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Abstract
Simple neural network classification tasks are based on performing extraction as transformations of the set simultaneously 
with optimization of weights on individual layers. In this paper, the Representation 7 architecture is proposed, the primary 
assumption of which is to divide the inductive procedure into separate blocks – transformation and decision – which may 
lead to a better generalization ability of the presented model. Architecture is based on the processing context of the typical 
neural network and unifies datasets into a shared, generically sampled space. It can be applicable in the case of difficult prob-
lems – defined not as imbalance or streaming data but by low-class separability and a high dimensionality. This article has 
tested the hypothesis that – in such conditions – the proposed method could achieve better results than reference algorithms 
by comparing the R7 architecture with state-of-the-art methods, raw mlp and Tabnet architecture. The contributions of this 
work are the proposition of the new architecture and complete experiments on synthetic and real datasets with the evaluation 
of the quality and loss achieved by R7 and by reference methods.
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1  Introduction

Appropriate analysis tools are an increasingly pressing prob-
lem in an information-saturated world. Statistical tools dedi-
cated to big data processing or intelligent agents in machine 
learning help to support the data processing and reasoning, 
but they can only meet some needs in this area.

Research in the field of classification must be based on 
labeled data, thanks to which learning models can gain gen-
eralization abilities. Jamain and Hand [1], at the beginning 
of the period of increased interest in learning representations, 
analyzed what sets are most often used in papers, which led 
them to a disturbing conclusion – there is a considerable 

gap in conducting experiments on large and difficult data-
sets. The reasons for this lack, which they described as an 
unexpected discovery, are found in the general unavailability 
of such collections in popular repositories such as UCI [2]. 
Their conclusions were confirmed ten years later by Shand 
et al. [3], which proves that this problem has not been solved 
yet, despite the development of existing repositories and the 
emergence of new, which today are listed on a par with Uni-
versity of California, Irvine (UCI) – Kaggle [4] or Knowledge 
Extraction based on Evolutionary Learning (KEEL) [5].

An additional problem in this regard is the overall low 
reproducibility of research in machine learning [6]. Many 
published works need descriptions of the source datasets, 
which means there is no information about the proper dif-
ficulty of the problems considered in them.

It is also worth noting that the definitions of difficult 
problems differ depending on the context in which the 
phrase is used. It is common to interpret this way sets 
with a high degree of class imbalance [7] or problems with 
a potentionally infinite volume described by data streams 
[8]. In other cases, explicitly accepted [9] metrics are used 
as a determinant, allowing numerical determination of a 
given set’s complexity level.
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However, the abovementioned analyses considered 
criteria more visible at first glance. The initial selection 
was based on the error rate measure, but later the size of 
the set, its dimensionality, and the number of considered 
classes was analyzed. At this stage, the authors pointed out 
that in the scale of all examined articles, there is a clear 
gap for multi-cluster sets with high dimensionality and a 
significant overall volume of observations.

The method proposed in this article is intended for dif-
ficult binary classification problems described by large, 
multidimensional datasets, which are additionally charac-
terized by multiple clusters and low class separability. It 
is possible to use the existing methods of generating syn-
thetic sets to reflect the existence of the listed features, but 
real data primarily characterize more complex and diverse 
distributions. Synthesizers, usually based on generic distri-
butions, will not reflect a similar level of complexity [10], 
which may be one of the reasons for the gap in research on 
data that is difficult in a described sense.

The literature in the field offers few methods to deal with 
all the indicated characteristics simultaneously. It makes it 
necessary to combine existing algorithms into hybrid solu-
tions, allowing only gradual transformations [11].

Due to its simplicity and relatively low computational 
complexity, the method most often used in practice to reduce 
the number of features is Principal Component Analysis 
(pca) [12]. It performs a linear combination of existing attrib-
utes. The primary advantage of using this approach is that 
it removes the redundant influence of correlated problem 
descriptors. However, when only part of the components is 
used, pca is not a lossless method in terms of information and 
the interpretability of the original feature space. Features lose 
their original meanings after transformation, which is caused 
by parameterization and its dependence on the user.

A newer and lossless method is t-sne. It is based on non-
linear transformations that preserve local structures and do 
not lose global information, such as the number of clusters. 
In turn, it pays with high computational complexity and thus 
also long processing time, which is incompatible with the 
use of this method in effectively reducing the dimensionality 
of large datasets for purposes other than visualization [13].

Both pca and t-sne are also methods used for problems 
with low class separability, as their dispersion is an addi-
tional effect of compressing the data to a smaller dimension 
[14]. Note, however, that the second of these methods is non-
deterministic. It can cause potential problems during experi-
ments due to the lack of results replication [15]. In addition, 
the distortions introduced to the geometry of the problem 
here are specific to the set for which the analysis is carried 
out, which increases the risk of overfitting the model by 
distorting the original representation of the problem space.

Decreasing the number of samples is solved by resam-
pling. Its simplest form assumes removing the indicated 

number of randomly selected patterns from the set. How-
ever, there are also more complex procedures, with particu-
lar emphasis on those that perform stratification, so as not to 
violate the prior probability of the problem [16].

The construction of the architecture proposed in this article 
does not require separate transformations to reduce the cardinal-
ity and dimensionality or increase the separability of classes. 
It replaces them with a unitary transformation of the original 
problem space to an alternate representation defined by a generic 
distribution of the target space. This concept is based on the 
previously presented cpte method [17], which brings considered 
problems to the feature space of one of them. It uses the founda-
tions of ensemble and transfer learning to transform one dataset 
into the feature space of another. However, it is not intended for 
use with difficult data understood as multidimensional data with 
low class separability. For this reason, the cpte algorithm was not 
used as a reference method during experiments.

The solution presented in this paper develops the cpte 
paradigm, also taking multitasking as a basis to enable mod-
els to gain the ability to generalize against several problems 
simultaneously [18], which naturally reduces the number of 
learning components needed. In its basic construction, the 
proposed Representation 7 method uses the classic Neural 
Network (nn) architecture, which, as demonstrated by the 
experimental evaluation, cannot effectively extract the prob-
lems difficult to the given definition.

A spectrum of multitask learning methods is based on 
sharing parameters by models, sets transformations, and 
encoding-decoding procedures [19]. The first and second 
groups are used less and less because encoders replace them. 
This phenomenon is related to a common problem in the 
field – the need to optimize the target model so that it does 
not discriminate against any of the component tasks.

Procedures based on the use of encoders-decoders allow 
for the transfer of two sets to be represented in one space 
[20], thanks to which the discussed problem does not occur. 
In other cases, methods based on multi-objective optimiza-
tion are used, for example, Pareto solutions [21].

Representation 7, like encoders, does not require an addi-
tional mechanism to balance the importance of problems for 
the algorithm because it assumes the transformation of the 
input sets to a homogeneous representation, which will be 
described in the Section 2.

The three main contributions of this work can be 
highlighted.

1.	 The Representation 7 architecture was proposed. It uses 
transformations to unify data sets into a common, gener-
ically sampled space. The whole procedure is kept in the 
context of Multi-layer Perceptron (mlp) processing so it 
can benefit from its advantages.

2.	 Proposition was evaluated experimentally on synthetic 
data compared to state-of-the-art methods for dealing 
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with difficult data. It verifies the proposed architecture’s 
general properties by measuring the algorithms’ quality 
and loss.

3.	 The hypotheses were tested on real sets characterized 
by high cardinality, high dimensionality, and low sepa-
rability of classes. Real datasets are considered more 
difficult for recognition models because of their irregular 
distributions.

2 � Methods

2.1 � Method motivation

The mlp allows for learning with the use of one or more 
hidden layers, which means that in the case of many hid-
den layers, this model structurally corresponds to the basic 
feed-forward architecture of a deep neural network (dnn). 
However, at the same time, such a standard structure does 
not assume separating the data transformation step – nowa-
days most often defined as representation learning [22] 
– from optimizing the loss function [23]. In practice, this 
means that training mlp – regardless of the number of hid-
den layers – simplifies the definition of the analyzed dataset 
by minimizing the distance between the decision boundary 
and incorrectly classified patterns [24].

The method proposed in this paper is based on the 
assumption that the separation of the extraction stage and 
– appropriate for the classification task – optimization of the 
loss function to the given labels may be associated with a 
significant increase in the quality of the recognition model. 
Particularly great achievements of this type of strategy are 
observed for signal data, where the currently most popular 
approaches introduce neural processing blocks specialized 
for the task of extracting attributes, i.e., in the form of con-
volutional layers (cnn) [25]. In the case of classical recogni-
tion problems, represented as spatially independent tabular 
data, they do not find a broader application, and data of this 
kind is sometimes even referred to as “the last bastion not 
yet conquered by deep learning” [26].

This paper proposes the Representation 7 (R7) architec-
ture. Its basic assumption is to separate the available mem-
ory of the neural model into processing blocks dedicated to 
the subprocesses of the recognition procedure, which are 
connected through an intermediate representation. Such 
internal task-specialization of layers, combined with the 
implicit propagation of an optimized representation, sam-
pled by more than one problem in each iteration of updating 
the model weights, may allow both to consider many prob-
lems simultaneously and to obtain better results than with 
a solid model. According to the authors’ assumptions, this 
difference should be observable mainly for the so-called dif-
ficult data, especially problems with high class overlapping, 

where the proper transformation of space ceases to be just a 
trivial task of dimensionality reduction [27]. This hypothesis 
is the basis for the conducted experimental evaluation.

The default solution for multidimensional tabular prob-
lems is to conduct preliminary attributes engineering, select-
ing or extracting the features with the greatest predictive 
potential [28]. In the case of selection methods, for exam-
ple, based on the Chi-squared (Chi2) test or Analysis of 
Variance (ANOVA), the attributes with the most significant 
dependence or covariance with the class label are identified 
in the defined problem space. It does not violate the original 
interpretation of the factors of the set of observations. How-
ever, it does not allow a mutual combination of independent 
attributes, which makes such a strategy highly inefficient 
for attributes with low linear separability of classes [29]. 
In the case of extraction methods, for example, based on 
the pca and its derivatives, or the t-sne algorithm, the pro-
cedure looks for a set of mutually orthogonal projections 
of the original problem attributes with a maximized vari-
ance [30] or a neighborly embedded manifolds based on a 
stochastic process [13]. Such approaches are often agnostic 
methods, independent of the given problem labeling. In this 
case, a common alternative is using autoencoders that allow 
learning an effective, low-dimensional representation of the 
original problem by building a neural network reproducing 
its instances [31].

However, each approach has limitations, which do not 
allow for building an adequate representation of problems 
described by a high-dimensional set of factors with defi-
cient but strongly independent predictive ability. To illustrate 
extraction problems, let us assume there is a binary clas-
sification problem sampled over a thousand instances with 
fifty independent attributes and a controllable scale of class-
separability. For additional difficulty and to prevent a simple 
linear separation with a margin of error, each class is built 
on five clusters of objects. Thanks to the Madelon generator 
proposed by Guyon, an appropriate illustrative problem can 
be obtained, where the separability of attributes is configur-
able by the class_sep parameter [32].

Figure 1 presents such problems. Six columns are con-
secutive values of class_sep decreasing linearly from 2.0 
(high separability) to 0.001 (very low separability). The 
consecutive rows of the figure show the two-dimensional 
representations of the problem obtained by:

ANOVA	� Analysis of variance – selected two best features 
from the set based on the analysis of their covari-
ance with the class label.

PCA	   �Principal Components Analysis – presenting the 
two components that explain the largest percent-
age of variance in the problem.

SAE	   �Shallow Autoencoder – presenting the result of 
the transformation of a shallow encoder (with an 
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additional hidden layer consisting of 100 neu-
rons), whose task was to represent the original 
problem in two dimensions.

t-SNE	   �T-distributed Stochastic Neighbor Embedding – 
demonstrating the effect of embedding a problem 
into two dimensions using the t-sne procedure.

As can be seen, the best-differentiating factors, according 
to the ANOVA test with high dimensionality and a large num-
ber of clusters, do not allow for a low-dimensional representa-
tion enabling linear separation of classes without a significant 
margin of error, even in the case of a problem with relatively 
large size of the hypercube. Pca in this task allows for a sig-
nificant improvement in the efficiency of the representation, 
which quickly loses its potential along with the decrease in 
the separability. Similar, and sometimes even identical, results 
are achieved by autoencoders, which additionally – due to the 
random specificity of neural networks – do not constitute a 
deterministic approach to building a representation. The best 
one here is t-sne, which, due to constructing a space that only 
locally reflects Euclidean, is not subject to the same geometri-
cal restrictions as other transformations. It allows a good sepa-
ration of classes and a proper identification of clusters with a 

large size of the hypercube forming the Madelon set. Never-
theless, even this approach is highly ineffective when its size 
rapidly decreases, also building a representation that prevents 
correct recognition of a defined problem.

2.2 � Representation 7

The R7 architecture proposed in this paper breaks down the 
available depth of the neural network, for each considered 
problem, into two blocks of constant width. For illustrative 
and experimental purposes, the R7 version combining two 
recognition problems in a coherent architecture is used here, 
but extending it to larger structures analogically is permissible.

Each recognition problem passed to the R7 model is pro-
cessed by two logical blocks. The first one, MR, is a trans-
formation tool to a shared domain of problems, interpreted 
by the second – MC – which already solves the classification 
task. The MC block is an element shared by all problems in 
the unified domain, which in the illustrated example Fig. 2 
means that it must accept both MR

1
 and MR

2
 outputs.

In order to allow the MC block to operate on the outputs of 
all given MR

i
 blocks, two conditions must be met. The first, 

relatively simple to ensure, is the same dimensionality of 

Fig. 1   Reducing the dimensionality of difficult problems using state-of-the-art methods
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the output layers of the MR

i
 blocks. These blocks are imple-

mented as regression models with a joint output width but 
admissibly different input width. Thanks to that, both prob-
lems can be interpreted together, despite potentially different 
dimensionality, by ensuring a constant representation width.

Theoretically, it would be possible to apply the autoencoders 
of both problems to common dimensionality here. However, 
more is needed to ensure the fulfillment of the second condi-
tion – a common definition of the transformed problem. The 
coexistence of two or more independent definitions of a concept 
in one space could lead – in the vast majority of practical cases 
– to the mutual overlapping of classes, significantly hindering 
the combined problem and thus leading to a significant degen-
eration of the mixed model concerning separate dedicated solu-
tions. To avoid leading to such a phenomenon, the R7 model 
introduces an element ordering the transformations carried out 
in parallel in the MR

i
 blocks, in the form of intermediate pairing 

target, which in the illustration is represented as the DT block.
The DT block is defined by a simple, generic distribution 

with a given number of dimensions (td), which determines 
the intermediate problem space representation size. For 
the cases of binary classification considered in this paper, 
two clusters distributed co-distantly on the diagonal of fea-
ture space were assumed. A parameter equivalent sets the 
distance from the origin of the coordinate system to the 
expected value with a constant standard deviation. At each 
optimization step of the MR

i
 models, it is possible to sample 

from such a distribution a set with prior probability defined 
by the class distribution of the underlying problem DSi. This 
results in a synthetic intermediate set DST

i
.

Then, the DSi set is transformed by the MR

i
 model, which 

builds the resulting set MR

i
 – represented in the same dimen-

sionality as the DT distribution. Its instances are further paired 
with DST

i
 using the matching rule intermediate pairing tar-

get R(), which orders DST
i
 to DST′

i
 , whose labels thus match 

labels DSi. This introduces a regularization factor for all MR

i
 

transformation models to target the same generic distribu-
tion, mitigating the problems that using an autoencoder would 
cause here. This approach makes it possible to perform the 
M

R

i
 optimization step for each problem, taking DSi as input 

and DST′
i

 as the target. After this operation, the MC model is 
trained on all concatenated representations of DS′

i
.

For a complete picture of how the method works, looking 
at the matching rule R() is necessary. There are three strategies 
based on randomness available. The simplest method, also 
used in the previously mentioned cpte algorithm, is random 
sampling (RAN). The other two approaches are its modifica-
tions, in which the noise generated from the normal distribu-
tion (RND) or generated from the target set distribution (RPD) 
is added to the patterns. In the case of RPD, distribution infor-
mation is obtained from KDE’s kernel density estimator.

In general, the matching rule R() can be described in the 
three simple steps as follows:

1.	 Extract the classes of the source problem DSi and their counts.
2.	 For each sample in DSi draw a sample from target set DT 

which belongs to the same class.
3.	 If using RND or RPD matching rule, add noise gener-

ated from normal distribution or problem distribution 
respectively to samples in the transformed set DST

i
.

After executing the procedure for both DSi problems, they 
are concentrated to the common set.

The usage of the matching rule is a part of the R7 archi-
tecture. The whole processing procedure described above 
can be generalized to the following steps:

1.	 Assume:

•	 a finite set of source recognition problems 
DS =

{

DS1,DS2,… ,DS
n

}

,
•	 dimensionality of the intermediate representation td,

Fig. 2   Schema of the Represen-
tation 7 architecture
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•	 intermediate distribution DT with number of dimen-
sions td,

•	 matching rule of intermediate pairing target R(),
•	 parametrization of the base model of the neural net-

work cc.

2.	 Initialize the model weights for MC and for the models 
set MR =

{

M
R

1
,MR

2
,… ,MR

n

}

 with the configuration cc.
3.	 Until the stop condition of all models occurs:

(a)	 Initialize empty set DS
� = {}.

(b)	 For each model MR

i
 from the set MR:

	 (i)	 Sample the DT intermediate distribution into 
DS

T

i
 , generating cases with the same cardi-

nality and equal prior distribution as DSi.
	 (ii)	 Propagate the objects of DSi through the 

model MR

i
 to DSi set and append it to DS

′ set.
	 (iii)	 Using the matching rule R() and the output 

set DSi, order the set DST
i
 to the set DST′

i
 , 

where DST�
i

= R
(

DS
T

i
,DS�

i

)

.
	 (iv)	 Update the weights of the MR

i
 model with 

DSi as its input and DST
i

′ as its target.

(c)	 Update the weights of the MC model, taking as its 
input the concatenation of the sets contained in DS

′.

For the method, a constant and common configuration of 
all MR models and the MC model was assumed, excluding only 
the size of the input and output layers, where the input layers 
of the MR models depend on the dimensionality of the DS , 
their output layers and the input layer of the MC model depend 
on the dimensionality of the intermediate representation. The 
MC output layer depends on the number of problem classes. 
The description assumes only binary recognition problems.

3 � Experiments

The experiments were implemented using the Python 
language, relying on the scikit-learn library dedicated 
to tabular data [33] and on PyTorch for deep learning 
experiments. Cross-validation 5 × 2 was used to ensure 
adequate reliability and repeatability of the results. The 
quality assessment metric was balanced_accuracy_score. 
The code of the method, experiments, and their analysis 
can be found on the GitHub repository.1

For the first three experiments, the Multi-layer Percep-
tron was used as the base model of the neural network in 
implementing the method. Therefore, any R7 results are also 

compared to those obtained by the raw, unmodified mlp clas-
sifier separately for both source datasets.

The number of layers and neurons in methods – R7 
and mlp – was selected, so their architecture was identical 
regarding memory consumption. Therefore, mlp consists of 
four layers of 100 neurons. The method proposed in this 
article consists of transformation and decision blocks, each 
containing two layers of 100 neurons.

3.1 � Datasets

The Madelon procedure generated the synthetic datasets for 
the first and second experiments [32] implemented in the 
scikit-learn package. It allowed appropriate parameter con-
figuration – the size of the set, its dimensionality, the number 
of clusters and classes, and the level of their separability.

The used real dataset is concept-metafeatures dataset 
from Kaggle repository,2 which contains 5000 samples 
described by 118 attributes. For the needs of analysis, the 
feature dispersion was conducted, introducing eight varia-
tions of this set with a linear increase of noise, reducing the 
linear separability of its classes.

3.2 � Experiment 1 – reference methods

3.2.1 � The aim of the experiment

In the first experiment, the performance of the proposed algo-
rithm was compared with the reference methods: raw mlp and 
mlp with pca preprocessing. The source problems were two 
synthetic datasets with 2000 samples, 50 dimensions, a variable 
number of clusters in each class (from 1 to 5), and a variable 
class separability parameter (five values from the range from 
0.01 to 1 were selected). In order to better visualize the differ-
ences between the analyzed solutions, the experiments were 
also carried out for the low- and high-dimensional intermedi-
ate distribution. In the first part of the research, the number 
of intermediate set patterns was twice the samples of a single 
source set and the exact width of the intermediate representa-
tion as in the source set. In the second part – a comparison of 
the efficiency of the solution for transforming problems to lower 
dimensionality – the width of the intermediate representation 
was always 1. Ten repetitions were carried out for each variant 
to ensure a statistically correct verification of the hypotheses.

3.2.2 � Results evaluation

The proposed method applies to problems with high com-
plexity in terms of a large number of features and low sepa-
rability of classes. Therefore it was decided to compare its 

1  https://​github.​com/​w4k2/​r7.
2  https://​www.​kaggle.​com/​datas​ets/​joann​akomo​rnicz​ak/​conce​pt-​
metaf​eatur​es-​datas​et.

https://github.com/w4k2/r7
https://www.kaggle.com/datasets/joannakomorniczak/concept-metafeatures-dataset
https://www.kaggle.com/datasets/joannakomorniczak/concept-metafeatures-dataset
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operation with the existing state-of-the-art tabular feature 
extraction algorithm – pca. It was chosen because it is the 
best standard solution that does not rely on manifolds. In 
addition, unmodified, raw mlp was used as a reference.

The pca configuration assumed the preservation of com-
ponents describing at least 70% of the variance after extrac-
tion. Then mlp with four layers with one hundred neurons 
each was used in the same configuration as the raw classifier. 
This decision was motivated by the fact that pca, despite the 
simplification of the problem in terms of the number of fea-
tures and the level of separability, is limited to only a single 
layer of transformations, which makes it impossible to build 
non-linear geometric structures of the decision boundary.

The flows of accuracy and losses are shown in Figs. 3 and 
4 for high dimensionality of the target set, and in Figs. 5 and 
6 for low dimensionality. On all, the blue line corresponds 
to the R7 method, the red line – raw mlp, and the green line 
– mlp with pca preprocessing. Each column corresponds to 
one source problem.

Line intensities refer to the number of clusters used in a 
given experiment (for 4 and 6 plots) or to the class separability 
(for 3 and 5). In order to enable the comparison against one 
factor at the same time and the presentation of the results in 
the form of waveform graphs, in the first case averaging – flat-
tening – of accuracy and losses concerning separability was 
made, and in the second – concerning the number of clusters.

The first observation from the visualization is that for 
both low and high dimensionality of the problem, the flow of 
accuracy and loss takes a similar shape. The main difference, 
however, is the maximum threshold of achieved results for 
each variant varying up to about 5%. It can also be observed 
that although R7 performs better than the reference methods 

in all cases, the difference between it and raw mlp is much 
more evident when using higher dimensionality in both 
– cluster count and separability – analysis.

It is also worth paying attention to figures showing clas-
sifier losses on a logarithmic scale, which for mlp and mlp 
with pca preprocessing do not change noticeably and reach 
stability earlier than the R7 loss. They remain at a similar 
level for all checked parameters, proving that the network 
has already converged at the lower discriminative level in 
each case. The R7 architecture allows it to achieve better 
results in the indicated metric.

Observing heatmaps can further confirm this conclusion 
(Fig. 7). Each cell shows the result for a specific configuration 
– the number of clusters should be read from the vertical axis and 
the separability coefficient from the horizontal axis. Like in the 
flows, the top row shows a balanced accuracy score, and the bot-
tom row – loss. The letter M stands for raw mlp, P is mlp with pca 
preprocessing, and R is the R7 method proposed in this paper.

In addition, color coding was used, where shades of pur-
ple indicate the advantage of R7 results over other methods. 
The darker the color, the more significant the difference in 
favor of the proposed method. The dependence is also more 
apparent here, already visible in the flows – the expected 
decrease in the quality of all models with the increasing level 
of problem complexity can be noted. The difference between 
R7 and raw mlp is more significant than between R7 and mlp 
with pca, which means that the actual use of preprocessing 
with this method harms accuracy. Pca evenly distributes the 
potentials on all attributes, so eliminating even one of them 
causes information loss and thus makes the problem harder, 
which is the reason for lowering the maximum achievable 
recognition quality.

Fig. 3   Experiment 1 – balanced 
accuracy score and loss shown 
on cross-section of classes sepa-
rability for high target dim
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The heatmap also shows that the number of clusters has 
a more significant impact on the difficulty of the set than the 
class separability, which can be seen by the degree by which 
the color intensity changes in individual columns and rows 
for both source problems. The same is also indicated by the 
heatmaps in the bottom row, where the green color means 
that the R7 achieves less loss than the other two methods. 
Increasing color brightness is associated with increasing this 
difference. The R7 minimizes loss better, especially when 
using more complex problems.

The observations described above show that mapping the 
mlp architecture in the way that R7 does can lead to better 
results than using simple state-of-the-art methods, and its 
potential increases with increasing the problem’s difficulty.

3.3 � Experiment 2 – cardinality and dimensionality 
of the source datasets

3.3.1 � The aim of the experiment

The second experiment aimed to review the cardinality and 
dimensionality as the parameters of the generated problems 
concerning mlp as a reference method. In each of the ten 
replications, two source datasets with fifty attributes, five 
clusters per class, and constant, low class separability of 0.1 
were generated. The number of samples was consecutively 
1000, 2500, and 5000. The transient representation in each 
repetition contained twice the patterns of the source prob-
lem, and two dimensionalities were checked – 25 and 50.

Fig. 4   Experiment 1 – balanced 
accuracy score and loss shown 
on cross-section of number of 
clusters for high target dim

Fig. 5   Experiment 1 – balanced 
accuracy score and loss shown 
on cross-section of classes sepa-
rability for low target dim
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3.3.2 � Results evaluation

The balanced accuracy score results are shown in Fig. 8, 
where each column refers to a different size of the set – 1000, 
2500, and 5000 samples, respectively – and each row to a dif-
ferent dimensionality – 25 and 50 attributes. One of the source 
sets is presented with a solid line, the other with a dashed line, 
but what can be observed immediately, the results achieved 
for them do not differ significantly. The course of accuracy is 
presented for the test set over successive iterations after aver-
aging against replication and cross-validation folds.

Losses of transformation blocks (Fig. 9) and classifiers 
(Fig. 10) were analyzed similarly. A logarithmic scale was 
used for the presentation.

In the first of the figures, the flows took a similar shape. 
From this fact, the first conclusion can be drawn – models 
from MR training are similar in estimator loss, regardless 
of the set size parameters. Moreover, there is no distinction 
between training the models from MR for both source prob-
lems – solid and dashed lines are indistinguishable.

Greater diversity can be seen in the case of classi-
fier losses, although the mutual relations of the results 
achieved by individual R7 variants and by mlp are similar. 
Changes are most easily observed for a random strategy 
with noise with the characteristics of the transitional rep-
resentation where the period of fluctuations, their ampli-
tude, and the initial epoch change. The smoothest fluctua-
tions are for a thousand samples and only for this variant, 
and for 50 dimensions, it can be observed that the loss 
stabilizes around the 175th epoch. The flow of losses of 
the remaining strategies and mlp is smooth, and the ran-
dom and random strategies with normal noise coincide 
during most of the iterations. It is also seen that although 

the losses of R7 start to decline at a later epoch than mlp, 
they eventually reach lower values.

This observation is consistent with the presented accuracy, 
which is approximately 5 % higher for the R7 than for the refer-
ence method in each case. While for 1000 samples, it achieves 
an accuracy of 70%. For 2500 it is already 80%, and for 
5000–85%. With the increase in the dataset size, the random 
strategy with noise with the characteristics of the transitional 
representation stands out more and more, slightly outperform-
ing the quality of the other method variants in the last case.

On the other hand, there is no significant difference when 
changing the dimensionality of the transitional representation – for 
both 25 and 50 attributes, the accuracy remains at a similar level. 
Considering this and the classifier loss flows, it can be concluded 
that the proposed method has already saturated its predictive capa-
bilities, reaching suboptimal values, and further increasing the 
number of features will not increase the model’s accuracy.

From all the above observations, it can be concluded that, 
according to the adopted quality measure, R7 performs bet-
ter thanmlp for difficult data. As the number of samples 
increases, the mlp loss gets closer to the R7 loss, while the 
proposed method still achieves significantly better accuracy, 
as shown in the illustrative examples.

3.4 � Experiment 3 – real datasets

3.4.1 � The aim of the experiment

The third experiment tested the performance of the R7 algo-
rithm for real data. Mlp was used as a reference, as in the 
other cases. The dimensionality of the intermediate repre-
sentation was set to 25, and its cardinality is the sum of the 

Fig. 6   Experiment 1 – balanced 
accuracy score and loss shown 
on cross-section of number of 
clusters for low target dim
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cardinality of the source sets. Source problems and obtaining 
them are described in detail in Subsection 3.1.

3.4.2 � Results evaluation

According to the conclusions drawn from the second experi-
ment, the transient representation for R7 consisted of a num-
ber of samples equal to the sum of the samples of the source 
problems and 25 dimensions. All three pairing strategies 
have been compared with mlp.

The results of the experiment are presented in Fig. 11, 
where the balanced accuracy obtained by the tested meth-
ods for both the training set (left column) and the test set 
(right column) can be seen. The horizontal axis shows the 

dispersion of the information from the source sets – zero 
corresponds to the unmodified original set and seven to 
the highest level of problem deconstruction. The error bars 
are the recorded standard deviation, and the methods are 
color-coded in the legend, where RND stands for normal 
noise and RPD – for problem noise.

Thanks to the accuracy plot for the training set, the sus-
ceptibility of particular methods to overfitting can be dis-
cussed. It can be seen that mlp consistently achieves results 
above 90%, although the quality on the test set decreases 
as the problem’s difficulty increases. Similar results are 
obtained for the R7 without noise and with the noise of nor-
mal characteristics, where both fall below the threshold in 
only one case. The behavior of R7 with noise generated from 

Fig. 7   Experiment 1 – heatmap of balanced accuracy scores and loss for all variants of class separability and number of clusters
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the distribution of the intermediate problem differs from this 
trend. At the same time, it achieves the best results for the 
test set – at the first three levels, the accuracy is close to the 
other two strategies, but later it starts to stand out.

Meanwhile, mlp, although it starts with a similar level of 
accuracy (about 85%) as the other methods, in each subse-
quent case, achieves significantly worse results for the test 
set when the quality of the training is still at the highest 
level. Moreover, this difference is aggravated for the R7 with 
problem-distributed noise.

From the above observations, this strategy has the 
most potential when applied to real data. It can be caused 
by the fact that the distributions of synthetically gener-
ated problems, although far from typical distributions, 
such as normal or uniform, still preserve some of their 
properties. In contrast, the actual distributions of features 
are more complicated. Disturbing the coefficients with 
transitional representation noise can partially compen-
sate for these differences.

In turn, the advantage of the proposed method over raw 
mlp is related to the separation of the set transformation 
stage from the prediction stage, which strengthens the gener-
alization ability of the model, and at the same time, tends to 
reduce its susceptibility to overfitting, avoiding this common 
problem with neural networks.

3.5 � Experiment 4 – deep learning

3.5.1 � The aim of the experiment

In the fourth experiment, the performance of the R7 strategy 
was compared to the state-of-the-art method of deep learning 
for tabular data – the TabNet classifier [34]. For this purpose, 
an R7 implementation using the PyTorch library was deployed,3 
where each block – both transformation and decision – con-
sists of two hidden layers with 114 neurons each. Experiments 
were conducted on synthetic sets, where the number of objects 
(5000) and class separability (0.7) were not altered. Param-
eters such as (a) the number of clusters per class (1, 5, and 10), 
(b) the number of attributes of the input sets (from 10 to 1000 
dimensions on a logarithmic scale and 32 quants, all of which 
were informative features) were investigated. In each iteration, 
R7 considered five binary source datasets, and the transitional 
representation assumed a dimensionality of 2 and a number 
of objects equal to the sum of all learning set objects. Differ-
ent learning rate configurations for the neural networks were 
also tested – 1e − 3 and 1e − 2 using 250 epochs for R7 and the 
default number of epochs for TabNet.

Fig. 8   Experiment 2 – balanced accuracy score for all variants of samples and dimensionality

3  https://​github.​com/​w4k2/​rocke​ts.

https://github.com/w4k2/rockets
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3.5.2 � Results evaluation

Figure 12 presents the balanced accuracy score for both tested 
methods. The learning parameters – learning rate, features, 
and number of clusters per class – can be read from the header 

of each graph. The left column shows a relative comparison 
of the learning curves, where the black line refers to TabNet 
and the red lines to R7 – one is the accuracy comparison for 
the training and test sets, and the other, located on the diago-
nal, is directly the quality of the test set. The right column, in 

Fig. 10   Experiment 2 – classifier loss for all variants of samples and dimensionality

Fig. 9   Experiment 2 – regression loss for all variants of samples and dimensionality
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turn, shows the learning curve. In addition, Fig. 13 presents 
the differences between the accuracy of R7 and TabNet. The 
advantage in favor of the proposed method is marked in red, 
and the advantage in favor of the reference method – in blue.

As can be observed, the TabNet model has the advan-
tage for sets with lower dimensionality. However, when the 
number of features exceeds 40, better accuracy is achieved 
by the R7 architecture proposed in this article, regardless of 
the number of clusters per class.

An interesting conclusion about the method can be drawn 
from observing the change in the quality difference between 
the models depending on the learning rate used (middle col-
umn of Fig. 13) – for a value of 0.001 the advantage of Tab-
Net over R7 is 39.7%, while for a value of 0.01 it drops to 
7.3%. The reason for this difference is that a large learning rate 
ignores geometric nuances in the data distribution. However, 
as the number of attributes increases, these nuances become 
less and less critical – which is taken into account by the R7 
architecture, which intentionally has a mechanism to ignore 
them by seeking a near-threshold separation of input factors.

Such an approach will not work in low dimensionality, 
where geometric nuances are critical. However, the satura-
tion of red with an increasing number of attributes shows 
that for problems with more complex characteristics, the 
proposed rule and processing structure – strictly by its 
assumptions – is resistant to the already redundant search 
for category shapes and instead treats the set as a collection 
of factors to be sorted out.

In addition, it can be seen on the runs of quality change 
in successive epochs that the accuracy of the TabNet method 
remains almost constant for both the training and test sets, 
while for the specified experimental conditions and with the 
indicated number of initial epochs, TabNet had about four 
times longer learning time than R7.

Based on the study, it can be observed that although TabNet 
as a pre-trained model performs significantly better for low-
dimensional data (at best, by 40%), as the problem’s dimen-
sionality increases, R7 gains the advantage (at best, by 26%). 
It should also be taken into account that for the architecture 
proposed in this article, this result reflects the simultaneous pro-
cessing of five data sets while TabNet processes one of them. 
Thus, the experiment has given credence to the hypothesis that 
R7 performs better when processing sets that are difficult in 
terms of a large number of features and low class separability.

4 � Conclusions

This paper presents a new method – R7 – that unifies datasets 
into a shared space in the context of neural network optimiza-
tion. Its performance for difficult data represented by multi-
dimensional sets with low class separability was tested. Its 
performance was compared (a) to the raw mlp architecture 
with pca extraction, as a state-of-the-art method for reducing 
the feature space, (b) to the raw mlp, as this architecture is the 
foundation of the R7 implementations and (c) to the TabNet 
network, as the state-of-the-art method in deep learning pro-
cessing for tabular data. The experiments were conducted on 
synthetic and real data with increasing information dispersion.

The research showed that the R7 based on mlp outper-
formed the reference methods regarding accuracy and other 
factors, such as loss function and susceptibility to overfitting. 
This effect is achieved by separating the set’s transformation 
stage to a simpler feature space from the stage of learning the 
classifier and by performing those steps simultaneously using 
standard neural networks. Separation of these stages allows for 
better specialization of methods of individual neural networks.

A comparative experiment with TabNet, in turn, showed 
that although the R7 architecture using networks achieves 

Fig. 11   Experiment 3 – classi-
fier accuracy for all R7 strate-
gies and mlp
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Fig. 12   Experiment 4 – classification accuracy for R7 and TabNet
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worse quality for low-dimensional data, in difficult problems 
- as predicted - it is characterized by much better generali-
zation ability, which is caused by less sensitivity to subtle 
deviations within the data set.

In addition, R7 can be used to analyze many datasets 
simultaneously, which meets the basic paradigm of the 
multitasking field and can be a way to reduce the memory 
complexity of the final model due to the shared classifier 
block. As part of future works, this thesis should be verified 
using a broader review of real data, such as multimodal data, 
in which simultaneous modality analysis can offset the nega-
tive effects of separate feature extraction and thus positively 
affect quality. Using sets with different views (modalities) 
for the same objects will be interesting.

An area for improving the method is a more detailed 
analysis of the phenomenon of loss fluctuations for a ran-
dom strategy with noise generated from the intermediate 
problem observed in Experiment 2. Their source can be 
traced to the learning process, where some of the samples 
are alternately assigned to the class positive and negative 
– they are close to decision boundary. A closer look at 
this phenomenon and its source will allow us to introduce 
corrections in the method, further increasing its potential 
effectiveness.

Another aspect in which there is still room for improve-
ment in the method is the pairing of samples between the 
source sets and the intermediate representation. Until now, 
all strategies are based on random methods with modifica-
tions that could be replaced by precise criteria – for example, 

based on distance. The research can also be extended to 
using other learning modes currently implemented only on 
transformed source sets. Including the representation of the 
transient problem in this representation could improve the 
recognition quality. Testing the generalization abilities of 
the model that learns only on the intermediate representation 
would be an interesting research aspect.

More complex intermediate distributions could also be 
used. Introducing the aspect of the variability of these dis-
tributions and optimizing them with the criterion of class 
separation may allow solving problems with different char-
acteristics – even those containing an enclosing class.

R7 also has the potential to be used in solving multi-class 
problems where the source sets contain both equal and dif-
ferent numbers of classes. In such a case, an asymmetric 
configuration of the transformation and decision blocks 
could be useful as differentiation in the number of hidden 
layers would allow for a better adjustment to the problem.

Analysis conducted within the deep learning environment 
also led to the observation that the initial prediction quality 
does not always reflect the behavior of the random classifier. 
The introduction of an element regulating the initial state 
and its parameters into the architecture could have a positive 
impact not only on the final quality of the model but also 
on its learning time. This is an additional field of research, 
during which the reasons for the decrease in the value of the 
metric towards negative labels at the beginning of the learn-
ing process and the subsequent compensation, which can be 
seen in Fig. 12, should also be analyzed.

Fig. 13   Experiment 4 – differences between accuracy of R7 and TabNet



26065Neural network architecture with intermediate distribution‑driven layer for classification…

1 3

Acknowledgments  This work was supported by the statutory funds 
of the Department of Systems and Computer Networks, Faculty of 
Information and Communication Technology, Wroclaw University of 
Science and Technology.

Funding  This work was supported by the statutory funds of the Depart-
ment of Systems and Computer Networks, Faculty of Information and 
Communication Technology, Wroclaw University of Science and 
Technology.

Declarations 

Ethical approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Jamain A, Hand DJ (2009) Where are the large and difficult 
datasets? ADAC 3(1):25–38

	 2.	 Dua D, Graff C (2017) UCI Machine Learning Repository. 
https://​archi​ve.​ics.​uci.​edu/​ml. Accessed 15 Apr 2023

	 3.	 Shand C, Allmendinger R, Handl J, Webb A, Keane J (2019) 
Evolving controllably difficult datasets for clustering. In: Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence, pp 463–471

	 4.	 Bojer CS, Meldgaard JP (2021) Kaggle forecasting competi-
tions: An over-looked learning opportunity. Int J Forecast 
37(2):587–603

	 5.	 Derrac J, Garcia S, Sanchez L, Herrera F (2015) Keel data-min-
ing software tool: Data set repository, integration of algorithms 
and experimental analysis framework. J Mult Valued Logic Soft 
Comput 17:255–287

	 6.	 Heil BJ, Hoffman MM, Markowetz F, Lee S-I, Greene CS, Hicks 
SC (2021) Reproducibility standards for machine learning in the 
life sciences. Nat Methods 18(10):1132–1135

	 7.	 Komorniczak J, Zyblewski P, Ksieniewicz P (2021) Prior prob-
ability estimation in dynamically imbalanced data streams. 
In: 2021 International Joint Conference on Neural Networks 
(IJCNN), IEEE, pp 1–7

	 8.	 Komorniczak J, Zyblewski P, Ksieniewicz P (2022) Statistical 
drift detection ensemble for batch processing of data streams. 
Knowl-Based Syst 252:109380

	 9.	 Lorena AC, Garcia LP, Lehmann J, Souto MC, Ho TK (2019) How 
complex is your classification problem? a survey on measuring 
classification complexity. ACM Comput Surv (CSUR) 52(5):1–34

	10.	 Assefa SA, Dervovic D, Mahfouz M, Tillman RE, Reddy P, 
Veloso M (2020) Generating synthetic data in finance: opportu-
nities, challenges and pitfalls. In: Proceedings of the First ACM 
International Conference on AI in Finance, pp 1–8

	11.	 Ardabili S, Mosavi A, Várkonyi-Kóczy AR (2020) Advances 
in machine learning modeling reviewing hybrid and ensemble 
methods. In: International Conference on Global Research and 
Education, Springer, pp 215–227

	12.	 Hotelling H (1933) Analysis of a complex of statistical variables 
into principal components. J Educ Psychol 24(6):417

	13.	 Anowar F, Sadaoui S, Selim B (2021) Conceptual and empirical 
comparison of dimensionality reduction algorithms (pca, kpca, lda, 
mds, svd, lle, isomap, le, ica, t-sne). Comput Sci Rev 40:100378

	14.	 Cardona LAS, Vargas-Cardona HD, Navarro González P, Card-
enas Peña DA, Orozco Gutiérrez ÁÁ (2020) Classification of 
categorical data based on the chi-square dissimilarity and t-sne. 
Computation 8(4):104

	15.	 Liu C, Gao C, Xia X, Lo D, Grundy J, Yang X (2020) On the 
replicability and reproducibility of deep learning in software 
engineering. arXiv preprint arXiv:2006.14244

	16.	 Gerber M, Chopin N, Whiteley N (2019) Negative association, ordering 
and convergence of resampling methods. Ann Stat 47(4):2236–2260

	17.	 Borek W, Ksieniewicz P (2022) Inductive parallel learning for 
multiple classification problems. In: 2022 International Joint 
Conference on Neural Networks (IJCNN), IEEE, pp 1–8

	18.	 Zhang N, Gupta A, Chen Z, Ong Y-S (2021) Evolutionary 
machine learning with minions: A case study in feature selec-
tion. IEEE Trans Evol Comput 26(1):130–144

	19.	 Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M, Dai 
D, Van Gool L (2021) Multi-task learning for dense prediction tasks: 
A survey. IEEE Trans Pattern Anal Mach Intell 44(7):3614–3633

	20.	 Hu R, Singh A (2021) Unit: Multimodal multitask learning 
with a unified transformer. In: Proceedings of the IEEE/
CVF International Conference on Computer Vision, pp 
1439–1449

	21.	 Lin X, Zhen H-L, Li Z, Zhang Q-F, Kwong S (2019) Pareto multi-
task learning. Advances in neural information processing systems 32

	22.	 Le-Khac PH, Healy G, Smeaton AF (2020) Contrastive rep-
resentation learning: A framework and review. IEEE Access 
8:193907–193934

	23.	 Hinton GE (1990) Connectionist learning procedures, 555–610
	24.	 James G, Witten D, Hastie T, Tibshirani R (2013) An introduction 

to statistical learning (Vol. 112, p. 18). New York: springer.
	25.	 Li Z, Liu F, Yang W, Peng S, Zhou J (2021) A survey of convolu-

tional neural networks: analysis, applications, and prospects. IEEE 
Trans Neural Netw Learn Syst 33:6999–7019

	26.	 Kadra A, Lindauer M, Hutter F, Grabocka J (2021) Well-tuned 
simple nets excel on tabular datasets. Adv Neural Inf Proces Syst 
34:23928–23941

	27.	 Espadoto M, Hirata NST, Telea AC (2020) Deep learning multi-
dimensional projections. Inf Vis 19(3):247–269

	28.	 Khalid S, Khalil T, Nasreen S (2014) A survey of feature 
selection and feature extraction techniques in machine learn-
ing. In: 2014 Science and Information Conference, IEEE, pp 
372–378

	29.	 Zheng J, Qu H, Li Z, Li L, Tang X, Guo F (2022) A novel autoen-
coder approach to feature extraction with linear separability for 
high-dimensional data. PeerJ Comput Sci 8:1061

	30.	 Topolski M (2020) The modified principal component analysis 
feature extraction method for the task of diagnosing chronic lym-
phocytic leukemia type b-cll. J Univ Comput Sci 26(6):734–746

	31.	 Sewak M, Sahay SK, Rathore H (2020) An overview of deep 
learning architecture of deep neural networks and autoencoders. 
J Comput Theor Nanosci 17(1):182–188

http://creativecommons.org/licenses/by/4.0/
https://archive.ics.uci.edu/ml


26066	 W. Borek‑Marciniec, P. Ksieniewicz 

1 3

	32.	 Guyon I (2003) Design of experiments of the nips 2003 variable 
selection benchmark. In: NIPS 2003 Workshop on Feature Extrac-
tion and Feature Selection 253:40

	33.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos 
A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-
learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

	34.	 Arik SÖ, Pfister T (2021) Tabnet: Attentive interpretable tabular 
learning. Proceedings of the AAAI Conference on Artificial Intel-
ligence 35:6679–6687

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Paweł Ksieniewicz  is an associ-
ate professor at Wroclaw Uni-
versity of Science and Technol-
ogy, where he achieved an M.Sc. 
degree in 2013, a Ph.D. degree 
in 2017 and D. Sc. in 2023. His 
research focuses on the classi-
fication of difficult recognition 
problems represented by imbal-
anced and drifting data streams, 
multidimensional data repre-
sentation, image processing and 
open set recognition.

Weronika Borek‑Marciniec  is a 
PhD student at Wroclaw Uni-
versity of Science and Tech-
nology, where she achieved an 
MSc. degree in 2021. Her 
research focuses on the prob-
lem transformation in pattern 
recognition tasks, especially in 
the field of classification.


	Neural network architecture with intermediate distribution-driven layer for classification of multidimensional data with low class separability
	Abstract
	1 Introduction
	2 Methods
	2.1 Method motivation
	2.2 Representation 7

	3 Experiments
	3.1 Datasets
	3.2 Experiment 1 – reference methods
	3.2.1 The aim of the experiment
	3.2.2 Results evaluation

	3.3 Experiment 2 – cardinality and dimensionality of the source datasets
	3.3.1 The aim of the experiment
	3.3.2 Results evaluation

	3.4 Experiment 3 – real datasets
	3.4.1 The aim of the experiment
	3.4.2 Results evaluation

	3.5 Experiment 4 – deep learning
	3.5.1 The aim of the experiment
	3.5.2 Results evaluation


	4 Conclusions
	Acknowledgments 
	References


