the best solutions obtained by different methods, “Gap” represents the gap between the 
best solutions obtained and the optimal solutions, and “Time” represents the time required for testing

Method n = 20 n = 50 n = 100

Obj Gap Time Obj Gap Time Obj Gap Time

LKH3 6.14* 0.00% 2 h 10.38* 0.00% 7 h 15.65* 0.00% 13 h
Random CW 6.81 11.64% - 12.25 18.07% - 18.96 21.18% -
PRL (greedy) [21] 6.59 8.03% - 11.39 9.78% - 17.23 10.12% -
AM (greedy) [15] 6.40 4.97% 1 s 10.98 5.86% 3 s 16.80 7.34% 8 s
AM (sampling) [15] 6.25 2.49% 6 m 10.62 2.40% 28 m 16.23 3.72% 2 h
NeuRewriter [25] 6.16 0.48% 22 m 10.51 1.25% 35 m 16.10 2.88% 66 m
MCRL (one agent) 6.14 0.31% 7 m 10.65 2.60% 21 m 16.40 4.79% 55 m
MCRL (two agents) 6.14 0.22% 4 m 10.48 0.96% 16 m 16.03 2.43% 31 m
MCRL (five agents) 6.14 0.15% 2 m 10.40 0.19% 9 m 15.99 2.17% 23 m
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effective for the whole framework, which is equivalent to 
an ablation study of the multi-agent mechanism and proves 
that the multi-agent communication mechanism of MCRL is 
beneficial to enhance the learning when a reasonable number 
of agents are available. Analyzing the reasons, the multi-
agents of MCRL can learn more diverse policies and more 
effective learning of distributions, and the communication 
between them can make more local and global information 
available to the agents. The multi-agent mechanism matches 
multiple decoders better, and the former can provide the 
latter with more diverse distributions so that the latter can 
learn more about decoding policies that improve the solution 
quality and shortens the testing time. Besides, during the 
experiments, we also found that the multi-agent can improve 
the parallel search efficiency (faster training) of the MCTS 
because the multi-agent can more easily simulate multiple 
vehicles traversing in the graph and pass messages more 
efficiently to obtain the global and local views of the graph. 
This is helpful to improve the accuracy of the solution and 
reduce the running time, especially for large graph instances.

However, the results show that MCRL is not optimal in 
test time, but it still exceeds most of the baselines; after all, 
MCRL contains many complex neural networks that may 
lose some efficiency while improving the model capability. 
The best performer in terms of test time is AM (greedy), 
i.e., AM using the greedy decoding policy [107], while AM 
(sampling) using sampling decoding is higher than AM 
(greedy) in terms of solution quality but weaker than the 
latter in terms of test time, which indicates the possibility of 
reducing efficiency while improving solution quality.

We further conduct a statistical test using the Friedman 
and posthoc Nemenyi tests to compare different learning-
based algorithms [44, 45]. Table 2 shows the results and 
average order values of different methods for CVRP of dif-
ferent sizes. Since NeuRewriter requires a given initial solu-
tion, its working mechanism is fundamentally different from 
other methods, so we do not take it as one of the baselines. 
We expand the CVRP data set to 200 nodes to compare the 
differences between the approaches entirely.

We first calculate the Friedman detection values by using 
the following equations:

where N is the number of data sets, k is the number of algo-
rithms, ri represents the average order value of the i − th 
algorithm, ri follows the normal distribution, and its mean 
and variance are (k + 1)∕2 , (k2 − 1)∕12 , respectively. �F fol-
lows the F distribution of k − 1 and (k − l)(N − 1) degrees 
of freedom.

We first calculate �F=-3.01 according to Eqs. (38) and 
(39). �F is less than 5.143 when � = 0.05 in Table 3 and 
3.463 when � = 0.1 in Table 4. Therefore, we cannot deny 
the hypothesis that “all algorithms perform equally”.

Then, we use the posthoc Nemenyi test to calculate the 
critical range CD through the following formula:

It is found in Table 3 that when k = 3, q0.05 and q0.10 
are equal to 2.344 and 2.052, respectively. According to 
Eq. (40), the critical values CD are calculated to be 1.657 
and 1.451, respectively. According to the average order value 
in Table 2, the gap between PRL and AM, between AM and 
MCRL, and between PRL and MCRL does not exceed the 
critical range (Table 5). Therefore, the test results show that 
the performance of PRL, AM, and MCRL is not significantly 
different. This phenomenon shows that the performance of 
MCRL is close to that of the state-of-the-art methods on data 
sets with similar distributions, which is reasonable, because 
the learning mechanism of these construction-based heuris-
tic methods is similar, essentially learning the probability 
distribution of data and then decoding to get the solution 
sequence. In addition, most of these learning-based methods 
are carried out through GNN modeling and reinforcement 

(38)��2 =
12N

k(k + 1)

(∑k

i=1
r2
i
−

k(k + 1)2

4

)

(38)�F =
(N − 1)��2

N(k − 1) − ��2

(40)CD = q�
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Table 2   The Friedman and posthoc Nemenyi tests compare different 
learning-based methods, where “AOV” represents the average order 
value of different methods on different data sets

DataSet PRL (greedy) AM (sampling) MCRL

CVRP20 6.59 6.25 6.14
CVRP50 11.39 10.62 10.40
CVRP100 17.23 16.23 15.99
CVRP200 19.52 18.69 17.87
AOV 13.68 12.95 12.60

Table 3   Some Friedman test 
critical values at � equal 0.05

N k

2 3 4

4 10.128 5.143 3.863
5 7.709 4.459 3.490

Table 4   Some Friedman test 
critical values at � equal 0.1

N k

2 3 4

4 5.538 3.463 2.813
5 4.545 3.113 2.606
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learning training. However, MCRL is superior to other meth-
ods in accuracy and training stability, proving that the train-
ing pipeline, GNN, multi-agent communication mechanism, 
and other components we designed are superior to previous 
methods.

5 � Conclusion

This paper proposes a novel modeling and training frame-
work for sequential decision problems on graphs. We 
develop a GNN as an encoder and a multi-agent mechanism 
into a multi-decoder to enhance the solutions’ accuracy and 
versatility. We design an MDP for routing problems and 
apply subgraph sampling that converts a (simple) VRP into 
a TSP to use almost the same MDP. We also design a more 
feature-rich and comprehensive reward function for rein-
forcement learning that serves as the core of the training 
pipeline to integrate the MCTS engine to retrain the super-
vised policy network. Besides, the reasoned paths can also 
serve as rules to solve more complex and larger CO prob-
lems. We have provided a generic framework where com-
ponents can be replaced, perhaps with other state-of-the-art 
models, to improve the framework’s overall performance or 
other types of CO problems, which will be our future work.
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