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Abstract
Charging infrastructure planning (CIPL) is key to popularizing electric vehicles and reducing carbon emissions. CIPL consists 
of two subproblems: charging station siting and charging pile allocation. The existing methods independently solve the two 
subproblems and ignore their interaction, which restricts the rationality of CIPL. To address this issue, this paper proposes a dual 
ant colony optimization for CIPL (DACO-CIPL). In each iteration, under the guidance of heuristic information and pheromones, 
the upper and lower ant colonies construct solutions for charging station siting and charging pile allocation in turn, respectively. 
Then, a global pheromone update strategy is performed to update the pheromones of each ant colony according to the historical 
best solutions, which realizes information transmission from the lower ant colony to the upper ant colony. In addition, whenever 
the upper ant colony finishes constructing solutions, a pheromone enhancement strategy is used to strengthen the pheromones 
of the lower ant colony according to the solutions of the upper ant colony, which realizes information transmission from the 
upper ant colony to the lower ant colony. DACO-CIPL is compared with several algorithms on multiple test instances. The 
experimental results show that DACO-CIPL has superior performance and more reasonable options for CIPL.

Keywords  Charging infrastructure planning · Charging station siting · Charging pile allocation · Heuristic algorithms · Ant 
colony optimization

1  Introduction

With the excess emissions of carbon dioxide, the aggravation 
of environmental and climate problems has attracted increas-
ing attention. Many countries have established plans to achieve 
carbon neutrality, but global carbon emissions are still grow-
ing [1]. Since the transportation industry is one of the largest 
carbon emitters, replacing fuel vehicles with electric vehicles 
(EVs) is a universally recognized way to reduce carbon emis-
sions and protect the environment [2]. Thus, charging infra-
structure construction becomes the foundation for EV develop-
ment. However, there are still many problems in the charging 
infrastructure planning (CIPL), such as unreasonable charging 
station siting [3] and charging pile allocation [4], high eco-
nomic cost [5] and unsatisfied charging demand [6, 7]. There-
fore, it is very important to utilize CIPL for developing EVs 
and further improving the environment and climate.

In general, CIPL consists of two subproblems: the charg-
ing station siting problem and the charging pile allocation 
problem. The first subproblem aims to select charging station 
sites that maximize the coverage of charging demand, while 
the second subproblem aims to determine the charging pile 
number of each charging station that minimizes the charging 
station construction and operation costs. The charging demand 
determines the number of EVs waiting for charging at the sta-
tions, thereby indirectly impacting the operating cost. As such, 
the two subproblems are correlated, and some studies have 
started to solve them. However, the existing methods often 
solve these two subproblems independently, neglecting their 
correlation and only focusing on maximizing the coverage of 
charging demand by siting and then allocating charging piles.

Metaheuristic algorithms are optimization algorithms 
inspired by natural laws, and can be classified into four cat-
egories [8]: evolution-based, swarm-based, physics-based 
and human-based methods. Among them, swarm-based algo-
rithms can split complex optimization problems into multiple 
parts and assign them to different populations for independent 
optimization, considering multiple factors and obtaining bet-
ter solutions [9]. This mechanism of swarm-based algorithms 
is well suited for solving the two CIPL subproblems. Ant 
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colony optimization (ACO) [10] is also a swarm-inspired 
algorithm, and is promising for addressing CIPL due to the 
following two additional reasons: I) ACO has been success-
fully applied to solve planning problems related to the charg-
ing station sites [11], and 2) ACO guides ants in a colony to 
search for solutions using the positive feedback mechanism of 
pheromones. If this mechanism is used to transmit informa-
tion between two ant colonies, it may achieve stronger popu-
lation cooperation than other algorithms, comprehensively 
considering both CIPL subproblems.

Based on the above analysis, this paper proposes a dual 
ant colony optimization for CIPL (DACO-CIPL). The pro-
posed algorithm first uses two ant colonies to separately 
solve the two CIPL subproblems, and then interacts with 
the two subproblems by two pheromone feedback mecha-
nisms. More specifically, two ant colonies construct solu-
tions by walking on their search graphs under the guidance 
of heuristic information and pheromones. In each iteration, 
the upper ant colony constructs solutions to the charging sta-
tion siting problem. According to all the solutions obtained 
by the upper ant colony, the lower ant colony constructs cor-
responding solutions of the charging pile allocation. At the 
end of each iteration, a global pheromone update strategy 
is performed to update the pheromone of each ant colony 
according to the historical best solutions, which realizes 
information transmission from the lower ant colony to the 
upper ant colony. In addition, whenever the upper ant colony 
finishes the process of constructing solutions, a pheromone 
enhancement strategy is used to strengthen the pheromone of 
the lower ant colony according to the solutions obtained by 
the upper ant colony, which realizes information transmis-
sion from the upper ant colony to the lower ant colony. The 
main contributions of this paper are summarized as follows:

1.	 This paper proposes a novel dual ant colony optimization 
for CIPL, which addresses the issue of the existing methods 
(i.e., not considering the correlation between two subprob-
lems: charging station siting and charging pile allocation).

2.	 2. This paper proposes new pheromone adjustment strat-
egies that achieve bidirectional information transmission 
between two ant colonies and better address the correla-
tion between the two CIPL subproblems.

3.	 This paper compares DACO-CIPL with several competi-
tive algorithms on multiple test instances. The experimen-
tal results show that DACO-CIPL has superior perfor-
mance and is promising for providing more reason able 
CIPL options.

The rest of this paper is arranged as follows. Section 2 
discusses the related work. Section 3 introduces two math-
ematical subproblem models. The proposed algorithm is 
described in detail in Section 4. Section 5 is dedicated to 

the experimental study of the proposed algorithm. Finally, 
Section 6 concludes this paper.

2 � Related work

According to the literature, research on CIPL can be traced 
back to 2010. Pan et al. [12] created a charging station sit-
ing model by minimizing the charging load and used integer 
linear programming (ILP) to solve it, which first began re 
search on CIPL. Since then, there have been many studies on 
CIPL. However, most of the existing studies only focus on 
the charging station siting problem, while some recent stud-
ies have begun to simultaneously on the two subproblems. 
According to the realization mechanism, all the methods 
for the charging station siting problem can be di vided into 
two categories: ILP [13] and metaheuristic algorithms [14].

The ILP method models the charging station siting problem as 
an integer linear optimization problem and uses tradi tional deter-
ministic optimization methods to select charging station sites. For 
example, He et al. [15] modeled the electric bus charging station 
siting problem as a mixed-integer ILP model with the objective 
of minimizing the construction cost of charging stations and the 
charging cost for buses. They used the CPLX solver to solve 
the model. Ahmed et al. [16] developed a stochastic ILP model 
considering the multiperiod decision horizon of charging stations 
and the uncertainty in charging demand. They used an exact solu-
tion method based on Benders decomposition to solve the model. 
Orner et al. [17] developed a mixed-integer ILP model with the 
objective of minimizing charging costs and designed two model 
variants to address the charging station location problem with or 
without charging station number constraints. They also proposed 
a Benders decomposition algorithm to solve the model. In sum-
mary, the ILP method can quickly solve the charging station sit-
ing problem, but it is only suitable for small-scale problems with 
fewer candidate charging station sites. Moreover, this category of 
method requires that the optimization objectives and constraint 
functions of the optimization model be linear.

With the development of charging infrastructure and 
EVs, there are more factors to be considered for the charg-
ing station siting problem. That is, the optimization model 
may involve more candidate charging station sites, which 
makes the scale become larger and no longer satisfy the lin-
ear requirement. Faced with such a situation, some research-
ers began to employ a metaheuristic algorithm to solve the 
charging station siting problem. For example, Hou et al. [18] 
considered the relationship between EV users and the power 
grid and established a problem model with the objective of 
minimizing social costs. They proposed an improved particle 
swarm optimization algorithm (PSO) to solve the model. Ma 
et al. [19] proposed a model to minimize the distance trave-
led by EVs to reach charging stations, taking into account 
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parking queues, and utilized an immune algorithm to solve 
the problem. Zhou et al. [20] built a large-scale charging 
station siting model by minimizing the economic cost and 
adopted a genetic algorithm (GA) to solve it. Although the 
above methods can well address the charging station siting 
problem with various factors, they do not address how to 
allocate charging piles for each charging station.

Until recently, some researches began to simultaneously 
solve the charging station siting problem and the charging 
pile allocation problem. For example, Zhang et al. [21] first 
proposed a fast greedy algorithm to address the charging sta-
tion siting problem by maximizing the charging demand, and 
then used M/M/N/N queuing theory to deal with the charging 
pile allocation problem by minimizing the queuing probabil-
ity of EVs. Li et al. [22] proposed a PSO algorithm to deal 
with the two subproblems at the same time, where the objec-
tives of the two subproblems are to minimize the operation 
cost and the time cost, respectively. Dai et al. [23] proposed 
an ascent heuristic algorithm (AHA) to deal with the two 
subproblems. AHA first determined the charging station sites 
to maximize the profit, and then allocated the charging piles 
for each charging station to minimize the demand loss rate. In 
summary, although these methods provide the solving meth-
ods for the two subproblems of CIPL, they deal with the two 
subproblems independently and ignore the interconnections 
and influences of the two subproblems, which may lead to 
unreasonable results. The reason is that there may be conflict 
between two optimization objects for the two subproblems. 
If the two subproblems can be comprehensively considered 
in a framework, the solution of CIPL may be more rational.

3 � The proposed mathematical models 
of the two CIPL subproblems

3.1 � Basic conceptions and notations

Charging stations are responsible for providing charging 
services for EVs in a given region. In a region, an EV track 
is numbered by an integer. All the EV track numbers form 
the set T = {1, 2, …, t, …, m}, where t represents any track 
number, and m represents the total number of tracks in the 
region. Any EV track t is a set that consists of an indefinite 
number of coordinates, i.e., Kt = {kt, k, …, kt}. In Kt, each 
entry is a coordinate denoted by the form of (x, y), where 
x is the dimension and y is the longitude; kt

1 is the starting 
coordinate of track t and kt

e is the ending coordinate of track 
t. All the candidate charging station site numbers form the set 
{1, 2, …, i, …, n}, where i represents any candidate charg-
ing station site number, and n represents the total number of 
candidate charging station sites. The coordinates of all the 
candidate charging station sites form the set {c1, c2, …, ci, 
…, cn}, where any entry ci represents the coordinate of the 

candidate charging station site i. Each candidate charging sta-
tion site may be selected to construct a charging station. All 
the charging station numbers form the set {1, 2, …, j, …, N}, 
where j represents any charging station number, and N repre-
sents the total number of charging stations to be constructed.

For convenience, we define two decision variable catego-
ries, xj and yj. When xj = i, candidate charging station site i is 
selected as the charging station construction site j. When yj = r, 
the number of charging piles allocated is r at charging station j. 
Any solution of the charging station siting problem is denoted 
by X = (x1, x2, …, xj, …, xN). Any solution of the charging pile 
allocation problem is denoted by Y = (y1, y2, …, yj, …, yN).

Figure 1 shows a simplified example of CIPL. In a given 
region, there are five candidate charging station sites, whose 
numbers form the set {1,2,3,4,5}. Among them, only three 
candidate charging stations, namely, candidate charging sta-
tion 1, candidate charging station 3 and candidate charging 
station 4, are selected to construct charging stations, i.e., 
the charging station siting problem solution is X = (x1, x2, 
x3) = (1, 3, 4). According to the number of charging piles 
allocated shown in Fig. 1, the corresponding solution of the 
charging pile allocation problem is Y = (y1, y2, y3) = (4, 3, 2).

3.2 � The mathematical model of the charging 
station siting problem

Since charging stations serve to satisfy the charging demand of 
EVs in a region that requires CIPL, the objective function of 
the charging station siting problem is naturally defined to maxi-
mize the total charging demand in this paper. The total charging 
demand is related to two factors: the number of tracks covered 
by all charging stations and the charging demand of each track.

A)	 Number of tracks covered by all charging stations: 
The number of tracks covered by all charging stations 
is related to the amount of charging demand in a region 
where CIPL is conducted. The more tracks covered, the 
larger the charging demand. The number of tracks cov-
ered by all charging stations is defined as:

where s(xj, t) is a function to indicate whether the track 
t is covered by the charging station j and is defined as:

where dx j t is the distance from charging station j to 
track t, i.e., the distance from charging station j to the 
straight line connecting the starting coordinate to the 
ending coordinate of track t. When s(xj, t) = 1, track t is 

(3.1)T(X) =

N∑
j=1

∑
t∈T

s
(
xj, t

)

(3.2)s
(
xj, t

)
=

{
1, dxjt < 1km

0, otherwise
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covered by charging station j, and the EV on track t may 
drive to charging station j if this EV needs to charge.

B)	 Charging demand of each track: An EV drives away from 
the starting coordinate, and electric power will continue 
to be consumed. When the electric power of the EV is 
too low, it will generate charging demand. The larger the 
distance between a charging station and the starting coor-
dinate of one track is, the larger the charging demand of 
the EV. The charging demand of track t is defined as:

where gxjt is the distance between charging station j and the 
starting coordinate of track t and m is the total number of 
tracks. Thus, the total charging demand of all charging sta-
tions in a region that requires CIPL, i.e., the objective func-
tion of the charging station siting problem, is defined as:

where X = (x1, x2…, xj…, xN) is the decision vector, i.e., 
one solution of the charging station siting problem; N is 
the total number of charging stations to be constructed.

3.3 � The mathematical model of the charging pile 
allocation problem

The solution to the charging pile allocation problem is to 
determine the number of charging piles for each station by 
considering some factors. Charging piles provide a charg-
ing service for EVs arriving at the charging station. For a 
charging pile to function normally, this requires costs that 
we label as economic costs. The lower the economic cost 

(3.3)D(t) =

{
gxjt, xj = min{x|x ∈ X ∶ s(x, t) = 1}

0, otherwise

(3.4)maxFd(X) =
∑
t∈T

s
(
xj, t

)
∙ D(t)

for satisfying the given total charging demand is, the better 
the charging pile allocation. Different studies usually use 
different economic costs. In this paper, the economic cost 
includes the operation cost and the charging cost.

A)	 Operation cost: The operation cost is determined by the 
construction cost and the maintenance cost. The con-
struction cost is determined by the number of charging 
piles. The maintenance cost is reflected by the queuing 
probability of the charging stations. Charging stations 
that are often full will be more expensive to maintain. 
According to [20] and [23], the total operation cost of 
all charging stations is defined as:

where rmax is the maximal number of charging piles for a 
charging station; c is the construction cost of a charging 
pile; and ω (yj, xj) is the queuing probability at charging 
station j. According to [24], ω(yj, xj) can be defined as:

where Λxj is the demand generation rate of the tracks 
covered by charging station j and follows the Poisson 
distribution �

(
�max
xj

)
 . Λxj

 is defined as:

where �max
xj

 is the maximum EV charging demand rate at 
charging station j and dxjt is the distance from charging 
station j to track t.

(3.5)Cost1(X, Y) =

N�
j=1

∑j

i=1
yi

j ∙ rmax
�
�
xj, yj

�
yj ∙ c

(3.6)�
(
yj, xj

)
=

PQ

(
Λxj

, yj

)

Λxj

(
1 − pj

) pj

(3.7)Λxj

∑
t∈T

�max
xj

1

1 + dxjt

Fig. 1   A simplified example of 
CIPL in a region
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	   The probability PQ

(
Λxj

, yj

)
 that all charging piles of 

charging station j are busy is defined as:

where the utilization rate pj of charging station j is 
defined as:

where σ is the number of EVs that a charging pile can 
charge at the same time.

B)	 Charging cost: The charging cost is determined by the dis-
tance from each charging station to each track. The farther 
this distance is, the higher the EV charging cost. The total 
charging cost of all charging stations can be defined as:

where N is the total number of charging stations; s(xj, t) 
is a function to indicate whether track t is covered by 
charging station j, as shown in Eq. (3.2); dxjt is the dis-
tance from charging station j to track t.

In summary, the economic cost of all charging piles in 
a region that requires charging infrastructure planning is 
defined as:

where X = (x1, x2…, xj…, xN) is the decision vector of the 
charging station siting problem and Y = (y1, y2…, yj…,yN) is 
the decision vector of the charging pile allocation problem.

The goal of charging pile allocation is to minimize the 
economic cost while satisfying the charging demand covered 
by the charging station sites. To maintain consistency with 
the maximization form of the objection function of the charg-
ing station siting problem, the CIPL model can be defined as:

(3.8)PQ

�
Λxj

, yj

�
=

�
yjpj

�yj
�
1 − pj

�
yj!

⎛⎜⎜⎝

yj−1�
k=1

�
yjpj

�k
k!

⎞⎟⎟⎠

−1

(3.9)pj = Λxj
∕�yj

(3.10)Cost2(X) =

m∑
t=1

N∑
j=1

dxjts
(
xj, t

)

(3.11)Fe(X, Y) = Cost1(X, Y) + Cost2(X)

(3.12)max F(X, Y) = Fd(X)∕Fe(X, Y)

(3.13)subject to
N∑
j=1

e
�
xj, i

�
= 1, fori = 1, 2, 3,⋯ , n

(3.14)
n∑
i=1

e
�
i, xj

�
≤ 1, forj = 1, 2, 3,⋯ , n

(3.15)
N∑
j=1

s
�
xj, t

�
≤ 1, fort = 1, 2, 3,⋯ ,m

where e(xj, i) is a Boolean function. When xj is equal to i, 
e(xj, i) = 1; otherwise, e(xj, i) = 0. Constraint (3.13) guarantees 
that each charging station must be constructed on a candidate 
charging station site. Constraint (3.14) guarantees that no 
more than one charging station be constructed at each can-
didate charging station site. Constraint (3.15) guarantees that 
each track can only be covered by one charging station. Con-
straint (3.16) guarantees that each charging station is allocated 
a certain number of charging piles. Constraint (3.17) and Con-
straint (3.18) guarantee the range of variables xj and yj.

From formula (3.11), the solution to the charging station 
siting problem also affects the economic cost. To satisfy the 
corresponding charging demand, different charging station 
siting options would lead to different charging pile alloca-
tion economic costs. Therefore, the charging station siting 
problem and the charging pile allocation problem should 
be considered comprehensively and systematically. This is 
specifically the reason why we defined the objective function 
in Eq. (3.12). This objective function merges the two factors, 
charging demand and economic cost, which can evaluate the 
solutions of two CIPL subproblems comprehensively.

4 � Proposed method

In this section, we first introduce the overall framework 
of DACO-CIPL. Then, we introduce the key strategies of 
DACOCIPL in detail.

4.1 � Overall framework

Figure 2 shows the overall framework of DACO-CIPL. First, 
a certain number of track starting coordinates and ending 
coordinates are randomly selected as candidate charging sta-
tion sites. Then, the heuristic and pheromone information 
associated with the search graph of each ant colony are ini-
tialized to begin the search process. In each iteration, the 
upper ant colony and the lower ant colony construct solu-
tions for the charging station siting problem and the charging 
pile allocation problem in turn by walking on their respective 
search graphs. For all the ants in the two ant colonies, their 
walking trajectories are determined by a state transition rule 
according to the heuristic and pheromone information. Every 
time they select a feasible vertex from the search graph, a 

(3.16)
rmax∑
r=1

e
�
r, yj

�
= 1, forj = 1, 2, 3,⋯ ,N

(3.17)1 ≤ xj ≤ n, forj = 1, 2, 3,⋯ ,N

(3.18)1 ≤ yj ≤ rmax, forj = 1, 2, 3,⋯ ,N
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local pheromone update strategy is executed to modify the 
pheromone values on the vertex. When the upper ant colony 
finishes the process of constructing solutions in each iteration, 
the pheromone enhancement strategy is executed based on its 
solution to reinforce the pheromones of the lower ant colony 
to accelerate the convergence. This pheromone enhancement 
strategy plays the role of information transmission from the 
upper ant colony to the lower colony. In addition, when all the 
ants of two colonies finish their walking in each iteration, a 
global pheromone update strategy is performed on the verti-
ces in the walking trajectories of the historical best solutions 
of the two ant colonies. Since the historical best solutions 
are determined by the optimization objective of the lower ant 
colony, this global pheromone update strategy plays the role 
of information transmission from the lower ant colony to the 
upper ant colony. The two ant colonies repeat the above pro-
cess of constructing solutions until the termination criterion 
is satisfied. At this time, the historical best solutions of the 
two ant colonies is outputted.

Algorithm 1 DACO-CIPL

Algorithm 1 provides the pseudocode of DACO-CIPL.
Lines 3–6 are the initialization of the algorithm, where 

two matrix initializations are described in Section 4.4. Lines 
10–11 and lines 18–19 represent the solution construction 
process of the upper and lower ant colonies, respectively, 
which are explained in Section 4.5. Lines 12–13 and lines 
20–21 perform local pheromone updates, while lines 26–27 
perform global pheromone updates, which will be discussed 
in Section 4.6. Lines 14–15 are the pheromone reinforce-
ment strategy, which is introduced in Section 4.7. Lines 
22–25 determine the current iteration’s best solution based 
on the composite objective function F and update the histori-
cal best solution.

4.2 � Encoding scheme of ants

In the upper ant colony, each ant is represented as a candi-
date solution of the charging station siting problem in the 
form of an N-permutation of the set {1, 2…, n}, where N is 
the number of candidate charging station sites and n is the 
number of charging stations to be constructed. In the lower 
ant colony, each ant is represented as a candidate solution of 
the charging pile allocation problem in the form of an N-per-
mutation with repetition of the set {1, 2, …, rmax}, where 
rmax is the maximal number of charging piles allocated for a 
charging station. According to the description in Section 2, 
each ant of the upper ant colony is denoted by X = (x1, x2, 
…, xj, …, xN). If xj = i, it indicates that candidate charging 
station site i is to construct charging station j. Each ant of the 
lower ant colony is denoted by Y = (yl, y2, …, yj, …,yN). If 
yj = r, the number of charging piles is r at charging station j.

4.3 � Search graphs of two ant colonies

In DACO-CIPL, the search space of each ant colony 
is a search graph. The search graphs of two ant colo-
nies are denoted by G1 = (V1, E1) and G2 = (V2, E2), 
respectively,where Vi(i = 1, 2) are two sets of vertices. Each 
vertex of V1 represents a possible assignment of a charging 
station being constructed on a certain candidate charging 
station site. Each vertex of V2 represents a possible num-
ber of charging piles being allocated for a certain candidate 
charging station site if it is selected to construct a charg-
ing station. Ei(i = 1, 2) are two sets of edges connecting the 
vertices in Vi. Figures 3 and 4 illustrate the search graphs of 
the two ant colonies. The G1 vertex is shown in Fig. 3, and 
there are n × N vertices, where any vertex vij represents the 
charging station j constructed on the candidate charging sta-
tion site i. In G2 shown in Fig. 4, there are rmax × n vertices, 
where any vertex wri represents the number of charging piles 
allocated in candidate charging station site i is r.
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4.4 � Initialization of heuristic information 
and pheromone

Corresponding to the definition of the search graphs G1 and 
G2, DACO-CIPL needs to initialize two heuristic informa-
tion matrices, H1, H2, and two pheromone matrices, P1 and 
P2. H1 and P1 are n × N matrices related to the upper ant col-
ony. P1(i, j) and H1(i, j) denote the pheromone and heuristic 
values on vertex vij of G1, respectively. H2 and P2 are rmax × n 
matrices related to the lower ant colony. P2(r, i) and H2(r, i) 
denote the pheromone and heuristic values on vertex vri of 
G2, respectively. The heuristic information matrix contains 
the prior knowledge related to the problem and can help the 
ant colony to effectively explore the search space. The two 
heuristic information matrices are not updated while the two 
ant colonies are searching. The pheromone matrix records 
the search experience of the ant colony and can guide the 
ant colony to explore the search space in the right direction. 
The two pheromone matrices are updated in each iteration 
since they play roles in the information transmission of the 
two ant colonies.

The initialization of H1 is based on the number of tracks 
covered by the candidate charging station sites. The heu-
ristic value H1(i, j) on any vertex vij is calculated as:

where m is the total number of tracks and s(i,t) is a function 
to indicate whether track t is covered by candidate charging 
station site i. H1 is designed to increase the probability of 
constructing charging stations that cover more tracks.

The initialization of H2 is based on the operation cost 
of the candidate charging station site when it is selected to 

(4.1)H1(i, j) =

m∑
t=1

s(i, t)

construct the charging station. The heuristic value H2(r,i) 
on any vertex Vri is calculated as:

where c is the construction cost of a charging pile; r is the num-
ber of charging piles; and ω(r,i) is the queuing probability of 
candidate charging station site i shown in Eq. (3.6). The heuris-
tic information estimates the inverse of the operation cost of a 
specific charging pile allocation for a candidate charging station 
site i. It is designed to increase the probability of selecting the 
charging pile allocation scheme that has a low operation cost.

The initialization of the pheromone matrices P1 and P2 
is based on the result of a greedy algorithm, which pro-
vides early search guidance to the ant colony. Suppose the 
solu- tions of the greedy algorithm for the charging station 
sit- ing problem and the charging pile allocation problem are 
denoted by Xgd and Ygd, respectively. All the entries of the 
matrix P1 are initialized to the same value τ1:

where Fd(Xgd) is the objective value of the charging station 
siting problem shown in Eq. (3.4); N is the number of charg-
ing stations to be constructed.

All the entries of the matrix P2 are initialized to the same 
value τ2:

where F (Xgd,Ygd) is the objective value of the charging pile 
allocation problem shown in Eq. (3.12). It is designed to 
en- courage the lower ant colony to allocate more charging 
piles for charging stations covering high charging demand.

(4.2)H2(r, i) =
1

�(r, i) ⋅ c ⋅ r

(4.3)�1 = Fd

(
Xgd

)
∕N

(4.4)�2 = F
(
Xgd, Ygd

)
∕N

Global pheromone
update

 P2 P2

 P1 P1

iter = iter +1
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siting subproblemInitialization of pheromone and
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Fig. 2   The overall framework of DACO-CIPL
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4.5 � Solution construction

DACO-CIPL employs two ant colonies to solve the charging 
station siting problem and the charging pile allocation prob-
lem of CIPL. Each ant colony contains u ants. The upper ant 
colony constructs the solution of the charging station siting 
problem by walking on the graph G1 based on the heuris-
tic matrix H1 and the pheromone matrix P1. The lower ant 
colony constructs the solution of the charging pile allocation 
problem by walking on the graph G2 based on the heuristic 
matrix H2 and the pheromone matrix P2.

Each ant in the two colonies constructs a solution from an 
empty path list. At each step, the path list of each ant is 
expanded by adding a feasible vertex that satisfies the con-
straints (3.13–3.18). In the upper ant colony, suppose that an 

ant is walking on the graph G1 and the last vertex it just 
visited is vxj−1 j − 1 . At this time, the trajectory of this ant can 
be denoted by the path list VX =

(
xx11, vx22,⋯ , vxj−1j−1

)
 . 

According to the constraints defined in Eq.  (3.5) and 
Eq.  (3.6), the next vertex can be selected from the set 
Vj =

{
vij|i ∈ {1, 2,⋯ , n}�

{
x1, x2,⋯ , xj−1

}}
 , which is the set 

of the re- maining available candidate charging station sites. 
The state transition rule to the next vertex is as follows:

where α is the weight for the pheromone trail, β is the 
weight for the heuristic information, q is a random 
number in the interval [0, 1], and q0 ∈ (0, 1) is an initial 

(4.5)v =

{
argmaxvi,j∈Vj

{
P1(i, j)

�
⋅ H1(i, j)

�
}
, q ≥ q0

Random
(
Vj

)
, otherwise

Fig. 3   The search graph G1 of 
the upper ant colony

ant 1

ant 2

ant 3

ant u
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ant
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Fig. 4   The search graph G2 of 
the lower ant colony
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parameter that determines the relative importance of 
exploitation versus exploration. If q ≥ q0, the ant will 
select the vertex with the maximum product value of the 
pheromone and the heuristic information, namely, exploi-
tation. Otherwise, the ant will randomly select the vertex 
according to a certain probability, namely, exploration. 
The probability of selecting any vertex vij is based on the 
roulette wheel rule:

As the lower ant colony needs to construct solutions 
based on the solution of the upper ant colony, after reaching 
vertex wyj−1

xj−1 , it selects the next vertices from set 
W =

{
wrxj

|r ∈ 1, 2,⋯ , rmax

}
 and moves according to for-

mula (4.5) based on matrices P2 and H2.
In this way, the ants tend to select the vertices with higher 

pheromone values in the search process. By repeating the tran-
sition rule, each ant will obtain a path list from one end of the 
search graph to the other. Each path list forms the so- lution of 
the corresponding ant. For example, in Fig. 3, the upper ant 3 
constructs the path list VX =

(
v11, v32, v23,⋯ , vnxN

)
 , i.e., the 

solution of the charging station siting problem is (1, 3, 2, …, 
n). Further, in Fig. 4, the lower ant 3 constructs the path list 
VY =

(
w21,w13,w32,⋯ ,w3n

)
 , i.e., the solution of the charging 

pile allocation problem is (2, 1, 3, …, 3). The two solutions 
together constitute an option for CIPL.

4.6 � Pheromone update

Pheromones act as a means of information communi-
cation between two ant colonies. In each iteration of the 
solution construction process, two pheromone matrices go 
through two kinds of updates: local pheromone and global 
pheromone.

1) Local pheromone update: After an ant visits a vertex, 
this ant performs a local pheromone update on the phero-
mone value related to this vertex just visited.

In the upper ant colony, suppose the vertex vij of G1 is 
just visited by an upper ant, and the pheromone value P1(i, j) 
related to vij is updated according to:

where ρ is the control of pheromone evaporation and τ1 is 
the pheromone value of the upper ant colony.

In the lower ant colony, suppose the vertex wri of G2 is 
just visited by a lower ant. The pheromone value P (r, i) 
related to wri is updated according to:

(4.6)pij =

�
P1(i,j)

�
⋅H1(i,j)

�

∑
vkj∈Vj

P1(k,j)
�
⋅H1(k,j)

� , vij ∈ Vj

0, otherwise

(4.7)P1(i, j) = (1 − �) ⋅ P1(i, j) + � ⋅ �1

where τ2 is the pheromone value of the lower ant colony.
The local pheromone update can diversify the ant colony 

search by evaporating pheromones related to the vertices 
previously selected. This strategy can help the ant colony 
find new solutions and avoid falling into local optimal solu- 
tions too quickly.

2) Global pheromone update: At the end of each itera- 
tion, the global pheromone update strategy will be per-
formed based on the historical best solutions. The global 
pheromone update rules of the two ant colonies are as 
follows:

where Yh
best and Xh

best are the historical best solutions 
obtained by considering the objective function of the 
lower ant colony. Therefore, this global pheromone 
update realizes information transmission from the lower 
ant colony to the upper ant colony. It is helpful to find a 
solution of the upper ant colony that is beneficial to two 
optimization objectives.

4.7 � Pheromone enhancement of the lower ant 
colony

The lower search graph G2 consists of n columns of ver-
tices, representing n candidate sites for charging stations. 
Due to constraints imposed by the upper decision variables, 
lower ants can only construct solutions on N columns, where 
N <  < n. Therefore, only a very small number of nodes in G2 
are selected and updated with each iteration of pheromones, 
leading to small differences in pheromone concentrations 
in matrix P2 and poorer solutions. To improve the solutions 
generated by the lower ant colony, a pheromone enhance-
ment strategy is proposed to transfer the solution informa-
tion of the upper ant colony to enhance the differences in 
pheromone concentrations in P2.

After the upper ant colony finishes its solution construction 
process, any upper ant k will transmit a solution Xk = (xk

1, xk
2, 

…, xk
j, …, xk

N) to the lower ant k. Each entry xk has a set of 
corresponding vertices 

{
w1xj

,w2xj
,⋯wrxj

,⋯ ,wrmaxxj

}
 in the 

search graph G2. The pheromone enhancement strategy will 
enhance the pheromone of each vertex in the set. Taking wrxj

 
as an example, the specific steps are as follows.

First, DACO-CIPL finds the similar vertices of wrxj
 

according to the similarity rule:

(4.8)P2(r, i) = (1 − �) ⋅ P2(r, i) + � ⋅ �2

(4.9)
P1(i, j) = (1 − �) ⋅ P1(i, j) + � ⋅ Fd

(
Xh
best

)
, vij ∈ VXh

best

(4.10)
P2(r, i) = (1 − �) ⋅ P2(i, j) + � ⋅ F

(
Xh
best

, Yh
best

)
, vri ∈ VYh

best
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where s(xj, t) is a function to indicate whether track t is cov-
ered by candidate charging station site x j and γ is the thresh-
old of vertex similarity. When the difference degree of the 
track number is within γ, wrxj

 and wri are judged to be 
similar.

Then, all the pheromone values of similar vertices of wrxj
 

are added up to the pheromone value P2(r, xj) based on the 
following formula:

The pheromone enhancement strategy can strengthen 
the pheromone values on some vertices of search space G2 
to increase the difference in pheromone concentration. It 
allows the lower ant colony to avoid inexperienced search 
and accelerate its convergence. This strategy is helpful for 
the lower ant colony to determine a better solution for charg-
ing pile allocation while satisfying the charging demand.

4.8 � Time complexity analysis

DACO-CIPL must initialize four matrices, namely, H1, H2, 
P1, and P2, and has a time complexity of O(N × n). Further-
more, DACO-CIPL has a total of itermax iterations. In each 
iteration, the upper ant colony searches in G1, and the lower 
ant colony searches in G2. Each search phase involves μ ants 
of each colony, and each ant is required to select N nodes. 
Consequently, the time complexity of the iteration phase is 
O(itermax × μ × N). In summary, the algorithm’s time com- 
plexity is O(itermax × μ × N). Here, N denotes the number 
of charging stations, μ represents the number of ants in each 
colony, and itermax indicates the iteration number.

5 � Experimental study

This section will describe experiments performed to inves- 
tigate the performance of the proposed DACO-CIPL algo-
rithm. We first introduce the experimental setup. Then, a 
parameter sensitivity analysis is introduced to give proper 
parameter settings for DACO-CIPL. Finally, the effective-
ness of DACO-CIPL is validated by comparing DACO-CIPL 
with several competitive algorithms on multiple test instances 
generated from a real taxi dataset. All algorithms are imple-
mented in Python and the PyCharm compiler. The experimen-
tal platform is a PC with an Intel Core i7-4770 CPU running at 
2.40 GHz and 24 GB of RAM, running on Windows 7.

(4.11)same
�
wrxj

,wri

�
=

⎧
⎪⎨⎪⎩

1,
����1 −

∑
t∈T s(i,t)∑

t∈T s(xj,t)

���� ≤ �

0, otherwise

(4.12)P2

(
r, xj

)
= P2

(
r, xj

)
+

n∑
i=1

same
(
wrxj

,wri

)
P2(r, i)

5.1 � Experimental setup

A)	 Original dataset: This paper employs the taxi track data-
set in Washington, DC, USA (link:https://​tianc​hi.​aliyun.​
com/​datas​et/​dataD​etail?​dataId=​94221). This dataset 
includes one hun- dred thousand complete taxicab tracks 
for calendar year 2017. Each track includes information 
about the starting and the ending coordinates.

B)	 Test datasets: Three different scales (SC) of test data-
sets are used: a small-scale dataset (SC1), medium-scale 
dataset (SC2), and large-scale dataset (SC3). Table 1 
provides de- tailed information on the three different 
scales of the test datasets, where m, N, n and rmax rep-
resent the number of tracks randomly selected from the 
original dataset, the number of candidate charging sta-
tion sites, the number of charging stations to be con-
structed and the maximal number of charging piles of 
each charging station, respectively. In the experiment, 
five test instances are generated for each scale of the 
dataset by randomly selecting m tracks. Thus, there are 
15 test instances used in the experiments. These test 
instances are denoted by SC1-i (i = 1, 2…, 5), SC2-i 
(i = 1, 2…, 5) and SC3-i (i = 1, 2…, 5).

C)	 Algorithm comparison: To validate the effectiveness of 
DACO-CIPL, this paper compares it with three other 
meth- ods: GA-CIPL [20], PSO-CIPL [25], and AHA 
algorithm [23]. The first two algorithms only separately 
use GA and PSO to solve the charging station siting 
problem. Because the charging pile allocation problem 
is also a combinatorial optimization problem similar to 
the charging station siting problem, they can be used to 
solve the charging pile allocation problem via param-
eter adjustment. Therefore, this pa- per duplicates their 
optimization process to determine the charging pile 
allocation. The AHA has a specific dual-layer solving 
process to address CIPL. It first determines the charg-
ing station sites to maximize charging demand and then 
adjusts some sites of the charging station and allocates 
charging piles to minimize economic costs.

5.2 � Parameter sensitivity analysis

In this section, we study the effects of different param-
eters on the performance of DACO-CIPL and select proper 
settings for them. The parameter settings of the two ant 

Table 1   Three scales of test 
datasets

Scale m n N rmax

SC1 2500 100 5 5
SC2 5000 200 10 10
SC3 10,000 400 20 20

https://tianchi.aliyun.com/dataset/dataDetail?dataId=94221
https://tianchi.aliyun.com/dataset/dataDetail?dataId=94221
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colonies are the same. These parameters include weights 
for the pheromone trail (α) and for the heuristic informa-
tion (β), the relative importance of the exploitation versus 
exploration (q0), the control of pheromone evaporation (ρ) 
and the threshold of vertex similarity (γ). Two test instances, 
SC1-2 and SC2-5, are used in this part of the experiment.

This paper employs the control variate technique in which 
the value of a single parameter is changed while the values 
of other parameters remain fixed. We first set the default 
values of α, β, q0, ρ and γ to 2, 3, 0.9, 0.3 and 0.7 and test 
the performance of DACO-CIPL under different candidate 
values of one parameter according to the objective value F 
of CIPL. This paper shows the results in box plots, where 
the top and the bottom of each box indicate the 75th and 
25th percentiles, respectively; the line in each box indicates 
the 50th percentile; the whisker bars below and above each 
box indicate the minimum value and the maximum value, 
respectively; and the circle indicates the outlier.

A)	 Weights for the pheromone trail (α): The parameter α deter-
mines the importance of pheromones. To study its effects, 
this paper tested different values {1, 2, 3…, 9} of α. Figure 5 

shows the box plots of α on SC1-2 and SC2-5. When α = 4, 
the median value of F is the best on two test in- stances. 
A larger or smaller value would impair the algorithm per-
formance. This is because when α < 4, the ant colony has 
difficulty learning the search experience. When α > 4, the 
ant colony heavily depends on the search experience, which 
would reduce the ability to explore new solutions.

B)	 Weights for heuristic information (β): The parameter β 
determines the importance of heuristic information. To 
study its effects, this paper tested different values {1, 2, 
3…, 9} of β. Figure 6 shows the box plots of β on SC1-2 
and SC2-5. When β = 2, the median value of F is the best 
on two test instances. A larger value would weaken the 
effect of pheromone and lead to a worse performance 
since the attention of the ant colony is largely guided 
by heuristic information. A smaller value will lead to 
unstable performance of the algorithm since the small 
weight of heuristic information may cause the ant colony 
to search blindly in the early iteration.

C)	 Relative importance of exploitation versus exploration 
(q0): The parameter q0 (0 < q0 < 1) controls the prob-
ability of exploration. If q ≤ q0, the ants randomly search 

Fig. 5   The performance of 
DACO-CIPL under different 
values of α: (a) Results on test 
instance SC1-2, and (b) Results 
on test instance SC2-5

Fig. 6   The performance of 
DACO-CIPL under different 
val- ues of β: (a) Results on test 
instance SC1-2, and (b) Results 
on test instance SC2-5
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for the next vertex based on the probability. If q ≥ q0, the 
ants search for the vertex that has the maximum prod-
uct of pheromone and heuristic information. To study 
its effect, we tested several different values {0.1, 0.2, 
…, 0.9} of q0. Figure 7 shows the box plots of q0 on 
SC1-2 and SC2-5. When q0 = 0.8, the median and maxi-
mum values of F are the best on the two test instances. 
A smaller value would make the ant colony gradually 
reduce its exploration ability and easily fall into the local 
optimal solution.

D)	 Control of pheromone evaporation (ρ): The parameter ρ 
represents the evaporation rate of pheromones. Figure 8 
shows the box plots of ρ on SC1-2 and SC2-5 under dif-
ferent values {0.1, 0.2, …, 0.9}. When ρ = 0.6, the median 
value of F is the best on two test instances. A larger value 
will slow the convergence of the ant colony due to the rapid 
evaporation of pheromones. A smaller value will cause the 
ant colony to rapidly converge to the local optimal solution 
due to excessive accumulation of pheromones.

E)	 Threshold of vertex similarity (γ): The parameter γ 
determines the similarity of vertices in the pheromone 

enhancement strategy. Figure 9 shows the box plots of 
γ on SC1-2 and SC2-5 under different values {0.0, 0.1, 
…, 0.9}. According to the experimental results, when 
0.5 ≤ γ ≤ 0.8, the performance of DACO-CIPL is better 
than that when γ < 0.5 on two test instances. Therefore, it 
can be concluded that a smaller value would reduce the 
effectiveness of the pheromone enhancement strategy. 
This is because the enhanced pheromone has no guiding 
significance when the vertex similarity is too low. When 
γ = 0.8, F has the largest median value. When γ = 0.9, the 
high similarity makes it difficult for DACO-CIPL to find 
similar vertices, resulting in worse performance.

After the above experimental tests, we find that the set of 
parameters α = 4, β = 2, ρ = 0.6, q0 = 0.9, γ = 0.8, DACO- 
CIPL performed best. In addition, we conducted parameter 
sensitivity analysis for PSO-CIPL, GA-CIPL and AHA to 
determine suitable parameter values. The details are omitted 
due to space limitations. For PSO-CIPL, the learning factor 
c1 is 2.8 and c2 is 1.3, and the particle swarm size is 50. For 

Fig. 7   The performance of 
DACO-CIPL under different 
val- ues of q0: (a) Results on 
test instance SC1-2, and (b) 
Results on test instance SC2-5

Fig. 8   The performance of 
DACO-CIPL under different 
values of ρ: (a) Results on test 
instance SC1-2, and (b) Results 
on test instance SC2-5
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GA-CIPL, the population size is 50, the crossover probability 
pc is 0.7, and the mutation probability pm is 0.2. For AHA, the 
number of siting iterations siter is 20. To ensure the fairness 
of comparison, the ant number of DACO-CIPL is also set to 
50, and the maximum iteration count of GA- CIPL and PSO-
CIPL is set to 20, which is the same as that of DACO-CIPL.

5.3 � Overall performance

To validate the performance of DACO-CIPL, this section 
compares DACO-CIPL with AHA, GA-CIPL, and PSO-
CIPL on all 15 test instances.

Table 2 provides the objective value of the two best sub- 
problem solutions over 60 runs. In this table, BestF is the 
objective value of charging pile allocation. As BestF merges 
the objective of the charging station siting problem, it can be 
used as a comprehensive metric. BestFd

 is the corresponding 

objective value of the best solution for the charging station sit-
ing problem. The best result in each test instance is shown in 
bold. From this table, the following two points can be obtained.

(1)	 From the best objective value of CIPL (BestF), 
DACO- CIPL achieved the optimal solution in 6 of 
10 test cases in small-scale (SC1) and medium-scale 
(SC2) test instances. In the large-scale test instance 
(SC3), DACO-CIPL outperformed all other algo-
rithms examined. These results indicate that the per-
formance of DACO-CIPL is better than that of the 
other algorithms examined. This may be because the 
pheromone enhancement strategy provides the lower 
ant colony with the search experience from previous 
iterations to obtain better solutions of charging pile 
allocation, while other algorithms only rely on the 
experience of a single iteration to solve the charging 

Fig. 9   The performance of 
DACO-CIPL under different 
val- ues of γ: (a) Results on test 
instance SC1-2, and (b) Results 
on test instance SC2-5

Table 2   Comparison of the best 
objective function values on all 
the test instances

Test instances DACO-CIPL AHA GA-CIPL PSO-CIPL

Best
F
d

BestF Best
F
d

BestF Best
F
d

BestF Best
F
d

BestF

SC1-1 94.74 22.95 93.53 18.53 94.42 21.81 79.41 13.37
SC1-2 84.22 16.55 79.29 13.4 73.7 17.83 95.32 8.54
SC1-3 93.2 16.16 111.27 15.22 90.65 21.01 83.04 9.03
SC1-4 94.42 12.53 85.65 12.34 98.96 12.57 76.75 8.8
SC1-5 99.43 33.83 101.57 30.58 102.82 32.39 97.56 13.55
SC2-1 400.28 3.71 287.55 2.53 292.71 3.47 368.92 2.66
SC2-2 330.17 3.14 280.94 2.92 237.44 1.9 257.77 5.41
SC2-3 393.19 7.18 358.31 2.65 271.5 1.97 294.1 1.67
SC2-4 257.83 8.72 265.83 9.78 242.57 6.73 240.74 5.16
SC2-5 250.99 9.34 236.2 6.92 210.29 6.19 210.39 6.84
SC3-1 585.09 3.74 535.85 2.27 429.47 2.55 462.73 1.93
SC3-2 657.23 6.29 503.9 2.12 511.71 2.63 423.23 1.97
SC3-3 632.33 4.43 451.75 1.95 428.45 1.87 445.24 2.54
SC3-4 602.27 4.24 492.76 2.57 437.72 2.26 519.89 3.06
SC3-5 624.12 3.88 559.01 3.17 365.59 2.47 450.57 1.77



26703Dual ant colony optimization for electric vehicle charging infrastructure planning﻿	

1 3

pile allocation subproblem. Therefore, DACO-CIPL 
can obtain a better comprehensive objective func-
tion F value.

(2)	 From the best objective value of charging station siting 
( BestFd

 ): If an algorithm still achieves the best perfor-
mance metric when it obtains the best objective value 
of the charging pile allocation, this algorithm has a bet-
ter ability to comprehensively consider the two sub-
problems of CIPL. As shown in Table 2, DACO-CIPL 
obtains the best results on 11 test instances according to 
the value of BestF. Among all 11 test instances, DACO-
CIPL obtains the best results on 10 test instances in 
terms of BestFd

 . AHA and GA-CIPL only simultane-
ously obtain the best results of the two subproblems 
on one test instance. PSO-CIPL fails to do this. Thus, 
DACO-CIPL has superior ability to systematically 
solve the two subproblems of CIPL.

A comparison of mean performance and time perfor-
mance is shown in Table 3, where”ME ANF” denotes the 
average value of F over 60 runs,”ST DF” denotes the stand-
ard deviation of F and”time” denotes the average CPU time. 
These metrics can reflect the stability and computational 
cost of each algorithm. The best result in each test instance 
is shown in bold. From the average value of F (ME ANF), 
DACO-CIPL performs best on 12 of 15 test instances, which 
proves that DACO-CIPL is more stable. Concerning the 
average CPU time, DACO-CIPL has less CPU time than the 
other algorithms examined on all test instances. The results 
indicate that DACO-CIPL is able to achieve better solutions 
in less time.

To clearly demonstrate the differences between algo-
rithms from a statistical perspective, the Friedman test was 
con- ducted based on the BestF values of 15 test instances. 
Figure 10 presents the overall ranking of the four algorithms 
according to BestF values and their corresponding p values 
from the Friedman test. The results of the Friedman test 
indicate that the p value is much smaller than 0.05, sug-
gesting a significant difference in the performance of the 
four algorithms. The x-axis represents the ranking of the 
algorithms, and the shorter the length of the bar chart is, 
the higher the performance ranking. From this perspective, 
DACO-CIPL ranks first, with a significant advantage, fol-
lowed by AHA, GA- CIPL, and IPSO-CIPL, in descending 
order. These results indicate that DACO-CIPL has strong 
comprehensive solving ability for the CIPL problem. Addi-
tionally, AHA performs slightly better than GA-CIPL, but its 

Table 3   Comparison of mean performance and time performance on all the test instances

Test instances DACO-CIPL AHA GA-CIPL PSO-CIPL

MEANF STDF time (s) MEANF STDF time (s) MEANF STDF time (s) MEANF STDF time (s)

SC1-1 13.73 3.36 3.87 13.74 3.03 9.49 15.9 6.63 5.24 9.43 2.18 4.34
SC1-2 13.77 1.71 4.03 13.03 8.9 9.91 12.11 3.39 5.15 7.02 1.32 5.77
SC1-3 10.69 2.13 4.11 16.5 8.04 17.71 15.85 3.71 5.18 6.04 1.68 5.68
SC1-4 10.49 0.77 3.88 9.39 3.26 12.46 10.42 2.44 4.15 7.18 0.88 5.22
SC1-5 19.44 2.31 3.7 21.84 15.07 11.42 18.01 7.09 8.57 8.94 1.8 4.39
SC2-1 2.63 0.43 11.84 1.86 0.55 187.22 1.53 0.77 17.62 1.91 0.39 4.39
SC2-2 2.65 0.25 11.85 1.86 0.64 199.36 1.76 0.75 17.34 1.96 1.22 33.8
SC2-3 6.69 0.33 11.92 1.33 0.66 231.18 1.44 0.25 17.91 1.27 0.19 31.97
SC2-4 6.28 1.16 9.96 6.21 2.86 117.77 4.87 0.82 15.35 3.95 0.86 20.34
SC2-5 6.64 1.14 10.03 5.57 1.27 169.35 4.66 1.12 15.77 4.1 1.26 15.54
SC3-1 3.11 0.35 25.75 1.65 0.44 1649.2 1.67 0.34 41.37 1.46 0.18 122.34
SC3-2 4.61 0.72 24.74 1.62 0.36 1685.41 1.94 0.42 39.69 1.64 0.19 112.06
SC3-3 3.76 0.36 25.82 1.4 0.34 1930.15 1.66 0.15 42.18 1.08 0.56 111.97
SC3-4 3.42 0.36 25.55 1.82 0.62 1827.785 1.78 0.28 40.93 1.44 0.59 124.65
SC3-5 3.1 0.29 26.45 1.91 0.77 1868.2 1.93 0.25 42.02 1.46 0.12 130.11

Fig. 10   The results of the Friedman test
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average CPU time is too high for large-scale test instances. 
Moreover, the stability of GA-CIPL is much higher than that 
of AHA. Therefore, GA-CIPL may have more potential in 
solving the CIPL problem than AHA.

5.4 � Comparison of convergence

To investigate the search efficiencies of different algorithms, 
we compared the convergence curves of ACO-CIPL, GA- 
CIPL, PSO-CIPL and DACO-CIPL-noE (DACO-CIPL with- 
out pheromone enhancement) on SC2-5, as shown in Fig. 11. 
First, compared to DACO-CIPL-noE, DACO-CIPL con- 
verges faster to a better global solution. This result proves 
that the pheromone enhancement strategy can effectively 
accelerate convergence and guide a search. Second, it can be 
easily found that DACO-CIPL has a better initial solution. 
This is due to the initial value of pheromones provided by 
the results of the greedy algorithm, which improves the qual-
ity of the initial solution. Finally, compared to GA-CIPL and 
PSO-CIPL, DACO-CIPL always has the fastest convergence 
speed. This should give credence to the information trans- 
mission mechanism between two ant colonies.

5.5 � Visualization of CIPL

To demonstrate the effectiveness of the proposed algorithms 
in practical applications, this paper presents visualizations 
of the optimal results of DACO-CIPL and GA-CIPL on test 
instances SC1-5 and SC2-5. GA-CIPL was selected as the 
comparison algorithm due to its superior optimization ability 
and stability compared to other algorithms. In Fig. 12, the 
charging station sites selected by DACO-CIPL are marked 
in green, those selected by GA-CIPL are marked in red, and 
those selected by both algorithms are marked in yellow. Bold 
font highlights iconic regions near charging stations such as 

universities, airports, train stations, parks, and neighborhoods 
on the map. The number of tracks within a 2-km radius of 
these regions was determined and is summarized in Table 4. 
To avoid duplicate counting of traffic volume between nearby 
regions, only the region with the highest track count is con-
sidered when there are over 70% of the same tracks between 
nearby regions. The top 60% of regions ranked by track count 
in the instances are defined as bustling regions and high-
lighted in bold in Table 4. The rationality of the result is 
analyzed based on the sites around these bustling regions.

In Fig. 12(a), it can be observed that GA-CIPL chose 3 bus-
tling regions to build charging stations, namely, Georgetown 
University, Washington Apartments, and the common selec-
tion of Northwest Dicait Street. DACO-CIPL chose to build 
charging stations at the National Zoological Park and Reagan 
National Airport, but the other charging stations were slightly 
off from Washington Apartments, resulting in a lower value 
of BestFd

 than GA-ClPL. As shown in Fig. 12(b), DACOClPL 
selected 4 bustling regions, namely, DuPont Circle, Washing-
ton Union Station, Reagan Washington National Airport, and 
Smithsonian National Zoological Park, while GAClPL only 
chose 3 bustling regions, namely, Holiday Inn Express, Wash-
ingtoon Union Station, and Georgetown University, resulting 
in a lower value of BestFd

 than DACOClPL.
The number of charging piles in the figures reveals that 

GA-ClPL tends to allocate charging piles evenly among the 
selected regions, whereas DACO-ClPL favors allocating 
more charging piles to regions with higher traffic flow. This 
is because DACO-ClPL's pheromone enhancement strategy 
can learn from the charging pile allocation experience of the 
previous iterations, resulting in a better allocation. On the 
other hand, GA-CIPL can only search for the best alloca-
tion in one iteration, lead into a more conservative average 
allocation. Additionally, DACO-ClPL allocated more charg-
ing piles to Reagan National Airport and Washington Union 

Fig. 11   Comparison of conver-
gence speed on SC2-5
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Station, which are usually the end points of vehicle tracks. 
Concentration charging piles at the end points of tracks can 
satisfy higher charging demands and save more economic 
costs than allocating them in more dispersed track starting 
points. In conclusion, the ClPL obtained by DACO-CIPL 
can effectively meet the charging demands ofEV users while 
ensuring in the economic benefits of the operator.

6 � Conclusion

lt is very important to utilize CIPL for developing EVs 
and further improving the environment. ClPL consists of 
two subproblems: charging station siting and charging pile 

allocation. The existing CIPL methods independently solve 
the two subproblems and ignore their interconnections 
and influences, which restricts the rationality of CIPL. To 
address this issue, this paper proposes an algorithm called 
DACOCIPL to comprehensively solve the two CIPL sub-
problems. ln each iteration, the upper ant colony and the 
lower ant colony construct solutions for the charging sta-
tion siting problem and the charging pile allocation prob-
lem in turn, respectively. The custom-made pheromone 
adjustment mechanisms of the two ant colonies can achieve 
bidirectional information transmission to comprehensively 
solve the two subproblems. The experimenta1 results have 
proven that DACO-CIPL has a strong ability to balance the 
two subproblem solutions and provides a better option for 
CIPL. However, DACO-CIPL only considers the interaction 
of the two subproblems of CIPL without considering the 
correlations among other subproblems. As the number of 
EVs increases and new charging standards are developed, 
it becomes increasingly important to consider other issues, 
such as the scale of charging stations, the type of charging 
piles, and EV users’ preferences, as subproblems of CIPL. 
Therefore, using multicolony ant colony optimization to 
solve CIPL multisubproblems is a future research direction 
with great importance.
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Table 4   Number of tracks in each region

Region Number of 
tracks in 
SC1-5

Number of 
tracks in 
SC2-5

DC History Center 87 131
10th Street Southeast 56 -
Washington Apartment 705 -
Dupont Circle(SC2-5) 76 1403
Decatur Street Northwest 896 -
Georgetown University 296 131
Reagan Washington National Airport 236 552
Nationals Park - 132
Washington Union Station - 1584
Holiday Inn Express - 330
National zoological Park 157 212

(a) (b)
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Fig. 12   Visualization ofcharginstation sites on map; (a) Results on test instance SC1-5; (b) Results on test instance SC2-5
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