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Abstract
The classical ID3 decision tree algorithm cannot directly handle continuous data and has a poor classification effect.Moreover,
most of the existing approaches use a single mechanism for node measurement, which is unfavorable for the construction
of decision trees. In order to solve the above problems, we propose an improved ID3 algorithm (called DIGGI) based
on variable precision neighborhood rough sets. First, we introduce the notions of variable precision neighborhood (VPN)
equivalence relation and VPN equivalence granule, and probe some basic properties of these notions. Second, we give the
model of VPN rough sets and propose two extended measures: the VPN information gain and the VPN Gini index. Finally,
we construct a hybrid measure by using the VPN dependence to combine the above two extended measures, and adopt the
VPN equivalence granule as the splitting rule of DIGGI. Experimental results show that DIGGI is effective and its accuracy is
greatly improved compared with three traditional decision tree algorithms, the neighborhood decision tree (NDT) and variable
precision neighborhood decision tree (VPNDT) proposed in the latest literature.

Keywords Variable precision neighborhood rough sets · Decision tree · Attribute dependence · Uncertainty measure

1 Introduction

As an significant data analysis method, classification [1]
plays significant roles in the task of data mining. In con-
trast to other classification algorithms [2, 3], the decision
tree algorithms possess the advantages of fast classification,
high accuracy, and good interpretability. Decision tree is one
of the algorithms widely applied in inductive reasoning at
present. It is builtwith the top-down recursivemethod, choos-
ing the best feature as the current node, and branches down
from the node according to the different values of the feature.
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Leaf nodes are classes to be divided. By now, scholars have
proposed numbers of improvement decision tree algorithms.
For instance, Breiman et al. [4] proposed the CART algo-
rithm, which uses the Gini index to select splitting attributes.
Moreover, Quinlan [5] proposed the well-known ID3 algo-
rithm. ID3 is one of the classical decision tree algorithms at
present and it adopts the information gain as the measure of
nodes. However, this measure tends to select attributes with
more values, which may generate a wide decision tree. To
solve this problem, Quinlan [6] presented an improved algo-
rithm (called C4.5) to induce decision trees, which uses the
information gain ratio to select the optimal attribute division
[7, 8].

Besides the above-mentioned shortcomings of ID3, there
are also some other serious problems, e.g., ID3 can only deal
with discrete data. When using this algorithm to deal with
continuous data, we should first discretize the continuous
data. Discretization will contribute to the loss of information,
because the membership degree of numerical discretized
values is not considered. In addition, when we face large-
scale data sets, the log function will be called many times
because we need to calculate the information entropy, and
the computation amount will greatly increase. To solve the
above problems, researchers have proposed many methods
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to improve decision tree. For instance, to overcome the prob-
lem of multivalued attribute bias, Liang et al. [9] presented
a new attribute weighting method by using the simulation
conditional probability to calculate the correlation between
conditional and decision attributes. They linked information
gain and attribute weights as new splitting criterion. Wang
et al. [10] proposed a new decision tree optimization algo-
rithm. Firstly, Gini index is used to improve the definition of
boundary points and the calculation formula of information
entropy in Fayyad theorem, so as to reduce the calculation
times of information entropy in C4.5 algorithm. Then, CFS
algorithm is introduced to optimize the calculation of infor-
mation gain ratio, and the effectiveness of the algorithm is
verified on Spark platform. Panhalkar et al. [11] proposed an
African buffalo optimization algorithm suitable for solving
complex problems to improve the decision tree and create a
more efficient optimal decision tree.

The classical rough set model suggested by Pawlak [12]
considered the whole research object as a universe. Infor-
mation granules are obtained by dividing the universe of
discourse into several proprietary equivalence classes using
equivalence relations, which are used to describe arbitrary
concepts in the universe. By now, the rough set theory has
been widely used in classification, gene selection, attribute
reduction and feature selection, etc. Some studies have shown
that the decisionmethod based on rough sets can flexibly deal
with a variety of decision tables and is suitable for big data,
but the output result is relatively complex.While decision tree
generally deals with decision tables with multiple condition
attributes and single decision attribute, the output result is rel-
atively simple. Hence, by combining decision treewith rough
sets, we can avoid the computational complexity caused by
the logarithm operation and the bias problem of multivalued
attributes. Wei et al. [13] discussed the combination of rough
sets and decision tree. Wang et al. [14] proposed a concept
of consistency based on rough sets and used it as a method of
attribute selection. Moreover, they used this concept to solve
the problems of multi-value bias of attribute values and huge
amount of calculation in decision tree.

With the development of rough set theory, we gradually
find that the classical rough set theory is no longer suitable
for the application of the real world, and its limitations are
more obvious. In order to solve this dilemma, scholars began
to explore the generalization model of rough sets, and then
the improved decision tree based on rough sets also turned to
the use of more adaptable generalization models. Neighbor-
hood rough set [15–17] is a generalization model of classical
rough set. It replaces the strict equivalence relation with
neighborhood relation, which greatly broadens its applica-
tion scenario. At the same time, the problem that Pawlak
rough set cannot deal with continuous data is also solved on
this extended model, which reduces the problem of infor-
mation loss caused by data discretization. Xie et al. [18]

combined neighborhood rough setswith decision trees and
designed an algorithm to solve the shortcoming of ID3 (i.e.,
it can only deal with discrete data) based on a neighbor-
hood equivalence relation. In order to reduce the influence
of noise on the construction of decision trees, the combina-
tion of variable precision rough sets [19–21] and decision
trees were explored. Xie et al.considering the strict equiv-
alence relation on the basis of the previous part, and then
proposed an improved decision tree algorithm based on simi-
larity relation, using similarity relation instead of equivalence
relation, induced a variable precision decision tree algorithm,
improved the classification accuracy. Liu et al. [23] found
that the author of the previous literature ignored the geomet-
ric structure of the neighborhood system when considering
the algebraic structure of the neighborhood system, resulting
in unsatisfactory transitivity requirements, so they proposed
solutions from a geometric perspective and combined with
decision trees.

We observe that attribute dependence, information gain
and Gini index are the most widely used splitting criteria
in all literatures. Attribute dependency can best show the
importance of conditional attributes to decision attributes.
The information gain and gini index are two popular mea-
sures of nodes in decision trees, where the former has better
classification ability for handling the chaotic data, while the
latter is more effective in handling the pure data. Most of
the existing decision tree algorithms use one of these met-
rics as a splitting criterion. If these metrics can be combined
in a linear way to construct new metrics, can the classifica-
tion accuracy of the decision tree be improved? There are
few studies on the mixed metric, In [24], Xie et al. used
the adaptive weighting of information gain and gini index
to construct a hybrid measure and in [25], Jain et al. used
constant weight to carry out linear combination integration.
With the development of science and technology, uncertainty
measurement is an important criterion in big data analysis.
The emergence of hybrid measurement may provide peo-
ple with new ideas. This paper attempts to combine these
three metrics in a linear way to construct a new uncertainty
measurement criterion to improve the classification perfor-
mance of decision trees. On the basis of this idea, in this
paper, wewill propose two extendedmeasures: theVPNGini
index, and the VPN information gain. Moreover, we will
construct a hybrid measure by using the VPN dependence
to combine the above two extended measures. This hybrid
measure will be used to select nodes during the construction
of decision trees. Experiments were confirmed on multiple
UCI data sets, where the accuracy and the number of leaf
nodes were used as the evaluation metrics. We verified
the effectiveness of our algorithm by comparing it with
the traditional CART algorithm, ID3 algorithm, C4.5 algo-
rithm and the algorithms proposed in the latest literature
[22, 23].
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The main contributions of this work include: (1) The
construction of neighborhood similarity by using Dice sim-
ilarity can relax the strict equivalence relation between any
two neighborhood granules. (2) Based on the neighborhood
similarity and variable precision threshold, the equivalence
relation of VPN is induced and a newVPN rough setmodel is
proposed. The Gini index and information gain are extended
to the variable precision neighborhood Gini index and vari-
able precision neighborhood information gain by means of
the VPN equivalence relation. (3) A new splitting criterion is
defined by combining the variable precision dependencewith
the variable precision neighborhood Gini index and variable
precision neighborhood information gain.

The remainder of this paper is structured as follows.
Section 2 reviews the classical ID3 and CART algorithms,
and introduces the model of neighborhood rough sets
(NRSs). In Section 3, we propose the VPN equivalence rela-
tion and the VPN rough sets. Based on the VPN equivalence
relation, the VPN information gain and the VPN Gini index
are proposed. Moreover, a hybrid measure is constructed
to improve the performance of the classical decision tree
algorithms. In Section 4, we verify the effectiveness of our
algorithm. Finally, we make a summary and some discussion
in Section 5.

2 Preliminaries

This section reviews some basic definitions about ID3 algo-
rithm, CART algorithm and neighborhood rough set model.
Throughout the paper, U is called universe to represent a
non-empty finite set.

2.1 Decision tree

We describe decision tree as a tree classifier, which is con-
structed from the top down and consists of nodes and directed
edges. Nodes in a decision tree can be divided into internal
nodes and leaf nodes, where each internal node represents a
feature or attribute, and each leaf node represents a class.
ID3, C4.5 and CART are three well-known decision tree
algorithms, where C4.5 and CART are the improvements
of ID3. The above three algorithms have been widely used
in different fields because of their advantages such as good
interpretability. This subsection mainly introduces ID3 and
CART.

Definition 1 [5] Let Dt = (U ,C ∪ D) be a decision table,
where C is represented the set of conditional attributes
and D is called the set of decision attributes. Let U/D =
{D1, D2, ..., Dn} be the decision classification, the informa-

tion entropy H(D) of U/D is expressed as follows:

H(D) = −
n∑

i=1

|Di |
|U | log

|Di |
|U | . (1)

where for each 1 ≤ i ≤ n, |Di ||U | represents the probability of
a sample falls into the decision class Di .

For any A ⊆ C , let U/A = {A1, A2, ..., Am}, the condi-
tional entropy H(D|A) of decsion attribute D with respect
to conditional attribute A is defined as follows:

H(D|A) =
m∑

j=1

|A j |
|U | H(A j ). (2)

where for each 1 ≤ j ≤ m, H(A j ) = −
n∑

i=1

|A j∩Di |
|A j | log

|A j∩Di |
|A j | . Therefore, the information gain of attribute subset

A is

Gain(A) = H(D) − H(D|A). (3)

ID3 algorithm needs to calculate the information entropy
of each attribute, and selects the attribute with the largest
information gain as the splitting attribute. The decision tree
generated by ID3 is easy to understand for us and it shows
the potential information behind the data clearly. Although
the idea of ID3 is simple, it tends to prefer attributes with
more values. There are many improved algorithms for ID3,
and CART is one of them.

Definition 2 [4] Let Dt = (U ,C ∪ D) be a decision table,
and let U/D = {D1, D2, ..., Dn} be the decision classifica-
tion, the gini index Gini(D) of U/D is defined as follows:

Gini(D) =
n∑

i=1

|Di |
|U |

(
1 − |Di |

|U |
)

= 1 −
n∑

i=1

( |Di |
|U |

)2

.

(4)

For any A ⊆ C , let U/A = {A1, A2, ..., Am}, the gini index
Gini(D, A) of D on A is defined as follows:

Gini(D, A) =
m∑

j=1

|A j |
|U | Gini(A j ). (5)

where for each 1 ≤ j ≤ m, Gini(A j ) = 1−
n∑

i=1

( |A j∩Di
|A j |

)2
.
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CART selects the attribute with the smallest Gini index as
the splitting attribute, and builds the corresponding regres-
sion tree or classification tree according to whether the value
of category attribute is continuous or discrete.

2.2 Neighborhood rough set model

As we all know that the classical rough set model needs to
use the step of discretization to preprocess the continuous
data, which is easy to generate to information loss. To avoid
this problem, the neighborhood rough set model is proposed
and attractsmuch attention. In the following, we review some
basic notions in neighborhood rough sets.

Definition 3 [16] Let Dt = (U ,C ∪ D) be a decision table,
where U is a non-empty finite set (called universe) with
samples {ay1, ay2, ..., ayn}, C = {c1, c2, ..., cm} is the set
of condition attributes, and D represents the set of decision
attributes. For any ayi ∈ U and A ⊆ C , the neighborhood
δA(ayi ) of ayi on the attribute subspace A is defined as:

δA(ayi ) = {ay j ∈ U |�A(ayi , ay j ) ≤ δ}. (6)

where � is a distance function, and for any ay1, ay2, ay3 ∈
U , � satisfies that:

(1)�(ay1, ay2) ≥ 0, �(ay1, ay2) = 0 only when ay1 =
ay2;

(2)�(ay1, ay2) = �(ay2, ay1);
(3)�(ay1, ay3) ≤ �(ay1, ay2) + �(ay2, ay3).
Assume that A = {c1, c2, ...cn} is an attribute subset ofC ,

for any two samples ay1, ay2 ∈ U , the Minkowsky distance
dA(ay1, ay2) between ay1 and ay2 under A is defined as:

dA(ay1, ay2) = (

m∑

i=1

| f (ay1, ci ) − f (ay2, ci )|p)1/p. (7)

where f (ay1, ci ) is the value of sample ay1 on attribute ci ,
1 ≤ i ≤ m.

When p = 1, the Minkowsky distance is called the Man-
hattan distance, it is called the Euclidean distance, and the
Chebyshev distance when p = 2 and p = ∞. The NRSs
model usually uses the Manhattan distance. It can be seen
that when δ = 0, the NRSs model will degenerate into the
classical rough set model.

Definition 4 [16] Given a decision table Dt = (U ,C ∪ D)

and attribute subset B ⊆ C . For any AY ⊆ U , the upper
approximation and the lower approximation of set AY with
respect to B are defined as follows:

NB(AY ) = {ayi ∈ U |δ(ayi ) ∩ AY 	= φ},
NB(AY ) = {ayi ∈ U |δ(ayi ) ⊆ AY }. (8)

Moreover, BN (AY ) = NB(AY ) − NB(AY ) is called the
boundary region of set AY with respect to B.

Definition 5 [16] Given a decision table Dt = (U ,C ∪ D),
let U/D = {D1, D2, ..., Dn} be the equivalence classes
divided by decision attribute D on U . For any B ⊆ C , the
upper approximation set NB(D) and the lower approxima-
tion set NB(D) of D with respect to A are defined as follows:

NB(D) =
n⋃

i=1

NB(Di ),

NB(D) =
n⋃

i=1

NB(Di ).

(9)

Then we can get the positive region as follows,

POSB(D) = N B(D). (10)

Definition 6 [26] The Dice similarity between set Y1 and set
Y2 is defined as:

D(Y1, Y2) = 2 ∗ |Y1 ∩ Y2|
|Y1| + |Y2| . (11)

Dice coefficient is a measure function used to describe the
similarity of sets, which is mainly used to calculate the sim-
ilarity of two given sets.

3 Variable precision neighborhood rough
sets andmeasurement function

In this section, we first introduce the notions of VPN equiva-
lence relation andVPNequivalence granule. Thenwediscuss
the basic properties of them. At the same time, we propose
a VPN rough set model and explore some of its digital char-
acteristics. Based on the variable precision neighborhood
equivalence relation, the Gini index is extended to the VPN
Gini index, and the information gain is extended to the VPN
information gain. Finally, a hybrid measure is established by
using the VPN attribute dependence to combine the VPN
Gini index and the VPN information gain.

3.1 Variable precision neighborhood rough sets

Definition 7 Let NDS = (U ,C∪D, V , f , d, δ) be a neigh-
borhood decision system, and δ ∈ [0, 1] be a neighborhood
parameter. For any ay1, ay2 ∈ U and A ⊆ C , the similarity
of neighborhood granules ηδ

A(ay1) and ηδ
A(ay2) is expressed

as follows:

NV δ
A(ay1, ay2) = 2 ∗ |ηδ

A(ay1) ∩ ηδ
A(ay2)|

|ηδ
A(ay1)| + |ηδ

A(ay2)|
. (12)
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The above definition indicates a similarity relation between
two neighborhood granules. Obviously, NV δ

A(ay1, ay2) ∈
[0, 1].
Example 1 Let U = {bx1, bx2, bx3, bx4, bx5, bx6} be a
universe, and let ηδ

A(bx1) = {bx1, bx2, bx5, bx6} and
ηδ
A(bx2) = {bx1, bx2, bx4, bx6} be two neighborhood

granules. The granule similarity between ηδ
A(bx1) and

ηδ
A(bx2) is NV δ

A(bx1, bx2) = 2∗|ηδ
A(bx1)∩ηδ

A(bx2)|
|ηδ

A(bx1)|+|ηδ
A(bx2)| =

2∗|{bx1,bx2,bx6}|{bx1,bx2,bx5,bx6}|+|{bx1,bx2,bx4,bx6}| = 0.75.
Let NDS = (U ,C ∪ D, V , f , d, δ) be a neighborhood

decision system, for any ay ∈ U and A ⊆ C , let ηδ
A(ay) be

the condition neighborhood granule of ay on A, and ηδ
D(ay)

be the decision neighborhood granule of ay on D. The gran-
ule similarity between the condition neighborhood granule
and the decision neighborhood granule is

NV (ηδ
A(ay), ηδ

D(ay)) = 2 ∗ |ηδ
A(ay) ∩ ηδ

D(ay)|
|ηδ

A(ay)| + |ηδ
D(ay)| . (13)

Definition 8 Given a decision table Dt = (U ,C ∪ D), for
any A ⊆ C , the neighborhood equivalence relation on A is
expressed as follows:

NERδ
A = {(ay1, ay2) ∈ U ×U |ηδ

A(ay1) = ηδ
A(ay2)}. (14)

where δ ∈ [0, 1] is a given neighborhood radius, and ηδ
A(∗)

represents the δ-neighborhood of sample ∗ on A. The neigh-
borhood equivalence partition induced by the neighborhood
equivalence relation EN Rδ

A is defined as follows:

U/NERδ
A = {[ay]NERδ

A
|ay ∈ U } = {Y A

1 , Y A
2 , ...,Y A

n }.
(15)

where Y A
r = {ayi ∈ U |ηδ

A(ayi ) = ηδ
A(ay j )}, ay j ∈

Y A
r (r = 1, 2, ..., n). [ay]NERδ

A
represents equivalent gran-

ule and [ay]NERδ
A

= {ayi ∈ U |(ay, ayi ) ∈ NERδ
A}.

Example 2 Given a dataset listed in Table 1, according
to the definition of neighborhood equivalence relation,
we can divide the samples in the dataset into a set of
equivalence classes (ECs) by a given attribute subset. For
instance, the ECs induced by the attribute subset {a1}
are {bx1,bx4},{bx2,bx3},{bx5}. The ECs induced by the
attribute subset{a2} are {bx1,bx2},{bx3},{bx4},{bx5}. The
ECs induced by the attribute subset {a3} are {bx1},{bx2,bx3},
{bx4},{bx5}.

From the definition of neighborhood equivalence relation,
we can easily see that only when the neighborhood of two
samples is exactly equal, the two sampleswill be judged to be
equivalent. The above definition is undoubtedly strict, hence
we propose the variable precision neighborhood equivalence
relation.

Table 1 A given dataset

U a1 a2 a3 D

bx1 0.6 0.8 0.9 1

bx2 0.7 1.0 0.7 2

bx3 0.8 0.7 0.4 1

bx4 0.5 0.4 0.6 1

bx5 0.3 0.2 0.5 2

Definition 9 In NDS = (U ,C ∪ D, V , f , d, δ) , for any
(ay1, ay2) ∈ U × U and A ⊆ C , if ay1 and ay2 satisfy the
following equation

V NER(δ,α)
A = {(ay1, ay2) ∈ U ×U |NV δ

A(ay1, ay2) ≥ α}.
(16)

then we consider that samples ay1 and ay2 are equivalent,
where α ∈ [0.5, 1) is the variable precision threshold.Here,
we call it VPN equivalence relation.

In real-world applications, it is difficult for us to find
exactly equal samples of two neighborhoods.If the above
strict equivalence relationship is adopted, it will be greatly
limited in the actual application scenario and produce unsat-
isfactory results. Especially when we apply this equivalence
relation to the decision tree, it may lead to the generation
of a large decision tree, which is an unfavorable classifi-
cation effect, so we must improve this equivalence relation
(Table 2).

Definition 10 Let δ ∈ [0, 1] be the neighborhood radius, and
α be the variable precision threshold, we obtain the VPN
equivalence class based on the VPN equivalence relation as
below.

U/V NER(δ,α)
A ={[ay]

V NER(δ,α)
A

|ay ∈ U }={V X A
1 , V X A

2 , ...,V X A
n }.

(17)

where V X A
r = {ay ∈ U |NV δ

A(ayi , ay) ≥ α}; ayi ∈
V X A

r ; 1 ≤ r ≤ n.

Example 3 Here we use neighborhood similarity to calculate
the similarity of two tuples above the attribute subset {a1}
with the variable precision threshold α = 0.7, the calculation
results are shown in Tables 3, and 4 shows the results of
equivalence classes.

Proposition 1 In NDS = (U ,C ∪ D, V , f , d, δ), α is the
variable precision threshold,

1. If δ1 ≤ δ2, then U/V NER(δ1,α)
A ⊆ U/V NER(δ2,α)

A ;
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Table 2 The sample neighborhoods of example decision table (δ = 0.3)

attribute subset bx1 bx2 bx3 bx4 bx5

{a1} U {bx1,bx2, bx3 bx4} {bx1,bx2,bx3,bx4} U {bx1,bx4,bx5}

{a2} {bx1, bx2, bx3} {bx1, bx2, bx3} {bx1,bx2,bx3,bx4} {bx3,bx4,bx5} {bx4, bx5}

{a3} {bx1,bx2,bx4} {bx1,bx2,bx3,bx4} {bx1,bx2,bx3,bx4} U {bx1,bx4,bx5}

2. If α1 ≤ α2, then U/V NER(δ,α2)
A ⊆ U/V NER(δ,α1)

A .

Proof 1 1. If δ1 ≤ δ2, for any ay1, ay2 ∈ U , obviously,
we can obtain η

δ1
A (ay1) ⊆ η

δ2
A (ay1). Then we can get

NV δ2
A (ay1, ay2) ≥ NV δ1

A (ay1, ay2) ≥ α, therefore,

U/V NER(δ1,α)
A ⊆ U/V NER(δ2,α)

A .

2. If α1 ≤ α2, we can get V NER(δ,α2)
A ⊆ V NER(δ,α1)

A ,

therefore, we have U/V NER(δ,α2)
A ⊆ U/V NER(δ,α1)

A .

Proposition 1 mainly reflects the sizes of neighborhood
granule and variable precision equivalence granule. Accord-
ing to Proposition 1, we can see that the size of a neighbor-
hood granule increases with the increase of the neighborhood
radius, which means that the larger the neighborhood radius
is, the more samples are contained in the neighborhood gran-
ule. Variable precision threshold α can control the thickness
of the variable precision neighborhood equivalence granule.
A lower threshold makes it easier to assume that two sam-
ples are similar, whereas the higher the degree of similarity
between samples can be judged they are equal. A larger vari-
able precision thresholdmeans that a singleVPNequivalence
granule is rougher, while a smaller one is more accurate.

Definition 11 In NDS = (U ,C ∪ D, V , f , d, δ) , α is the
variable precision threshold, for any P ⊆ C and ay ∈ U , the
VPN lower approximation and theVPNupper approximation
are defined as follows:

RP (D)αδ ={ay ∈ U |NV (ηδ
P(ay), ηδ

D(ay))≥α}, 0.5≤α<1,

RP (D)αδ ={ay ∈ U |NV (ηδ
P(ay), ηδ

D(ay)) > 1 − α}.
(18)

Table 3 The results of neighborhood similarity between samples

The two tuple Neighborhood
similarity

The two tuple Neighborhood
similarity

(1,2) 1.0 (2,4) (0.8889)

(1,3) 0.8889 (2,5) 0.5714

(1,4) 1.0 (3,4) 0.8889

(1,5) 0.75 (3,5) 0.5714

(2,3) 1.0 (4,5) 0.75

The VPN lower approximation is also called the VPN posi-
tive region, which is denoted as:

POSP (D)αδ = RP (D)αδ . (19)

The VPN boundary region is defined as:

BNP (D)αδ = RP (D)αδ − RP (D)αδ . (20)

Obviously, for any α, RP (D)αδ ⊆ RP (D)αδ .

Proposition 2 In NDS = (U ,C ∪ D, V , f , d, δ) , α is
the variable precision threshold, if A1 ⊆ A2 ⊆ C , then
POSA1(D)αδ ⊆ POSA2(D)αδ .

Proof 2 Given A1 ⊆ A2, ay and metric �, ∀ayi ∈ U ,
ayi ∈ δA1(ay) if ayi ∈ δA2(ay) because �A1(ayi , ay) ≤
�A2(ayi , ay). Therefore,we have δA1(ay) ⊇ δA2(ay) if
A1 ⊆ A2. Assume δA1(ay) ⊆ RA1(D)αδ , where D repre-
sents one of the decision classes, then we have δA2(ay) ⊆
RA2(D)αδ . At the same time, it may exist ayi , δA1(ayi ) 	⊂
RA1(D)αδ and δA2(ayi ) ⊆ RA2(D)αδ . Therefore, RA1(D)αδ ⊆
RA2(D)αδ . Assuming D = {D1, D2, ..., Dm}, we have
RA1(D1)

α
δ ⊆ RA2(D1)

α
δ , ..., RA1(Dm)αδ ⊆ RA2(Dm)αδ .

POSA1(D)αδ = ⋃m
i=1 RA1(Di )

α
δ ; POSA2(D)αδ = ⋃m

i=1
RA2(Di )

α
δ , so we can obtain POSA1(D)αδ ⊆ POSA2(D)αδ .

Definition 12 In NDS = (U ,C ∪ D, V , f , d, δ), α is the
variable precision threshold, for any P ⊆ C , the degree of
dependence of D on P is defined as:

γP (D)αδ = |POSP (D)αδ |
|U | . (21)

The degree of knowledge dependence indicates the degree
of dependence of knowledge D on knowledge P .

Table 4 The results of ECs

Samples Equivalent calsses

bx1 {bx2, bx3, bx4, bx5}

bx2 {bx1, bx3, bx4}

bx3 {bx1, bx2, bx4, bx5}

bx4 {bx1, bx2, bx3}

bx5 {bx1, bx4}
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Proposition 3 In NDS = (U ,C ∪ D, V , f , d, δ) , α is the
variable precision threshold, for any A ⊆ C ,U/V EN R(δ,α)

A
is the VPN equivalence granule,

1. If α = 1, then γ
U/V NER(δ,α)

A
(D) = γ

U/NERδ
A
(D).

2. If α = 1 and δ = 0, then γ
U/V EN R(δ,α)

A
(D) = γU/RA

(D).

Proof 3 1. If α = 1, the VPN equivalence granule becomes
the strict neighborhood equivalence granule and the VPN
rough sets degenerates into the neighborhood rough sets.
Therefore, the VPN dependence becomes the neighbor-
hood attribute dependence.

2. If α = 1 and δ = 0, the VPN equivalence granule degen-
erates into the ordinaryPawlak’s equivalence granules and
the VPN rough sets degenerates into the Pawlak’s rough
sets. Therefore, the VPN dependence naturally becomes
the classical Pawlak’s dependence.

Proposition 3 shows that the VPN rough sets are associ-
ated with classical rough sets and NRSs. When we set the
neighborhood radius δ to 0 and the threshold α to 1, the VPN
equivalence relation degenerates into the ordinary Pawlak’s
equivalence relation, that is, the variable precision neigh-
borhood rough set model becomes the classical rough set
model. Therefore, the VPN attribute dependence becomes
the Pawlak’s attribute dependence. When the threshold α is
set to 1 and the neighborhood radius δ is retained, it degener-
ates into the NRSs model. So the VPN attribute dependence
becomes the neighborhood attribute dependence.

Proposition 4 In NDS = (U ,C ∪ D, V , f , d, δ), α is the
variable precision threshold, if A1 ⊆ A2 ⊆ C , then we have
γA1(D)αδ ≤ γA2(D)αδ .

Proof 4 According to Proposition 2, we can obtain that
POSA1(D)αδ ⊆ POSA2(D)αδ , so we have that γA1(D)αδ ≤
γA2(D)αδ .

Proposition 4 illustrates the monotonicity of variable pre-
cision neighborhood dependence. From Proposition 2, we
canobtain that ifwe continue to add attributes to the condition
attribute subset, then the positive domain will become larger.
When U remains the same, the VPN dependence increases
with the increase of the positive domain, showing a mono-
tonically increasing trend.

3.2 Variable precision neighborhood Gini index and
variable precision neighborhood information
gain

In the classical CART algorithm, the gini index is used for
measuring the nodes of the decision tree, and the attribute
with the smallest Gini index is selected as the splitting
attribute. In this subsection, the Gini index is extended to
the variable precision neighborhood Gini index.

Definition 13 In NDS = (U ,C ∪ D, V , f , d, δ) , α is the
variable precision threshold. Let {V X A

1 , V X A
2 , ..., V X A

n } be
the VPN equivalence partition induced by U/V EN R(δ,α)

A ,
for any A ⊆ C , the VPN Gini index is defined as follows.

VGini(U/V EN R(δ,α)
A ) =

n∑

i=1

|V X A
i |

|U |

(
1 − |V X A

i |
|U |

)

=
m∑

j

n∑

i

|V X A
i ∩ Dj |
|U |

(
1 − |V X A

i |
|U |

)
.

(22)

whereU/D = {D1, D2, ...Dm}, andV X A
k ∈ U/V EN R(δ,α)

A
represents a granule in the equivalence granule of variable
precision neighborhood. We can see that the above equa-
tion is the sum of information carried by each granule, so
the neighborhood Gini index of a single granule can be con-
structed as follows:

VGini(V X A
k ) = |V X A

k |
|U |

(
1 − |V X A

k |
|U |

)
. (23)

Therefore, the neighborhood Gini index of D with respect to
V X A

k ∈ U/V EN R(δ,α)
A is expressed as follows:

VGini(D, V X A
k )=

m∑

j=1

|V X A
k ∩ Dj |

|V X A
k |

(
1− |V X A

i ∩ Dj |
|U |

)
.

(24)

The Gini index of variable precision neighborhood of D with
respect to A ⊆ C is defined as follows:

VGini(D,U/V EN R(δ,α)
A )=

n∑

i=1

|V X A
i |

|U | VGini(D, V X A
i ).

(25)

where
|V X A

i |
|U | represents the weight coefficient of D on the

neighborhood Gini index of a single granule.

Proposition 5 Let U/V EN R(δ,α)
A be the VPN equivalence

granule, when δ = 0 and α = 1,

1. VGini(U/V EN R(δ,α)
A ) = Gini(A).

2. VGini(D,U/V EN R(δ,α)
A ) = Gini(D, A).

Proof 5 When δ = 0 and α = 1, the VPN equivalence rela-
tion will degenerate into a general equivalence relation, and
the VPN equivalence granule will degenerate into a general
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equivalence granule structure, therefore, the VPNGini index
will also become the general Gini index.

The VPN Gini index is a generalization of the Gini index,
and their properties are basically the same. When the neigh-
borhood radius δ and the variable precision threshold α are
set to 0 and 1, the VPNGini index degenerates into the famil-
iar Gini index.

Definition 14 In NDS = (U ,C ∪ D, V , f , d, δ) , α is the
variable precision threshold. Assume that the VPN equiva-
lencepartition isU/V EN R(δ,α)

A = {V X A
1 , V X A

2 , ..., V X A
n },

for any A ⊆ C , the VPN information entropy of A and the
VPN information entropy of D are defined as follows:

V Hα
δ (A) = −

n∑

i=1

|V X A
i |

|U | log2
|V X A

i |
|U |

= −
m∑

j

n∑

i

|V X A
i ∩ Dj |
|U | log2

|V X A
i |

|U | .

(26)

V Hα
δ (D)

U/V EN R(δ,α)
A

= −
m∑

j

n∑

i

|V X A
i ∩ Dj |
|U | log2

|Dj |
|U | .

(27)

Hence, we can obtain the VPN conditional entropy as fol-
lows:

V Hα
δ (D|A) = −

m∑

j

n∑

i

|V X A
i ∩ Dj |
|U | log2

|V X A
i ∩ Dj |

|V X A
i | .

(28)

Therefore, the VPN information gain is defined as follows:

VGAI Nα
δ (D, A) = V Hα

δ (D)
U/V EN R(δ,α)

A
− V Hα

δ (D|A).

(29)

Proposition 6 When δ = 0 and α = 1, we have that
U/V EN R(δ,α)

A = U/I N D(A) and V Hα
δ (A) = H(A),

then V Hα
δ (D|A) = H(D|A) and VGAI Nα

δ (D, A) =
gain(D, A).

Proof 6 When δ = 0 and α = 1, the VPN equivalence rela-
tion will degenerate into the classical equivalence relation
and the VPN information gain will also degenerate into the
classical information gain.

3.3 The hybrid measure for selecting splitting
attributes

As we all know, both information gain and gini index are
two common measures used to select splitting attributes of
decision trees. Information gain is derived from information
entropy, which focuses on the representation of information.
It is used to characterize the uncertainty in the data set and
has a better ability to characterize the chaotic data. Normally,
the attribute with the largest information gain will be selected
as the current splitting attribute. Moreover, we select the
attribute with the smallest gini index as the splitting attribute.
Gini indexmainly focuses on the algebraic representation and
has better classification ability for the pure data. We can see
that the above two measures are complementary, hence we
can combine the advantages of the two measures and con-
struct a hybrid measure for selecting splitting attributes.

In general, let C = {c1, c2, ...c|C|} be the set of condition
attributes, for any A ⊆ C , the attribute increment chain A1 =
{c1} ⊆ A2 = {c1, c2} ⊆ · · · ⊆ A|C| = {c1, c2, ..., c|C|} is
used to explore the rules of knowledge granularity, including
the granulation monotonicity of uncertainty measure [27].
The information gain is characterized by granular monoad-
ditivity, while the Gini index is characterized by granular
non-monoadditivity [24], which are expressed as follows:

A1 ⊆ A2 ⊆ C ⇒ gain(A1) ≤ gain(A2),

A1 ⊆ A2 ⊆ C � gini(A1) ≤ gini(A2),

A1 ⊆ A2 ⊆ C � gini(A1) ≥ gini(A2).

According to the above monotonicity analysis, we can see
that the extended variable precision neighborhood informa-
tion gain and the variable precision neighborhood Gini index
have the same granulationmonotonicity,which are expressed
as follows:

A1 ⊆ A2 ⊆ C ⇒ VGain(A1) ≤ VGain(A2),

A1 ⊆ A2 ⊆ C � VGini(A1) ≤ VGini(A2),

A1 ⊆ A2 ⊆ C � VGini(A1) ≥ VGini(A2).

Definition 15 By combining the variable precision neighbor-
hood information gain and the variable precision neighbor-
hood Gini index, we define a hybrid measure for selecting
splitting attributes, which is given as follow:

V S(D, A) = ϕ(A) ∗ VGain(D, A) + (1 − ϕ(A))

∗VGini(D, A). (30)

where ϕ(A) = γA(D)αδ . We elect an attribute with the largest
V S(D, A) as the splitting attribute.
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Proposition 7 The hybrid measure V S(D, A) has the prop-
erty of granulation non-monoadditivity, which is described
as follows:

A1 ⊆ A2 ⊆ C � V S(A1) ≥ V S(A2),

A1 ⊆ A2 ⊆ C � V S(A1) ≤ V S(A2).

Attribute dependence can be used to measure the uncer-
tainty of knowledge. From Definition 14, we can see
that when ϕ(A) increases, VGain(D, A) becomes larger
and VGini(D, A) becomes smaller, hence V S(D, A) will
be larger. When ϕ(A) decreases, VGain(D, A) becomes
smaller and VGini(D, A) becomes larger, hence V S(D, A)

will be larger. According to the definition and the granulation
monotonicity of the above two measures, from Proposition
6, we can obtain that the hybrid measure has the property
of granulation non-monotonicity. Attribute dependence is
used to weight the two measures, which can regulate the two
measures and make them complement each other. The infor-
mation gain tends to select attributes with more values, so
calculating the dependence degree of the attribute and multi-
plying it can avoid the above problem to a certain extent. At
the same time, the Gini index with more emphasis on alge-
braic representation is more reliable for data classification.

There are three states of attribute dependence: partial
dependence, complete dependence and complete indepen-
dence. When the attribute dependence equals 0, the hybrid
measure depends on the Gini index, that is, V S(D, A) =
VGini(D, A). When the attribute dependence equals 1, the
hybrid measure depends on the information gain and the
attribute with the largest information gain is selected as
the splitting attribute. This also solves the problem that the
attribute dependence equals 0 when using a single measure,
which will not occur when using the hybrid measure (Tab 5).

3.4 Algorithm design

The algorithm structure of DIGGI is similar to those of ID3
and CART, but there are still some differences between them.
The differences are as follows: 1) DIGGI adopts a hybrid
measure which combines information gain and Gini index
in the way of attribute dependence weighting, while ID3
and CART adopt a single measure. The equivalence class is
induced by the variable precision neighborhood equivalence
relation. At the same time, the thickness of node branches
can be adjusted by setting the variable precision threshold
α. When α = 1, it changes into the original strict neigh-
borhood equivalence granule. To some extent, the hybrid
measure overcomes the shortcomings of single measures. 2)
ID3 needs to use the step of discretization to preprocess the
continuous data, which may generate to the loss of informa-
tion, and DIGGI could handle the continuous data directly.

The time complexity of the algorithm mainly comes from
the calculation of uncertainty measure V S(D, a) in step 1.
The generation of neighborhood granules involves the gran-
ulation operation of all samples in the domain, and its time
complexity is O(M ∗ N 2) . M represents the number of fea-
tures, and N represents the number of samples in the domain.
The time complexity of calculating the variable precision
neighborhood information entropy and the variable preci-
sion neighborhood Gini index are O(N ∗ logN ), and the
granulation operation has been completed before the calcu-
lation of these two metrics. The calculation of each attribute
dependency is relatively simple, and the time complexity is
O(M). Then it is an equivalent partition of the decision
tree, which needs to find the equivalence class involving
all samples under each attribute, and its time complexity is
O(M ∗ N 2).Therefore, the time complexity of the DIGGI
algorithm is O(2 ∗ M ∗ N 2 ∗ logN ).

As for the ID3 algorithm, the time complexity of calcu-
lating information entropy is O(N ∗ logN ), because each

Table 5 The DIGGI algorithm

Algorithm: Decision tree algorithm DIGGI

Input:A neighborhood decision system NDS = (U ,C ∪ D, V , f , d, δ) and variable precision threshold α.

Output:A DIGGI decision tree

1: Traverse all the single attributes in A (where A ⊆ C), and calculate V S(D, a);

2: Determine the set arg max
a∈A⊆C

V S(D, a). Randomly select an optimal attribute b from arg max
a∈A⊆C

V S(D, a), and b is used as the splitting

attribute;

3: According to the splitting attribute b in Step (2), calculate the variable precision neighborhood equivalence partition U/V EN R(δ,α)
A =

{V X A
1 , V X A

2 , ..., V X A
n }, where each equivalence granule (i.e., V X A

i , 1 ≤ i ≤ n) represents a branch of node splitting;

4: For each sample, determine the equivalence granule to which it belongs. Then divide the current neighborhood decision system into N
sub-decision systems NDS1, NDS2, ..., NDSn ;

5: Recursively execute Steps (1)-(4) for each of the N sub-decision systems until all conditional granules belong to the same decision class, or
all condition attributes are detected;

6: Return a DIGGI decision tree.
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Table 6 The description of 14 datasets

No. Dataset Number of
samples

Number of
condition
attributes

Number of
classes

1 Crayo 90 6 2

2 Wpbc 194 33 2

3 Plrx 182 18 1

4 Wine 178 13 3

5 Iris 150 4 3

6 Seg 210 19 7

7 Glass 214 10 6

8 Heart 270 13 2

9 Ecoil 336 7 7

10 ILPD 583 10 2

11 END2012 768 9 5

12 MF 1152 4 2

13 Segment 2310 19 7

14 SCADI 70 205 7

attribute value needs to be sorted. For the selection of the
best partition attribute, the information gain corresponding
to each attribute needs to be calculated, and the time com-
plexity is O(M ∗ N ∗ logN ). For each non-leaf node, it
is necessary to recursively select the best partition attribute
and establish the number of words, and the time complex-
ity is O(M ∗ N ∗ logN ). So the time complexity of the
ID3 algorithm is O(M ∗ N ∗ logN ). The C4.5 algorithm
is improved compared with the ID3 algorithm, and the con-
tinuous attributes are optimized. The time complexity is
O(M ∗ N ∗ logN ), so the time complexity of the C4.5 algo-
rithm is O(M ∗ N ∗ logN ). The pruning of CART algorithm

is improved comparedwith ID3 algorithm, and the time com-
plexity is O(M ∗N ∗logN ), so the time complexity of CART
algorithm is O(M ∗N ∗ logN ). Both the NDT algorithm and
the VPNDT algorithm involve the granulation operation of
all samples in the universe of domain. The time complexity
of the operation is O(M ∗ N 2), and the equivalent parti-
tioning operation time is consistent with this article, that is
O(M ∗ N 2). NDT algorithm uses variable precision Gini
index as the splitting node, and the time required to calcu-
late the metric is O(N ∗ logN ). The time complexity of
NDT algorithm is O(M ∗ N 2). The VPNDT algorithm uses
the attribute dependency as the splitting node, and the time
required to calculate the metric is O(M). Therefore, the time
complexity of the VPNDT algorithm is O(M ∗ N 2).

4 Experimental analysis

This section describes the comparative results of DIGGI and
the existing algorithms. We used 14 public UCI datasets ( as
shown in Table 6) to verify the effectiveness of DIGGI and
most attributes in these datasets are continuous attributes,
and MF is the abbreviation of messidor featureis dataset .
DIGGI was compared with three traditional algorithms, the
NDT algorithm andVPNDT algorithm in the latest literature.
Considering that the traditional algorithms cannot deal with
continuous data, we discretize the data by equi-distance dis-
cretizationmethod. In order to evaluate thequality of decision
tree, we usually consider the accuracy of the algorithm and
the number of leaves. In this experiment, these two indexes
are also selected as the evaluation criteria of DIGGI and the
ten-fold cross-validation method is used to verify the data
set. The experimental results are shown in Tables 7, 8 and 9.

Table 7 The accuracies of
various algorithms

No. Data ID3 CART C4.5 VPNDT NDT DIGGI

1 Crayo 0.5556 0.6667 0.5556 0.8889 0.7778 1

2 Iris 0.5333 0.8667 0.6 0.8000 0.7733 1

3 Wine 0.8889 0.8333 0.8889 0.7500 0.5056 0.9444

4 Plrx 0.7368 0.7895 0.7368 0.7838 0.5165 0.9474

5 Wpbc 0.7 0.75 0.85 0.8718 0.4639 0.95

6 Seg 0.5714 0.619 0.6667 0.7381 0.4571 0.9524

7 Glass 0.6364 0.7273 0.7727 0.8410 0.514 0.9545

8 Heart 0.8148 0.7778 0.8519 0.8372 0.5926 0.963

9 Ecoil 0.7647 0.7941 0.8235 0.8382 0.6012 0.9706

10 ILPD 0.8136 0.7797 0.7458 0.8547 0.6849 0.9492

11 END2012 0.3766 0.4416 0.4286 0.7792 0.5599 0.961

12 MF 0.7241 0.6746 0.7446 0.7446 0.6823 0.7931

13 Segment 0.9394 0.9113 0.9091 0.8776 0.5463 0.9481

14 SCADI 0.7143 0.5714 0.8571 0.8095 0.4571 0.8571

15 Arithmetic mean 0.6979 0.7288 0.7451 0.8153 0.5809 0.9422
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Table 8 The number of the
leaves

No. Data ID3 CART C4.5 VPNDT NDT DIGGI

1 Crayo 32 50 32 65 69 39

2 Iris 16 49 16 112 86 66

3 Wine 52 287 67 130 207 147

4 Plrx 179 305 197 142 355 158

5 Wpbc 247 386 205 159 387 168

6 Seg 186 158 182 191 382 197

7 Glass 152 160 158 188 229 213

8 Heart 186 404 191 186 250 239

9 Ecoil 152 221 161 302 536 280

10 ILPD 529 432 344 492 583 497

11 END2012 1060 834 1187 841 732 991

12 MF 525 763 498 508 841 463

13 Segment 1603 2161 1100 2081 58050 1984

14 SCADI 23 967 27 199 1020 233

15 Arithmetic mean 353 512.62 311.79 399.71 4551.93 405.36

The experimental environment is Intel(R) Core(TM) I7-8700
CPU @ 3.20ghz 3.19ghz, RAM 16.0GB.

The selection of neighborhood radius is closely related to
the size of neighborhood granules, and its selection affects
the whole neighborhood model. This paper mainly uses
the adaptive radius constructed by standard deviation [23],
which is expressed as δC1 = std(C1)

w
, where std(C1) =√

1
N

∑N
i=1 (xi − x) represents standard deviation of the sam-

ple in the attribute C1 and w represents adjustive parameter.
In this paper, we set w = 2. In this experiment, we select
90% of the data in the data set as the training set, 10% of the
data as the test set, and the number of intervals used for equal
distance divergence is 6. The neighborhood radius used by

the NDT algorithm and the VPNDT algorithm is consistent
with this paper. Their variable precision thresholds are set to
0.8, and the variable precision threshold α in this paper is set
to 0.7.

We can see from the experimental results in Table 7
that DIGGI is effective and its accuracy has been greatly
improved. Figure 1 specifically show the accuracy compar-
ison of the five algorithms on different datasets. DIGGI not
only can be directly applied to the classification and pre-
diction of continuous data, but also has higher classification
accuracy than the existing algorithms. From the statistical
perspective of arithmetic average, the accuracy of DIGGI
is 0.35 higher than ID3. Compared with all algorithms, it

Table 9 The running time of
various algorithms

No. Data ID3 CART C4.5 VPNDT NDT DIGGI

1 Crayo 0.0112 0.0314 0.0194 3.4637 2.04642 8.889

2 Iris 0.0056 0.0062 0.01033 5.8446 2.3669 19.6659

3 Wine 0.0421 0.4383 0.10176 29.624 11.055 94.1479

4 Plrx 0.1146 0.3518 0.224 20.5421 11.8675 71.8047

5 Wpbc 0.3867 3.073 0.66307 57.2925 39.1085 214.0631

6 Seg 0.2136 0.6133 0.4384 142.896 92.6474 418.226

7 Glass 0.0874 0.284 0.1871 60.5966 20.384 172.4266

8 Heart 0.1117 0.4796 0.233 60.8479 50.14802 219.8214

9 Ecoil 0.0713 0.2271 0.131 309.04575 53.208 448.0677

10 ILPD 0.2233 0.41587 0.2074 189.7859 144.7494 1136.7457

11 END2012 0.6517 1.7933 1.3982 1297.2029 223.3739 2847.0397

12 MF 0.1945 1.5047 0.3475 1941.161 922.1475 7807.3785

13 Segment 1.9742 8.3889 5.5608 28559.2745 18623.8633 85056.6382

14 SCADI 0.4239 50.2981 1.13037 893.7827 1474.9017 2297.0355

15 Arithmetic mean 0.3223 4.8504 0.7609 2397.9543 1457.9905 7200.8536
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Fig. 1 The accuracy
comparison of four algorithms
with DIGGI

is improved by more than 10%. Among the 13 datasets,
the results on Crayo, Seg, Glass and END2012 show the
most obvious improvement, and the results on other datasets
also show relatively large improvement, which indicate that
DIGGI is effective.

We then observe the specific number of leaves of these
algorithms on these 14 data sets fromTable 8. Figure 2 shows
them in a more intuitive form and shows the comparison
of the number of leaves of the five algorithms on different
datasets. We can see that DIGGI has fewer leaves than the
existing algorithms on somedatasets and has a higher number
of leaves on the remaining datasets, but the number of leaves
is still within the receivable range.In the high-dimensional

data set SCADI, it can be clearly found that our proposed
algorithm is still effective, while the CART algorithm and
NDT algorithm obviously show the inapplicability in high-
dimensional data.

Table 9 shows the time spent by each algorithm on 14
datasets. We can find that the running time of the three
classical decision tree algorithms is very short, and the run-
ning time of the other three algorithms increases with the
increase of the number of samples or attributes in the data set.
Therefore, we can see that in the large data set, running the
algorithm requires a computer with super computing power
to run, so it is not suitable for using the algorithm in the large
data set.

Fig. 2 Comparison of leaf
numbers of four algorithms with
DIGGI

123

23652 C. Liu et al.



5 Conclusions

The strictness of neighborhood equivalence partition is diffi-
cult to achieve in real-world data. To overcome this problem,
we propose the notion of neighborhood approximate equiv-
alence, and thus propose a variable precision neighborhood
equivalence relation and a new model of VPN rough sets.
The VPN Gini index and the VPN information gain are con-
structed by the VPN equivalence relation. In the construction
of decision tree, this paper proposes a new metric function
for the measurement of splitting nodes. The experimental
results show that DIGGI is effective, and its accuracy is also
improved obviously. At the same time, DIGGI no longer
needs to discretize the continuous data, so as to avoid the
information loss.

As a summary of this work, we discuss the advantages and
disadvantages of this work.

Now we first describe some of the contributions and
advantages of the work done in this paper. (1)We propose a
variable precision domain rough set based on similarity rela-
tion, and explore some related properties of the rough set,
which enriches the rough set theory. (2)Based on the similar-
ity relation, we extend the variable precision neighborhood
information entropy and the variable precision neighborhood
Gini index to omit the operation of data discretization and
reduce the information loss caused by data discretization,
which has certain reference significance for the improvement
of decision tree. (3)The hybrid metric we constructed avoids
the situation where the metric is 0 in a single metric to a
certain extent, so the exploration of hybrid metrics is neces-
sary, which also provides a new idea for the exploration and
improvement of uncertain metrics. (4)From our experimen-
tal data, our improved algorithm is effective, which improves
the classification accuracy of the decision tree within the
acceptable range of leaf number, and is also effective in high-
dimensional data (from the experimental results of the data
set SCADI). Therefore, from the above summary, we can
know that the work has certain significance and provides
some new ideas for the improvement of decision tree.

Of course, at the same time, there are also some shortcom-
ings in this work:(1)The improved decision tree algorithm in
this paper is based on the neighborhood system. The gen-
eration of neighborhood granules involves the operation of
neighborhood granulation. However, when the number of
samples is large, the algorithm takes a long time and the
time complexity is high, which cannot improve our work
efficiency. (2)When our device configuration is low, it takes
a lot of time to wait for a classification result, and we need
to configure higher devices to run the algorithm. We also
need to think about how to reduce the time complexity while

maintaining good classification results, which will be a focus
of future work.
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