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Abstract
Automatic apple harvesting robots have received much research attention in recent years to lower harvesting costs. A fun-
damental problem for harvesting robots is how to quickly and accurately detect branches to avoid collisions with limited
hardware resources. In this paper, we propose a lightweight, high-accurate and real-time semantic segmentation network,
Bilateral U-shape Network (BUNet), to segment apple tree branches. The BUNet consists mainly of a U-shaped detail branch
and a U-shaped semantic branch, the former for capturing spatial details and the latter for supplementing semantic infor-
mation. These two U-shape branches complement each other, keeping the high accuracy of the Encoder-decoder Backbone
while maintaining the efficiency and effectiveness of the Two-pathway Backbone. In addition, a Simplified Attention Fusion
Module (SAFM) is proposed to effectively fuse different levels of information from two branches for pixel-by-pixel predic-
tion. Experimental results show (on our own constructed dataset) that BUNet achieves the highest Intersection over Union
(IoU) and F1-score of 75.96% and 86.34%, respectively, with minimum parameters of 0.93M and 11.94G Floating-point of
Operations (FLOPs) in branch segmentation. Meanwhile, BUNet achieves a speed of 110.32 Frames Per Second (FPS) with
input image size of 1280×720 pixels. These results confirm that the proposed method can effectively detect the branches and
can, therefore, be used to plan an obstacle avoidance path for harvesting robots.

Keywords Fruit harvesting robots · Semantic segmentation · Branch segmentation · U-shape structure ·
Two-pathway backbone

1 Introduction

Apples are one of the most important fruits in the world.
In 2020, the world’s total apple production was 86 million
tons, ranking fourth in global fruit production. Currently,
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the dominant method of harvesting fresh apples is manual
harvesting, which is time-consuming and labour-intensive.
Research is being conducted on harvesting robots to replace
human labor [1, 2]. One of the most fundamental and major
research components of harvesting robots is computer vision
technology. In the field of robotic harvesting, existing related
work focuses on apple detection, but rarely on branch detec-
tion [3]. As reported in [4] and [5], thick branches of apple
trees can prevent the robotic arm from approaching the target
apples, leading to a lower harvest success rate and an increas-
ing risk of damage to the robotic arm. Thus, accurate detec-
tion of apple tree branches is also the integral part that can
provide environmental information to the harvesting robot
for dynamic planning and obstacle avoidance strategies.

As a thriving technology in recent years, Convolutional
Neural Network (CNN) (mainly object detection and seman-
tic segmentation) has been widely used for image processing
in agriculture [6, 7]. Due to the lack of pixel by pixel clas-
sification information, the accuracy of the branch detection
algorithm based on object detection is relatively low, and
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extensive subsequent processing is required. While semantic
segmentation, which classifies each pixel in an image, can
preserve the spatial information of objects more completely
[8], it makes up for the shortcomings of object detection in
branch detection.

Over decades, a series of competitive segmentation algo-
rithms have emerged, such as Fully Convolutional Networks
(FCN [9]), Deeplab series [6, 10, 11], Mask-RCNN [12].
Algorithms mentioned above have been gradually applied to
branch segmentation [4, 13]. Lin et.al [14] use FCN to seg-
ment guava branches with a detection accuracy of 0.983,
suggesting that semantic segmentation performs well for
branch prediction. After that, the authors propose tiny Mask
R-CNN in a subsequent paper [15], which greatly reduce the
size of the model and shorten the inference time. However,
while Deeplabv3 [11] has high segmentation accuracy when
used to segment RGB images of litchi into background, fruit
and branch, it is computationally expensive and therefore not
suitable for real-time applications [16]. Notably, Kang and
Chen [17] propose DaSNet based on residual network struc-
ture for real-time detection and semantic segmentation of
apples and branches. Experimental results demonstrate that
semantic segmentation is well suited for real-time branch
segmentation.

It is noted that current harvesting robots typically use
mobile devices with relatively limited hardware resources
[18, 19]. Therefore, lightweight semantic segmentationmod-
els are essential to ensure their portability on mobile devices.
However, the semantic segmentation algorithms applied in
the agricultural domain mentioned above pay less attention
to computational cost and inference speed. Hence, a more
lightweight semantic segmentation model that can fulfill the
real-time segmentation requirements of outdoor mobile sce-
narios with limited devices is required.

The key strategies for constructing lightweight models
are to devise lightweight modules (usually based on depth-
wise separable convolution and dilation convolution) and to
enhance the network structure. For example, ESPNet [20]
decomposes the standard convolution into point-wise con-
volution and spatial pyramid of dilated convolution, which
can effectively reduce the number of parameters and com-
putation while maintaining a large perceptual field. Further,
as an updated version, ESPNetV2 [21] introduces an EESP
module based on group point-wise convolutions and depth-
wise dilated separable convolutions, which further reduces
the number of parameters. PP-LiteSeg [22] does not use a
lightweight convolutionalmodule to extract features, butmit-
igates the redundancy of the decoder by reducing the number
of channels in the decoding process. By changing the interac-
tion between high and low resolution from series to parallel,
HRNetV2 [23] is able tomaintain high resolution representa-
tion and thus improve the accuracy of spatial representation
and detail information. To meet the needs of different sce-

narios, the authors provide several models with different
volumes, such asHRNetV2-W48 andHRNetV2-W18-small,
the latter of which is very suitable as a backbone for
lightweight semantic segmentation. The Transformer-based
Topformer [24] uses some stacked lightweightMobileNetV2
blocks and Fast Down-Sampling strategy to build Token
Pyramid, thus reducing the number of parameters. In addition
to the commonU-shaped encoder-decoder architecture, there
is also the two-pathway architecture which is well suitable
for semantic segmentation tasks, one pathway for extracting
semantic information, the other shallow one provides rich
spatial details as a supplement. One representative network
is BiSeNet [25], which uses a bi-directional contextual infor-
mationflowmodule to capture global contextual information,
and achieves network lightweighting by reducing the overall
number of channels and downsampling times of the network.
BasedonBiSeNet, STDC[26] removes the potentially redun-
dant spatial path and adds a Short-Term Dense Concatenate
module to extract the underlying features to speed up infer-
ence. Similarly, BiSeNetV2 [27] is also an updated version of
BiSeNet, designed with a lightweight semantic branch based
on depthwise separable convolution, which greatly reduces
the number of parameters.

Our model is based on two key observations: first, the
semantic segmentation task demands both rich detail and
spatial information as well as contextual semantic informa-
tion from large perceptual fields. Second, the two-pathway
architecture, in contrast to the U-shaped encoder-decoder
architecture, directly utilizes small-resolution feature maps
and upsamples them at high magnification to segment the
image, which results in the loss of low-level details and the
introduction of error information. Therefore, we propose the
Bilateral U-Shape Network (BUNet), which is composed of
three parts: 1) U-shape Detail Branch, 2) U-shape Seman-
tic Branch, and 3) Simplified Attention Fusion Module. The
main contributions are summarized as follows:

I A lightweight, efficient and highly accurate bilateral
encoder-decoder architecture is proposed for real-time
segmentation of apple tree branches, which obtains rich
low-level spatial details and high-level semantic infor-
mation through two U-shaped branches, respectively.

II A novel fusion module, i.e., Simplified Attention Fusion
Module is designed to fuse the features of two different
levels, which can effectively improve the segmentation
accuracy and hardly introduce additional parameters and
computation.

III We collect a complex and comprehensive dataset of apple
tree branches, including different light and weather con-
ditions, and annotate the dataset in great detail.

The paper is organized as follows. Section 2 describes
our novel architecture consists of UDB, USB and SAFM.
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Fig. 1 Params-Accuracy performance comparison of different net-
work. Experiments are performed on 9 different neural networks on
our constructed branches dataset

Section 3 introduces our own constructed dataset. The experi-
ments anddiscussion are inSection 4 andSection 5 concludes
the work.

2 Methodology

2.1 The overall structure of bunet

Our BUNet architecture consists of the U-shape Detail
Branch (UDB) (Section 2.2) and the U-shape Semantic
Branch (USB) (Section 2.3), which are combined by a Sim-
plified Attention Fusion Module (SAFM) (Section 2.4).

Unlike previous large networks [6, 11, 28] with hundreds
of layers and numerous channels, our BUNet has relatively
few layers and channels,which is very beneficial for real-time
semantic segmentation tasks on mobile devices. The overall
structure of the BUNet is shown in Fig. 2. Table 1 shows
the detailed configuration. The UDB uses wide channels and
shallow layers to extract diverse features and rich low-level
spatial information. The USB, on the other hand, is a struc-
ture with low channel capacity and deeper layers, aiming
to capture high-level semantics. Meanwhile, A lightweight
Encoder-Decoder structure based on Gather-and-Expansion
Layer [27] is constructed in USB to reduce the parameters
while not losing too much feature information. As for the
feature fusion module, SAFM is proposed to effectively fuse
sufficient spatial information with accurate semantic infor-
mation to obtain the final prediction map.

2.2 The U-shape detail branch (UDB)

This branch aims to capture low-level spatial and detail
information for accurate position prediction, requiring large
scale feature maps with multiple channels, which are capa-
ble of presenting richer detail information. Thus, the UDB
is designed to have high channel capacity and shallow lay-
ers (only 10 layers), the former to represent various features
and the latter to ensure efficiency. The exact structure of the
UDB is shown in Table 1 and Fig. 2. We try four backbones
in Experiment 4.2.1: HRNetV2-W18-small, MobilenetV3-
small, STDC1 andUDB. TheUDBhas the best segmentation
effect in our model.

The UDB is an encoder-decoder structure. In the encoder
part, three shallow convolution blocks (DEB1, DEB2 and

Table 1 Details of the UDB and
the USB. Each operation (opr)
has a kernel size k, stride s and
output channels c, repeated r
times, generating different
output sizes

Stage U-shape Detail Branch U-shape Semantic Branch
block opr k c s r size block opr k c s r size

MSCD 3 8 4 1 256×128

Encoder DEB1 Conv2d 3 32 2 1 512×256 SEB1 GE2 3 16 2 1 128×64

Conv2d 3 32 1 1 512×256 GE1 3 16 1 1 128×64

DEB2 Conv2d 3 64 2 1 256×128 SEB2 GE2 3 32 2 1 64×32

Conv2d 3 64 1 2 256×128 GE1 3 32 1 1 64×32

DEB3 Conv2d 3 128 2 1 128×64 SEB3 GE2 3 64 2 1 32×16

Conv2d 3 128 1 1 128×64 GE1 3 64 1 3 32×16

Decoder DDB1 Conv2d 3 128 1 1 128×64 SDB1 GE3 3 32 1 32×16

2×Up 32 1 64×32

DDB2 Conv2d 3 64 1 1 128×64 SDB2 GE3 3 16 1 64×32

2×Up 64 1 256×128 2×Up 16 1 128×64

DDB3 Conv2d 3 32 1 1 256×128 SDB3 GE3 3 8 1 128×64

2×Up 32 1 512×256 2×Up 8 1 256×128

“Conv2d” donates convolutional layer, followed by a batch normalization and ReLu activation
function.”2×up” donates bilinear interpolation for 2 times upsampling. GE1, GE2 and GE3 contribute the
specific components of Encoder and Decoder based on Expansion Layer described in Section 2.3.2
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DEB3 in Fig. 2) are constructed, Each consisting of several
standard convolution layers. The role of each convolution
block is to double the number of channels and halves the
size of the feature map. After being encoded by UDB, the
generated feature map is 1/8 of the original image. Three sets
of convolutional blocks, DDB1, DDB2 and DDB3, are used
in the decoding process. However, compared to the encoder
stage, the number of standard convolution layers of convo-
lution blocks is reduced to 1, and stride=1. After DDB2 and
DDB3, the input feature map is upsampled using bilinear
interpolation. To avoid introducing too many parameters,
we also use a point-wise fast summation approach, which
directly fuses the corresponding feature maps of encoder and
decoder, effectively capturing the context information and
the features of receptive fields at different scales. Finally, the
input image is restored to a high-resolution feature map of
1/2 of the original image (Fig. 2).

2.3 The U-shape semantic branch(USB)

The USB aims to obtain high-level semantic information
based on a large receptive field. Therefore, it is designed
as a deep-level structure for expanding the receptive field.
Since spatial information is provided by the UDB, low chan-
nel capacity is reasonable for USB. To further reduce the
number of parameters without losing too much feature infor-

Fig. 2 Overview of the Bilateral U-shape Network. “DEBx” and
“DDBx”donate different blocks in theEncoder andDecoder stage of the
UDB, respectively. Similarly, “SEBx” and “SDBx” represent different
blocks of the USB. “MSCD” is Max-pooling and Separable Convolu-
tion based Down-sampling module described in Section 2.3.1. “Seg”
donates the segmentation head consisting of a 3×3 convolutional layer
followed by a 1×1 convolutional layer. L1, L2 and L3 represent differ-
ent losses of multi-loss strategy. “2×up” donates bilinear interpolation
for 2 times upsampling

Fig. 3 Detailed design of the USB. “MSCD” is Max-pooling and Sep-
arable Convolution based Down-sampling module described in Section
2.3.1. "SEBx" and "SDBx" denote the basic blocks of the encoding
and decoding stages, respectively. The structures of ”GE1”, ”GE2” and
”GE3” are showed in Fig. 5(a), (b) and (c), respectively

mation, we apply the Gather-and-Expansion Layer (GE) to
the Encoder and Decoder section, i.e. GE1, GE2 and GE3
(see Section 2.3.2 and Fig. 5 for the detailed design). In the
following part of the section,we demonstrate the coremodule
of the branch as illustrated in Fig. 3.

Fig. 4 Detailed design of MSCD.“Conv2d” donates convolutional
layer, followed by a batch normalization and ReLu activation function.
“Conv” is a simple convolutional layer. “DWConv2d” means a depth-
wise convolution followedby abatch normalization andReLuactivation
function. “3×3” and “1×1” donate kernel size. “H ×W ×C” donates
the height, width and channel of the tensor. “C” donates concatenate
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Fig. 5 Detailed design of Encoder and Decoder based on Expansion
Layer. (a), (b) and (c) demonstrate the detail structure of GE1, GE2 and
GE3, respectively. “Conv2d” donates convolutional layer, followed by
a batch normalization and ReLu activation function. “Conv” is a sim-

ple convolutional layer. “DWConv” donates a depth-wise convolution
followed by a batch normalization. "MaxPool" donates max-pooling.
”3 × 3” and “1 × 1” donate kernel size. “H × W × C” donates the
height, width and channel of tensor. “+” is point-wise add

2.3.1 Max-pooling and separable convolution based
down-sampling(MSCD)

We design MSCD before the encoder, taking a fast down-
sampling strategy to promote the level of the feature rep-
resentation and quickly enlarge the receptive field, without
introducing too many additional parameters. The specific
structure is shown in Fig. 4. Instead of traditional convo-
lution, we use depth-wise separable convolution instead to
reduce the number of parameters, and maximum pooling to
extract edge and texture information. Both strategies are used
to downsample the input image simultaneously to increase
the diversity of features.

2.3.2 Encoder-decoder based on GEmodules

For the encoder part, we use the Gather-and-Expansion
Layer(GE) modules (BiSENetV2 [27]), which consists of
GE1 and GE2, and we design a brand-new structure namely
GE3 based on it, as shown in the Fig. 5(c). The functions of
GE1, GE2 and GE3 are: (1) to maintain the number of chan-
nels and the size of the feature map, (2) to double the number
of channels and halve the size of the feature map, and (3) to
halve the channels and maintain the size of the feature map.
The core conception is using depth-wise separable convolu-
tion to reduce parameters, in the meantime, expanding the
number of channels by a factor of n (set to 6 here) to pre-
vent losing too much feature information. (When the kernel
size is 3 × 3, the computational cost is 8 to 9 times smaller
than that of standard convolutions at only a small reduction
in accuracy [29]).

2.4 Simplified attention fusionmodule (SAFM)

To further improve segmentation accuracy and enhance the
ability of network to focus on critical regions without sig-
nificantly increasing parameters, we propose the SAFM as a
fusion module. The Convolutional Block Attention Module
(CBAM [30]) is one of the widely used methods to improve
accuracy in semantic segmentation tasks. However, the intro-
duction of CBAM significantly reduces the inference speed
and increases some parameters. Based on this, we design
1× 1 convolution layers and Sigmoid activation function as
a simplification of the attention module in CBAM.

The detailed structure is shown in Fig. 6. We first con-
catenate the two branches and then further extract features
with a 3 × 3 convolution layer. After that, a 1 × 1 convolu-
tional layer is used to adjust the number of channels. Next,
the global maximum pooling and the global average pool-
ing are utilized to augment the feature representation of the
focal region and global information. Then, two 1× 1 convo-
lution layers, followed by the Sigmoid activation functions
to increase nonlinearity, are used as a simplified fully con-
nected layer to obtain the channel weights. Also, to reduce
the loss of information, the channel weighted feature maps
obtained by multiplying with the channel weights are added
with the adjusted feature maps, generating the channel aug-
mented feature maps as the final output.

3 Experimental materials

A total of 1,035 images are collected from an apple orchard
in northern Shaanxi Province, China, with a resolution of
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Fig. 6 Detailed design of the
Simplified Attention Fusion
Module. “Conv2d” donates
convolutional layer, followed by
one batch normalization and
ReLu activation
function.”3× 3” and “1× 1”
donate the kernel size of
convolutions

1,280x720, and saved as JPEG. Images are captured from
April to June 2022, from 9:00 a.m. to 6:00 p.m. Over 200
apple trees are photographed at random angles to better suit
the actual harvesting scene, with no more than 5 images
per tree. Keep the shooting distance of 0.5m-1.5m, which
is the typical range of harvesting robots. The apple trees are
between 2 and 2.5m high, the row spacing is of about 4m (as
shown in Fig. 7).

In the actual orchard scene, harvesting robots must face
complex scenarios of varying illumination and changing har-
vesting angles. Hence, the camera’s viewing directions are
random, for example, are set with parallel, antiparallel and
perpendicular to the direction of sunlight to simulate forward
lighting, backward lighting and side lighting, respectively
(the top raw of Fig. 8). The camera angle is different to
simulate various harvesting angles, including horizontal har-
vesting, upward harvesting, sideways harvesting, etc. (the
bottom of Fig. 8).

828 images in the dataset are used as the training set and
the remaining 207 as the test set. UsingPhotoshop’smagnetic
lasso tool, we meticulously label all the visible branches.
Fig. 9(a) shows the original image sample; Fig. 9(b) shows
the annotated images with Photoshop; and Fig. 9(c) displays

Fig. 7 Actual orchard scene

the corresponding final pseudo-colour annotation. Once the
labelling is complete, we only perform data transforma-
tions and data enhancements on the training set before the
training, specifically including RandomPaddingCrop, Ran-
domDistort, RandomHorizontalFlip and Normalize.

4 Results and discussion

4.1 Experiment detail

4.1.1 Training setting

We train all models for 40000 iterations on one RTX3090
GPU card with a batch size of 6 and a crop size of 1024×512
for the input. We use the Adam algorithm with β1 = 0.9 and
β2 = 0.999 to optimize the models. The initial learning rate
is set to 0.05 with a ‘poly’ learning rate strategy, in which
the initial rate ismultiplied by (1− i ter/i tersmax )

power .We
adopt multi-loss training strategy as L1, L2, L3 in Fig. 2 to
improve the segmentation accuracy. The cross-entropy loss
is used as the loss function and can be calculated by Eq. 1
for the dichotomous task in this paper. The deep learning
framework Paddle (PaddleSeg-2.5.0 [31]) is employed for
all experiments.

L = − [
ylog y̌ + (1− y)log

(
1− y̌

)]
(1)

Where L represents the loss function, y and y̌ represents real
labels and predicted labels, respectively.

4.1.2 Evaluation criterion

The following semantic segmentation indicators are used for
evaluation: intersection over union (IoU), F1-score, number
of parameters (Total Params), Floating-point of Operations
(FLOPs) and Frames Per Second (FPS). We use the method
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Fig. 8 Examples of images of
our own constructed branches
datasets. (a), (b) and (c) are
examples of forward lighting,
backward lighting and side
lighting, respectively. (d), (e)
and (f) stimulate the horizontal
harvesting, upward harvesting
and sideways harvesting,
respectively

provided by the official Paddle to calculate the Total params,
FPS and FLOPs of the evaluated models. The IoU and F1-
score can be calculated by Eq. 2 and Eq. 3-5. Higher values of
IoU and F1-score indicate better segmentation performance.

I oU = T P/ (FN + FP + T P) × 100% (2)

recall = T P/ (T P + FN ) × 100% (3)

precision = T P/ (T P + FP) × 100% (4)

F1 = 2× pression × recall

(pression + recall)
× 100% (5)

Where TP, FP, FN represent true positive, false positive,
and false negative, respectively.

4.2 Ablation experiments

4.2.1 Different backbones in Detail Branch

To evaluate the effectiveness of UDB as a detail branch
of BUNet, we design the control experiment using three
lightweight backbone networks: HRNetV2-W18-small [23],
MobilenetV3-small, and STDC1 [26]. We select the last fea-
ture map of HRNetV2-W18-small, the first feature map of
MobilenetV3-small, and the second feature map of STDC1
as the output of the detail branch, and ensure that they have
the same size. Then use a convolutional layer to adjust the
number of channels of these featuremaps to 32, and fuse them
with USB to generate the final output. All four experiments

are conducted under the same settings. The experimental
results are shown in Table 2. From these results, it can be
seen that the BUNet has the least number of parameters when
using UDB as the detail branch, which is 34.41% less than
MobileNetV3-small as the detail branch. Additionally, the
segmentation effect is the best (Branches-IoU improves by
2.81%, 1.65% and 2.62% respectively). These results prove
that UDB has a positive effect on BUNet.

4.2.2 Different feature fusion modules

In order to verify the effectiveness of our proposed Sim-
plified Attention Fusion Module (SAFM), we compare four
different fusion methods for the two-way branch features:
direct concatenation, direct addition, CBAM-based fusion,
and SAFM-based fusion. Table 3 shows that SAFM obvi-
ously improves the Branches-IoU (1.42%, 2.67% and 1.84%
improvements, respectively) with almost no increase in the
number of parameters than direct concatenating or addition,
a slight increase in computation and inference time. This
indicates that SAFM is actually beneficial in fusing different
levels of features, focusing on the key regions of the feature
maps and achieving better segmentation results.

4.2.3 Channel capacity of the USB

To further reduce the amount of parameters and improve the
efficiency of the model, we assume that the ratio of the num-
ber of channels of the USB and the UDB is λ (λ < 1). We
compare the performance of the model for several values
of λ. As shown in Table 4, different values of λ bring in
different extents of improvement on the segmentation accu-

Fig. 9 Illustrations of the
labelling process
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Table 2 Ablation study results
of lightweight backbones in
UDB

Backbone Publish Branches-IoU(%) Parmas(M)

MobileNetV3_small ICCV2019 73.15 1.25

HRNet-W18-small arXiv2019 74.31 1.92

STDC1 CVPR2021 73.34 5.72

UDB 75.96 0.93

Table 3 Ablation study results
of fusion modules

Branches-IoU(%) Total params(M) FLOPs(G) FPS ( f rames/s)

Concatenate 74.54 0.92 11.79 116.96

Add 73.29 0.90 9.16 117.35

CBAM 74.12 1.06 11.99 90.24

SAFM 75.96 0.93 11.94 110.32

Table 4 Ablation study results
of the ratio λ of channels of the
UDB and the USB

Branches-IoU(%) FLOPs(G) Total params(M)

Detail-only 73.03 11.08 0.59

λ = 1/2 75.26 13.32 1.87

λ = 1/4 75.96 11.94 0.93

λ = 1/8 75.17 11.49 0.68

racy compared to retaining only the UDB. Branches-IoU is
highest at λ = 1/4 with 75.96% (2.93% improvement), and
even at λ = 1/8 with only 4 channels in the first layer of the
USB, it brings in 2.14% improvement, which is inspiring.We
take λ = 1/4 as the default parameter, which has the high-
est Branches-IoU. Moreover, the computational complexity
(0.86G more) and the number of parameters (0.34M more)
are acceptable compared to using the UDB alone.

4.2.4 Visual results of extracted features by UDB, USB
and SAFM

In Fig. 10, we visualize the features of UDB, USB and their
combined results (fused by SAFM). The UDB provides a
wealth of detailed information, which is mainly low-level
information, including branch outlines and boundaries, the
shapes of leaves, and spatial location relationships (1, 3, 5 in

Fig. 10 Visual comparison of
the feature maps of UDB, USB
and fusion output. (a), (b)
Original inputs; (c), (d) The
visual feature maps of UDB; (e),
(f) The visual feature maps of
USB; (g), (h) The visual feature
maps of output fused by SAFM.
1, 3 and 5 show detailed
information extracted by UDB;
2, 4 and 6 show semantic
context obtained by USB,
without abundant features; 7~10
show complete branch acquired
by feature maps fused by SAFM
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Table 5 Comparisons of the achieved accuracy between BUNet and other state-of-the-art models on our apple tree branches dataset

Model Backbone Publish Branches Branches Branches Background Branches Mean
Precision(%) Recall(%) F1-score(%) -IoU(%) -IoU (%) -IoU(%)

BiSENet-V1 ResNet18 ECCV2018 86.59 81.82 84.14 98.08 72.63 85.36

BiSENet-V2 IJCV2021 87.97 80.08 83.84 98.13 72.33 85.23

STDC STDC1 CVPR2021 86.09 81.48 83.72 98.07 72.00 85.08

PPLite-Seg STDC1 arXiv2022 87.55 82.13 84.57 98.20 73.54 85.88

ESPNet-V2 CVPR2019 84.65 86.05 85.34 98.19 74.43 86.31

LR-ASPP MobileNet ICCV2019 87.78 85.43 85.86 98.27 75.22 86.75

V3-small

OCRNet HRNet- arXiv2019 86.93 85.92 86.17 98.29 75.71 87.00

W18-small

FCN-HRNet HRNet- arXiv2019 85.93 85.91 85.92 98.24 75.31 86.78

W18-small

Topformer Topformer CVPR2022 86.00 78.42 82.04 97.87 69.55 83.71

-base

BUNet ours 87.44 85.26 86.34 98.28 75.96 87.12

Fig. 10(c), (d)). The USB, on the other hand, extracts a large
amount of semantic context (high-level information), focus-
ing more on the overall shape of the branches and omitting
much of the redundant information; it also enhances the dis-
tinction between branches and background in the figure (2,
4, 6 in Fig. 10(e), (f)). The output feature maps of these two
branches fused by SAFM further focus on the focal region,
i.e., the branches (7, 10 in Fig. 10(g), (h)). Besides, clearer
branches with precise boundaries are also extracted (8, 9 in
Fig. 10(g), (h)). It can be concluded that SAFM effectively
combines different levels of features and improves segmen-
tation performance.

4.3 Comparison to state-of-the-art methods

We compare the performance of nine other state-of-the-art
models on our collected dataset in terms of Branches-
IoU, Branches F1-score, FPS, Total params, FLOPs under

equivalent experimental conditions (including BiSENetV1,
BiSENetV2 [27], STDC [26], PP-LiteSeg-STDC1 [22],
ESPNetV2 [21], LR-ASPP [32], OCRNet [33], FCN-HRNet
[23], Topformer [24]). The results are shown in Fig. 1 and
Tables 5 and 6.

4.3.1 Accuracy and segmentation results comparison

As Table 5 indicates, BiSENetV2 achieves the highest
Branches Precision at 87.97%, which means that it predicts
most of the samples that are branches correctly. However, our
proposed model, BUNet, is only slightly lower at 87.44%.
On the other hand, Branches Recall measures the model’s
recognition rate of real branches in the images. ESPNetV2
performs the best in this metric, with BUNet following
closely at 86.93%. Moreover, F1-score combines both Pre-
cision and Recall to give a more comprehensive assessment
of the model’s performance. Interestingly, BUNet obtains

Table 6 The comparison of
params, FLOPs and inference
time between our BUNet and
other state-of-the-art models on
our apple branch dataset (image
size of 1280×720)

Model Backbone Publish Parmas(M) FLOPs(G) Inference time (s)

BiSENet-V1 ResNet18 ECCV2018 12.93 113.29 19.71

BiSENet-V2 IJCV2021 2.33 16.12 16.9

STDC STDC1 CVPR2021 8.28 24.8 10.61

PPLite-Seg STDC1 arXiv2022 8.04 19.37 16.79

ESPNet-V2 CVPR2019 1.26 5.55 7.16

LR-ASPP MobileNetV3_large ICCV2019 2.95 12.5 14.78

OCRNet HRNet-W18-small arXiv2019 3.84 72.7 30.37

FCN-HRNet HRNet-W18-small arXiv2019 1.54 8.31 14.82

Topformer Topformer-base CVPR2022 5.06 3.28 11.35

BUNet ours 0.93 11.94 9.06
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Fig. 11 The segmentation
results of apple tree branches of
BUNet. (a) The segmentation
result under forward lighting.
(b) The segmentation result
under side lighting. (c) The
segmentation result under
backward lighting. (d), (e) and
(f) demonstrate the results of
segmentation with varying
degrees of leaf obscuration,
respectively

the highest F1-score at 86.34%, which means that it has the
best overall performance among all models. Finally, Mean-
IoU calculates the average intersection over union between
the predicted and ground truth masks for both branches
and background. Almost all models achieve a Background-
IoU of 98% or more, so we mainly compare Branches-IoU.
Remarkably, BUNet ranks first with 75.96% Branches-IoU
and 87.12% Mean-IoU, achieving the best segmentation
results amongallmodels. It isworthmentioning that although
BUNet is inspired byBiSENetV2, its Branches-IoU is 3.36%
higher than BiSENetV2.

As shown in Fig. 11, our BUNet segments apple tree
branches under different light and occlusion conditions effec-
tively, with almost all visible branches well separated. This
demonstrates that the proposed method can detect apple tree
branches in natural images with high accuracy and speed by
combining Table 6.

Figures 12 and 13 show the branch segmentation results
of different models when the background is soil that has a
similar colour to the branches. It is clear that BUNet has
the least false segmentation, segmenting almost all visible
branches completely and accurately. The other nine networks
are unable to precisely distinguish between branches and soil
with similar colour characteristics. For example, in Fig. 12(j),
Fig. 13(c), Fig. 13(e), Fig. 13(h) and Fig. 13(i), there are
many areas ofmismatches. On the contrary, the segmentation

results of BUNet are more accurate and complete (as shown
in Fig. 12(l) and Fig. 13(l)), demonstrating the superiority
and robustness of BUNet. Overall, for branches with less
shading, almost all networks can be segmented clearly, but
the segmentation contour of BUNet is smoother and more
complete. In terms of detail, BUNet segments the heavily
occluded, small branches completely and accurately (blue
boxes in the Fig. 14), which performs best in segmentation
effect.

4.3.2 Volume comparisons

For mobile devices with limited hardware resources, the
lower the number of parameters and computation of the
model, the easier it is to deploy to mobile devices. We have
made huge progress on the parameters of the model. As
shown in Table 5, the total params of BUNet is only 0.93M,
which is smallest among all themodels, 35.5% less thanESP-
NetV2( ranks second). In addition, the FLOPs of BUNet is
11.94G, which is acceptable for mobile devices. As for the
inference time, the BUNet ranks second at 9.06ms, which
means that 110.38 images (1280x720) can be segmented in
one second, meeting the real-time requirements of the pick-
ing operation.

Overall, comparisons between these models show that our
model achieves a perfect balance among accuracy, efficiency

Fig. 12 The effect of
segmentation of different
networks in the first scenario.
(a) Original image. (b)
Annotated images with
Photoshop (Ground Truth). (c)
BiSENetV1. (d) BiSENetV2. (e)
STDC. (f) PPLiteSeg-STDC1.
(g) ESPNetV2. (h) LR-ASPP. (i)
OCRNet. (j) FCN-HRNet. (k)
Topformer. (l) BUNet(ours)
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Fig. 13 The effect of
segmentation of different
networks in the second scenario.
(a) Original image. (b)
Annotated images with
Photoshop (Ground Truth). (c)
BiSENetV1. (d) BiSENetV2. (e)
STDC. (f) PPLiteSeg-STDC1.
(g) ESPNetV2. (h) LR-ASPP. (i)
OCRNet. (j) FCN-HRNet. (k)
Topformer. (l) BUNet(ours)

and portability, so it is more suitable to be applied for real-
ising resource-constrained harvesting robots for apple tree
branches segmentation tasks.

4.4 Discussion

Accurate and rapid detection of apple tree branches is of great
importance for the practical application and development
of automatic apple harvesting robots. The harvesting robots
are designed to address labour shortages, reduce the risk of
human injury, and improve productivity and profitability of
the fruit industry. Before the automatic harvesting robot per-
forms its harvesting operation, except the given target point,
i.e. the position of the apple, information on the location of
obstacles is also necessary to carry out the dynamic planning
and obstacle avoidance of the robotic arm before it can finally
approach the target point for harvesting action. Therefore,
the detection of apple tree branches can increase the success
rate of automatic harvesting, while reducing the probabil-
ity of damaging the robotic arm or the apple tree. Most of
the current advanced detection algorithms are based on deep
convolutional neural networks, which can be broadly clas-

sified into object detection and semantic segmentation. For
specific application scenarios, we need accurate, pixel-by-
pixel branch detection for obstacle avoidance, so a semantic
segmentation algorithm that provides pixel-by-pixel predic-
tion is suitable for branch segmentation. But most of today’s
mobile harvesting robots use mobile hardware devices with
far less memory and calculation power than large servers in
the laboratory. To improve the portability of the network on
mobile devices with limited hardware resources, we design
the semantic segmentation network BUNet with only 0.93M
number of parameters.

However, since apple trees grow in an open and unstruc-
tured environment, factors such as complex natural environ-
ment, uncertain illumination, and the occlusion of massive
leaves, make the segmentation of apple tree branches very
difficult. Therefore, we collect a comprehensive and complex
dataset of apple branches, taking into account different light
and occlusion conditions to improve the robustness of the
model. We also use different shooting angles to simulate dif-
ferent harvesting angles. However, the dataset is not obtained
during the apple harvest season in this study because of the
long collection period and the short harvest period of ripe

Fig. 14 Segmentation results of
image with obscuration by
leaves. (a) Original image. (b)
Ground Truth. (c) BiSENetV1.
(d) BiSENetV2. (e) STDC. (f)
PPLiteSeg-STDC1. (g)
ESPNetV2. (h) LR-ASPP. (i)
OCRNet. (j) FCN-HRNet. (k)
Topformer. (l) BUNet(ours)
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apples, whichmay lead to insufficient segmentation accuracy
during the actual harvesting process. In future work, we will
expand the dataset and increase the data during the harvest
season. Our proposed algorithm can quickly and accurately
segment apple tree branches, and in addition to its application
in the apple harvesting process, we consider that it can also
be applied to automatic pruning robots, which is to enhance
the ventilation and light penetration of fruit trees and increase
the yield and quality of apples.

5 Conclusion

We propose a lightweight, highly accurate and real-time
semantic segmentation network, Bilateral U-shape Network
(BUNet), for apple tree branches segmentation, which adopts
two independent encoder-decoder structures to obtain spatial
details and semantic information respectively. In addition,we
design the Simplified Attention Fusion Module as a fusion
module for the two branches to improve segmentation accu-
racy. Compared to the other eight models, BUNet achieves
the highest Branches-IoU of 75.96% with a total parameter
of 0.93M at 110.32 FPS. The experimental results demon-
strate the effectiveness and efficiency of our method in real
orchard scene, which provide accurate obstacle avoidance
information for mechanical arm, reducing the risk of dam-
age caused by colliding with the branches. In addition, the
model size and computational complexity of BUNet is tiny
enough to be easily deployed to the mobile harvesting robot.
Future work will focus on the handling of leaves and fruits
occlusion of branches using Generative adversarial network
and 3D reconstruction of actual apple trees.
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