
Vol.:(0123456789)1 3

Applied Intelligence (2023) 53:25881–25896
https://doi.org/10.1007/s10489-023-04881-1

Routing optimization with Monte Carlo Tree Search‑based multi‑agent
reinforcement learning

Qi Wang1 · Yongsheng Hao2,3

Accepted: 10 July 2023 / Published online: 14 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Vehicle routing (VRP) and traveling salesman problems (TSP) are classical and interesting NP-hard routing combinatorial
optimization (CO) with practical significance. While moving forward with artificial intelligence, researchers are paying
more and more attention to applying machine learning to classical CO problems. However, traditional reinforcement learn-
ing faces challenges like reward sparsity and unstable training, so it is necessary to assist agents in finding high-quality
routings in the initial model training stage to obtain more positive feedback. This paper proposes a novel Monte Carlo Tree
Search (MCTS)-based two-stage multi-agent reinforcement learning training pipeline (MCRL) in which we also design a
multifunctional reward function, improving efficiency, accuracy, and diversity to guide agents to learn the routings over
graphs better. Besides, previous approaches are frequently too sluggish in runtime to be useful in contexts with sparsely con-
nected networks and uncertain traffic. As an alternative, we design a model based on graph neural networks that can execute
multi-agent routing in a sparsely connected graph with constantly changing traffic circumstances. Also, the agents are better
equipped to collaborate online and adjust to changes thanks to our learned communication module.

Keywords NP-hard problems · Combinatorial optimization · Graph neural networks · Reinforcement learning · Monte
Carlo Tree Search

1 Introduction

Combinatorial optimization (CO) problems [1] (Fig. 1
illustrates an example of VRP) usually include NP-hard and
P-problems, and fast solving them is of central theoretical
significance and practical application value. Traditional
approaches primarily design corresponding approximation
or heuristic algorithms tailored to specific problems (e.g.,
ant colony, genetic, simulated annealing, etc.) [2–5], but
they cannot effectively use previous experience for different

instances of similar problems. There are inherent similarities
between problems occurring in the same application area
[6], but traditional approaches do not systematically take
advantage of this.

Therefore, people hope to find a general way to address
optimization problems, dig out the essential information on
the problems with offline learning and improve the efficiency
and quality of solving problems by automatically updating
the solution policy online. Deepmind has revolutionized
artificial intelligence by showing that deep learning and
reinforcement learning [7] can solve some CO problems
since playing Go [8], resource allocation [9], and matrix
decomposition [10] are about searching for solutions across
large combinatorial spaces. We can also establish an appro-
priate mathematical model for CO problems, apply deep
neural networks for feature representation, and use appro-
priate search strategies to reduce the solution space [11]. We
can gradually accumulate experience to guide the solutions
of future (unknown) instances. For example, some recent
works adopt the encoder-decoder paradigm based on the
attention mechanism [12] to deal with the node sequences
in CO problems [13–15]. Some works apply graph neural

 * Qi Wang
 qiwang@dlmu.edu.cn

 * Yongsheng Hao
 hyslove@163.com

1 Information Science and Technology College, Dalian
Maritime University, Dalian 116026, China

2 School of Mathematics and Statistics, Nanjing University
of Information Science & Technology, Nanjing 210044,
China

3 Network Center, Nanjing University of Information Science
& Technology, Nanjing 210044, China

http://orcid.org/0000-0003-3249-8459
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04881-1&domain=pdf

25882 Q. Wang, Y. Hao

1 3

networks (GNNs) [16] to aggregate the information on nodes
and edges to learn the topological structure of CO graph
instances [17–19]. Then they apply reinforcement learning
with a search strategy to optimize the model’s parameters
and output solutions.

Deep reinforcement learning regards general graph rout-
ing optimization problems as data points under a given dis-
tribution. After learning the probability distribution of data
points, it can be generalized to other problem instances with
a similar distribution. Traditional heuristic algorithms based
on expert experience tend to fall into local optimality with-
out realizing it, but deep reinforcement learning can break
through this limitation. Solving problems one-to-many in
an automated manner is attractive and can bring substantial
economic benefits and eliminate inefficient manual work,
which may be one of the core goals of artificial intelligence.
Despite showing promising results, existing learning-based
works have several significant limitations. For example,
in modeling, the number of traditional GNN parameters
increases with the graph instances size [20], which may lead
to being too heavy to be trained effectively. Recurrent neu-
ral network (RNN)-based approaches [14, 15, 21] may also
affect parallel computation as the size of graphs increases.
Reinforcement learning improves the model’s generaliz-
ability, but its accuracy is currently inferior to supervised
learning [22]. More importantly, reinforcement learning is
notoriously unstable, and it often encounters the problem of
sparse rewards in the initial training phase.

Moreover, the generated solutions are not diverse
enough, as existing methods can only train one construc-
tion policy and apply sampling or beam search to create
solutions from the same policy. The only source of diver-
sity is a relatively deterministic probability distribution,

which is far from sufficient. Previous methods’ multi-agent
settings are rarely explored and frequently evaluated on
rudimentary planar graph benchmarks. Moreover, none
of these approaches were intended for dynamic settings
where online communication might be quite valuable.
This is a challenging issue with several fleet management
applications to accomplish the same objective, including
ride-sharing and robot swarm mapping.

We intend to address these challenges by contribut-
ing to modeling, training, and coordinating the routing
of multiple agents. Specifically, we first design an atten-
tional policy network by combining a message-passing
neural network and a transformer’s encoder. Then, we
increase the diversity of the generated solutions by inte-
grating multi-agent communication and multiple decoders.
Finally, we designed a training pipeline to train the policy
network using supervised learning followed by reinforce-
ment learning.

In contrast to previous pure reinforcement learning-
based approaches, we started training a supervised
learning policy that provides fast and efficient learning
updates, high-quality gradients, and immediate feed-
back throughout the training process. CO has many
similarities with the game of go (GO for short), such
as exploring a vast solution space and a clear objective
function and constraints to evaluate the current policy.
AlphaGo series [23] has proven the MCTS sufficient for
large-scale combinatorial space, so it should also be a
reasonable choice to introduce MCTS into CO. So, we
apply reinforcement learning with the MCTS to improve
the supervised policy network, which will adjust the
policy to find the best solution.

To summarize, the contributions of this paper are
threefold:

• We propose the Multi-Agent GNN policy network, a
distributed deep neural net, to coordinate a swarm of
moving objects toward a predetermined objective. Spe-
cifically, each agent engages in local planning within
a learned GNN that uses inter-agent communication
using a cutting-edge learned communication protocol
that employs an attention mechanism.

• We propose a training pipeline suitable for routing
optimization, effectively integrating supervised learn-
ing, reinforcement learning, and MCTS, and improved
algorithm accuracy and training stability. In addition,
we use multiple decoders for multiple agents to further
enhance the diversity of policies.

• We propose a precise reward function for routing opti-
mization, combining global, length, and efficiency. In
addition, we use the classic A* algorithm to fine-tune
the reward function and MCTS further to improve the
power and accuracy of the search algorithm.

Fig. 1 A simplified diagram of the relative location of customer
points and a service center point, where vehicles (their cargo capac-
ity) may differ, with different requirements for each customer point

25883Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

2 Related work

More and more researchers are applying machine learn-
ing, especially deep learning, and reinforcement learning,
to CO to solve sequential decision problems in graphs by
combining the perceptual ability of deep learning and the
inference ability of reinforcement learning. According
to the differences in deep learning modeling, we broadly
classify learning-based construction heuristics into atten-
tion-based and GNN-based. Next, we present some rep-
resentative methods in recent years. Bengio et al. [1] and
Wang et al. [12] extensively surveyed the application of
deep reinforcement learning in CO.

Recent deep learning models such as pointer networks
[13], transformers [12], and others based on RNN and
attention are gradually applied to routing optimization
problems. Bello et al. [21] pioneered using reinforcement
learning (an actor-critic algorithm) to train a pointer net-
work in an unsupervised manner, taking each instance as
a training sample and using routing length to make unbi-
ased Monte Carlo estimates of the policy gradient. Nazari
et al. [14] improved the pointer network and combined
it with the actor-critic algorithm to design an end-to-end
framework for solving VRP beyond classical heuristics
and Google’s OR-Tools for medium-sized instances.
Kool et al. [15] designed a model based on an encoder-
decoder structure using the transformer, which first applies
an encoder to obtain node context information via node
embedding and message passing using the graph as input.
Then they apply the REINFORCE with rollout baseline to
greedily decode the node sequence. Following Kool et al.,
Xin et al. [24] proposed a multi-decoder attention model
to train various policies. Compared with existing methods
that only train one policy, it increases the finding of rea-
sonable solutions.

GNNs [16] have been powerful tools used to process
graph data in recent years, and they can effectively aggre-
gate and learn the structure information of graphs. Dai
et al. [13] applied structure2vec to embed graph instances,
models that reflect combinatorial structures better than
those based on sequence-to-sequence. Then they used
the DQN algorithm [6] to construct feasible solutions
by continuously adding nodes and maintaining feasible
solutions to meet the graph constraints of problems [20].
Some works [25, 26] combine the advantages of super-
vised learning and reinforcement learning. Still, they are
two-stage or completely independent learning processes,
whereas our training pipeline “seamlessly” links super-
vised learning and reinforcement learning using shared
parameters of the Monte Carlo policy gradient.

In addition, more and more works focused on itera-
tively improving the quality of solutions by learning

improvement heuristics or exact algorithms in solution
solvers. Chen et al. proposed NeuRewriter [25] to learn
a policy to select heuristics and rewrite local components
of the current solution to improve it until convergence
iteratively. They divided the policy into region and rule
selection components, applied a neural network to param-
eterize each component, and trained the neural network
using the actor-critic algorithm. The L2I [26] proposed
by Lu et al. has two parts, namely the improvement con-
troller (operators) and the perturbation controller (opera-
tors), which complement each other to update and iterate
the initial solution. Given a random initial solution, L2I
learns to iteratively finalize with an improvement operator
selected by the controller based on reinforcement learning.
Zheng et al. [27] proposed a variable policy reinforcement
learning method that combines three types of reinforce-
ment learning (Q-learning, Sarsa, and Monte Carlo) and
the famous Lin-Kernighan-Helsgaun (LKH) algorithm.
Delarue et al. [28] developed a deep reinforcement learn-
ing framework with a value function. It has a combinato-
rial action space in which the action selection problem is
clearly expressed as a mixed-integer optimization prob-
lem. Cappart et al. [29] proposed a general hybrid method
based on deep reinforcement learning and constraint pro-
gramming for combinatorial optimization. The core is the
dynamic programming formulation, which serves as a
bridge between these two technologies. Similar methods
include [30–36], etc. Although these methods improve
solution quality, they rely too much on known initial solu-
tions or take too long to train iteratively.

Compared with previous reinforcement learning meth-
ods, our method is different in the following aspects: (1)
We use multiple agents to simulate multiple vehicles and
design a communication mechanism to enable multiple
agents to transmit information to each other, which enables
each agent to have a global vision and is more condu-
cive to the exploration on the graph instance (environ-
ment). (2) The design of the reward function is vital for
reinforcement learning because it directly affects learn-
ing efficiency and effectiveness. Therefore, we tailor
a multi-agent reward function that balances global effi-
ciency and accuracy. (3) We design a novel graph neural
network based on a message-passing network for multi-
agent communication to effectively process the dynamic
node sequence, which aligns more with real-life routing
optimization. (4) We design a training pipeline combining
supervised learning and reinforcement learning to stabi-
lize training and improve accuracy and introduce the A*
algorithm into MCTS so that it can further fine-tune the
reinforcement learning and search algorithm together with
the reward function, which can make the reward function
control agents more effectively.

25884 Q. Wang, Y. Hao

1 3

3 Methodology

3.1 Problem definition

VRP (as illustrated in Fig. 1) means vehicles can drive
orderly through appropriate routings to minimize the total
cost under certain constraints [37]. Usually, the optimal
route for multiple vehicles is the one that minimizes the
total distance traveled. Assume that the optimal solution is
equivalent to assigning only one vehicle to access all nodes
and finding the shortest path for that vehicle. In this case, it
becomes the traveling salesman problem (TSP).

We first give the mathematical model of TSP, specifically:

where (1) represents the objective function, the shortest dis-
tance. dij represents the distance between node vi and node
vj ; xij represents the decision variable (5), and when its value
is 1, it means that the node vj and node vj are adjacent in the
path—constraints (2) and (3) guarantee that each node is
visited only once. Constraint (4) guarantees that there will
be no subrings in the tour (if S nodes form a loop, then at
least S edges are needed, thus avoiding the generation of
subrings). I represents the collection of all nodes. Note that
the symbols in the above definition are not directly related
to the following.

We then represent an instance of VRP by an undirected
weight graph G(V ,E,

∏
) , where V represents the set of all

nodes; we employ vi to represent each node in the graph, and
vi ∈ V , E represents the set of all edges in the graph, and
eij = (vi, vj) ∈ E ,

∏
 is the adjacency matrix.

3.2 Markov decision process

To apply reinforcement learning to VRP and TSP, we need
to model these two problems as the Markov decision process
(MDP). We define a deterministic MDP as (S,A,P,R) , where
S is the state space, namely the set of all states. A refers to the
space of the actions performed by the agent, which come from
the state s ∈ S , P ∶ S × A → S refers to the deterministic state

(1)min
∑

i,j∈I
dijxij

(2)
∑

i∈I,i≠j
xij = 1,∀j ∈ I

(3)
∑

j∈I,j≠i
xij = 1,∀i ∈ I

(4)
∑

i∈S

∑
j∈S,j≠i

xij ≤ |S| − 1,∀S ⊂ I, 2 ≤ |S| ≤ n − 1

(5)xij ∈ {0, 1}

transfer function (the state changes after the execution of the
action). R is the immediate reward function.

Actions Starting from the start node v0 , the agent follows the
policy network to take an action that selects the next node
vi as part of a promising path (v0, v1,… , v0) , to expand its
paths at each step to guide it back to v0 . Then, it set out to
find the paths that have not been traveled until all nodes in
the graph have been traversed.

States We define the part of the tours that the agent finds
as S , and a set of termination states as Send . Given a state s ,
the agent repeatedly selects actions from A and moves to the
next state until it stops when s ∈ Send.

Transition When an action (vi) is added to part tours, the
state changes from s to ś , and P(s, a, ś) = 1.

Rewards The immediate reward for the agent at each time
step is rt . The path length is the reward for a general rout-
ing problem, but several factors affect the path quality the
agent finds. To better apply the reward function to control
the agent to find the optimal routing (path), we divide the
total reward function (rtotal) into the following parts:

Global: From a global perspective, if the agent performs
a series of actions from the central node and then returns
to the central node, it will be considered successful:

Length: (For TSP) When all nodes in the graph G are
traversed, the ordered sequence Ŝ = {v0, v1,… , vn} can
be calculated by weights on the edges:

(For VRP) We can choose to apply the subgraph sampling
algorithm [38] to divide the graph into subgraphs that all
contain the central node (v0). At this point, the problem is
transformed into solving TSP on each subgraph.

When the node v is added to S , the length of the par-
tial sequence S̃ = S ∩ v can be calculated by the following
formula:

Efficiency: From a local perspective, we also hope that
the agent can choose a short path each time, and a shorter

(6)rG =

{
+1, if all nodes are traversed

−1, otherwise

(7)Lv =
∑|||Ŝ

|||−1
i=0

wi,i+1 + w|||Ŝ
|||,0

(8)rL = 1

/
Lv

(9)lv =
∑|||S̃

|||−1
i=0

wi,i+1

25885Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

path can improve the efficiency of reasoning by limiting
the interaction length between reinforcement learning and
the environment, specifically:

Multi‑Agent To learn more diversified policies, we have
introduced multi-agents [39, 40] to represent vehicles sepa-
rately and assume that each agent can broadcast to other
agents in the fleet to deliver messages. For example, one
agent vi

a
 of K agents {va}

K

i=1
 takes action ai

t
 at time step t ,

and its state changes from si
t
 to si

t+1
 , and its policy includes

communication messages {cjt} sent by other agents.

3.3 Attentional policy network

In principle, we can apply any GNNs to parameterize the
policy function ��(a|s)), which maps the state vector s to
the probability distribution of all possible actions. Still, tra-
ditional GNNs are often limited in computational efficiency
and are difficult to extend to large-scale graphs. Therefore,
we propose a novel GNN, graph message passing pointer
network (GMPPN) (as illustrated in Fig. 2), specifically for
dynamic sequence decision tasks on graphs. The encoder
generates a representation of all input nodes in graph G ,
and the decoder selects a routing sequence among the input
nodes through pointers, where the constraints are realized
by masking.

(10)rE = 1

/
(Lv−lv)

Encoder We first combine the message-passing neural net-
work (MPNN) [16] and the encoder in the transformer [12]
to design our encoder. Through the feature xi of the node in
the graph, we apply linear transformation to get its hidden
feature:

Wi(i = 1, 2, 3, 4, 5, 6, 7) and bi(i = 1, 2, 3, 4) represent
the parameters of the corresponding dimension. We update
the node embedding through the self-attention layer. Each
self-attention layer comprises two sub-layers: a multi-head
self-attention layer and a feedforward layer. After process-
ing, we can obtain the hidden features of the current layer
H(l) = (h

(l)

1
, h

(l)

2
,… , h(l)

n
) . We obtain the node embedding

E = W2H by linear transformation and obtain the self-atten-
tion score by the following equation:

We stitch the results after M self-attention (multi-head
attention) and then pass through the fully connected feedfor-
ward layer to get the final node embedding of the multi-head
attention mechanism, specifically:

where headi represents the result of the i − th self-attention:

(11)h
(0)

i
= W1x1 + b1

(12)SelfAttention(E) = softmax

�
EET

√
d

�
E

(13)Ĥ(l) = [head1;… ;headM]W3

Fig. 2 GMPPN’s demonstration includes an encoder, communication models, and multiple decoders (take four decoders as an example)

25886 Q. Wang, Y. Hao

1 3

where H(l−1) is the output of the previous encoder layer.
The feedforward layer sublayer is composed of two lin-
ear transformations with a rectified linear unit (ReLU)
activation:

In addition to the general GNN functionality, we also
want to give GMPNN the ability to handle dynamic
node sequence problems. Specifically, for n nodes, at
different time steps (or layers), the input is a sequence
O(1),O(2),… ,O(l) , where O(l) = (o

(l)

1
, o

(l)

2
,… , o(l)

n
) , o(l)

i
 repre-

sents operations on the node i in layer l (adding or delet-
ing edges). Our task is to predict the vector y(l) (readout
function) through the sequence O(1),O(2),… ,O(l) . For each
propagation, we combine the operation o(l)

i
 of the current

layer with the hidden feature h(l−1)
i

 of the upper layer to
obtain the latent space vector z(l)

i
:

Here we apply a fully connected neural network with
nonlinear activation ReLU, and W2 , b2 are parameters. At
this point, we get the initial representation of the current
layer Z(l) =

(
z
(l)

1
, z

(l)

2
,… , z(l)

n

)
 , then we apply the adjacency

matrix
∏(l−1) and Z(l) to update H(l):

Here we integrate the adjacency matrix
∏(l−1) of the

previous layer to learn the association information between
nodes. We introduce MPNN to set the mapping f , that is,
the original node information and the edge information
obtained by

∏(l−1) , specifically:

Here M̂ is message functions, and Û is vertex update
functions.

Multi‑decoder We have learned more diversified policies
with multi-agents, so we apply multi-decoders to generate
diversified solutions accordingly. We use M to represent the
number of decoders (corresponds to the number of agents)
with the same structure and m to index each decoder. The
model selects the next node visit probability according to an
attention-pointing mechanism at each step. Following Xin
et al. [24], the formal definition of decoders indexed by m
is as follows:

(14)headi = SelfAttention(W4H
(l−1))

(15)h
(l)

i
= W6ReLU

(
W5

̂
h
(l)

i
+ b2

)
+ b3

(16)z
(l)

i
= ReLU

(
W7

[
o
(l)

i
;h

(l−1)

i

]
+ b4

)

(17)H(l) = f
(
Z(l),

∏(l−1)
)

(18)h
(l)

i
= Û(z

(l)

i
, max∏(i−1)

�� =1

M̂(z
(l)

i
, z

(l)

j
))

where hc is the context embedding, h is the mean of the node
embedding, ĥ is the starting node embedding, and ht−1 is the
current node’s embedding. We also adopt maximizing the
Kullback-Leible (KL) divergence between the output prob-
ability distributions of multiple decoders as a regularization
in the training process:

Here pi(y|X, s) denotes the probability decoder i selects the
node y in the state s for the instance X.

Communication For reinforcement learning, it is beneficial
for agents to communicate their expected trajectories, thus
encouraging more cooperative behavior. We propose a com-
munication model based on attention, which can only realize
dynamic communication between agents when necessary.

We use Fa
i
 to represent the feature of each agent, which

are guided by basic domain knowledge (such as agent type or
location). We define the communication encoding function
Ec() , which is applied to all agent features to generate encod-
ing ec

i
 and attention vectors

⇀

ai . Ec() is implemented by fully
connected neural networks (FCNs):

For each agent, we calculate the pooled feature Pf

i
 , which is

the interaction vector from other agents, weighted by attention:

w h e r e �j=i = 0 m e a n s s e l f - i n t e r a c t i o n , a n d
Softmax(−‖ai − aj‖2) gives a measure of the interaction
among agents. The pooled-feature Pf

i
 is connected with the

original feature Fa
i
 to form an intermediate feature Ci:

Here C = {c1, c2,… , cK} , and K is the number of agents.
Through linear transformation, we can transform the

(19)hc = Concat(h, ĥ, ht−1)

(20)gm
c
= Multihead(Wm

gQ
hc,W

m

gK
h,Wm

gV
h)

(21)qm, km
i
= Wm

Q
gm
c
,Wm

K
hi

(22)um
i
= Dtanh((qm)Tkm

i
∕
√
d)

(23)pm
(
yt|X, y1,… , yt−1

)
= softmax(um)

(24)DKL =
∑

s

∑M

i=1

∑M

j=1

∑
y
pi(y|X, s)logp

i(y|X, s)
pj(y|X, s)

(25)Ec
(
Fa
i

)
= (ec

i
,
⇀

ai)

(26)P
f

i
=
∑

j
ec
j
∗ Softmax(−�

⇀

ai −
⇀

aj �

2

) ∗ �j=i

(27)Ci = (P
f

i
, ec

i
)

25887Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

communication vector into a query Qc , key Kc , and value
vector Vc , and then calculate the aggregated communication
as Ca

i
 (as part of the node feature input):

3.4 Training pipeline

For a typical VRP, the reinforcement learning agent will face
hundreds or thousands of possible states or actions. Rein-
forcement learning often suffers from severe reward sparsity
problems in the initial stages of training. Inspired by the
imitation learning pipeline used by AlphaGo [23], we design
a training pipeline (illustrated in Fig. 3) that starts training
from a supervised policy to alleviate this challenge. It is
hard for the direct training agent to select actions from the
initial action space, so AlphaGo first applied the actions of
the experts to train a supervised policy network.

AlphaGo’s Core Technology AlphaGo trains the neural net-
work with a “pipeline” of two machine learning stages. First,
it trains the supervised learning policy network directly from
expert actions, which provides fast and efficient learning
updates with immediate feedback and high-quality gradi-
ents and sample actions quickly during the first presentation
(rollouts). Then, it trains a reinforcement learning policy
network to improve the supervised learning policy network
by optimizing the outcome of the self-play game. This
adjusts the strategy towards the correct goal of winning the
game rather than maximizing prediction accuracy. Finally,
AlphaGo trains a value network that predicts the winner of a
reinforcement learning policy network playing against itself.
AlphaGo combines the policy and value networks with the
MCTS.

Supervised learning In the first training phase, we apply
supervised learning to predict the heuristic function, learn-
ing the parameters in the policy �(s;�) obtained using

(28)Ca
i
=
∑

j
softmax(QcKc) ⋅ Vc

GMPPN. We apply the Monte Carlo policy gradient with
supervised policy learning to update the parameters (for
agent i) to maximize the expected cumulative rewards.

Here J(�) is the expected reward for each episode, + 1
reward is given for each step of a successful episode. We
update the approximate gradient of the policy network by
inserting the paths found by MCTS:

where r(i)t belongs to the node sequence.

Reinforcement learning The first stage of the training pipe-
line is the supervised learning described above, which can
be simplified as follows:

The second phase of the training pipeline aims to improve
the policy network through policy gradient reinforcement
learning, which can also be expressed as:

The reinforcement learning policy network and the super-
vised policy network are identical in structure. Their weights
can be initialized to the same value, so we apply the same �
to represent the parameters to be learned.

We designed a path inference algorithm controlled by
the reward function (defined in Section 3.2) to retrain the
supervised policy network. We treat the two adjacent nodes
and their edges as one episode. According to the policy � ,
agents start from the central node to select nodes accord-
ing to the policy, which is the probability distribution of all

(30)
J(�) = Ea∼��(a(i)|s(i))

(∑
t
r
s
(i)
t ,a

(i)
t

)
=
∑

t

∑
a∈A

��(a
(i)|s(i)t)rs(i)t ,a

(i)
t

(31)
∇�J(�) =

∑
t

∑
a∈A �

�
a(i)�s(i)t ;�

�
∇�log�(a

(i)�s(i)t ;�)
≈ ∇�

∑
t log�(a

(i) = r
(i)
t �s(i)t ;�)

(32)∇� ∝
�log��(a|s)

��

(33)∇� ∝
�log��(at|st)

��
rt

Fig. 3 The complete flow diagram of the training pipeline, in which we apply policy gradient descent for supervised learning after processing
GMPPN and then pass the parameters into reinforcement learning and Monte Carlo Tree Search (MCTS) for retraining with reward function

25888 Q. Wang, Y. Hao

1 3

nodes to expand inference paths. Since this action may result
in finding a new node or nothing, the failed step will result
in the agent receiving a negative reward. Compared with the
Q-learning algorithm, the stochastic policy makes the agent
not fall into an endless cycle due to repeated wrong steps
but keeps the state unchanged. We give an upper limit for
the episode to constrain its maximum length (T) to improve
training efficiency. If the agent cannot find the target node
in T , the episode ends. We employ the following gradient to
update the policy network at the end of each episode:

MCTS with WU‑UCT MCTS combines the optimal first search
tree with the Monte Carlo method, which applies known or
trained environmental models to try and play in many envi-
ronmental models to find better policies. Liu et al. propose a
novel parallel MCTS algorithm, WU-UCT (watch the unob-
served in UCT) [41], which achieves linear acceleration with
little performance loss. The core of the WU-UCT algorithm
is to maintain an extra statistic to record how many work-
ers are simulating it on each node and adjust the selection
algorithm with it:

(34)∇�J(�) = ∇�

∑
t
log�(a(i) = r

(i)
t |s(i)t ;�)rtotal − kKL∇DKL

(35)az = argmax
Q̃i

⎛⎜⎜⎝
Q̃i + �

�
2 log(Nz + Oz)

Ni + Oi

⎞⎟⎟⎠

Here Nz and Ni are the number of accesses to nodes z and
i in the tree, respectively, and Os is the newly added statistics
used to calculate the number of rollouts initiated but not
completed [41]. To better integrate MCTS into our training
pipeline, we introduce the classical A∗ algorithm [42] to fine-
tune and control policy learning with the reward function.

In formula (15), Q̃i is defined as follows:

where Lv and lv have been defined in the reward function. lv is
unknown and is the optimal path from the current node v to
the target node (see Section 3.2). Q̃i is the best reward under
the subtree of node i . We illustrate the detailed process of
retraining the policy network using reinforcement learning
and MCTS in Algorithm 1.

4 Experiments

In this section, we conduct a series of experiments and per-
form a detailed experimental analysis. First, we present the
dataset (generated data distribution), experimental setup
(hyperparameter settings for deep reinforcement learning),
and the results of the method proposed in this chapter on
a small-scale TSP (including a comparison of results with

(36)�(v)= Lv + lv

(37)Q̃i =
1
/
�(v)

Algorithm 1 Retraining with
Rewards

25889Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

different methods, ablation studies, learning curves, etc.).
Finally, the results of a more complex CVRP (capacity-con-
strained VRP) are presented (including comparative studies,
MCTS analysis for parametric analysis, etc.).

4.1 Data sets and settings

We generate instances with 20, 50, and 100 nodes and use
the two-dimensional Euclidean distance to calculate the dis-
tance between two cities [15]. We sample the city location
coordinates of the two dimensions from a uniform distri-
bution [0, 1]2 . For CVRP with 20, 50, and 100 nodes, the
vehicle capacity is fixed at 30, 40, and 50, respectively. We
sample the demand of each non-warehouse city from the
integer {1…9}.

We embed nodes in the element projection of the
128-dimensional vector. The transformer encoder has three
layers of 128-dimensional features and eight heads. Each
decoder takes a 128-dimensional vector and eight headers.
In the training phase of algorithm 1, we set the batch size
to 512, the number of epochs to 100, and the number of
training steps to 2000. We set the KL value to 0.01, made
the Adam optimizer have 10−3 learning rate and 0.96 learn-
ing rate delay, with 32 small batches of 50 gradient descent
step each iteration. The MCTS performs 300 simulations
per move. We store the reward function in a dataset, and
MCTS fine-tunes the policy for training. We apply the solu-
tion solver LKH3 to get the label data needed for supervised
learning in the training pipeline. In our experiments, we only
need a tiny amount of label data to drive stable training of
the entire framework and get good results, as we will specify
later in the experimental task.

We give ample training time to instances of differ-
ent sizes to gain insight into the data distribution and
unlock the model’s potential. We have given the maxi-
mum training time in which learning usually converges.
In terms of implementation conditions, as the number
of problem instances increases, the computing resources
required also increase, and the (training) effect of the
learning method is closely related to the hardware. For
example, we can observe that the training speed increases
significantly with the number of parallel GPUs. So we
ran all our experiments on four parallel NVIDIA GeForce
GTX1080Ti GPUs.

We chose some classic heuristics and more recent meth-
ods based on learning as our baselines. Given the difficulty
of replicating the previous work (such as requiring a large
number of computing resources and time), we tried to select
experimental tasks and parameter settings similar to those
of previous works to facilitate comparison. We extracted the
baseline experimental results of the comparison experiment
from published papers.

4.2 Effects on small‑scale TSP

We first trained and tested MCRL with only one agent on
small-scale instances, i.e., TSP20, TSP50, and TSP100
instances, with a training time of 10 min per epoch on TSP20
(with 3 min for supervised learning), 30 min on TSP50 (with
10 min for supervised learning), and TSP100 with a training
time of 60 min (of which 20 min for supervised learning).
We compare the performance of MCRL on small-scale TSP
with previous works and show the results in Fig. 4a, where
the approximate ratios of the different methods to the opti-
mal solution are compared (closer to 1 means closer to the
optimal solution).

Figure 4a shows that MCRL outperforms traditional algo-
rithms and representative learning-based approaches for
small-scale TSP instances. It demonstrates the efficiency and
effectiveness of the network architecture and training algo-
rithm proposed in the essential state (with only one agent).
Traditional heuristics such as 2-opt, Cheapest, and Closest
have significantly lagged behind learning-based methods
regarding performance due to their singularity of function-
ality (2-opt is an improvement heuristic that improves the
quality of the solution by swapping the order of the nodes
of a given solution. So it results in a higher quality of the
solution relative to other traditional construction heuristics),
especially since the performance degradation is more evi-
dent as the instance size increases. The optimal solutions
in the experiments are obtained by a solution solver, which
usually integrates multiple exact and heuristic algorithms
to enhance solving power and adaptability. Solution solvers
can obtain optimal solutions in small-scale instances but,
like traditional algorithms, are limited by the problem size
and can only solve specific problem instances.

MCRL differs significantly from previous learning-based
approaches in that we design a GNN suitable for dynamic
sequences on graphs. Multi-agent communication mecha-
nisms are effective when two or more bits of agent focus
more on message passing and global information on the
graph (including nodes and edges). Then the proposed train-
ing pipeline is more controllable (through a well-designed
reward function) and stable (with supervised learning at the
beginning of the training phase to alleviate reward sparsity)
than pure reinforcement learning. These differences may be
why the accuracy of MCRL is more advantageous in small-
scale instances.

We selected the learning curves of MCRL in the first five
epochs of the TSP20 training process (the learning curve
changes as the time step increases). From Fig. 4b, we can
see that learning curves show a significant gradient decrease
at the beginning of the first epoch and soon stabilize. At the
same time, they become more and more stable in the subse-
quent epochs and gradually converge to the optimal value.
It is known that the training of reinforcement learning is

25890 Q. Wang, Y. Hao

1 3

not easy, especially at the beginning of the training phase,
which is prone to the reward sparsity problem, and the train-
ing of reinforcement learning is not very stable compared to
supervised learning.

The results show that applying supervised learning
(requiring only a small number of optimal solutions as label
data) in the training pipeline for “hot start” is significant.
Because the training pipeline gives positive and sufficient
feedback to the agent at the beginning, there is no “wander-
ing” and trial and error or the stuck or stagnant phenomenon
that often occurs in previous works. Another critical aspect
of the stability of the training process is the reward function
designed in the Markov decision process for routing optimi-
zation. In particular, we elaborated a reward function with
global and local horizons combined with the MCTS to con-
trol the whole training process jointly and can be effectively
integrated with the designed GNN. A critical function of the
proposed GNN is to obtain global and local information on
routing optimization problems).

To further validate the role of the training pipeline, we
removed supervised learning (MCRL without supervised
learning as MCRL-RL) and compared the change of the
learning curves as the epoch grows on TSP100. Figure 5a
shows that MCRL with the training pipeline is more stable
and converges faster than MCRL with only reinforcement
learning (which is evident at the beginning stage), which
proves that the training pipeline can make the training more
stable to some extent, making the agent more goal-oriented
in finding paths.

The learning curves during training show that the agents
in MCRL can effectively interact with the environment
and learn the data distribution of the problem instances.
Learning-based methods can be tested on new instances as

long as they are sufficiently trained, but only if the training
and testing sets have similar data distributions, which is the
underlying motivation for learning-based methods. So using
the trained model for inference and testing on unknown
instances is a vital evaluation task. We use the MCRL trained
on TSP100 to test on a new TSP100 instance and select the
first six epochs to observe how the learning curves change as
time increases. Figure 5b shows the inference (test) curves
of MCRL. It shows that the learning curves of all six epochs
fluctuate and converge in a relatively small range (as the
epoch increases). Such volatility is average and reasonable
for reinforcement learning. Since the data distribution of the
two TSP100 instances is different, the agents need to interact
with the new environment interaction to adapt and reason
out the correct paths. This demonstrates the efficiency and
effectiveness of the proposed training pipeline in testing.

MCTS is one of the core techniques of the AlphaGo fam-
ily (even many people believe that MCTS is more practical
with deep learning than reinforcement learning), and it is
also one of the core techniques of MCRL because of its
strong ability to traverse and search huge combinatorial
spaces. Therefore, a hyperparametric analysis of the MCTS
is performed on the TSP50 instance to study the MCTS in
MCRL qualitatively and quantitatively. MCTS has two cru-
cial hyperparameters: rollout simulations and search hori-
zons. We first fix the number of rollout simulations of the
MCTS to 128 and observe the optimal solutions obtained by
MCRL corresponding to different search horizons. Figure 6a
shows that MCRL is insensitive to the search horizon of the
MCTS, and its performance is better when the search hori-
zon is 6. Then we fix the search range to 6 and observe the
variation of the optimal solutions obtained by MCRL when
the number of rollout simulations of the MCTS is 64, 128,

Fig. 4 The left figure a shows the approximate gap of different meth-
ods relative to the optimal solutions on TSP20/50, where AM [15],
GPN [43], S2V-DQN [20], Pointer Network [13] are learning-based

methods, and 2-opt and Random Insertion are traditional heuristic
algorithms. The right figure b shows the learning curves of the first
five epochs trained on TSP20

25891Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

and 256, respectively. Figure 6b shows that MCRL’s MCTS
is sensitive to rollout simulations and performs optimally
at many rollout simulations of 128. Adjusting the hyper-
parameters has a relatively significant effect on the MCTS,
which indicates that the MCTS in MCRL is valuable and
practical and plays a relatively significant role in the overall
framework.

4.3 Effects on CVRP

As mentioned, MCRL can transform the (basic) VRP into a
TSP using a subgraph sampling algorithm with little change
in the Markov decision process. The difficulty of VRP is
much greater than that of TSP because the former’s data dis-
tribution is much more complex. On the other hand, previous

learning-based approaches purely learn the distribution of
VRP instances, which is not sufficient for the complexity of
the VRP because we cannot guarantee that the training set is
equally distributed with the test set. So it is necessary to pre-
process the data using data mining to get a fuller picture of
the data distribution (e.g., decomposing a large-scale graph
instance into subgraphs of controlled size). It is possible to
have multi-agent communication mechanisms (a single agent
can also operate independently), so it is necessary to verify
the multi-agent role in MCRL. We trained and tested MCRL
on CVRP instances with 20, 50, and 100 nodes (with one,
two, and five agents, respectively) with different methods
(including the solution solver LKH3, the traditional heu-
ristic method RandomCW, PRL (greedy) [21], AM (greedy
with sampling) [15], NeuRewriter [25]) (the results of the

Fig. 5 The left figure a shows the average route lengths obtained
in the first 20 epochs when MCRL and MCRL without supervised
learning (MCRL-RL) are trained on TSP100 (one hour training time).

The right figure b shows the learning curves of the first six epochs of
the trained MCRL (TSP100) tested on the unknown TSP100

Fig. 6 The left figure a shows the MCRL performance changes as the search horizon grows. The right figure b shows the MCRL performance
changes as the rollout simulations change

25892 Q. Wang, Y. Hao

1 3

comparison methods are taken from previous work [15]).
The training times of MCRL on CVRP20, CVRP50, and
CVRP100 are 10 min, 30 min, and 1 h, respectively.

Table 1 shows the experimental results of MCRL (with a
different number of agents) and other methods. The results
show that MCRL with different agents obtains good experi-
mental results regarding solution quality and inference time
(MCRL is more advantageous in accuracy than other learn-
ing-based methods). The state-of-the-art LKH3 solver has
achieved optimal solutions. Still, it is so time-consuming
(all in hours) that it can only exist in experiments as a refer-
ence baseline or provide some optimal solutions as label data
while applying it to real problems (which are more complex
and more significant in scale) is still used challenging. The
LKH3 solver is based on exact algorithms and improvement
heuristics, so this is not fair to methods based on construc-
tion heuristics since improvement heuristics often require
a given initial feasible solution. NeuRewriter learns the
improvement heuristic, which continuously improves the
quality of the solution by iteratively improving the initial
solution over and over. Although NeuRewriter significantly
improves the quality of solutions, testing takes relatively
longer because the iterative selection and improvement pro-
cess consumes more time. The internal operating mechanism
of improvement heuristics is to exchange the order of nodes
in the solution continuously, that is, to improve the quality
of solutions through continuous perturbation and rearrange-
ment. However, this creates a lot of unwanted redundant
perturbations.

Instead, the construction heuristics generate solutions
from nothing by decoding. Traditional heuristics such as
RandomCW are no longer advantageous. After all, they are
relatively homogeneous and cannot deal with more com-
plex problems more effectively. But learning construction
heuristics shows the flexibility and accuracy that traditional
heuristics do not have when faced with complex problems.
Moreover, the learning methods based on the construction

heuristic require a short testing time because it is easy to
test on similar problems as long as the distribution of the
problem is fully learned. For example, the state-of-the-art
construction heuristic-based learning method AM [107]
models problem instances by transformer [17], uses a pointer
mechanism to output probability distributions, and uses rein-
forcement learning with baselines to train decoding policy
forming a mainstream paradigm for solving routing prob-
lems. The results show that the solutions obtained by AM
using the sampling algorithm are of higher quality than the
greedy algorithm. Still, it also consumes more time, prob-
ably because the sampling algorithm requires more explora-
tion and observation of the data, while the greedy algorithm
is more biased in selecting the locally optimal solution.

The results show that the training pipeline with MCTS is
more efficient and stable than pure reinforcement learning
methods with greedy or sampling than other learning-based
construction heuristics. Analyzing the reason, we feel that
MCRL’s two-stage training pipeline combines the precision
of supervised learning with the generalization of reinforce-
ment learning. We only need a small amount of label data
to make the supervised training learn a good initial policy,
effectively avoiding the problem of sparsity and instabil-
ity of rewards in the initial stage of reinforcement learning
training. The parameters learned from supervised training
can also guide subsequent reinforcement learning agents
to find and reason more effectively. Besides, MCRL has a
reward function that controls the entire framework training,
the reward function combined with the A* algorithm fine-
tunes the MCTS, which are factors that contribute to the
quality of the solution.

The results in Table 1 show that MCRL with one, two,
and five agents are competitive with other methods in terms
of solution quality and testing time, and the higher the qual-
ity of the solutions obtained, the shorter the time required
as the number of agents increases. This indicates that the
multi-agent and communication mechanism in MCRL is

Table 1 MCRL vs. baselines in
CVRP instances

“Obj.” represents the best solutions obtained by different methods, “Gap” represents the gap between the
best solutions obtained and the optimal solutions, and “Time” represents the time required for testing

Method n = 20 n = 50 n = 100

Obj Gap Time Obj Gap Time Obj Gap Time

LKH3 6.14* 0.00% 2 h 10.38* 0.00% 7 h 15.65* 0.00% 13 h
Random CW 6.81 11.64% - 12.25 18.07% - 18.96 21.18% -
PRL (greedy) [21] 6.59 8.03% - 11.39 9.78% - 17.23 10.12% -
AM (greedy) [15] 6.40 4.97% 1 s 10.98 5.86% 3 s 16.80 7.34% 8 s
AM (sampling) [15] 6.25 2.49% 6 m 10.62 2.40% 28 m 16.23 3.72% 2 h
NeuRewriter [25] 6.16 0.48% 22 m 10.51 1.25% 35 m 16.10 2.88% 66 m
MCRL (one agent) 6.14 0.31% 7 m 10.65 2.60% 21 m 16.40 4.79% 55 m
MCRL (two agents) 6.14 0.22% 4 m 10.48 0.96% 16 m 16.03 2.43% 31 m
MCRL (five agents) 6.14 0.15% 2 m 10.40 0.19% 9 m 15.99 2.17% 23 m

25893Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

effective for the whole framework, which is equivalent to
an ablation study of the multi-agent mechanism and proves
that the multi-agent communication mechanism of MCRL is
beneficial to enhance the learning when a reasonable number
of agents are available. Analyzing the reasons, the multi-
agents of MCRL can learn more diverse policies and more
effective learning of distributions, and the communication
between them can make more local and global information
available to the agents. The multi-agent mechanism matches
multiple decoders better, and the former can provide the
latter with more diverse distributions so that the latter can
learn more about decoding policies that improve the solution
quality and shortens the testing time. Besides, during the
experiments, we also found that the multi-agent can improve
the parallel search efficiency (faster training) of the MCTS
because the multi-agent can more easily simulate multiple
vehicles traversing in the graph and pass messages more
efficiently to obtain the global and local views of the graph.
This is helpful to improve the accuracy of the solution and
reduce the running time, especially for large graph instances.

However, the results show that MCRL is not optimal in
test time, but it still exceeds most of the baselines; after all,
MCRL contains many complex neural networks that may
lose some efficiency while improving the model capability.
The best performer in terms of test time is AM (greedy),
i.e., AM using the greedy decoding policy [107], while AM
(sampling) using sampling decoding is higher than AM
(greedy) in terms of solution quality but weaker than the
latter in terms of test time, which indicates the possibility of
reducing efficiency while improving solution quality.

We further conduct a statistical test using the Friedman
and posthoc Nemenyi tests to compare different learning-
based algorithms [44, 45]. Table 2 shows the results and
average order values of different methods for CVRP of dif-
ferent sizes. Since NeuRewriter requires a given initial solu-
tion, its working mechanism is fundamentally different from
other methods, so we do not take it as one of the baselines.
We expand the CVRP data set to 200 nodes to compare the
differences between the approaches entirely.

We first calculate the Friedman detection values by using
the following equations:

where N is the number of data sets, k is the number of algo-
rithms, ri represents the average order value of the i − th
algorithm, ri follows the normal distribution, and its mean
and variance are (k + 1)∕2 , (k2 − 1)∕12 , respectively. �F fol-
lows the F distribution of k − 1 and (k − l)(N − 1) degrees
of freedom.

We first calculate �F=-3.01 according to Eqs. (38) and
(39). �F is less than 5.143 when � = 0.05 in Table 3 and
3.463 when � = 0.1 in Table 4. Therefore, we cannot deny
the hypothesis that “all algorithms perform equally”.

Then, we use the posthoc Nemenyi test to calculate the
critical range CD through the following formula:

It is found in Table 3 that when k = 3, q0.05 and q0.10
are equal to 2.344 and 2.052, respectively. According to
Eq. (40), the critical values CD are calculated to be 1.657
and 1.451, respectively. According to the average order value
in Table 2, the gap between PRL and AM, between AM and
MCRL, and between PRL and MCRL does not exceed the
critical range (Table 5). Therefore, the test results show that
the performance of PRL, AM, and MCRL is not significantly
different. This phenomenon shows that the performance of
MCRL is close to that of the state-of-the-art methods on data
sets with similar distributions, which is reasonable, because
the learning mechanism of these construction-based heuris-
tic methods is similar, essentially learning the probability
distribution of data and then decoding to get the solution
sequence. In addition, most of these learning-based methods
are carried out through GNN modeling and reinforcement

(38)��2 =
12N

k(k + 1)

(∑k

i=1
r2
i
−

k(k + 1)2

4

)

(38)�F =
(N − 1)��2

N(k − 1) − ��2

(40)CD = q�

√
k(k + 1)

6N

Table 2 The Friedman and posthoc Nemenyi tests compare different
learning-based methods, where “AOV” represents the average order
value of different methods on different data sets

DataSet PRL (greedy) AM (sampling) MCRL

CVRP20 6.59 6.25 6.14
CVRP50 11.39 10.62 10.40
CVRP100 17.23 16.23 15.99
CVRP200 19.52 18.69 17.87
AOV 13.68 12.95 12.60

Table 3 Some Friedman test
critical values at � equal 0.05

N k

2 3 4

4 10.128 5.143 3.863
5 7.709 4.459 3.490

Table 4 Some Friedman test
critical values at � equal 0.1

N k

2 3 4

4 5.538 3.463 2.813
5 4.545 3.113 2.606

25894 Q. Wang, Y. Hao

1 3

learning training. However, MCRL is superior to other meth-
ods in accuracy and training stability, proving that the train-
ing pipeline, GNN, multi-agent communication mechanism,
and other components we designed are superior to previous
methods.

5 Conclusion

This paper proposes a novel modeling and training frame-
work for sequential decision problems on graphs. We
develop a GNN as an encoder and a multi-agent mechanism
into a multi-decoder to enhance the solutions’ accuracy and
versatility. We design an MDP for routing problems and
apply subgraph sampling that converts a (simple) VRP into
a TSP to use almost the same MDP. We also design a more
feature-rich and comprehensive reward function for rein-
forcement learning that serves as the core of the training
pipeline to integrate the MCTS engine to retrain the super-
vised policy network. Besides, the reasoned paths can also
serve as rules to solve more complex and larger CO prob-
lems. We have provided a generic framework where com-
ponents can be replaced, perhaps with other state-of-the-art
models, to improve the framework’s overall performance or
other types of CO problems, which will be our future work.

Acknowledgements This research was supported by the “Fundamental
Research Funds for the Central Universities” under grant 017231161,
and the “Xinghai Associate Professor” under grant 02500364.

Data availability The data that support the findings of this study are
available upon request. Requests for data access can be directed to Qi
Wang following a formal data-sharing agreement.

Declarations

Competing interests The author declared no potential conflicts of
interest for this article’s research, authorship, and publication.

References

 1. Castro-Gutierrez J, Landa-Silva D, Moreno Pérez J (2011) Nature
of real-world multi-objective vehicle routing with evolutionary
algorithms. Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern, pp
257–264. https:// doi. org/ 10. 1109/ ICSMC. 2011. 60836 75.

 2. Lu H, Zhou R, Fei Z, Guan C (2019) Spatial-domain fitness
landscape analysis for combinatorial optimization. Inf Sci (Ny)
472:126–144. https:// doi. org/ 10. 1016/j. ins. 2018. 09. 019

 3. Niu Y, Shao J, Xiao J, Song W, Cao Z (2022) Multi-objective
evolutionary algorithm based on RBF network for solving the
stochastic vehicle routing problem. Inf Sci (Ny) 609:387–410.
https:// doi. org/ 10. 1016/j. ins. 2022. 07. 087

 4. Chen C, Demir E, Huang Y (2021) An adaptive large neighbor-
hood search heuristic for the vehicle routing problem with time
windows and delivery robots. Eur J Oper Res 294:1164–1180.
https:// doi. org/ 10. 1016/j. ejor. 2021. 02. 027

 5. Windras Mara ST, Norcahyo R, Jodiawan P, Lusiantoro L, Rifai
AP (2022) A survey of adaptive large neighborhood search algo-
rithms and applications. Comput Oper Res 146:105903. https://
doi. org/ 10. 1016/j. cor. 2022. 105903

 6. Wang Q, Tang C (2021) Deep reinforcement learning for transpor-
tation network combinatorial optimization: a survey. Knowl Based
Syst 233:107526. https:// doi. org/ 10. 1016/j. knosys. 2021. 107526

 7. Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2021) First
return, then explore. Nature 590:580–586. https:// doi. org/ 10. 1038/
s41586- 020- 03157-9

 8. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
Lanctot M, Sifre L, Kumaran D, Graepel T, Lillicrap T, Simonyan
K, Hassabis D (2018) A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science (80-.
) 362:1140–1144. https:// doi. org/ 10. 1126/ scien ce. aar64 04

 9. Koster R, Balaguer J, Tacchetti A, Weinstein A, Zhu T, Hauser
O, Williams D, Campbell-Gillingham L, Thacker P, Botvinick M,
Summerfield C (2022) Human-centred mechanism design with
democratic AI. Nat Hum Behav 6:1398–1407. https:// doi. org/ 10.
1038/ s41562- 022- 01383-x

 10. Fawzi A, Balog M, Huang A, Hubert T, Romera-Paredes B,
Barekatain M, Novikov A, Francisco FJ, Schrittwieser J, Swirszcz
G, Silver D, Hassabis D, Kohli P (2022) Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature
610:47–53. https:// doi. org/ 10. 1038/ s41586- 022- 05172-4

 11. Wang Q, He Y, Tang C (2022) Mastering construction heuristics
with self-play deep reinforcement learning. Neural Comput Appl
35(6):4723–4738. https:// doi. org/ 10. 1007/ s00521- 022- 07989-6

 12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In:
Advances in neural information processing systems, pp 5999–6009

 13. Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In:
Advances in neural information processing systems, pp 2692–2700

 14. Nazari M, Oroojlooy A, Takáč M, Snyder LV (2018) Reinforcement
learning for solving the vehicle routing problem. In: Advances in
neural information processing systems, pp 9839–9849

 15. Kool W, Van Hoof H, Welling M (2019) Attention, learn to solve
routing problems! In: 7th international conference on learning
representations, ICLR 2019, pp 1–25

 16. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A compre-
hensive survey on graph neural networks. IEEE Trans Neural Netw
Learn Syst 32:4–24. https:// doi. org/ 10. 1109/ TNNLS. 2020. 29783 86

 17. Wang Q, Lai KH, Tang C (2023) Solving combinatorial optimiza-
tion problems over graphs with BERT-based deep reinforcement
learning. Inf Sci (Ny) 619:930–946. https:// doi. org/ 10. 1016/j. ins.
2022. 11. 073

 18. Wang Q, Hao Y, Cao J (2021) Learning to traverse over graphs
with a Monte Carlo tree search-based self-play framework. Eng
Appl Artif Intell 105:104422. https:// doi. org/ 10. 1016/j. engap pai.
2021. 104422

 19. Wang Q (2021) VARL: a variational autoencoder-based reinforce-
ment learning framework for vehicle routing problems. Appl Intell
52:8910–8923. https:// doi. org/ 10. 1007/ s10489- 021- 02920-3

 20. Dai H, Khalil EB, Zhang Y, Dilkina B, Song L (2017) Learning
combinatorial optimization algorithms over graphs. In: Advances
in neural information processing systems, pp 6349–6359

 21. Bello I, Pham H, Le QV, Norouzi M, Bengio S (2019) Neural
combinatorial optimization with reinforcement learning. In: 5th

Table 5 Critical values for the two-tailed Nemenyi test

#Classifiers 2 3 4 5 6

q
0.05

1.960 2.343 2.569 2.728 2.850
q
0.10

1.645 2.052 2.291 2.459 2.589

https://doi.org/10.1109/ICSMC.2011.6083675
https://doi.org/10.1016/j.ins.2018.09.019
https://doi.org/10.1016/j.ins.2022.07.087
https://doi.org/10.1016/j.ejor.2021.02.027
https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/10.1016/j.knosys.2021.107526
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/s41562-022-01383-x
https://doi.org/10.1038/s41562-022-01383-x
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1007/s00521-022-07989-6
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.ins.2022.11.073
https://doi.org/10.1016/j.ins.2022.11.073
https://doi.org/10.1016/j.engappai.2021.104422
https://doi.org/10.1016/j.engappai.2021.104422
https://doi.org/10.1007/s10489-021-02920-3

25895Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning

1 3

International Conference on Learning Representations, ICLR
2017 - workshop track proceedings, pp 1–15

 22. Li Z, Chen Q, Koltun V (2018) Combinatorial optimization
with graph convolutional networks and guided tree search. In:
Advances in neural information processing systems, pp 539–548

 23. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driess-
che G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot
M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever
I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D
(2016) Mastering the game of Go with deep neural networks and tree
search. Nature 529:484–489. https:// doi. org/ 10. 1038/ natur e16961

 24. Xin L, Song W, Cao Z, Zhang J (2021) Multi-decoder attention
model with embedding glimpse for solving vehicle routing prob-
lems. In: 35th AAAI conference on artificial intelligence, AAAI
2021, pp 12042–12049. https:// doi. org/ 10. 1609/ aaai. v35i13. 17430

 25. Chen X, Tian Y (2019) Learning to perform local rewriting for
combinatorial optimization. In: Advances in neural information
processing systems

 26. Lu H, Zhang X, Yang S (2018) A learning-based iterative method
for solving vehicle routing problems. Iclr 2020. 3, pp 1–13

 27. Zheng J, He K, Zhou J, Jin Y, Li CM (2021) Combining rein-
forcement learning with Lin-Kernighan-Helsgaun algorithm for
the traveling salesman problem. In: 35th AAAI conference on
artificial intelligence, AAAI 2021, pp 12445–12452. https:// doi.
org/ 10. 1609/ aaai. v35i14. 17476

 28. Delarue A, Anderson R, Tjandraatmadja C (2020) Reinforcement
learning with combinatorial actions: an application to vehicle
routing. Adv. Neural Inf. Process. Syst. 2020-Decem

 29. Cappart Q, Moisan T, Rousseau LM, Prémont-Schwarz I, Cire AA
(2021) Combining reinforcement learning and constraint program-
ming for combinatorial optimization. In: 35th AAAI Conference
on Artificial Intelligence, AAAI 2021, pp 3677–3687. https:// doi.
org/ 10. 1609/ aaai. v35i5. 16484

 30. Zong Z, Wang H, Wang J, Zheng M, Li Y (2022) RBG: hierarchi-
cally solving large-scale routing problems in logistic systems via
reinforcement learning. Association for Computing Machinery.
https:// doi. org/ 10. 1145/ 35346 78. 35390 37

 31. Yan D, Weng J, Huang S, Li C, Zhou Y, Su H, Zhu J (2022) Deep
reinforcement learning with credit assignment for combinatorial
optimization. Pattern Recognit 124:108466. https:// doi. org/ 10.
1016/j. patcog. 2021. 108466

 32. Wang Q, Blackley SV, Tang C (2022) Generative adversarial
imitation learning to search in branch-and-bound algorithms. In:
International conference on database systems for advanced appli-
cations. Springer International Publishing, pp 673–680. https://
doi. org/ 10. 1007/ 978-3- 031- 00126-0_ 51

 33. Hottung A, Kwon Y-D, Tierney K (2022) Efficient active search
for combinatorial optimization problems. Iclr 2022, pp 1–10

 34. Cai X, Xia C, Zhang Q, Mei Z, Hu H, Wang L, Hu J (2021) The
collaborative local search based on dynamic-constrained decom-
position with grids for combinatorial multiobjective optimiza-
tion. IEEE Trans Cybern 51:2639–2650. https:// doi. org/ 10. 1109/
TCYB. 2019. 29314 34

 35. Domínguez-Ríos MÁ, Chicano F, Alba E (2021) Effective any-
time algorithm for multiobjective combinatorial optimization
problems. Inf Sci (Ny) 565:210–228. https:// doi. org/ 10. 1016/j.
ins. 2021. 02. 074

 36. Yu JJQ, Yu W, Gu J (2019) Online vehicle routing with neural
combinatorial optimization and deep reinforcement learning.
IEEE Trans Intell Transp Syst 20:3806–3817. https:// doi. org/ 10.
1109/ TITS. 2019. 29091 09

 37. Yin F, Zhao Y (2022) Distributionally robust equilibrious hybrid
vehicle routing problem under twofold uncertainty. Inf Sci (Ny)
609:1239–1255. https:// doi. org/ 10. 1016/j. ins. 2022. 07. 140

 38. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.
(2020) GraphSAINT: Graph Sampling Based Inductive Learning
Method. Iclr. 3, pp 415–422

 39. Menda K, Chen YC, Grana J, Bono JW, Tracey BD, Kochenderfer
MJ, Wolpert D (2019) Deep reinforcement learning for event-
driven multi-agent decision processes. IEEE Trans Intell Transp
Syst 20:1259–1268. https:// doi. org/ 10. 1109/ TITS. 2018. 28482 64

 40. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A,
Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, Oh J, Hor-
gan D, Kroiss M, Danihelka I, Huang A, Sifre L, Cai T, Agapiou
JP, Jaderberg M, Vezhnevets AS, Leblond R, Pohlen T, Dalibard
V, Budden D, Sulsky Y, Molloy J, Paine TL, Gulcehre C, Wang
Z, Pfaff T, Wu Y, Ring R, Yogatama D, Wünsch D, McKinney
K, Smith O, Schaul T, Lillicrap T, Kavukcuoglu K, Hassabis D,
Apps C, Silver D (2019) Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature 575:350–354. https://
doi. org/ 10. 1038/ s41586- 019- 1724-z

 41. Liu A, Chen J, Yu M, Zhai Y, Zhou X, Liu J (2020) Watch the
unobserved: a simple approach to parallelizing Monte Carlo Tree
Search. Iclr, pp 1–21

 42. Wang J, Wu N, Zhao WX, Peng F, Lin X (2019) Empowering A*
search algorithms with neural networks for personalized route
recommendation. Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Min, pp 539–547. https:// doi. org/ 10. 1145/ 32925 00. 33308 24

 43. Xin L, Song W, Cao Z, Zhang J (2021) Step-wise deep learn-
ing models for solving routing problems. IEEE Trans Ind Inform
17:4861–4871. https:// doi. org/ 10. 1109/ TII. 2020. 30314 09

 44. Demšar J (2006) Statistical comparisons of classifiers over mul-
tiple data sets. J Mach Learn Res 7:1–30

 45. Wang H, Yu D, Li Y, Li Z, Wang G (2018) Multi-label online
streaming feature selection based on spectral granulation and
mutual information. Springer International Publishing.https://
doi. org/ 10. 1007/ 978-3- 319- 99368-3_ 17

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1038/nature16961
https://doi.org/10.1609/aaai.v35i13.17430
https://doi.org/10.1609/aaai.v35i14.17476
https://doi.org/10.1609/aaai.v35i14.17476
https://doi.org/10.1609/aaai.v35i5.16484
https://doi.org/10.1609/aaai.v35i5.16484
https://doi.org/10.1145/3534678.3539037
https://doi.org/10.1016/j.patcog.2021.108466
https://doi.org/10.1016/j.patcog.2021.108466
https://doi.org/10.1007/978-3-031-00126-0_51
https://doi.org/10.1007/978-3-031-00126-0_51
https://doi.org/10.1109/TCYB.2019.2931434
https://doi.org/10.1109/TCYB.2019.2931434
https://doi.org/10.1016/j.ins.2021.02.074
https://doi.org/10.1016/j.ins.2021.02.074
https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1016/j.ins.2022.07.140
https://doi.org/10.1109/TITS.2018.2848264
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1145/3292500.3330824
https://doi.org/10.1109/TII.2020.3031409
https://doi.org/10.1007/978-3-319-99368-3_17
https://doi.org/10.1007/978-3-319-99368-3_17

25896 Q. Wang, Y. Hao

1 3

Qi Wang received his B.S., M.Eng., and Ph.D. degrees in software
engineering from Jilin University (Changchun city), Central South
University (Changsha city), and Fudan University (Shanghai) in 2012,
2016, and 2022, respectively, in China. Currently, he holds the posi-
tion of lecturer at the Information Science and Technology College at
Dalian Maritime University. His research interests encompass combi-
natorial optimization, deep learning, and reinforcement learning.

Yongsheng Hao received his MS Degree of Engineering from Qingdao
University in 2008. Now, he is a senior engineer of Network Center,
Nanjing University of Information Science & Technology. His current
research interests include cloud computing, distributed and parallel
computing, mobile computing, Grid computing, web Service, particle
swarm optimization algorithm, and genetic algorithm. He has pub-
lished more than 50 papers in international conferences and journals.

	Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Problem definition
	3.2 Markov decision process
	3.3 Attentional policy network
	3.4 Training pipeline

	4 Experiments
	4.1 Data sets and settings
	4.2 Effects on small-scale TSP
	4.3 Effects on CVRP

	5 Conclusion
	Acknowledgements
	References

