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Abstract
Scene graph generation (SGG) is a sophisticated task that suffers from both complex visual features and the long-tail problem.
Recently, various unbiased strategies have been proposed by designing novel loss functions and data balancing strategies.
Unfortunately, these unbiased methods fail to emphasize language priors in the feature refinement perspective. Inspired by
the fact that predicates are highly correlated with semantics hidden in subject-object pair and global context, we propose
LANDMARK (LANguage-guiDed representation enhanceMent frAmewoRK) that learns predicate-relevant representations
from language-vision interactive patterns, global language context, and object-predicate correlation. Specifically, we first
project object labels to three distinctive semantic embeddings for different representation learning. Then, Language Attention
Module (LAM) and Experience EstimationModule (EEM) processes subject-object word embeddings to attention vector and
predicate distribution, respectively. Language Context Module (LCM) encodes global context from each word embedding,
which avoids isolated learning from local information. Finally, module outputs are used to update visual representations
and the SGG model’s prediction. All language representations are purely generated from object categories so that no extra
knowledge is needed. This framework is model-agnostic and consistently improves performance on existing SGG models.
Besides, representation-level unbiased strategies endow LANDMARKwith compatibility of other methods. Code is available
at https://github.com/rafa-cxg/PySGG-cxg.

Keywords Scene graph generation · Unbiased method · Vision-language representation learning · Multi-semantics

1 Introduction

Scene graph generation (SGG) is a crucial task that bene-
fits image captioning [1, 2], visual question answering [3,
4], video understanding [5, 6] and detection [7, 8]. However,
most generated scene graphs face the challenge of trivial pre-
dictions, thus far frombeing applied to practical applications.
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Therefore, recent researchers have been working on unbi-
ased methods that elevate Recall of hardly distinguishable
predicates. Generally, unbiased methods can be divided into
3 types: data resampling (e.g., BLS [9], GCL [10], DCNet
[11]), predicate-aware loss design (e.g., CogTree [12], PCL
[13] and FGPL [14]) and logit manipulation (e.g., TDE [15],
RTPB [16], FREQ [17]). However, a common drawback
is that they rely on explicitly modeling predicate correla-
tions from dataset statistical information [14, 17] or biased
predictions [14, 15], which means that they are sensitive
to prerequisite changes. For instance, [15] is not effective
when training on an unbiased model, hence, confining the
SGG model performance. Compared with loss and statistic
approaches, language representation learning is much more
robust because it learns implicit patterns of predicates and
avoids visual feature redundancy,which has not been stressed
by unbiased methods before.

However, language representation learning has been
adopted by some baseline models. For example, [18] takes
word embedding to ground attention on visual features. [10]

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04722-1&domain=pdf
https://orcid.org/0000-0002-7432-744X
http://orcid.org/0000-0001-9269-334X
https://github.com/rafa-cxg/PySGG-cxg


LANDMARK: language-guided representation enhancement framework for scene graph generation 26127

utilizes Cross Attention (CA) mechanism for multi-modality
learning. [19] introduces transformer-based architecture to
bridge the gap between images and texts. However, most of
these approaches are not plug-and-play and merely use sin-
gle representations regardless of different semantic contexts.
Therefore, failed to unleash the power of language.

In fact, words have multiple meaning that carries different
priors in terms of different semantics, which can guide scene
graph generation. Here, we give a multi-semantic reasoning
example in Fig. 1. Given this shopping picture, first, human
constructs a predicate distribution by the correlation between
predicates and “woman-ball” as well as their relative posi-
tion. This knowledge comes from experience and the process
is vision-independent. Next, still based on this area, human
can build the correlation between subject-object pairs and the
visual pattern like “woman’s hand is closed to ball”, which is
a strong “holding” relevant pattern. In contrast, the woman
and girl’s contours are irrelevant in terms of judging rela-
tions. Finally, according to surrounding objects (e.g., balls,
girls, lights), humans can infer the selling context to avoid
predicting play, because it is not suitable to this scene.

Motivated by these observations, we heuristically design
3 plug-and-play language modules that exploit different
language priors behind object categories. Each of them
takes detected object classes as input and generates seman-
tic embeddings into different semantic spaces, which are
used for extracting priors from language-visual pattern cor-
relations, language context and pair-predicate correlation,
respectively. Concretely, 1) Language Attention Module
projects subject-object word embeddings to a unified seman-
tic matrix, then, channel attention is used to extract attention
vector for relation visual feature map, which can learn rel-
evance between object pair and specific predicate-relevant
visual patterns 2) Language Context Module employs
transformer-based encoder to encode the global language
context into entity’s semantic embedding from a sequence
of entity labels. Compared with pretrained word embedding,
this module can generate semantic representation that fits the

context. These two modules are used for initializing entity
and relation visual-based representations, respectively. 3)
Experience Estimation Module is supervised by marginal
probability of subject-predicate and object-predicate to learn
the class and spatial aware predicate distribution as likeli-
hood offset. It is worth mentioning that language processing
is disentangled from visual feature at the very beginning, so
this framework is applicable to most SGG baseline models.

To the best of our knowledge, we are the first to utilize
multi-semantic language representation within object labels
to achieve unbiased Scene graph generation. The main con-
tributions could be summarized as follows:

1. We propose LANDMARK to introduce language repre-
sentation learning into unbiased scene graph generation,
which stresses the under-exploredmultiple semantics uti-
lization in the object label.

2. Wedevise threemodules that divide object labels into dis-
tinctive semantic spaces, then extract priors of language-
vision interactive patterns and semantic context as well
as pair-predicate correlation, respectively.

3. Experiments on the SGG benchmark show consistent
improvements upon baseline models and compatibil-
ity with other unbiased methods, which indicate the
effectiveness of multi-semantic language representations
induced from object labels.

2 Related works

Scene Graph Generation: There are mainly two main-
streammethods for scene graph generation: Based on context
modeling or graph convolutional network (GCN) [20]. The
first approach is focused on modeling global information
by sequential architecture [16, 17, 21–28]. Chen et al. [16]
uses two stacks of Transformer to encode global informa-
tion. Zellers et al. [17] uses LSTM to encode global context
that informs relation prediction. However, merely modeling
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Fig. 1 An example of multi-semantic language assistance for relation
prediction. Bottom-right corner (green bars) shows 3 candidates’ pos-
sibility updating process. a) Experience Estimation: Humans recall
a rough predicate distribution based on the co-occurrence possibility
of predicates and object pairs. b) Pattern Attention: Using the inter-

nal relationship between object pair and visual information for locating
predicate-relevant visual patterns. c)Context inference: Using context
to refine the meaning of subject and object, preventing prediction biases
caused by isolated considering object pairs
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global context is not sufficient for Scene graph tasks. Another
approach [9, 29–31] propagates massage between node and
edge features and focuses more on regional pair-wise infor-
mation. [9] applys a multi-stage graph message propagation
between entities and relationship representations. In [30],
Yang et al. prunes graphs to sparse ones, then an atten-
tional graph convolution network is applied for modulating
information flow. [29] utilizes GCN for updating state rep-
resentations as energy value. Chen et al.[32] constructs a
graph between entities and all relationship representations
and aggregated messages by GRU. Yet, this approach suffers
from insufficient global context encoding. Our method con-
siders both pair-wise and global contexts for representation
refinement.

Unbiased Scene Graph Generation: USGG has been
a hotspot research area since existing SGG datasets are
long-tail. FREQ [17] uses a distributed-based prior bias to
predictions. Chen et al. [16] utilizes a resistance bias item for
the relationship classifier during training to optimize the loss
value. CogTree [12] proposed a loss based on the automat-
ically built cognitive structure of the relationships from the
biased SGG predictions. [33] designs two separate classifiers
for head and tail predicates. Through mentioned methods get
a remarkable boost on specific baseline models in terms of
mRecall@k [34], they are sensitive to training data distribu-
tion and easily overfitting to tail classes. More recently, [35]
observes that directly using visual features results in biased
relation predictions. Later, [36] avoids directly using visual
features by utilizingHermitian inner product to embed visual
features into complex space. These observations inspire us to
design a network that learns language-guided visual features
and explores multi-semantics from words.

Multimodel Learning:Multimodel representation learn-
ing has been widely explored in zero-shot image retrieval
[37], text-video retrieval [38, 39], and object detection [40].
In the SGG task, language and commonsense are treated
as multimodel representations. [19] parses sentences in the

image-text dataset to extract triplet as supervision. [41] incor-
porated commonsense by unifying the form of scene graph
and commonsense graph. [10] adopts cross-attention mod-
ules between vision and text embedding. However, existing
methods treat language modality as a single representation,
which loses a lot of information from other perspectives.

3 Methodology

Problem formulation: Given an image I , scene graph gen-
eration aims to predict entity class set Ce, coordinate set Be

and relation set Cr . Generally, existing SGG models receive
visual entity and predicate (or node and edge) representations
from the backbone. Then a graph G = {Ce,Be, Cr } can be
formulated as

G = P(Cr ,Be, Ce|I ) = SGG(N , E), (1)

where N = {ei }ni=1 and E = {ei j } are the set of entity and
predicate representations. In this paper, we aimed to update
N and E by incorporating semantic priors.

Framework overview: LANDMARK consists of three
semantic learning modules, i.e., Language Attention Module
(LAM), Language Context Module (LCM), and Experience
Estimation Module (EEM). The framework architecture is
shown in Fig. 2. First, we obtain N , E from ROI Pool-
ing, Ce, and Be from the classifier head. Then, the semantic
extraction operation converts labels {ci } to semantic embed-
dings for each module. For LAM, semantic embeddings of
subject ci and object c j are transposed and multiplied to a
semantic matrix, then channel attention transfers the matrix
to the attention vector and updates relation representation.
LCM encodes semantic embeddings of all entity labels Ce
presented in the image, generating context-aware semantic
entity feature and concatenating it with visual entity repre-
sentation. The updated entity and relation representation are
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Fig. 2 LANDMARK architecture. The image first goes through a
generic object detector (Faster R-CNN) to get the predicted object’s
label and ROI feature. Then labels are served as three modules input

(i.e., EEM, LAM, LCM) and calculated distinctive semantics. Finally,
LAM and LCM outputs are used to refine relation and entity represen-
tations, respectively. EEM’s output is served as a prediction offset
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passed through the baselinemodel. For EEM, the distribution
label is generated to supervise experience estimator, which
combines subject-object semantic embedding with position
embedding to yield distribution logits. Finally, generated log-
its are used to update the final predicate likelihood.

3.1 Semantic extraction

Semantic extraction is used to transfer labels to the corre-
sponding semantic space, which is applied to three modules
independently. Specifically, the semantic extractor consists
of three operations:

⎧
⎨

⎩

f subse (ci ) = wT
s ci ,

f objse (c j ) = wT
o c j ,

f entse (ce) = wT
e ce,

(2)

where the first and second operations are used in LAM and
EEM for subject and object projection. Considering that the
same word as subject or object may have contrastive mean-
ings (e.g., eating could be a possible predicate if “man” is
subject, which is impossible when “man” is object), we use
different weights ws and wo to project subject and object
to semantic embedding. The last operation is used in LCM,
since all labels are treated as objects, we use unified we as
semantic embedding weight.

In fact, fse could be any projection function as long as
the input is object labels. Here, we only use a naive 1-layer
linear function to prove the extraction’s effectiveness.

3.2 Language AttentionModule

This module aims to learn the prior between object pair
and visual predicate-relevant patterns within visual relation
representation ei j . The original feature extraction network
(e.g., Reset [42]) keeps both spatial and semantic informa-
tion. Specifically, different channels focus on different visual
patterns. However, relation visual features inevitably mix
up with a huge amount of irrelevant background informa-
tion, so there is a need for channel selection. Heuristically,
given a specific subject-object pair (e.g., boy-basketball or
boy-street), the visual feature should have different activa-
tion. Therefore, we design a label-aware channel attention
mechanism. Specifically, given subject i and object j, we first
generate a semantic matrix xi j as a unique representation of
word-vision correlation:

xi j = f subse (ci ) ⊗ f objse (c j )
T , (3)

where ⊗ refers to matrix multiplication. We achieve chan-
nel attention by a series of 2D convolutions with the spatial

pooling on xi j to get attention vector eci j :

eci j = σ(Gpooling(G
nc
conv...σ (G1

conv(xi j )))) ∈ RC,1, (4)

where C is as the channel number of visual relation feature
ei j , nc is the number of 2D convolution layers, Gpooling is the
pooling operation, σ is the activation function. Finally, the
channel weights eci j will be used for updating ei j , so that irrel-
evant channels to relation discrimination will be suppressed:

êi j = ei j × eci j , (5)

where êi j is the refined relation representation, × is the dot
product operator.

3.3 Language Context Module

Compared with visual information, a single word is semanti-
cally isolated from other components in a sentence. Though
we devise LAM and EEM for semantic extraction, the uti-
lized pairwise labels are confined to local semantics, which
is insufficient for comprehensive semantic inference. Hence,
LCM is aiming at addressing the global context deficiency
problem. This module includes a semantic extractor and
context encoder. The context encoder consists of a multi-
layer transformer encoder with Multi-Head Self-Attention
(MHSA) [26] and Feed Forward Network (FFN) [26]. The
structure is illustrated in Fig. 3. Concretely, given an image,
supposed there are n entities, the input sequence X could be
described as follows:

X = {s0, s1, ..., sn} , (6)

where

si = γ ( f eseci + pi ) ∈ R
d . (7)

Here, ci and pi = φ[xi , yi , wi , hi ] refer to the class label and
entity’s position embedding of the i-th entity. xi , yi , wi , hi
are center coordinates, width, and height of the object i. γ

denotes the learnable linear transformation. Where d is the
dimension of each element in the sequence. We first reiterate
standard Scaled Dot-Product Attention [26] as below:

Attention(Q, K , V ) = softmax

(
QKT

√
dk

)

V , (8)

then, Multi-Head Self Attention is formulated as

MHSA(X) = Concat (head1, . . . , headh)W
O ,

headi = Attention
(
XWQ

i , XWK
i , XWV

i

)
, (9)
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Fig. 3 Context Encoder block
structure (left). Dot-Product
Attention (middle). Multi-Head
Self Attention (right)
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where WQ
i ,WK

i ,WV
i and WO are parameter matrices. The

b-th layer output Xb can be denoted as

X ′
b = MHSA(LN(Xb−1)) + Xb−1, (10)

Xb = FFN(LN(X ′
b)) + X ′

b, (11)

where Xb−1 is the (b − 1)th layer, and we set X0 = X . LN
is layer normalization. Differing from previous works [16],
LCM takes a sequence of entity labels as inputs, so the
module can learn semantic entity representation on top of
high-level information.

3.4 Experience EstimationModule

This module is designed to learn the relationship distribution
prior to the subject-object pair, as compensation for cross
entropy loss. EEM consists of a semantic extractor, experi-
ence estimator, and distribution label for supervision. Since
entity class and position both have an influence on judg-
ing relation, This module utilizes both classes and position
information to learn precise predicate distribution. First, we
embed entity label i, j and position embedding pi j to high
dimension representation space, then, the experience estima-
tor predicts the predicate distribution di j between subject i
and object j:

pi j = φp[xi , yi , wi , hi , x j , y j , w j , h j ], (12)

di j = ϕ
[
φs( f

sub
se (ci ))φo( f

obj
se (c j )), pi j

]
, (13)

where [·, ·] refers to concatenation operation, φp, φs, φo, ϕ

are fully connected layers with RELU as an activation func-
tion. Finally, we merge relationship distribution di j with the
prediction from the baseline, which could be described as

d̂i, j = SGG(n̂i j , êi j ) + di j , (14)

where d̂i, j is the updated prediction likelihood. n̂i j and êi j
are enhanced entity and relation feature obtained by LAM
and CAM (Sections 3.2, 3.3), respectively.

Distribution Label Generation: Dataset annotations
inherently reflect human commonsense, so we manage
to generate accurate distribution labels from the dataset.
For subject i, object j, we obtain msub

i mobj
j as “subject-

predicate” and “predicate-object” marginal distributions.
Since msub

i ,mobj
j are independent distribution, we calculate

joint possibility p joint
i j as

p joint
i j = msub

i � mobj
j , (15)

where � denotes the element-wise product. Though EEM is
like FREQ [17] generates predicate distribution from statis-
tics, FREQ directly counts triplets 〈subject, predicate,
object〉 occurrence. However, some triplet samples are
scarce in training samples, so it is hard to establish an
informative distribution prior. In contrast, EEM uses joint
possibility as labels to infer the predicate distribution. Fig-
ure 4 is a typical example of generated joint possibility p joint

i j
of a triplet that not occurred in the training set. In this circum-
stance, FREQ could not work due to zero sample number,
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Fig. 4 Joint possibility for the
subject man and object
surfboard. The ground truth
triplet 〈man,of,surfboard〉 is
sampled from zero-shot split
(where triplets are only existed
in the evaluation set but not
occurred in the training set)

whereas, we can see that the top 5 highest likelihoods are
reasonable and include many possible scenarios. In contrast,
the predicate “of” is ambiguous. A better predicate could be
one of top likelihoods from joint possibility.

Considering that introducing position information makes
accurate predicate possible, we design a fusion function for
mitigating joint possibility and true predicate label. The dis-
tribution label li j can be denoted as

li j = μ × p joint
i j + (1 − μ) × onehot[ri j ], (16)

whereμ is a factor regulating the proportion of marginal fre-
quency. ri j refers to the true predicate label between subject
i and object j .

Objective Function: we choose MSE loss between dis-
tribution label li, j and predicted distribution di, j , which is
denoted as

MSE = 1

K

K∑

i=1

(di , li )
2, (17)

where K is the number of relation categories in dataset.

3.5 Baselinemodel

Any off-the-shelf two-stage scene graph generation model
can be used as a baseline. It could be either a sequential
model or a graph neural network, as long as it needs entity
and relation features for prediction.

4 Experiments

In this section, we first introduce the experiment settings in
our experiments. Then,we test our framework’s effectiveness

on several SGG models and conduct experiments to analyze
the compatibility between our method and the state-of-art
unbiased strategies. Finally, detailed analyses and qualita-
tive studies are presented to further verify LANDMARK’s
superiority from different perspectives.

4.1 Experiment settings

DatasetsWeemploy thewidely adoptedVisualGenome [43]
dataset’s split VG150 [44] to train and evaluate our frame-
work. The VG150 dataset contains the most frequent 150
object categories and 50 predicate categories in VG. It con-
sists of more than 108k images, with 70% of images held
out for training and 30% for testing. Among the training set,
5000 images are used for evaluation.

Tasks.We consider three conventional sub-tasks of scene
graph generation to evaluate our framework. 1) Predicate
Classification (PredCls) predicts relationships between each
object pair given their ground-truth bounding boxes and
classes. 2) Scene Graph Classification (SGCls) predicts the
object classes and their relationships given the ground-
truth bounding boxes of objects. 3) Scene Graph Detection
(SGDet) needs to detect object classes and bounding boxes,
then predict their relationships.

EvaluationMetricswe report widely accepted Recall@k
[34] and mean Recall@k [32] for evaluating the model’s
performance. Recall@k computes the fraction of times the
correct relationship is predicted in the top k predictions of
one image, the mean Recall is used to evaluate unbiased per-
formance. However, both metrics are calculated based on
the image level. In order to evaluate EEM, we need a met-
ric to measure on prediction level. Therefore, the TOP-N
Recall@K is proposed to allow topN scored predicates in one
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Table 2 Compatibility test of unbiased methods and LANDMARK under three sub-tasks on the VG dataset

Method PredCls SGCls SGDet
mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100

MotifsTDE 22.87/25.90 35.28/41.11 13.76/15.36 23.88/27.42 7.87/9.55 9.83/13.06

MotifsBLS 30.64/32.76 54.56/56.27 20.21/21.09 34.11/35.00 13.20/15.97 25.27/28.88

MotifsBLS+TDE 26.19/30.84 17.01/18.89 17.31/19.28 19.63/21.43 9.18/11.89 8.34/10.27

MotifsTDE+LANDMARK 24.59/29.27 39.24/45.25 14.43/17.03 28.70/32.28 8.98/11.35 9.92/12.85

MotifsBLS+LANDMARK 33.62/35.69 55.29/56.80 21.43/22.05 36.02/36.85 13.86/16.31 25.10/29.12

BGNNTDE 19.23/21.59 32.75/36.45 13.09/14.18 28.66/31.20 8.65/11.01 20.36/26.00

BGNN∗
BLS 30.64/32.76 55.39/56.8 16.69/17.83 35.70/36.94 13.17/15.56 23.54/27.56

BGNNBLS+TDE 31.88/34.89 30.37/33.33 16.97/18.70 21.62/23.52 11.60/14.32 19.45/24.11

BGNNTDE+LANDMARK 20.32/22.78 50.21/53.85 14.56/15.58 35.31/37.38 9.68/12.41 25.72/27.98

BGNNBLS+LANDMARK 34.41/36.43 53.99/55.42 18.27/19.12 34.55/35.80 14.08/18.34 24.87/29.41

* means this Baseline model and unbiased method are proposed in the same paper. All methods are reimplemented on our codebase.
The best methods under mR metric are marked in bold.

prediction as candidates, then, N × K number of candidates
are used for calculating Recall, i.e.,

TOP-N Recall@K = correct({ candidates}N×K )

Ngt
,

when N=1, TOP-N Recall@K is equal to Recall@K.
Implementation Details We use pretrained Faster R-

CNN [45] with backbone ResNeXt-101-FPN [46] as object
detector. ROIAlign’s [46] resolution is 7. We froze its weight
during training. We use pretrained GloVe [47] weight as
initial ws, wo, we in semantic extractor. For EEM, we use
3-layers MLP�s,�o,�p with 1024 neurons. ϕ is a 2-layers
MLP with hidden dimension 4096. μ in Eq. 16 is set to
0.3 for unbiased methods, and 0.7 for baseline models. For
Eq. 4, we choose two 3 × 3 convolution layers to generate
a 256-dim attention vector. For LCM, We choose the con-
text encoder with 4 layers and 8 heads, entity dimension
d = 512. For training, approximately 10000 iterations are
enough for each baseline. The basic learning rate is 0.01

and the batch size is 16. We choose the SGD optimizer for
optimization.

4.2 Comparison with baselinemodels

Table 1 shows mRecall & Recall of 5 baseline models with
or without our framework LANDMARK. Baseline mod-
els include GCN-based models like G-RCNN [30], and
BGNN [9], context modeling networks like IMP [44], Trans-
former [26], and Motifs [17]. It is worth mentioning that we
do not deploy any unbiased strategies on these models. We
observe that incorporating our proposed LANDMARK leads
to a consistent mRecall improvement in all three tasks for all
baseline models, which demonstrates the robustness of our
approach. For mR@100, our model average improvements
are 3.66%, 2.64%, and 1.37% on three tasks. The improve-
ments might be attributed to the fact that multi-semantic
language representations indeed facilitate visual represen-
tations. It is not surprising that improvement consecutively

Fig. 5 The number of data samples (bars) and Recall@100 improvements (dots) of LANDMARK over BGNN on PredCls task. The red dots
indicate that BGNN Recall@100 is zero. PCC is the abbreviation of Pearson Correlation Coefficient
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Table 3 Ablation studies of
three modules on BGNN+BLS

Module PredCls SGCls SGDet
EEM LAM LCM mR@50/100 mR@50/100 mR@50/100

30.64/32.76 16.69/17.83 13.17/15.56

� 31.75/33.00 17.27/18.18 13.54/15.92

� � 32.06/33.36 17.75/18.89 13.84/16.42

� � 34.10/36.07 18.07/19.01 13.89/17.00

� � � 34.41/36.43 18.27/19.12 14.08/18.34

The best methods under mR metric are marked in bold

shrinks in three tasks, due to inaccurate class andposition pre-
dicted by pretrained object detector. Besides, Recall shows
drops to different extents, which is a common characteristic
of an unbiased method.

We also measure the total parameters (M) and GFLOPs
in Table 1. There are ∼20M parameters increasing and
∼2.5GFLOPs additional computation cost when adding
LANDMARK. The relative proportions are about 6% and
1.2%, respectively. It is attributed to lightweight module
design and adoption of low-dimensional inputs (i.e., lan-
guage rather than image inputs.)

4.3 Compatibility with unbiasedmethods

A tricky problem of unbiased SGG strategies is that most of
them have demanding working conditions, for example, the
baseline model’s performance or sample distribution. Hence,
we test our framework’s compatibility with other unbiased
methods by stacking two methods together, the mRecall &
Recall are listed in Table 2. The listed strategies belong to
different types, e.g., data resampling: BLS [9], logit manip-
ulation: TDE [15], and feature refinement: LANDMARK
(ours). According to this table, there are several findings:

• Applying LANDMARKwith other methods is effective.
For instance, BLS with LANDMARK on BGNN gets
new SOTA performance. The reason has two: 1) LAND-
MARK has a distinctive semantic feature enhancement
strategy, which does not conflict with other methods. 2)
Most of the unbiased methods are designed to obtain pri-
ors from biased prerequisites (e.g., baseline, long-tailed
dataset), whereas LANDMARK is model-agnostic, that
is, baseline does not affect LANDMARK’s inference.

• Only a tiny improvement, or even decrease in mR@K
occurred when using BLS and TDE together. For exam-
ple, Motif+BLS+TDE results in an obvious decrease in
mR@k. This suggests that these methods are sensitive to
changes in external circumstances (e.g., sampling distri-
bution, baseline model capability).

• Our network does not sacrifice Recall a lot. BLS+LAND
MARKonMotifs has a higherRecall than theonewithout
ours. By contrast, using BLS+TDE remarkably impair
the Recall performance. We speculate that existing unbi-
ased methods do not explore real discrepancies between
predicates, but only increase the likelihood of tail predi-
cates.

4.4 Predicate analysis

Shown inFig. 5,wepresent the number of data samples inVG
dataset and Recall@100 improvements of LANDMARK.
In 50 predicates, only 11 predicates predicted by baseline
are superior to LANDMARK. Though some predicates have
obvious decreases, e.g., “wearing”. It is compensated by the
increase of “wears”. Besides, there are 5 hard-to-predict
predicates (i.e. belong to, walking in, mounted on, made of,
says) that are recalled by LANDMARK.

For exploring the correlation between Recall improve-
ments and data distribution, Pearson Correlation Coefficient
(PCC) is used. PCC= -0.32 shows a weak negative correla-
tion between dataset bias and LANDMARK improvements.
It should be noticed that some unbiased methods overfitting
to tail classes so that Recall improvements show a strong
negative correlation with the number of samples (e.g., TDE:
PCC=-0.56). Therefore, LANDMARK is robust to data dis-
tribution.

Table 4 Comparison of EEM
and FREQ on baseline Motifs

Module PredCls SGCls SGDet
Top-1/5 R@100 Top-1/5 R@100 Top-1/5 R@100

FREQ [17] 14.72/42.47 9.71/27.56 7.66/18.32

EEM 22.74/40.38 14.76/29.14 14.13/23.43

The best methods under the Top-N R metric are marked in bold

123



LANDMARK: language-guided representation enhancement framework for scene graph generation 26135

person-chair clock-snowman-shoe man-shirt woman-pant woman-table

Fig. 6 Visualization of LAM.We visualize the union area by giving ground truth subject-object pair and random generated pair (red words), which
shows the connection between word pairs and particular visual features

4.5 Ablation studies

We investigate each LANDMARK component by incremen-
tally adding EEM, LAM, and LCM to the BGNN+BLS in
Table 3. The results indicate that: 1) each component is
helpful for the whole framework, and no conflict between
them. Improvements show that threemodules extract distinc-
tive semantics from the same label inputs. 2) EEM mainly
improves PredCls more than other tasks, whichmight caused
by inaccurate position and object label predictions in last
two tasks. 3) LCM and LAM consistently promote perfor-
mances of each task. Because priors from language context
and correlation of word-visual patterns are relatively robust
to misclassified but similar semantic object labels.

4.6 Analysis of experience estimationmodule

As mentioned before, Experience Estimation Module inde-
pendently outputs predicate predictions like FrequencyBase-
line (FREQ) [17]. Therefore, we evaluate TOP-N Recall of
EEM and FREQ trained on Motifs in Table 4. Except for
Top-5 on PredCls task, all performances of EEM outper-

Fig. 7 mR@100 of SGG models with different model sizes (1,3,4,6
layers of LCM) on SGDet task

form FREQ, and the gap enlarged along with task difficulty
increased. It is attributed to supervision from joint possibility
that alleviates the deficiency of rare subject-object samples.
Besides, position information introduced in EEM makes it
accurate when inferencing the same object pair.

4.7 Analysis of Language AttentionModule

To validate LAM’s effectiveness, we visualize heatmaps of
relation representation êi j (Eq. 5) generated by BGNN+BLS+
LANDMARKwith ground truth or random generated subject-
object pair (with red words) in Fig. 6. Intuitively, we can
notice that attention area is correlatedwith a given subject and
object. For instance, in the leftmost two images, the attention
area transfers from the foot to the middle of the man’s body
when the object changes from shoe to shirt. While given
irrelevant words in the rightmost two images, e.g., clock-
snow, this module seems to be interested in the top left and
bottom area, which suggests LAM can associate words to
related visual pattern without given coordinates.

Fig. 8 mR@100 performance of SGG models with different μ factor
on SGDet task
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Fig. 9 Visualization Results: In three columns, we present scene graphs generated by annotations, BGNN with BLS (unbiased model), and
LANDMARK, respectively. Relations and entities that neither occur in annotations nor baseline are marked with orange and purple, respectively

4.8 Analysis of Language Context Module

We test mRecall@100 performance of the different numbers
of LCM transformer layers in Fig. 7. For each model, we
record 1,3,4,6-layer LCM’s performance and corresponding
parameters. The figure showsmRecall has a noticeable boost
with the number of layers increasing from 1 to 4. However,
the 6-layer structure could not bring sufficient performance
improvement in consideration of parameters increase. There-
fore, 4 layers are adopted for LCM.

4.9 Evaluation of� factor

Figure 8 shows 4 model’s mRecall@100 on SGDet task with
different factor μ in Eq. 16. We find that for baseline mod-
els, factor=0.7 is preferable, and for unbiased methods, 0.3
is better. This indicates that EEM mainly learns diversified
predicates.

4.10 Qualitative studies

We visualize scene graph generation result from annotations,
BGNNwith BLS, andBGNN+BLS+LANDMARKon Pred-
Cls task in Fig. 9. Intuitively, annotations and BGNN+BLS
tend to predict relationships between “less informative
pairs” (e.g., person-eye, roof-building and light-bus). How-
ever, LANDMARK can further detect relationships between
man-sidewalk or roof-bus. Besides, LANDMARK focuses
on high-level semantic and positional relationships. For
instance, “hand hold pizza” and “light on back of bus” prove
that our framework successfully learns the position relation-
ships between objects.

5 Conclusion

In this paper, we first point out inadequate languagemodality
utilization in precious SGG methods. Motivated by lan-

guage’s polysemy, we purpose a representation enhancement
framework (LANDMARK) for the SGG task, featured by
multi-semantic extraction from object labels. This plug-in
network explores word-vision correlated patterns and lan-
guage context from word embedding and learns predicate
distribution from subject-object pair with the position. Com-
pared with other unbiased methods, our framework is a new
approach from the representation refinement perspective.
Experiment and analysis show consistent improvement in
Baseline models and great compatibility with other unbiased
methods.
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