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Abstract
Traditional rolling bearing fault diagnosis approaches require a large amount of fault data in advance, while some specific
fault data is difficult to obtain in engineering scenarios. This imbalanced fault data problem seriously affects the accuracy of
fault diagnosis. To improve the accuracy under imbalanced data conditions, we propose a novel data augmentation method
of Enhanced Generative Adversarial Networks with Data Selection Module (EGAN-DSM). Firstly, a network enhancement
module is designed, which quantifies antagonism between the generator and discriminator through loss value. And the module
determines whether to iteratively enhance the networks with weak adversarial ability. Secondly, a Data Selected Module
(DSM) is constructed using Hilbert space distance for screening generated data, and the screened data is mixed with original
imbalanced data to reconstruct balanced data sets. Then, Deep Convolutional Neural Networks with Wide First-layer Kernels
(WDCNN) is used for fault diagnosis. Finally, the method is verified by data measured on a rotating machine experimental
platform. The results show that our method has high fault diagnosis accuracy under the condition of imbalanced data.

Keywords Data augmentation · Data selection module · Generative adversarial networks · Imbalanced data · Fault diagnosis

1 Introduction

Bearings are an important supporting component in indus-
trial equipment, and their health state will affect working
performance of the entire equipment. Therefore, it is of
great significance to timely diagnose bearings faults to main-
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tain safe equipment operation [1–3]. Most classical bearing
fault diagnosis methods are based on the decomposition
and transformation of fault signals, such as Empirical Mode
Decomposition (EMD) [4], and Wavelet Transform (WT)
[5]. But in recent years, deep learning has developed rapidly
in the field of bearing fault diagnosis with its powerful deep
feature extraction ability [6–10]. Deep learning models such
as Convolutional Neural Networks (CNN) [11], Deep Belief
Networks (DBN) [12], and Stacked Auto-Encoder (SAE)
[13] have achieved great success in the field of bearing fault
diagnosis as combined with vibration signal preprocessing
[14–16]. However, a large amount of fault bearing data is
required for these methods to achieve better fault diagnosis
result[17, 18]. But bearings work normally in actual process
of production, resulting in fault data being significantly less
than normal. The problem of data imbalance will seriously
affect the diagnostic performance of deep learning model
[19–21].

The current research methods to solve data imbalanced
problem can be divided into algorithm optimization and data
expansion. Algorithm optimization pays more attention to
minority class data by optimizing structure or loss function
of the diagnostic model. However, optimization-based meth-
ods finitely improve diagnostic performance when minority
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class data is extremely sparse [22]. Data expansion augments
imbalanced data by synthesizing minority class data [23].
Chawla et al. [24] proposed the classical Synthetic Minority
Over-Sampling Technique (SMOTE), which generates new
samples by random linear interpolation among the minor-
ity class of samples. To increase the influence of data on
the boundary of distribution, Han et al. [25] divided minor-
ity data into three classes and proposed Borderline-SMOTE.
However, some minority class may also be difficult to clas-
sify. Therefore, He et al. [26] proposed Adaptive Synthetic
Sampling (ADASYN) to adaptive put classification decision
boundary toward hard identification data.

Although above oversampling methods can expand the
data of minority class, oversampling method relies on data
features. These methods rarely consider real distribution of
minority class data and the generated data with less poten-
tial feature information [27]. Therefore, the method of data
generation is proposed to deeply mine feature information
of minority class data. Data generation generates data by
learning the distribution of data [28], and its major research
methods are Variational Auto-Encoder (VAE) [29] and Gen-
erative Adversarial Networks (GAN) [30]. Zhao et al. [31]
achieved good results by generating minority class data
throughVAE to supplement imbalanced data. However, VAE
is an explicit density model, which limits the powerful fitting
ability of neural networks and makes data generation ineffi-
cient [32]. Therefore, GAN with implicit density models has
been developed to adequately use the fitting ability of neural
networks.

Recently, GAN-based fault diagnosis methods for imbal-
anced data have been explored preliminarily [33]. To solve
the problem of imbalanced data in engineering scenarios,
Shao et al. [34] adopted the Auxiliary Classifier Generative
Adversarial Networks (ACGAN) model to augment induc-
tion motor vibration signal datasets. By overcoming mode
collapse and vanishing gradient, Li et al. [27] improved the
ACGANmodel for quality generated data which can result in
better diagnosis accuracy. Although these GAN-based meth-
ods are able to address the problem of data imbalance, the
GAN still suffers from training instability due to the pres-
ence of adversarial properties [35]. The excessive learning
ability of sub-neural networks can inhibit learning ability of
the other networks, resulting in generated data mismatching
the distribution of real data [27]. Therefore, in order to allevi-
ate the learning inhibition between sub-networks, an EGAN
based on Wasserstein Generative Adversarial Networks-
Gradient Penalty (WGAN-GP) is designed in this paper. The
network not only inherits the advantages of WGAN-GP in
resolving gradient explosion and gradient disappearance dur-
ing training [36] but can also adjust the learning differences
between sub-networks promptly.

In addition, the data generated by GAN will also change
due to adversarial training. However, the method mentioned

above does not effectively process the generated data [37].
We designed a data selected module with Maximum Mean
Discrepancy (MMD) to filter all the data generated by EGAN
due to the property that MMD can measure the similarity
of two distributions [38]. In this paper, a data augmenta-
tion method of EGAN-DSM is proposed, and WDCNN is
combined to classify bearing fault data. Experimental results
show that the proposedmethod can improve diagnostic accu-
racy of imbalanced data sets. The larger imbalanced ratio, the
more obvious improvement effect. The main contributions
are shown as follows:

1. An enhanced module is developed to enhance adversarial
ability of two sub neural networks. This module can solve
low-quality generated data caused by the suppression of
two sub-neural networks effectively.

2. DSM is designed as a post-processing module for the out-
put data of GAN. DSM is used to filter generated data
of GAN and find out data that contains the most feature
information of real data.

3. An intelligent fault diagnosis method that solves imbal-
anced data effectively is designed: EGAN-DSM-WDCNN.
Imbalanced training data sets are balanced by the method
of EGAN, and then the balanced data is used to train
WDCNN. This method can improve diagnostic accuracy
effectively.

The rest of this article is arranged as follows. Sec-
tion 2 introduces theoretical background of the proposed
method in detail, including relevant knowledge of WGAN-
GP and WDCNN. Section 3 presents details of the proposed
approach. Section 4 shows simulation results of the proposed
method. Section 5 presents the conclusion of this paper.

2 Theoretical background

The overall framework of the proposed method is divided
into four stages: data preprocessing, data generation, data
selection, and fault classification. WGAN-GP is prototyped
for data generation and WDCNN is chosen for fault classi-
fication stage. Theoretical background of the used methods
will be briefly described in this section.

2.1 GAN

GAN consists of two sub-neural networks, one called gener-
ator and the other called discriminator. These two sub-neural
networks are trained against to optimize the output of GAN
according to the idea of zero-sum game. Its value function is
shown in Eq. (1):

�(G, D) = Ex∼Px [log(D(x)]+EN∼PN (log(1−D(q)) (1)
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where Ex∼Px represents the expectation of real data x under
distribution Px . EN∼PN is expectation of noise N under its
prior distribution PN . G represents generator, D represents
discriminator. The input of generator is N , and the output
is q = G(N ). D(q) is output of discriminator when its
input is q. Generator generates data with same probability
distribution as original input. Discriminator determines the
distribution gap between generated data and original data.
The two expectation sums �(G, D) in Eq. (1) represents
Jensen-Shannon divergence of the distribution of generated
data and original data. The training strategy of whole net-
works is shown in Eq. (2):

min
G

max
D

�(G, D) (2)

when generator is fixed, discriminator is trained by maxi-
mizing �(G, D) to distinguish original data and generated
data. Then, discriminator is fixed and generator is trained
by minimizing �(G, D) to make generated data as realistic
as possible. Both discriminator and generator could reach a
local optimum after extensive adversarial training. It means
that data generated by generator has the same distribution as
original data and discriminator cannot distinguish generated
data from original data.

2.2 Wasserstein distance

GAN evaluates the distribution of generated data and orig-
inal data through Jensen-Shannon divergence, and then
optimizes it. However, the discriminator may reach satu-
ration in advance during training because of dispersion of
Jensen-Shannon divergence. That results in disappearance
of gradient during training [39]. In order to solve this prob-
lem, Arjovsk [40] replaced Jensen-Shannon divergence with
wasserstein distance, as shown in Eq. (3):

W (Px , Pq) = inf
η∼�(Px ,Pq )

E(x,q)∼η[‖x − q‖] (3)

where W (Px , Pq) represents wasserstein distance of gener-
ated data distribution Pq and original data distribution Px .
�(Pq , Px ) represents a set of all joint distributions with Px
and Pq . η is any possible joint distribution of �(Pq , Px ),
and (x, q) is sampled from η. inf{�} represents the infimum.
According to Kantorovich Rubinstein duality theorem, the
calculation of W (Px , Pq) can be transformed into Eq. (4).

W (Px , Pq) = sup
‖ f ‖L≤1

(Ex∼Px [ f (x)] − EN∼PN [ f (q)]) (4)

where sup{�} represents supremum. f represents a 1-Lipschitz
continuous function, and satisfies Eq. (5).

‖ f ‖L � sup
z �=e

f (z) − f (e)

z − e
≤ 1 (5)

Value function of WGAN can be obtained by combining the
above functions as follows.

min
G

max
D∈�

{
Ex∼Px [D(x)] − EN∼PN [D(q)]} (6)

where�denotes a set of 1-Lipschitz functions.WGANlimits
the weight of discriminator to [−ω,ω] by gradient clipping
strategy. The benefit of this way is that the networks training
is no longer limited by dispersion of Jensen-Shannon diver-
gence, which improves stability of networks training.

2.3 Gradient Penalty

Wasserstein distance is developed to improve stability of
whole networks. Nevertheless, the networks still suffer prob-
lems of being unable to converge and lowquality of generated
data. Due to using weight clipping to satisfy Lipschitz con-
straints, WGAN works as a simple function and fails to fit
some complex data. Therefore, Gulrajani et al. [41] proposed
WGAN-GP by replacing the weight clipping ofWGANwith
gradient penalty. Its value function is shown in Eq. (7):

Ex∼Px [D(x)] − EN∼PN [D(q)]
−λEx̂∼Px̂ [(

∥∥∇x̂ D(x̂)
∥∥
2 − 1)2] (7)

where the last term is penalty term, λ is penalty coefficient.
x̂ = εx + (1 − ε)q represents samples on all straight lines
between generated data distribution and original data dis-
tribution. In general, a 1-Lipschitz function refers to the
gradient norm of a function is atmost 1. However, the penalty
term in Eq. (7) penalizes gradient norm away from 1, driving
all norms toward 1. Thismethod can stabilize the gradient and
ensure that generated data distribution gradually gets closer
to real data distribution.

2.4 WDCNN

Due to the excellent fitting effect of CNN, it is widely used
in various scenarios, including bearing fault diagnosis. Sam-
ples would be long when a 1-dimensional bearing vibration
signal sample contains enough data information. However, a
convolutional model with 3×1 small convolutional kernels
to learn that long vibration signals would make the training
of model hard. Zhang et al. [42] designed WDCNN, which
can capture useful information in middle and low-frequency
vibration signals. Then successive 3×1 small kernel convolu-
tional layers are used to obtain better feature representation.
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The way to process data is as follows algorithm 1. Zhang’s
experimental results show that WDCNN has better diagnos-
tic accuracy for bearing data.

Algorithm 1 WDCNN
Input: mixed balanced data sets Xmix , (x0 = {x1, ..., x j } ∈ Xmix ),

initial parameters K0, b0, γ0, β0, pooling widthWp ,m classes bear-
ing healthy state

Output: fault diagnosis accuracy L
1: for n = 1, 2, 3, 4, 5 do
2: Convolution calculate x j for local features of the next layer y j

n =
Kn−1 ∗ x j n−1 + bn−1

3: ŷnj = (y j
n − E

[
y j

n
]
)/

√
Var

[
y j

n
]

4: Batch Normalization local feature y j n for ynj,BN = γn−1 ŷnj +
βn−1

5: The nonlinear expression of ynj,BN , a j
n = max{0, ynj,BN }

6: Pj
n = max

( j−1)Wp+1≤t≤ jWp
{an(t)}

7: The next convolution feature extraction x j n ← Pj
n

8: end for
9: The probability distribution of different bearing healthy state q =

ePj
5
/
∑m

k epk
5

10: Compared q with real bearing health condition, L is obtained

3 Proposedmethod

An intelligent fault diagnosis method of EGAN-DSM-
WDCNN is proposed so as to solve the problem of low
diagnostic accuracy caused by sparse fault data in actual
industry. EGAN and DSM of this approach are our signifi-
cant innovations. EGANcan generate the scarce datawe need
and prevent the problem of learning inhibition in the training
process. DSM improves the quality of generated data by uti-
lizing data post-processing. Therefore, DSM can effectively
screen out the data similar to the original data distribution in
EGAN’s generated data.

3.1 EGAN

To solve the problem of bearing imbalanced data, we propose
an Enhanced Generative Adversarial Networks. EGAN is an
enhanced model based on WGAN-GP. As a result, EGAN
not only inherits the advantages of WGAN-GP in resolving
gradient explosion and gradient disappearance during train-
ing but can also balance sub-network learning differences
promptly. Specifically, increasing antagonism between the
generator and discriminator prevents one sub-networks from
inhibiting the learning ability of the other.

An enhanced processing module is designed in EGAN at
the end of each training epoch. This module can increase
training times of weaker networks when there is a certain

gap between the loss values of the generator and discrim-
inator. Considering the excellent performance of CNN in
data feature extraction, a generator, and a discriminator
are constructed. The generator is constructed based on 1-D
deconvolution neural networks. Furthermore, discriminator
is constructed based on 1-D convolutional neural networks.
The specific structure diagram is shown in Fig. 1, where
(a) is discriminator, (b) is generator, and (c) is the proposed
enhancement module.

Gaussian noise is put into generator, and generated data
with a distribution close to original data is output. A single
class fault data is put into discriminator for the purpose of
judging generated data. Generated data is put into discrimi-
nator, and discriminant value D(q) is output. The loss value
of generator g̃ is numerically equal to D(q). Similarly, dis-
criminant value D(x) of real data can be obtained by putting
the real data into the discriminator. The loss value d̃ of dis-
criminator is obtained by putting D(q) and D(x) into Eq.
(7). The targeted enhancement is achieved by distinguishing
difference in loss value between two sub-neural networks.
The details of enhanced module are shown in Fig. 1 (c).

3.2 Data SelectedModule

It is not easy to achieve theoretical Nash equilibrium for
GAN training. Two sub-neural networks train against each
other, resulting in different features in the generated data.
Therefore,wedesign apost-processingdata selectionmodule
through which we can achieve the purpose of screening and
filtering similar data distribution.

In DSM, a metric function is needed to quantify the
probability distribution distance between generated data and
original data. In addition, the Maximum Mean Discrepancy
(MMD) is often used to measure the difference between two
distributions. In this paper, MMD is used to quantify the sim-
ilarity between generated data distribution and original data
distribution.

Assuming that the original data x = {x1, ..., xn} with n
samples and generated data q = {q1, ..., qm} with m sam-
ples. Then MMD between original data and generated data
is shown in Eq. (8).

MMD[F, Px , Pq ] = sup
β ∈F

(EPx [h(x)] − EPq [h(q)]) (8)

where F represents an arbitrary vector in unit sphere in the
regenerated Hilbert space. h(•) is shown in Eq. (9), denotes
scalar product of vectors β in regenerated Hilbert space and
vectors f (α) in original space.

h(α) = 〈β, f (α)〉H (9)
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Fig. 1 Structure of EGAN
model

H denotes that data is mapped to Hilbert space through
mapping function. According to Eq. (8) - Eq. (9) and [43],
Eq. (10) can be deduced.

MMD[F, x, q] =
∥∥∥∥∥∥

1

n

n∑

i=1

f (xi ) − 1

m

m∑

j

f (q j )

∥∥∥∥∥∥
H

(10)

DSM is used tomap all data into Hilbert space to calculate
the difference. Then the mean discrepancy between gener-
ated data and original data is calculated. And the maximum
mean discrepancy is considered as the difference among
these data. DSM selects a group of generated data with the
smallest MMD as a complement of minority class data to
achieve the purpose of balancing data.

3.3 Fault diagnosis method

The proposed fault diagnosis method can be divided into
four stages, as shown in Fig. 2. Data preprocessing is called
stage 1,where vibration signals of bearings are obtained from
the rotating machinery experimental platform. The signals
are sampled and divided into training, validation, and test
sets and normalized. An imbalanced ratio Q is established to
fit the data that is collected in actual environment (Eq. (11)
below). Training sets are made into imbalanced training sets
according to Q.

Q = N f ault

Nnorm
(11)

A set of minority class data is generated in stage 2. In this
way, a few samples are used for generation. In stage 3, the
output data of stage 2 and original data are put into DSM

for screening. Data containing the most feature information
of original data are found, and minority data are expanded
with this set of data. In stage 4, including two sub stages:
training stage and testing stage. The expanded balanced data
sets and validation set are put into WDCNN for training in
training stage. And the trained module is tested with test
sets to obtain final diagnosis accuracy in testing stage. The
intelligent fault algorithm for imbalanced data proposed in
this paper is shown in the following algorithm 2. From algo-
rithm 2, it can be seen that the specific derivation of the
innovative implementation in Fig. 2. In training stage, the
whole fault diagnosis accuracy should be acquired through-
out four stages. But in testing stage, only original tested data
are used in stage 4 and no more generated data generate by
EGAN.

Algorithm 2 EGAN -DSM-WDCNN fault diagnosis for
imbalanced data
Input: Imbalanced training sets X , (x ∈ X), validation sets Y1, test

sets Y2, gaussian noise n, random number ε ∼ U [0, 1], λ = 10,
j = 8000

Output: fault diagnosis accuracy L
1: for i = 1, 2... j do
2: The loss value of generator g̃ = D(G(ni ))
3: x̂ = εx + (1 − ε)G(ni )
4: The loss value of discriminator d̃ = D(x) − g̃ −

λ[(∥∥∇x̂ D(x̂)
∥∥
2 − 1)2]

5: Determine the difference between abs (g̃) , abs (d̃) to target
enhancement G or D.

6: Generate data G(ni )
7: end for
8: Screening data G(ni )best = DSM(G(ni ))
9: Mix data sets Xmix = G(ni )best

⋃
X

10: Input Xmix , Y1, Y2 into WDCNN to obtain accuracy L
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Fig. 2 Fault diagnosis
framework of
EGAN-DSM-WDCNN
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4 Experiments validation

4.1 Description of the data sets

In this section, two data sets are used validate the effec-
tiveness of the proposed approach, including Henan Uni-
versity(HENU) bearing data sets and Case Western Reserve
University(CWRU) bearing data sets.

4.1.1 HENU bearing data sets

The HENU bearing data sets are acquired by Information
Fusion Lab, HenanUniversity.The rotatingmachinery exper-
imental platform is shown in Fig. 3. The whole experimental
platform is mainly composed of a driving motor, speed sen-
sor, motor controller, coupling, bearing base, acceleration
sensor, load, bearings and so on. Bearings can be divided into

Fig. 3 Experimental platform of
rotating machinery
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normal bearings and faulty bearings. Faulty bearings can be
divided into 0.75 inch and 1 inch bearings according to the
diameter of the bearing. Faulty bearings with same diameter
can be divided into ball faulty bearings, outer faulty bear-
ings, and inner faulty bearings. A motor controller is used to
adjust the speed of driving motor. The coupling is connected
to driving motor and rotating shaft. An acceleration sensor
is used to collect vibration signals during operation of the
equipment. Data acquisition unit transmits signal collected
by acceleration sensor to computer.

Before experiment, the sampling frequency of the data
acquisition unit is set as 12kHz by computer software; the
motor speed is set as 2400 rpm by adjustingmotor controller;
and the acceleration sensor is installed on bearing base. Dur-
ing the experiment, two sizes of faulty bearings and three
kinds of fault need to be measured. A total of seven different
health states of bearing data including norm bearing data are
collected. Specific data collection information is shown in
Table 1.

4.1.2 CWRU bearing data sets

The CWRU bearing data sets are acquired by the Electrical
Engineering Laboratory, Case Western Reserve University
[2], and published on the Bearing Data Center Website. We
chose the 100, 108, 121, 133, 172, 188, 200, 212, 225, 237
data. Among these ten classes bearing data, three different
types of faults and three different fault diameters total of
nine fault data and one norm data are included. Specific data
collection information is shown in Table 2.

4.2 Performancemetric

In this paper, the fault diagnosis of bearing imbalance data
is a multiclass classification problem. To evaluate the perfor-
mance of the model in the case of imbalance, we adopt the
F-score and accuracy as the criterion. The F-score [44] is a
comprehensivemetric for evaluating the overall performance
across all classes. The specific calculation formula is shown

Table 1 Description of HENU bearing data

Class Bearing Health Speed Load
label diameter(inch) state (rpm) (kg)

Ball 0 0.75 ball fault 2400 5

Ball 1 1 ball fault 2400 5

Inner 0 0.75 inner fault 2400 5

Inner 1 1 inner fault 2400 5

Norm 0.75 norm 2400 5

Outer 0 0.75 outer fault 2400 5

Outer 1 1 outer fault 2400 5

Table 2 Description of CWRU bearing data

File Fault Health Speed Load
number diameter(inch) state (rpm) (hp)

108 0.007 inner fault 1730 3

172 0.014 inner fault 1730 3

212 0.021 inner fault 1730 3

121 0.007 ball fault 1730 3

188 0.014 ball fault 1730 3

225 0.021 ball fault 1730 3

100 — norm 1730 3

133 0.007 outer fault 1730 3

200 0.014 outer fault 1730 3

237 0.021 outer fault 1730 3

in Table 3, where tp, tn, fp, and fn refer to true positives,
true negatives, false positives, and false negatives in a single
class, respectively. Hereby, m is the number of classes to be
classified.

4.3 Networks structure parameters selection

EGAN is based on the WGAN-GP model and enhances
adversarial training of sub-neural networks. The parameters
of generator and discriminator are shown in Table 4, which
are determined by empirical values and a series of debug-
ging experiments. The generator of EGAN consists of a fully
connected layer and four 1-D deconvolution layers. The dis-
criminator consists of four convolutional layers and one fully
connected layer. The optimization function of loss function
is Adam, whose learning rate, beta 1 and beta 2 are set as
0.0001, 0, and 0.9 respectively [41].

An environment of the whole experiment: CPU: Intel
Xeno (R) W-2225, GPU: NVIDIA RTX A4000 and python
3.7.

4.4 Parameters selection experiments

4.4.1 Enhanced Threshold selection.

InEGAN, anEnhancedThreshold (ET) shouldbedesigned to
judge the learning ability of two sub-neural networks. There-

Table 3 Performance metric and corresponding calculation expression

Performance Metric Expression

Micro precision(MIP)
∑m

i=1 t pi∑m
i=1 (t pi+ f pi )

Micro recall(MIR)
∑m

i=1 t pi∑m
i=1 (t pi+ f ni )

F-score 2(MI P∗MI R)
MI P+MI R
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Table 4 EGAN parameters Layer Input Output Filter AF Stride
name

Fc [5,512] [5,16,256] — relu —

Deconv1 [5,16,256] [5,32,128] [5,128,256] relu [1,2,1]

Generator Deconv2 [5,32,128] [5,128,64] [5,64,128] relu [1,4,1]

Deconv3 [5,128,64] [5,512,32] [5,32,64] relu [1,4,1]

Deconv4 [5,512,32] [5,2048,1] [5,1,32] tanh [1,4,1]

Conv1 [5,2048,1] [5,512,32] [5,1,32] relu [1,4,1]

Conv2 [5,512,32] [5,128,64] [5,32,64] relu [1,4,1]

Discriminator Conv3 [5,128,64] [5,32,128] [5,64,128] relu [1,4,1]

Conv4 [5,32,128] [5,16,256] [5,128,256] relu [1,2,1]

Flatten [5,16,256] [5,4096] — — —

Fc [5,4096] [5,1] — — —

fore, experiments are needed to find an appropriate ET as a
threshold for model enhancement training. According to the
training experience of generative adversarial networks, ET
is set to 1, 1.5, 2, 2.5, 3, and 3.5 respectively in HENU data
sets.

It can be seen from Fig. 4 that the curve with ET of 2.5 is
not inferior to other curves inminimumvalue. In addition, the
curve is more stable which indirect the quality of generated
data is better. At the same time, a comparison of curve 2.5
with curve 1 and curve 3.5 shows that whether ET is large
or small will affect the quality of generated data from the
perspective of stability. Besides, final diagnostic accuracy is
used as an evaluation index for the selection of ET so as
to increase the persuasiveness of ET. Diagnostic accuracy
corresponding to different ET is shown in Fig. 5. In order to
avoid the accident of experimental data, each accuracy in the
figure is the average of ten results.

In Fig. 5, all accuracy is above 99% when Q is 1:10,
indicating that ET has little effect on accuracy. However,

Fig. 4 MMD of generated data under different ET

accuracy at anETof 2.5 is significantly higher than the results
of other ET when Q becomes smaller. The larger the Q, the
more fault feature in training sets. Therefore, generated data
improves the classification accuracy a little with a large Q.
However, fault features in generated data will play a role
due to the amount of fault features in original imbalanced
data sets being small when Q is small. 2.5 is chosen as the
value of ET during the experiments combinedwith the results
obtained in Fig. 4.

4.4.2 Rated epoch selection.

Specifically, the total number of training epochs for EGAN is
8000, which would be costly if all the generated samples are
recorded. So, it is necessary to choose a Rated Epoch (RE)
to generate data. To find an appropriate RE, we compare the
classification accuracy of generated data for different RE in
HENU data sets. Average classification results are shown in
Fig. 6.

Classification accuracy of different RE is basically above
99% when Q is 1:10. However, the accuracy gap becomes
more andmore obviouswith decreasing ofQ.And diagnostic

ET = 1 ET = 1.5 ET = 2 ET = 2.5 ET = 3 ET = 3.5

1:10 99.56% 99.03% 99.71% 99.43% 99.54% 99.50%

1:20 96.71% 96.33% 96.35% 97.26% 96.47% 95.29%

1:50 93.80% 94.30% 93.22% 95.19% 94.29% 92.63%

1:70 92.27% 92.00% 90.78% 93.86% 92.68% 91.23%
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Fig. 5 Average accuracy and trend for different ET
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Fig. 6 Average diagnostic
accuracy and trends for different
RE

RE=50 RE=100 RE=110 RE=130 RE=150 RE=170 RE=190 RE=200 RE=250

1:10 99.31% 99.32% 99.25% 99.14% 99.43% 98.93% 98.93% 99.23% 99.31%

1:20 95.57% 96.52% 96.39% 95.20% 97.26% 95.93% 95.90% 96.40% 93.61%

1:50 89.75% 90.83% 90.43% 92.40% 95.19% 93.39% 93.01% 92.58% 87.53%

1:70 89.20% 90.43% 88.36% 92.06% 93.86% 91.81% 87.94% 89.92% 88.05%
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94.00%

96.00%

98.00%

100.00%

A
cc

u
ra

cy
%

1:10 1:20 1:50 1:70

accuracy reaches the maximum when RE is 150. The num-
ber of fault features contained in generated data of GAN is
different for different accuracy in Fig. 6. That indirectly indi-
cates the need for post-processing of generated data. Above
all, 150 is chosen as the value of RE.

4.5 Ablation experiments

To demonstrate the validity of ourmethod, this section shows
ablation experiments at classification accuracy on HENU
data sets. Q is selected as 1:20 for the purpose of presen-
tation, and the results are shown in Table 5.

All accuracy rates in the table are calculated byWDCNN.
Taking experiment 0 as a benchmark method, the multi-
classification accuracy of bearing imbalanced data is 91.65%.
As can be seen from Table 5, DSM is ablated in experi-
ment 1 and the accuracy reaches 95.47%, which is 3.82%
higher than that of benchmark method. In experiment 2, the
enhanced processing module is ablated, and the accuracy
reaches 95.2%, which is 3.55% higher than in experiment
0. The final experimental accuracy of experiment 3 reaches
97.26%, which is 5.61% higher than that of benchmark
method. Therefore, a separate ablation experiment can verify
that the proposed innovation improves the diagnostic accu-
racy of imbalanced data well.

4.6 Results and analysis

The whole experiment data consists of seven different states
of bearing data, as shown in Table 6, where the example Q
is set to 1:20. Q for whole experiments also includes 1:10,
1:50, and 1:70.

Sample lengths in Table 6 are sample points contained in
one sample when original data is sampled. The training sets
are sampled from original data under condition Q. And the
input of original data is 25. Mixed sets are the number of
training data sets after data enhancement. The test sets are
sampled from original data and do not contain any generated
data.

Table 5 Average accuracy of ablation experiments

experi- Q WGAN- ET DSM Accuracy(%)
ment GP

0 20 � 91.65%

1 20 � � 95.47%

2 20 � � 95.20%

3 20 � � � 97.26%

Table 6 Presentation of HENU data sets

Label Sample Training sets Mixed sets Test sets
length

Norm 2048 500 500 250

Ball 0 2048 25 500 250

Ball 1 2048 25 500 250

Inner 0 2048 25 500 250

Inner 1 2048 25 500 250

Outer 0 2048 25 500 250

Outer 1 2048 25 500 250

Fig. 7 The loss of Generator
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Fig. 8 The loss of discriminator

4.6.1 EGAN results

Input data are 25 samples in Ball 0 of HENU data sets, and
the EGANmodel is trained to generate new samples for fault
data. The model is completed after 8000 training sessions.
Loss values of two sub-neural networks obtained at the end
of each training session are shown in Fig. 7 and 8.

Generator and discriminator are optimized constantly and
learn how to be better than the other as the number of train-
ing sessions increases. The loss value of generator decreases
gradually,whichmeans that the generator is capable of gener-
atingdata increasingly after continuous learning.Meanwhile,

the distribution of generated data is closer and closer to real
data. In Fig. 7, the loss fluctuates greatly from 0 to 5000
training times, but each large fluctuation is quickly smoothed
out. This indirectly proves that the enhancement module pro-
posed in this paper plays a role by enhancing the learning
ability of weaker networks. That enables the whole model
to resume adversarial training. Although the loss values of
discriminator fluctuate sharply in Fig. 8, this indicates that
the generator and discriminator train intensively against each
other. In addition, the larger number of training sessions, the
longer training time required.

Meanwhile, Fig. 9 shows the distribution of generated and
real data in time domain. The red dashed line in each of these
pictures represents generated fault data and the solid blue line
indicates real fault data. The first row is the data comparison
diagram of 0.75 inch faulty bearings. From left to right, the
ball fault, inner fault, and outer fault are shown in sequence.
The second row is 1 inch fault bearings.

The feature of real ball fault data is not obvious, which
could make generation difficult. Between real data and gen-
erated data, the difference in data amplitude and deviation
is the supplement of original fault features. The differences
are that the original purpose of GAN is to expand training
data features. Similarly, the supplementary performance of
generated data on fault features is obvious because feature
information of inner fault and outer fault are prominent. To
sum up, generated data is similar to original data distribution
from the perspective of overall trend. However, in terms of
specific fault features, generated data contains richer feature
information.

Fig. 9 Comparison of generated data with original data
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Table 7 Average test accuracy and F-score for multiple Q

Q 1:10 1:20 1:50 1:70

un-processed acc 98.29% 81.87% 26.36% 24.11%

F-score 0.9839 0.8125 0.2064 0.1656

our-method acc 99.43% 97.26% 95.19% 93.86%

F-score 0.9979 0.9715 0.9634 0.9369

4.6.2 Fault diagnosis results presentation and analysis

In this section, the bearing data measured by the rotating
machinery experimental platform is used to conduct the
multi-classification experiments. The training data sets with
different Q are used to verify the effectiveness of ourmethod.
The results are shown in Table 7. Un-processed means that
there is no processing of imbalanced data sets.

Classification accuracy obtained by our method is improved
by 1.14%, 15.39%, 68.83%, and 69.75% respectively at dif-
ferent Q. It can be seen that with the decreasing of Q, the
diagnostic accuracy of WDCNN is significantly improved.
Fault feature information in imbalanced data sets decreases
with the decreasing of Q. When Q is small, the classifier
cannot obtain enough feature information, and the diagnos-
tic accuracy of the un-processed method is low. However,
data enhanced by our method contains abundant fault fea-
ture information, which can help the classifier to distinguish
test sets. Besides, the F-score is improved by 0.014, 0.159,
0.757, and 0.7713. The improvement of F-score confirms
the effectiveness of the proposed method in dealing with an
imbalanced dataset.

To demonstrate the validity of experiments, some param-
eters during training epochs are displayed in Fig. 10. Train
loss and accuracy perform well in the whole epochs. But val-
idation loss (val loss in Fig. 10) rises in early epochs and then

Fig. 10 Training results of WDCNN

Fig. 11 Confusion matrix of our method

falls to a stable level. And validation accuracy (val acc in Fig.
10) rises gradually. In early epochs, some incorrectly pre-
dicted samples dominant val loss, resulting in val loss rises.
But a large number of samples have been right predicted,
which causes the accuracy curve rises. This phenomenon
disappears asWDCNN training. As shown in Fig. 10, the val
loss curve falls and the accuracy gets higher.

For the purpose of analyzing the classification accuracy
of each type of data, Fig. 11 and 12 show the specific classi-
fication results for seven types of data when Q is 1:20 in the
form of a confusion matrix.

Our method and un-processed method in Fig. 11 and 12
can be seen that the single-class accuracy of normal sam-
ples can reach 100%. However, for the diagnosis of other
faults, the classification accuracy of our method is much

Fig. 12 Confusion matrix of un-processed method
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Fig. 13 Test accuracy of
different methods at different Q
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higher than that of un-processed method. Specifically, the
inner fault feature information in imbalanced data sets is
less (it can be seen from Fig. 9 that the inner fault is sim-
ilar to outer fault). Therefore, the misclassification of inner
and outer fault in Fig. 12 is caused. However, the EGAN-
DSM data augmentation method proposed in this paper can
effectively supplement fault feature information. As can be
seen in Fig. 11, the inner fault and outer fault are completely
distinguished.

4.6.3 Comparison results of different methods in different
data sets

The imbalanced data reduces the accuracy of multiple clas-
sifications, so data augmentation is required to reduce the
impact of imbalanced data sets. In this part, we discuss the
accuracy of the proposed method and other data enhance-
ment methods in multiple classifications on imbalanced data
sets.

HENU data sets: As can be seen from Fig.13, Random
Oversampling (RO) achieves the effect of data augmenta-
tion by randomly replicating minority class data so that the
classification accuracy of this method is better when Q is
high. When Q is small, the feature information of fault data

is still lacking after data enhancement, reducing the clas-
sification accuracy. ADASYN method is worse than other
methods for classification accuracy. The data boundary of
inner fault and outer fault is close. ADASYN adds differ-
ent types of fault features when synthesizing data, which
causes the final classification difficulty. CNN-LSTM [45]
can efficiently extract temporal features, but imbalanced data
characteristics impact it negatively. MK-CNN [46] focus on
imbalanced feature through its multiscale kernel, which can
get better classification accuracy. The method proposed in
this paper does not widen the gap with other methods when
Q is 1:10. Com-pared with SMOTE, the proposed method is
even lower when Q is 1:10 and 1:20. The feature of gener-
ated data will be less critical when imbalanced training sets
consist of an abundant feature. Our method is fit for highly
imbalanced data sets which get close to actual industrial pro-
duction. And the accuracy ismuch higher than othermethods
when Q is 1:50 and 1:70. The accuracy is higher than that of
LSGAN,which indirectly indicates that the proposedmethod
can generate and select higher quality data. Therefore, it
can be shown that the EGAN-DSM method can effectively
improve the performanceof fault diagnosis under imbalanced
conditions.

CWRU data sets: As seen in Fig.14, compared with RO,
SMOTE, ADASYN, CNN-LSTM, and MK-CNN methods,

Fig. 14 F-score of different
methods at different Q in
CWRU data sets

RO SMOTE ADASYN MK-CNN CNN-LSTM Our-method

Q=1:10 0.9659 0.9594 0.9014 0.965 0.9328 0.9694

Q=1:20 0.8971 0.9227 0.7233 0.9078 0.8437 0.9187

Q=1:50 0.7322 0.7778 0.4938 0.8972 0.5984 0.8983

Q=1:70 0.6064 0.6205 0.3916 0.8647 0.3939 0.8751
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our method achieved the best F-score in CWRU data sets.
When the Q is large, the F-score of the pro-posedmethod and
other methods are not far apart. However, as the Q decreases,
the difference between the F-score of the proposed method
and other methods becomes larger and larger. This can indi-
cate directly that our method can solve imbalance bearing
data effectively.

5 Conclusion

Imbalanced data limits the performance of intelligent diag-
nostic methods, resulting in lower diagnostic accuracy. In
order to reduce the influence of bearing imbalance data,
we propose an EGAN-DSM data enhancement method that
achieves excellent performance on fault diagnosis. EGAN
adds an enhancement module to WGAN-GP which can
effectively avoid antagonistic suppression during training
and improve the quality of generated data. DSM can effec-
tively screen generated data containing the most original
fault features in the training process and enrich the fea-
ture information in the mixed sets. Compared with other
methods (MK-CNN, SMOTE, ADASYN, RO, CNN-LSTM,
LSGAN), EGAN-DSM performs better in different fault
diagnosis experiments. Although our approach may not out-
perform other methods at larger Q, the difference is minimal.
In addition, our method is far superior to other methods
when Q is small. In future work, the influence of data
enhancement methods on fault diagnosis accuracy under
a strong noise environment will be investigated, including
new GAN construction and efficient classification networks
construction.
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