
https://doi.org/10.1007/s10489-023-04691-5

Variational meta reinforcement learning for social robotics

Anand Ballou1 · Xavier Alameda-Pineda1 · Chris Reinke1

Accepted: 4 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
With the increasing presence of robots in our everyday environments, improving their social skills is of utmost importance.
Nonetheless, social robotics still faces many challenges. One bottleneck is that robotic behaviors often need to be adapted, as
social norms depend strongly on the environment. For example, a robot should navigate more carefully around patients in a
hospital than around workers in an office. In this work, we investigate meta-reinforcement learning (meta-RL) as a potential
solution. Here, robot behaviors are learned via reinforcement learning, where a reward function needs to be chosen so that
the robot learns an appropriate behavior for a given environment. We propose to use a variational meta-RL procedure that
quickly adapts the robots’ behavior to new reward functions. As a result, in a new environment different reward functions can
be quickly evaluated and an appropriate one selected. The procedure learns a vectorized representation for reward functions
and a meta-policy that can be conditioned to such a representation. Given observations from a new reward function, the
procedure identifies its representation and conditions the meta-policy to it. While investigating the procedure’s capabilities,
we realized that it suffers from posterior collapse where only a subset of the dimensions in the representation encode useful
information, resulting in reduced performance. Our second contribution, a radial basis function (RBF) layer, partiallymitigates
this negative effect. The RBF layer lifts the representation to a higher dimensional space, which is more easily exploitable for
the meta-policy. We demonstrate the interest of the RBF layer and the usage of meta-RL for social robotics in four robotic
simulation tasks.

Keywords Social robotics · Meta-learning · Deep reinforcement learning · Radial-basis-functions

Since the emergence of social robotics [1], substantial
efforts have been made to enable the deployment of interac-
tive robots in different environments, such as industrial [2],
healthcare [3], or education [4] facilities. However, this
deployment is very challenging, since socially appropriate
behaviors are strongly context-dependent, making it neces-
sary to adapt them to each target environment. For example,
a social robot might be used to navigate a care center for the
elderly or an office. In the care center, the robot should avoid
getting too close to people to ensure that they do not feel

B Anand Ballou
anand.ballou@inria.fr

Xavier Alameda-Pineda
xavier.alameda-pineda@inria.fr

Chris Reinke
chris.reinke@inria.fr

1 RobotLearn, Inria, Univ. Grenoble Alpes, CNRS, Grenoble
INP, LJK, 655 Avenue de l’Europe, Montbonnot 38334,
France

unsafe. Conversely, in an office environment this restriction
might be less important and the robot may move closer to
people to reach its target position faster. Being able to adapt
a robot’s behavior quickly to the specific needs of a new
environment is essential to the practical application of social
robotics.

Given the complex dynamics of social environments, the
approach of manually designing and adapting behaviors for
each environment, for example by finite statemachines [5], is
often not feasible. As an alternative, reinforcement learning
(RL) [6] can be used for training social behaviors. However,
classical RL introduces its own set of problems when applied
to social robotics [7]. The most prominent problem is that
RL requires large amounts of training data, meaning hours
of observations that have to be collected while the robot is
learning behaviors for a new environment.

We propose the use of meta-RL [8] to overcome this issue
(Fig. 1). Meta-RL aims to adapt the learning process to a
certain problem domain so that it can efficiently solve a new
target task in this domain. Of particular interest to us are

123

/ Published online: 6 September 2023

Applied Intelligence (2023) 53:27249–27268

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04691-5&domain=pdf
https://orcid.org/0009-0000-1041-3632
https://orcid.org/0000-0002-5354-1084
http://orcid.org/0000-0003-2368-521X

Fig. 1 Variational Meta-RL for social robotics: Meta-RL enables
robots to quickly adapt to task changes using only a few observations
of the target task, making it an efficient approach for training social
behaviors in robots.Weuse a variational encoder network to convert task
observations into a task representation in the form of a vector. Themeta-
policy, which is the robot’s behavior, is then conditioned on this task
representation. The robot can quickly adapt to a new task by collecting
a small number of observations and computing the corresponding task
representation. This representation is then used to condition the meta-
policy for the new task

methods that are able to adapt using only a few observations
of the target task. In our case, tasks represent the different
environments of a social robot. Each task is defined by a
reward function that defines which states a robot should try
to reach or avoid. It is often a weighted sum over several
reward components: R(s) = ∑

i wi ri (s). For example, for
social navigation [9, 10], the reward function might include
a positive component for reaching the robot’s target position
and a negative component for getting too close to people.
Depending on the environment, such as in our office vs. care
center example, we choose a different reward function for
each environment. In a care center, the reward functionmight
have a stronger negative component to prevent the robot from
getting too close to patients. Conversely, in an office environ-
ment, the positive component for reaching the goal might be
stronger so that the robot reaches its destination faster. Meta-
RL aims to adapt quickly to such task changes.

Even though meta-RL should efficiently adapt to new
tasks (i.e. reward functions), to our knowledge its use in
social robotics has scarcely been explored. To date, the only
study on the topic uses on-policy meta-RL, requiring lots of
interactions with the environment before reaching a satisfac-
tory performance [11]. To cope with this issue, we propose
to explore the use of off-policy meta-RL methods for social
robotics tasks.

More precisely, we will focus on meta-RL methods that
learn task-conditioned policies, since they are able to adapt
using only a few observations (or environment steps). These
methods learn a meta-policy, i.e., a behavior that is condi-
tioned to a task representation in the form of a vector z ∈ R

d .

An encoder network that takes input observations of a task
is used to compute z. The encoder network and the meta-
policy are learned concurrently in an end-to-end way on a
set of random source tasks. After this meta-training, given
a new target task, a small number of observations are col-
lected to compute its task representation and to condition the
meta-policy to it.

A promising research direction for task-conditioned poli-
cies is variational architectures [12], such as PEARL [13].
Instead of learning a deterministic representation of tasks,
PEARL learns to represent them via a distribution, exploiting
the flexibility of probabilistic models and the representation
power of deep neural networks [14, 15]. We investigated
the usability of such variational meta-RL frameworks for
social robotic tasks and realized that the learned encoder
suffers from posterior collapse resulting in reduced learn-
ing performance (Fig. 2). We propose to use a radial basis
function (RBF) layer [16] to transform the task represen-
tation before giving it to the downstream task-conditioned
policy, thus constructing an embedding that is more suited
to representing tasks. RBF networks are universal function
approximators [17] whose parameters can be learned and
exhibit interesting results in classification tasks [18, 19] as
well as in value-learning for continuous action DRL [20].

In summary, our contribution is twofold:

1. We successfully demonstrate the use of off-policy meta-
RL on three robotics tasks and four different settings by
quickly adapting to various reward functions.

2. We improve the existing PEARL algorithm by introduc-
ing an RBF layer that transforms the task representation,
enabling better training of the task-dependent behavior.

In this paper, we first discuss other work related to our
topic, then introduce our methodology, and finally present
the experimental evaluation.

1 Related work

1.1 Adaptive Social Robotics and Reinforcement
Learning

Social robotics aims to design robots that share the same
space as humans and interact with them in a natural and
interpersonal manner. This includes tasks such as human-
aware navigation [21] or controlling a robot’s gaze to
perceive humans optimally [22].Ageneral overviewof social
robotics, including methods and their potential application
domains, can be found in the following surveys: [23–25].
An important factor for the successful deployment of social
robots is their adaptability to different users and social envi-
ronments. The following surveys provide an introduction to

123

27250 Ballaou et al.

Fig. 2 Posterior collapse in PEARL: (left-top) The ground truth task
representation, where each task corresponds to a colored dot. The three
primary colors correspond to the strength of each of the three reward
component weights. (left-bottom) PEARL’s learned task representation
uses only one dimension (z1) and exhibits posterior collapse in the two

other dimensions (z2 and z3). (right) As a result, PEARL’s learning per-
formance compared to a task-conditioned policy using the ground truth
(Oracle) is reduced. The proposed RBF-PEARL aims to close this gap
by mitigating the negative impact of posterior collapse during training

thefield of adaptive social robotics: [26–28].Adaptive behav-
iors are generally complex and difficult to engineer by hand,
such as with finite state machines or behavior trees [5].

As a possible solution,RL [6] can be used to learn complex
social behaviors for robots from direct interactions with the
environment. But RL introduces its own challenges as dis-
cussed in the survey by Akalin and Loutfi [7] which provides
a general overview of the usage of RL in social robotics. One
crucial factor for the success of RL is the design of the reward
function. The reward function enables the optimal behavior
to be learned by giving positive rewards for reaching desired
states and behaviors and negative rewards for undesired ones.
Given a reward function, RL algorithms attempt to learn the
optimal behavior by maximizing the reward.

As the behavior of an RL agent is determined by the
reward function, adaptability can be introduced through two
approaches: Either 1) by including rewards for adaptability
in the reward function, or 2) by adapting the reward func-
tion to each social situation. A prominent line of research
for the first direction is to obtain rewards directly from a
human instructor who teaches the robot. See for example
[29], where human feedback is used to learn the optimal
proxemics, i.e., how close a robot should position itself to
people, for a human-aware navigation controller. While col-
lecting rewards from the user might be suitable for simple
tasks requiring few examples to properly learn the task, it is
not well suited to more complex learning problems requiring
hundreds of samples.

Our work follows the second direction, where social envi-
ronments and scenarios are modeled by different reward
functions. The goal of the RL agent is to adapt quickly to
a new reward function. An example of this method is the
multitask learning approach in [30], where reward functions
are parameterized. The agent learns a task-dependent policy,
i.e., a behavior that is conditioned to the parameters of the tar-
get reward function. The policy is trained over several reward
functions. Given a new task and its reward function param-
eters, the agent is then directly adapted to it. Nonetheless,
this approach is restricted to parameterized reward functions,
which are not always available. In this paper, we explore
meta-RL methods for adaptive social robotics tasks, which
have the advantage of adapting quickly to complex reward
functions without the requirement of being parameterized.

1.2 DeepMeta Reinforcement Learning

Deep meta-RL aims to “learn to reinforcement learn,” which
means to improve the learning speed in a new target task
using experience from a set of similar meta-training tasks.
The survey by Beck et al. [8] categorizes algorithms by their
goal into many-shot and few-shot algorithms.

Many-shot algorithms such as LPG [31], or MetaGenRL
[32], try to improve standard RL algorithms by using many
observations from the target tasks. This stands in contrast
with our goal of adapting quickly to a new social environ-
ment.

123

27251Variational meta reinforcement learning for social robotics

Few-shot algorithms such as MAML [33] or RL2 [34]
aim to adapt to a new target task using only a few observa-
tions from that task. MAML learns initialization parameters
for a deep network which can then be trained faster in a tar-
get task. MAML improves the learning performance, but it
uses gradient-based updates to adapt to the target task, still
requiring many observations and training iterations for adap-
tation. In contrast, RL2 uses a recurrent deep network that is
trained to identify the task characteristics from observations
when executed in its target task, and then to adapt its own
behavior to it. RL2 does not require gradient-based updates to
adapt and shows improved performance overMAML [13]. A
drawback of currentMAMLandRL2 implementations is that
they are on-policy. On-policymethods try to improve the pol-
icy that is currently used to collect environment observations
[6]. Conversely, off-policy algorithms such asQ-learning can
optimize any policy (usually the optimal one) based on the
collected observations. This usually makes off-policy meth-
ods more sample-efficient than on-policy methods.

For this study, we choose to focus on PEARL [13, 35], an
off-policy few-shot meta-RL algorithm. Similarly to RL2, it
uses observations from the target task to adapt directly to it
without gradient-based updates. Given a target task, PEARL
conditions its deep neural model to it with a description of
the task in the form of a vector input z ∈ R

d . It utilizes a vari-
ational inference method to learn how to represent tasks and
to identify a good task representation based on a few task
observations. PEARL has shown that it needs 20 to 100×
fewer observations to learn target tasks compared to MAML
and RL2 [13], justifying our choice to use it as our base
approach for meta-RL in social robotics. We aim to evalu-
ate the use and limitations of PEARL in meta-RL for social
robotics and to provide technical solutions to address some
of these limitations.

1.3 Posterior Collapse

As for any variationalmethod, PEARLcan suffer fromposte-
rior collapse,meaning that at least one of the latent bottleneck
dimensions becomes non-informative during training. This
behavior can be easily identified by looking at the per-
dimension Kullback-Leibler divergence between the poste-
rior and prior distributions. Once a dimension collapses, it is
not needed to ensure good reconstruction. Several factors can
cause posterior collapse, e.g., a local optima [36], the objec-
tive function itself [37–40], a too unconstrained variance [41]
or the fact that the posterior approximation lags behind the
true posterior model [42]. In the case of PEARL, having
collapsed dimensions translate into a reduction in the task
identification power of the method. To mitigate the negative
impact of posterior collapse, we propose to raise the repre-
sentation power of the latent representation using a radial

basis function layer. In our experiments, this proves more
beneficial than increasing the network capacity of PEARL.

2 Approach

2.1 Preliminaries

2.1.1 Reinforcement Learning

Tasks in RL are formalized as Markov decision processes
(MDPs). An MDP is a tuple (S,A,P,R) with state space
S and action space A. The agent transitions from a state
st ∈ S by action at ∈ A to state st+1 at time step t . The
transition probability density function P(st+1|st , at) defines
the environment dynamics giving the probabilities for tran-
sitions. For each transition, the agent receives a reward
defined by the reward function: rt = R(st , at , st+1) ∈ R.
The probability transition function and reward function are
unknown to the agent. The goal of the agent is to maxi-
mize the expected future return for each time step t : Gt =
E

[∑∞
k=0 γ kR(st+k, at+k, st+1+k)

]
where the discount fac-

tor γ ∈ [0, 1) defines the importance of short-term rewards
relative to long-term ones. RL agents maximize the return by
learning a policy π(a|s) = Pr(At = a|St = s) that defines
the probability of the agent taking action a ∈ A in state
s ∈ S.

In the case of robotics tasks, the state is, for example, rep-
resented by the input from the robot’s visual (cameras) and
audio (microphones) sensors. Actions are the motor com-
mands sent to its actuators. Taking an action will have an
impact on the environment and will create stochastic change
in it. The goal of the task is given by the reward function, e.g.,
the robot is rewarded if it reaches a certain target position.

2.1.2 Variational Meta-RL (PEARL)

In this work, wewould like an agent to adapt quickly to a new
reward function using only a few observations. We formalize
this problem as a meta-RL problem. Each reward function
represents a task τ ∈ T with τ = {R(st , at , st+1)}. We
assume a distribution ρ(τ) over the task.We differentiate two
meta-learning phases: 1) meta-training and 2) meta-testing.
Duringmeta-training, a number of training tasks are sampled
according to ρ(τ). Based on these training tasks, a task con-
ditioned policy π(a|s, τ) is learned. During meta-testing, a
different set of test tasks is sampled from ρ(τ) and the adap-
tation of the learned policy to these tasks is measured.

We chose PEARL [13] as ourmeta-RL algorithm. PEARL
learns a task-conditioned policy π(a|s, zτ) where zτ ∈
Z = R

d is a low-dimensional task representation. The
task representation zτ conditions the policy towards max-
imizing the return of the reward function for task τ . The

123

27252 Ballaou et al.

representation zτ = f (cτ) is computed based on observed
transitions from a task, called the context cτ = {cτ

n}, where
cτ
n = (sn, an, rn, s′

n). PEARLuses a variationalmethod, sim-
ilar to variational autoencoders (VAEs) [12], to estimate the
posterior distribution of the low-dimensional representation
given the context p(z|c). It approximates the posterior with
an inference network qφ(z|c) parametrized by φ. The net-
work is trained on a log-likelihood objective resulting in the
following variational lower bound:

Eτ

[
Ez∼qφ(z|cτ)

[
R(τ, z) + βDKL(qφ(z|cτ))‖p(z))]] (1)

where R(τ, z) is the return for task τ using the policy con-
ditioned on z and p(z) is a standard Gaussian prior over z.
The inference network is a product of independent Gaussian
factors for each transition in cτ :

qφ(z|cτ) ∝
N∏

n=1

N
(
f μ
φ (cτ

n), f σ
φ (cτ

n)
)

(2)

where f μ
φ and f σ

φ are represented by a neural network.
Duringmeta-training, the policyπ(a|s, z) is learned using

the soft actor-critic (SAC) [43] algorithm. SAC is off-policy,
consisting of an actor πθπ (a|s, z) and a critic QθQ (s, a, z)
network. PEARL jointly trains the inference, actor, and critic
networks using the reparameterization trick, similar to VAEs
[12]. During a meta-training step, the training procedure has
two phases: 1) data collection and 2) network parameter
updating. In the data collection step, a replay buffer Bτ is
filled with the transitions from K trajectories for each train-
ing task τ . Then, for each trajectory PEARL samples a task
representation z ∼ qφ(z|cτ) to condition the policy where
cτ is sampled from the replay buffer Bτ . During the sec-
ond phase, the procedure updates the network parameters
for each training task τ . It first samples a batch of context
cτ from recently sampled transitions in the replay buffer Bτ .
Then, the task representation z ∼ qφ(z|cτ) is sampled from
the posterior distribution of z given the context cτ . The critic
and actor networks are updated using the task representation
and independently sampled transitions from thewhole replay
buffer. The loss of the critic is given by:

Lcri tic = E(s,a,r ,s′)∼B
z∼qφ(z|c)

[
Qθ (s, a, z) − (r + V̇ (s′, ż))

]2
(3)

where V̇ is the value, i.e., the maximum Q-value, of a target
network, and ż indicates that gradients are not being com-
puted through it. A target network is necessary here because
directly implementing Q learning with neural networks was
shown to be unstable in many environments [44]. The actor
loss is given by:

Lact = Es∼B,a∼πθ
z∼qφ(z|c)

[log(πθ (a|s, ż) − (Qθ (s, a, ż))] (4)

The loss of the inference network for the task representa-
tion is composed of the critic loss and the Kullback-Leibler
divergence term from (1):

Lφ = E(s,a,r ,s′)∼B
z∼qφ(z|c)

[
Lcri tic + βDKL(qφ(z|cτ))‖p(z))] (5)

For meta-testing, a test task τ is first explored for a few
hundred time steps. The policy πe(a|s, ze) used for explo-
ration is conditioned to a task representation sampled from
the Gaussian prior ze ∼ p(z). After the exploration phase,
the context cτ collected with πe is used to compute the final
task representation given by the sample mean of the pos-
terior mean: zτ = 1

N

∑N
n=1 f μ

φ (cτ
n). More details on the

meta-testing phase are provided in the experimental section
(Section 3).

2.2 RBF for Variational Meta-RL

We noticed that in several scenarios PEARL suffers from
posterior collapse (of the learned task representation z). As a
result, not all dimensions of z are used. The task information
is compressed in a few dimensions, making it difficult for
the downstream policy and critic network to learn from z.
To compensate for this, we propose to transform the task
representation z̃ = ϕ(z) to a representation that is easier
to process for downstream networks. Inspired by [20], we
propose the usage of radial basis function (RBF) layers to
transform the task representation.

We construct the RBF layer based on the idea of RBF
networks [16], which are universal function approximators
[17]. RBF networks consist of a layer of hidden neurons
that have a Gaussian activation function. The output of the
networks is a weighted sum over the Gaussian activations.
In a similar manner, our proposed RBF layer consists of a
layer of neurons. For each input dimension z j ∈ R from
the original task representation there exist N RBF neurons:
z̃ j,1, . . . , z̃ j,N . Each neuron represents a radial basis function
having a Gaussian shape:

z̃i, j = exp
(
−δi, j ||zi − ci, j ||2

)
(6)

where δi, j ∈ R is a scaling factor and ci, j ∈ R is the cen-
ter, i.e., the point of the highest activation. δ and c are the
parameters of the RBF layer, which can be either fixed or
trained using gradient descent based on the loss function of
downstream networks.

In summary, we propose to transform the task repre-
sentation using an RBF layer: z̃ = ϕ(z). The resulting
representation is then given to the task conditioned actor
πθ (a|s, z̃) and critic Q(s, a, z̃) network (Fig. 3).

123

27253Variational meta reinforcement learning for social robotics

Fig. 3 PEARL-RBFArchitecture: The proposed meta-RL procedure
learns to adapt to unseen test reward functions. The context encoder uses
data from the replay buffer to infer the posterior over the latent context
variable z. The latent context sampled from theposterior z = (z1, . . . zd)

is then fed to the RBF network, which uplifts every input dimension m
to a different k-dimensional representation: zm → (z̃m,1, . . . , z̃m,k).
The resulting task representation z̃ is used to condition the actor and
critic network

3 Experimental Results

We evaluated our approach in three different environments
inspired by social interaction scenarios. In the first environ-
ment, the agent, represented by a robotic head, needs to learn
how to control its position to optimize the number of people
in its field of view. In the second environment, the agent must
learn to navigate safely and in a socially compliant manner
through a crowd of people. The third environment is a con-
tinuous control environment focused on robotic locomotion.
The purpose of these three environments is twofold. First, we
want to show the effectiveness of our proposed methodology
to generate different behaviors in human-robot interaction
tasks. Second, we assess whether or not the use of RBF lay-
ers is beneficial to variational meta-RL in terms of training
and adaptation efficiency.

3.1 Evaluation protocol

3.1.1 Baselines

A natural baseline to the proposed RBF-PEARL is stan-
dard PEARL. However, directly comparing with PEARL
seems unfair, since adding RBF layers increases the number
of parameters of the actor and critic networks. We there-
fore adjust the number of parameters of the actor and critic
networks of the PEARL baseline to match the number of
parameters of the RBF-PEARL. Beyond this adjustment,
both methods use separate actor and critic networks con-
sisting of a 3-layer MLP with 300 neurons per layer. Both
methods use a 3-layer MLP with 200 neurons per layer as
the task encoder. In more detail, if the latent dimension is

d, and we use one RBF layer with k neurons, the first layer
of the actor/critic networks would have 300d parameters for
PEARL and 300kd for RBF-PEARL. For a fair compari-
son, we add an extra layer at the beginning of PEARL’s
actor/critic network with kd output neurons, rendering the
number of PEARL’s and RBF-PEARL’s parameters compa-
rable. Unless otherwise stated, we use k = 9.

As a separate baseline, we used a modified version of the
soft-actor-critic algorithm. We trained one agent per task,
using only 200 observations. However, we strongly increased
the number of gradient steps performed per observation in
order to force the network to learn a behavior with only these
200 observations. We used this baseline to compare the per-
formances of classical RL algorithms (here SAC) trained on
200 observations with respect to RBF-PEARL and PEARL
with 200 adaption steps.

We also compared the above algorithms against two state-
of-the-art on-policy meta-RL methods:

• MAML-PPO, anon-policygradient-basedmeta-RLalgo-
rithm that embeds policy gradient steps into the meta-
optimization, and is trained with PPO [33],

• RL2, an on-policy meta-RL algorithm that corresponds
to training a GRU network with hidden states maintained
across episodes within a task, trained with PPO [34].

For these two baselines, we used the implementation pro-
vided by the Garage reinforcement learning library [45], a
toolkit used to evaluate meta-RL and RL methods, provid-
ing state-of-the-art implementations. Both of these baselines

123

27254 Ballaou et al.

are evaluated on the same number of environment steps as
PEARL.

3.1.2 Procedure

All three environments are evaluated with the same proce-
dure. For meta-training, we sample 100 tasks. Evaluation is
performed on 20 meta-testing tasks that are different from
those used during meta-training. For PEARL and RBF-
PEARLwe collect observations for 200 time stepswith a task
representation ze sampled from the standard Gaussian prior
on each meta-testing task τ . The 200 observations are then
used to compute the task representation zτ sampled from the
posterior estimation given by the encoder. To compute the
final test-time performance, we record the performance of
the policy associated with the task representation zτ for one
episode. We repeat the training process 5 times and report
the mean performance and the associated standard error.

3.2 Gaze control environment

3.2.1 Environment description

The goal in the gaze control environment is to learn a gaze
strategy for a robotic head. The environment is based on the
work by Lathuiliere et al. [22]. The robot’s observations are
multimodal, consisting of visual, auditory, and propriocep-
tion cues. The entire visual scene has a size of 2 × 1. The
agent observes the scene with a head camera that extracts
pose cues from afield of view (FOV) of the size 0.4×0.3. The
pose cues are represented by a heatmap for each of J = 18
landmarks such as for the nose, neck, left shoulder, or right
hip of people. The heatmap associated with each landmark
indicates the probability of that landmark being present at
every position. Since state-of-the-art pose estimators provide
these heatmaps in low resolution, the visual observations will
consist of J 7 × 7 heatmaps. Regarding the auditory obser-
vations, we emulate the output of a sound source localization
algorithm. Given the precision of current sound source local-
izationmethods, it seems reasonable to represent the auditory
input as a 14× 8 heatmap corresponding to the entire scene.
Each of its cells corresponds to the probability of having an
active speaker in this direction. Importantly, while the visual
features correspond to the current FOV of the camera, the
auditory features correspond to the entire scene, since audio
localization is not limited by the camera’s FOV. Lastly, the
proprioception cues consist of the robot’s head orientation,
i.e., the coordinates of the robot’s current view center. It is
encoded using a R2 vector representing both the pan and tilt
angles of the robotic head. An observation of the gaze control
environment is shown in Fig. 4 (left).

The environment has a two-dimensional action space
[−1, 1]2, corresponding to the pan and tilt angular veloci-
ties. We choose to normalize the action space to stabilize
the network learning. The maximum pan and tilt velocities
correspond to shifting the camera FOV by 0.16 and 0.11 in
scene coordinates at every time step.

3.2.2 Reward components

We define three reward components that will be combined
to generate various tasks (i.e., reward functions). We will
focus on the number of people in the FOV, the presence of a
speaker in the FOV, and reducing spurious robot movements.
The dimension of the latent space of both PEARL and RBF-
PEARL is set to d = 3.

We want to reward the robot for having people in the FOV
of the camera since this means that the robot would be look-
ing at people. Naively rewarding the number of peoplewithin
the FOV leads to an action policy that explores until it finds a
person, and then follows this person. A more natural behav-
ior is to check on previously detected people. We therefore
propose to use a visual reward component that depends on
the last time the agent saw a person. More precisely:

Rvis =
∑

p∈Pvis

2 − exp(−tp) (7)

where Pvis is the set of people whose face is in the visual
FOV and tp ∈ [0,∞] is the time since the person was last
seen (before the current frame). When a person remains in
the FOV, the reward is close to 1. When a person not seen for
a long time reappears in the FOV, the reward is close to 2. In
this way, the desired behavior is encouraged.

As well as maximizing the number of visible people, we
would like the robot to preferentially look at the speaking
person(s). Therefore, we define the audio component of the

Fig. 4 Illustration of the gaze control environment: The FOV is
shown in red, the active speaker in purple, and the visible/non-visible
landmarks are shown in white/color respectively

123

27255Variational meta reinforcement learning for social robotics

reward function as:

Raud =

⎧
⎪⎨

⎪⎩

0 Nobody speaks

−0.5 Speakers are outside the FOV

2|Paud| Speakers within the FOV

(8)

where Paud is the set of speakers in the FOV.
Finally, we would like to penalize expansive and brusque

movements, since they are quite unnatural in social inter-
actions. We define a negative movement component of the
reward function, defined as:

Rmov = −Kmov

√
a2pan + a2tilt (9)

where apan and atilt are the two components of the action
space, and Kmov = 16 is a constant to put Rmov in a similar
numeric range to Rvid and Raud.

3.2.3 Tasks

In order to construct different tasks (reward functions), we
propose to use the defined components in two different ways.
First,with simple combinations as in [22], and thenwithmore
complex ones (i.e., non-linear). The first family of reward
functions is generated by sampling convex combinations of
the three components defined above:

Rτ = ωτ
visRvis + ωτ

audRaud + ωτ
movRmov (10)

where ωτ
vis, ω

τ
aud, ω

τ
mov ∈ [0, 1] are random convex weights,

meaning that ωτ
vis + ωτ

aud + ωτ
mov = 1.

We also wanted to compare the algorithms in more com-
plex environments. To that end, we design our second family

of reward functions using random multi-layer-perceptron
(MLP) networks. These input the value of the three reward
components defined above. TheMLPs have 1 to 3 layers with
4 to 6 neurons each. They have either no activation function
with probability 0.25 or a sigmoid with probability 0.75. The
number of layers, the neurons per layer, the activation, and
the weights are sampled randomly. Formally, we write:

Rτ = f τ (Rvis, Raud , Rmov;W τ) (11)

where f τ represents the sampledMLPnetworkwith sampled
connection weights W τ .

3.2.4 Results

We report the average return over the set ofmeta-testing tasks
over the meta-training iterations (Fig. 5). More precisely, we
plot the average return mean and standard deviation over the
five independent runs, for the gaze control environment with
convex (left) and non-linear (right) combinations of reward
components.

Generally, both PEARL and RBF-PEARL are able to
provide a better adaptation starting point with the train-
ing progress. In addition, we observe that RBF-PEARL
has a steeper learning curve than PEARL on both types of
reward functions. More precisely, for convex combinations
of reward components, RBF-PEARL performs comparably
to PEARL during the first 400k steps. From this point on,
RBF-PEARL systematically outperforms PEARL by a mar-
gin of 20-30. For the non-linear combinations of reward
components, RBF-PEARL exhibits superior performance
from 600k meta-training steps on, by a margin of roughly
50. Overall, in these two families of tasks, RBF-PEARL is
faster than PEARL and shows a better asymptotic perfor-

Fig. 5 Results for the gaze control environment: RBF-PEARL out-
performs PEARL by 30 and 70 in terms of average test-task return.
We plot the test-task performance (average return) vs. the number of
collected samples during meta-training on the linear gaze control (left)

and the non-linear gaze control (right) environments. In both cases,
the off-policy meta-RL methods outperform SAC 200, which in turn
outperforms on-policy meta-RL methods

123

27256 Ballaou et al.

Fig. 6 Schematic representation of the social navigation environ-
ment:The robot Rmustmove towards its goal positionwhile navigating
around five human agents (A, . . . , E)

mance, thus showcasing the benefit of using the RBF layer.
As expected, both PEARL and RBF-PEARL achieve bet-
ter performances than the batch of agents trained using the
soft actor-critic algorithm with only 200 observations (SAC
200). In the Linear Gaze Control environment, the average
performance achieved by agents trained with the soft-actor-
critic algorithm is inferior to the performances of PEARL
and RBF-PEARL by a margin of 100. In the non-linear envi-
ronment, the gap is lower between PEARL and SAC 200
as PEARL outperforms SAC 200 by a margin of 50. With
RBF-PEARL, the performance gap with SAC 200 is more
significant, as RBF-PEARL exhibits a superior performance
by a margin of 130.

We observe that PEARL significantly outperforms on-
policy meta-RL baselines in both tasks, as shown by the final
performances after 1.6 and 1.8 million environment steps.
More precisely, in the linear environment, the average per-
formance of MAML is -99, and the average performance of
RL2 is -89. In the non-linear environment, the average per-
formance of MAML is 203, and the average performance of
RL2 is -90. These poor performances are most likely due to
the poor sample efficiency of on-policy methods.

3.3 Social navigation environment

3.3.1 Environment description

In this environment, the agent has to learn a human-aware
navigation strategy [21]. Our simulation environment is an
empty room of dimension 15 × 10 m (Fig. 6). The room
is populated with five human agents, whose position at the
beginning of each episode is randomly initialized. Likewise,
we randomly sample a robot target position at the beginning
of an episode. The robot should reach the target position
before the end of the episode without disturbing the human

agents. Each human agent is given a random target posi-
tion that they will go towards. If the robot reaches its goal
it will be assigned a new one. To simulate the behavior of
human agents, we model the human agents’ motion using
a social force model [46] to generate plausible trajectories.
This framework also limits the number of collision between
human agents.

The robot agent has access to the coordinates of all peo-
ple in the scene, their velocities, and their orientations. The
robot also has access to its own velocity, coordinates, and
target position. While the robot always begins the episode
at the same position (coordinates (14, 5)), its target posi-
tion is randomly sampled following x ∼ U(0.0, 2.0) and
y ∼ U(0.0, 10.0), for the x and y coordinates, respectively.

The action space is a continuous two-dimensional space
set to [−15, 15]×[−2, 2], which corresponds respectively to
the angular velocity in rad.s−1 and linear velocity inm.s−1.
The maximum value of the linear and angular velocity is
chosen such that the robot can go as fast as any human agent
in the scene. In this environment, we use a smaller number
of neurons k = 5 for our RBF layer.

3.3.2 Reward components

We define a set of five reward components that will be com-
bined to generate various tasks. The dimension of the latent
space of both PEARL and RBF-PEARL is set to d = 5 for
this environment.

First, the goal component Rg rewards the agent for reach-
ing the target position:

Rg = 1 − d(r , g)

D
(12)

where d(r , g) is the distance between the robot and the goal
and D is a normalizing factor to guarantee that the goal com-
ponent stays within [−1, 1].

Second, the collision component Rc penalizes collisions
between the robot and human agents:

Rc =
{
0 d(r , hi) > dc
−1 d(r , hi) < dc

(13)

where d(r , hi) is the distance between the robot and the
human agent i and dc is the collision threshold between the
robot and the human agent.

Third, the social component Rs rewards the robot for
maintaining a safe distance away from all human agents. The
social component depends on the distance between the robot
and each human agent. If the distance between the robot and
one of them is below a certain threshold, the robot will be

123

27257Variational meta reinforcement learning for social robotics

penalized. The closer the robot is to a person, the higher the
penalty will be. If the robot is close to more than one human
agent, only the closest person to the robot is taken into con-
sideration (that is, the human agent that will generate the
lowest reward):

Rs = min
i

[
d(r , hi)

ds
− 1

]

(14)

where d(r , hi) is the distance between the robot and the
human agent i and ds can be understood as a threshold.
Indeed, if the minimum distance between the robot and a
human is below ds , the reward becomes negative. Thus, ds
can be seen as the distance at which the robot enters the
comfort zone of people.

Fourth, the approach component Ra is designed to reward
the robot for positioning itself to avoid making other human
agents aware of it. This component is based on the approach
by Satake et al. [47], who quantify how aware people are of a
robotwhen it approaches them.The awareness is based on the
relative positions and orientations of the robot and the human
agents. We compute the robot’s awareness of each human
agent and reward a low awareness of the robot. Awareness is
a combination of visibility Rvisible,i and direction Rdirection,i .
While visibility assesses howvisible the robot is to the human
agent, direction assesses if the robot is going in a direction
that would make the human agent more aware/afraid of it.

Visibility for human agent i is defined as:

Rvisible,i =
{
1 − θi,r

θth
θi,r < θth

− θi,r−θth
π−θth

otherwise
(15)

where θth is a threshold angle from which the robot is visible
to the human agent and θi,r is the angle of the robot relative
to the i’s human agent motion direction. If the robot is in
front of the human agent, the value will be close to 1, and if
the robot is behind the human the value will be close to −1.

The direction for human agent i is defined as:

Rdirection,i =
{
1 − θi,r

π/2 θi,r < θth

1 otherwise
(16)

It is designed to address how the human agent perceives the
robot coming toward him. If the robot is coming closer to
the human agent, he/she will become more aware of it and
be distracted by it. On the other hand, even if the robot is
visible to the human agent, if it moves away from him/her,
the human agent will be less likely to be distracted by the
robot.

To compute the approach reward component, we compute
the minimum over the visibility and direction product over
the human agents:

Ra = min
i

Rvisible,i · Rdirection,i (17)

Fifth, and last, the velocity component Rv is designed to
penalize the robot for going too fast when it is in front of
people. It is preferable to avoid having the robot moving fast
in front of people as they may be disturbed or even afraid of
it. The velocity component therefore penalizes the robot for
moving fast if it is visible to human agents i :

Rv,i =
{

−ev(1 − θi,r
θth

) θi,r < θth

0 otherwise
(18)

where θth is a threshold angle from which the robot is visible
and θi,r is the angle of the robot relative to the human agent’s
motion direction. To compute the reward component, we
adopt the same methodology as with the social and approach
component.We choose the minimum value obtained from all
the human agents in the scene:

Rv = min
i

Rv,i (19)

3.3.3 Tasks

Weevaluate themeta-RL algorithms on reward functions that
are convex combinations of the five reward components:

Rτ = ωτ
g Rg + ωτ

c Rc + ωτ
s Rs + ωτ

a Ra + ωτ
v Rv (20)

whereωτ
g, ω

τ
c , ω

τ
s , ω

τ
a , ω

τ
v ∈ [0, 1] are the randomly sampled

convex weights leading to task τ , meaning that ωτ
v + ωτ

c +
ωτ
s +ωτ

a+ωτ
v = 1. The social navigation environment ismore

challenging than the gaze control environment. The higher
number of reward components makes the learning process
more difficult, as well as behavior generation as there is a
wider variety of possible reward functions.

3.3.4 Results

We report the average return over the meta-testing tasks with
the progress of meta-training for PEARL and RBF-PEARL
(Fig. 7). As in the previous environment, we report mean
and standard deviation over five runs. Similarly to the previ-
ous case, the performance of the two methods looks similar
during the first steps of the training. More importantly, the
RBF layer seems to have a positive impact on the asymptotic
performance. Indeed, after 6 million steps, the RBF-PEARL

123

27258 Ballaou et al.

algorithm performs better than PEARL. Similarly to the gaze
control environment, both PEARL and RBF-PEARL per-
form better than SAC-200 by a large margin (170). They
also outperform both on-policy methods, MAML and RL2,
by a margin of 304 and 164, respectively.

3.4 Racer environment

3.4.1 Environment description

We evaluated the algorithms in an additional non-social task
with complex, non-linear reward functions, called the racer
environment [48]. The agent has to navigate in a continuous
two-dimensional scene for two hundred time steps (Fig. 8).
Similar to a car, the agent has an orientation and momentum,
so that it can only drive straight, or around a right or left curve.
The agent reappears on the opposite side if it exits one side.
At the beginning of an episode, the agent is randomly placed
in the environment. The agent’s state is a vector s ∈ R

120

corresponding to the agent’s position and orientation. The
position is encoded using a 10 × 10 evenly distributed grid
of two-dimensional Gaussian radial basis functions. Simi-
larly, the orientation is also encoded using 20 Gaussian radial
basis functions. The action space of the agent consists of a
one-dimensional continuous space set to [−1, 1]. The value
of the action corresponds to the force applied to the agent,
which then modifies the agent’s orientation and position. For
example, if the value of the action is close to -1, the agent
will make a left curve.

Fig. 7 Results on the social navigation environment: PEARL-RBF
outperforms PEARL-RBF in average test-task performance by 40.
We plot the average test-task return vs. the number of samples col-
lected during meta-training on the social navigation environment. Both
off-policy meta-RL methods outperform SAC 200, which in turn out-
performs both on-policy meta-RL methods

Fig. 8 Illustration for the racer environment: The three markers
are depicted in blue, green, and orange. Dark regions correspond to
high-reward regions. In the task depicted in the figure, the red and blue
markers have two Gaussians, while the green one has only one. The
number of Gaussians, their mean, and standard deviation are randomly
sampled for each task

3.4.2 Reward components

We define three reward components, each of them associ-
ated with one of the three markers in Fig. 8. More precisely,
each reward component rk is defined as the maximum over
Gaussian-shaped functions over the distance to the k-th
marker dk :

rk = max

{

exp

(

− (dk − μk, j)
2

σk, j

)}nk

j=1
(21)

where nk is the number of Gaussians for marker k, and
μk, j and σk, j are the mean and standard deviation of the j-
th Gaussian of marker k. For each task, the parameters of
the reward components are randomly sampled, as explained
below.

3.4.3 Tasks

The tasks differ in terms of the parameters of each of the three
reward components. The number of Gaussians is sampled
uniformly: nk ∼ U{1, 2}. The two parameters of each Gaus-
sian component are sampled according toμk, j ∼ U(0.0, 0.7)
and σk, j ∼ U(0.001, 0.01). This sampling instantiates the
three reward components for task τ , r τ

k , and the final reward
function is written:

Rτ = 1

3

3∑

k=1

r τ
k (dk) (22)

The dimension of the latent space of both PEARL and RBF-
PEARL is set to d = 3.

123

27259Variational meta reinforcement learning for social robotics

3.4.4 Results

RBF-PEARL consistently shows a stronger performance
than PEARL in the racer environment (Fig. 9). After 300k
steps, RBF-PEARL constantly outperforms PEARL. The
asymptotic performance of RBF-PEARL is also higher than
PEARL. The average return at the end of the training is
54 ± (11) for PEARL and 65 ± (2) for RBF-PEARL. Also,
both PEARL and RBF-PEARL (56 and 65 respectively) out-
perform SAC 200 by a large margin, performing two times
better: SAC 200 obtains a performance of only 30. Once
again, we notice that PEARL outperforms on-policy meta-
RLbaselines. Thefinal performance ofMAMLandRL2after
1.1 million environment steps is 51 and 48, respectively, far
below the performance of PEARL for the same number of
environment steps.

4 Discussion

We discuss six questions that we believe deserve some
attention. First, whether variational meta-RL is well suited
to social robotics. Second, what the difference is between
the off-policy vs. on-policy approaches. Third, the impact
of the RBF layer in variational meta-RL. Fourth, how the
trainability of the RBF layer’s parameters and the number of
RBF neurons influence its performance. Fifth, what mecha-
nisms are behind the improved performance of theRBF layer.
And last, open research directions in the field of meta-RL for
social robotics.

Fig. 9 Results on the racer environment: PEARL-RBF outper-
forms PEARL in average test-task return by 10.We plot the average
test-task performance vs. the number of samples collected during meta-
training. Off-policy meta-RL methods outperform on-policy meta-RL
methods and SAC200. It is the only environmentwhere on-policymeta-
RL outperforms the SAC 200 baseline

4.1 Variational Meta-RL for Social Robotics

We proposed the application of variational meta-RL to allow
robots to quickly adapt to different social scenarios. We
achieved this by enabling robots to adapt to new reward func-
tions which define the requirements of social scenarios, such
as humans’ different preferred social distances. Indeed, our
results from four simulation experiments show that with a
variational meta-RL procedure (PEARL), robotic agents are
able to quickly adapt to different scenarios, i.e., reward func-
tions, requiring only 200 observations (Figs. 5, 7, and 9).
Conversely, a classical RL algorithm trained on 200 observa-
tions (SAC 200) achieves a significantly lower performance.
In the linear and non-linear gaze control environments, the
performances of SAC 200 were respectively 23% lower and
25 % lower than those of RBF-PEARL. In the social naviga-
tion environment, the performances of SAC 200 were 47%
lower. In the racer environment, the performances of SAC
200 were 53% lower than those of RBF-PEARL.

To further demonstrate the interest of variational meta-
RL, we compared the performance of SAC trained on more
than 200 steps with the final models obtained with PEARL
and RBF-PEARL. As in the previous experiments, the two
meta-RL algorithms only need 200 environment steps to
adapt to each test environment. Experiments were carried out
for the linear-gaze, non-linear gaze, and racer environments
(Fig. 10). It should be noted that for these experiments, the
number of gradient descent iterations per collected environ-
ment observation is the same for the meta-RL algorithms
and for SAC. In the previous experiments (Sec. 3), SAC
was givenmore gradient descent iterations per observation to
allow it to converge to a policy. In the first two environments,
SAC requires 50k environment steps to reach the perfor-
mance of PEARL andRBF-PEARL,which only benefit from
200 environment steps. Surprisingly, even after training for
200k steps, SAC does not significantly outperform the two
meta-RL algorithms. This is especially true for the third envi-
ronment (racer), where the performance of SAC does not
seem to be superior to the meta-RL algorithms, even after
100k environment steps. It would appear that SAC does not
manage to learn a moderately optimal action policy in the
racer environment. After looking carefully at our results,
we realize that the optimal hyperparameters of SAC depend
strongly on the learned task, and no set of parameters seems
to be commonly optimal for all tasks.

Lastly, we evaluated whether the meta-policy learned
by RBF-PEARL is able to produce diverse and meaning-
ful behavior when adapted to different reward functions.
We plotted the trajectories of the robot agent in the social
navigation environment for four different reward weight
combinations (Fig. 11). The meta-policy is adapted to each
combination based on observations from 200 time steps. The
adapted behaviors are easily distinguishable from each other.

123

27260 Ballaou et al.

Fig. 10 Performances achieved by PEARL and RBF-PEARL com-
pared to full training with SAC: SAC needs more than 100× envi-
ronment steps: In order to reach the performance of PEARL/PEARL-
RBF, SAC needs several thousand environment steps, compared to
the 200 environment steps needed by PEARL/PEARL-RBF after the
meta-training phase. Results show the average test-task performance

and standard deviation per environment step over 20 tasks and 5 seeds.
(left): Gaze control environment with linear reward functions. (middle):
Gaze control environment with non-linear reward functions. (right):
Racer environment. The sensitivity of SAC to the hyperparameters is
the main cause of its low performance on the racer environment, while
PEARL/PEARL-RBF do not suffer from this adverse effect

For a reward function that depends only on reaching the goal
(a), the robot has trouble reaching the target position as it
bumps into humans twice, and does not manage to modify
its path accordingly. However, weighting the speed compo-
nent (b) more helps the robot to reach the target position, as
the robot learns to have better control over its angular and lin-
ear speed. By weighting the social and approach components
(c and d)more, the robot actively tries to avoid people around
it, even if this results in a failure to reach the target position.
In conclusion, variational meta-RL successfully and quickly
adapts an agent to different reward functions, allowing it to
efficiently find appropriate behaviors for different social sce-
narios.

4.2 Sample efficiency of off-policy meta-RL

We compared the performances of off-policy meta-RL, such
as PEARL, with other on-policy methods proposed in the
literature, such as MAML and RL2. We find that PEARL
significantly outperforms on-policymeta-RLmethods across
all domains. PEARL converges to its final asymptotic perfor-
mance with 3 to 10 times fewer samples duringmeta-training
than other approaches proposed in the literature. Increas-
ing the sample efficiency is generally speaking positive,
specially for robotics applications. Indeed, running large
amounts of environment steps in robotics applications is
time-consuming, expensive, and requires significant human
efforts. Fewer samples reduce the cost and effort required
for data collection and labeling, making it more feasible to
develop and deploy robotics systems in the real world.

However, the actor-critic architecture used in models such
asPEARL is associatedwith higher training complexity com-
pared to models like MAML and RL2, as it requires the
tuning of a greater number of hyperparameters.Also, PEARL
may face more difficulties in generalizing to unseen environ-

ments, as the embedding may fail to capture the relevant
information required for effective adaptation. Our proposed
approach, RBF-PEARL, tends to mitigate this latter issue
by transforming the task representation with our radial basis
function (RBF) layer, and to improve performances com-
pared to PEARL.

4.3 Performance of PEARL vs. RBF-PEARL

We compared the performance of RBF-PEARL to two ver-
sions of PEARL. The first version, called PEARL, uses a
neural network model with a similar number of parameters
to RBF-PEARL. This is achieved by using an MLP layer
with kd output neurons, where k is the number of neurons
of the RBF layer and d is the latent dimension, followed by
a ReLU activation unit instead of an RBF layer before the
actor and critic network to process the task representation
z. All four experiments show that RBF-PEARL consis-
tently outperforms PEARL in meta-test task performance
(Figs. 5, 7, and 9). We further compared their asymptotic
performances in the 20 meta-testing tasks in more detail
(Table 1). In the two linear environments, RBF-PEARL out-
performs PEARLby amargin of 6% in the linear gaze control
environment and 16% in the social navigation environment.
For the two non-linear environments the improvement is
larger. In the racer environment, the performance is 16%
better than that obtained by PEARL. In the non-linear gaze
control environment, the difference is 18% compared to
PEARL.

In addition, we report results obtained with a version of
PEARL without the additional MLP layer, called Vanilla
PEARL. We find that the performances of PEARL and
Vanilla PEARL are very similar in three of the four tested
environments (Table 1). The difference in the average final
asymptotic return between the two is less than 5%, and is

123

27261Variational meta reinforcement learning for social robotics

Fig. 11 Trajectories in the social navigation environment for 4 dif-
ferent weight combinations of the reward function: RBF-PEARL
learns to generate different behaviors depending on the reward weight

combination. The robot’s trajectory is represented by the line with the
black contour. The color indicates the time step

within their confidence ranges. PEARL is only significantly
better than Vanilla PEARL (by 18%) in the social navigation
environment.

In summary, the results of PEARL and Vanilla PEARL

Table 1 Final performance of
PEARL, RBF-PEARL and
on-policy baselines

Algorithm Lin. Gaze Non-Lin. Gaze Social Nav. Racer

PEARL 516 ± 10 460 ± 16 297 ± 30 56 ± 6

Vanilla PEARL 514 ± 6 469 ± 16 253 ± 18 56 ± 5

RBF-PEARL 549 ± 5 542 ± 10 344 ± 31 65 ± 3

RBF-PEARL-fp 543 ± 7 518 ± 15 322 ± 12 72 ± 6

MAML −99 ± 61 203 ± 189 −7 ± 97 51 ± 1

RL2 −89 ± 90 −90 ± 81 133 ± 74 48 ± 2

RBF-PEARL outperforms PEARL and the learning of RBF parameters is in most environments beneficial
over fixed parameters (RBF-PEARL-fp). On-policy algorithms (MAML and RL2) struggle to learn good
policies with the same number of environment steps. Reported are the mean ± standard deviation over 5
seeds for each algorithm meta-testing performance at the end of meta-training

123

27262 Ballaou et al.

Fig. 12 Ablation study on the number of RBF neurons per input
dimension forRBF-PEARL:Theoptimal number of neurons is around
10 for the three evaluated environments. Reported are themean and stan-

dard deviation over 5 seeds for each algorithmmeta-testing performance
after a certain number of meta-training steps

compared to RBF-PEARL show that the RBF layer improves
the performance of PEARL significantly. This effect can-
not be explained by a difference in their model capacity, as
PEARL and RBF-PEARL have a similar number of param-
eters. Instead, the computational properties of the RBF layer
seem to be the important factors.

4.4 Impact of trainability and number of RBF
neurons

We evaluated the effect of training the RBF parameters, i.e.,
centers c and scaling factors δ (6), to an RBF-PEARL archi-
tecture with fixed parameters (RBF-PEARL-fp). The centers
are fixed by evenly distributing them over an interval that
was set to encompass the space of task representations z.
The scaling factors are fixed based on a function of the dis-
tance between center points. They were chosen so that two
neighboring RBF neurons both have an activation of 0.5 for
a representation zk ∈ R lying in the middle between their
centers. Overall, we see that training the centers and scaling
factors of theRBF layer has a beneficial impact on the asymp-
totic performances of the RBF-PEARL algorithm (Table 1).
In the non-linear gaze control and social navigation envi-
ronments, training the RBF parameters improves the final
asymptotic performances by 2% to 6%. Only in the racer
environment does the fact of havingfixedparameters improve
performance by 10%. In summary, the advantage of learning
the parameters of the RBF layer is task-dependent, but seems
to be beneficial to most tasks.

Lastly, we analyze the effect of the number of neurons per
input dimension in the RBF layer (Fig. 12). In the three eval-
uated environments, we found that the number of neurons
has a noticeable effect on the asymptotic performance. The
optimal number is around 10 in the three evaluated environ-
ments: 9 for linear gaze control, 9 for non-linear gaze control,
and 12 for the racer. We believe that the drop in performance
for higher numbers of neurons may be due to overfitting on
the training tasks.

4.5 How does the RBF layer improve performance?

The RBF layer improves the performance of the variational
meta-RL procedure, but what are themechanisms behind this
improvement? In general, the layer can have three potential
influences on the learning procedure. First, as its input, task
representation z is also learned, and could alter the learning
objective of z, resulting in a different representation. Sec-
ond, it could alter the temporal learning dynamics of the task
representation, also leading to different learning dynamics
in the downstream policy and value networks. Third, its out-
put z̃ could provide an improved representation of the policy
and value networks. We investigated these factors in the lin-
ear gaze control task (Sec. 3.2). We restricted our analysis
to an RBF layer with the 3 RBF neurons per input dimen-
sion. This low-dimensional representation makes it easier to
analyze and visualize the results compared to the optimal
configuration with the 9 RBF neurons per input dimension.

4.5.1 Influence on the learned input task representation z

The learned task representations z of PEARLwithout (Fig. 2,
left-bottom) andwith an RBF layer (Fig. 15) have onlyminor
differences. The average and standard deviation over the 100
meta-training task representation mean that μ per dimension
are for PEARL: z1: 0.041 ± 3.676 , z2: 1.013 ± 0.006, z3:
1.009± 0.003; and for RBF-PEARL: z1: 0.061± 3.507, z2:
1.018 ± 0.009, z3: 1.033 ± 0.032.

Both representations have a posterior collapse in two (z2,
z3) of the three dimensions. Only dimension z1 represents
a meaningful distinction of tasks. The representation by
PEARLwithout an RBF layer shows aminor larger spread of
the task representations in dimension z1 than RBF-PEARL
(3.676 compared to 3.507). Also, RBF-PEARL has a minor
larger spread in dimension z3 (0.032 compared to 0.003), but
both these differences seem negligible.

Both representations show a clear clustering of tasks
where tasks with a high reward weight on the visual com-

123

27263Variational meta reinforcement learning for social robotics

Fig. 13 Kullback-Leibler (KL) divergence and variance of task
representation z for the linear gaze control environment: Posterior
collapse occurs in two dimensions (z2, z3) for both PEARL and RBF-
PEARL (note that RBF-PEARL delays the collapse). We report the

average KL divergence (solid lines) and variance (dotted lines) of each
dimension of the task representation variable z during meta-training.
The average is taken over five tasks chosen randomly among the 100
training tasks

ponent (red colored) are on one side in z1. Representations
of the tasks with a high weight on the movement compo-
nent are clustered at the opposite end (green colored). Tasks
with a high weight on the audio component (blue/brown col-
ored) are in the middle. Although the representations (with
and without the RBF layer) are inverted to each other, both
have this general cluster topology which should therefore not
result in a difference in the downstream networks that learn
based on them.

We further evaluated whether the learned representation z
obtained with the RBF layer has an influence on the perfor-
mance increase. We trained an actor and critic network with
the pre-trained context encoder obtained from PEARL and
RBF-PEARL.No significant differences, either in their learn-
ing curves or in their final performances, can be observed
(Fig. 14). This indicates that differences in the performances
of PEARL vs. RBF-PEARL do not result from their differ-
ences in the learned representation z.

In summary, the differences between the learned task rep-
resentation z with and without the RBF layer are minor.
They do not explain the increase in the performance of RBF-
PEARL.

4.5.2 Influence on the temporal dynamics of learning task
representation z

We analyzed the temporal dynamics of learning z by looking
at how posterior collapse happens on the three dimensions
of task representation z. The differences in how posterior
collapse occurred between PEARL and RBF-PEARL could
explain their performance differences. To measure this, we
examine the KL divergence and the variance of the posterior
distribution on each of the dimensions of the task repre-
sentation during the meta-training stage (Fig. 13). Posterior
collapse occurs for both methods in two of the three dimen-
sions (z2, z3).Nonetheless, RBF-PEARLdelays the posterior
collapse for 400k steps compared to PEARL. Similarly, for

dimension z1, RBF-PEARL requires more time to learn the
final representation as shown by the longer time of the KL
loss and variance to reach their asymptotic levels (Fig. 13,
left). This delay could explain why RBF-PEARL performs
slightly below PEARL for the first 400k steps (Fig. 5, left).
Afterward, the KL loss and variance are similar between
RBF-PEARL and PEARL.

In conclusion, the RBF layer has a temporal effect on the
learning of task representation z by delaying it. This includes
a delay in the posterior collapse. This might affect the final
performance of the RL algorithm, for example by inducing a
greater exploration during learning. Nonetheless, the impact
of this effect cannot be clearly defined and we believe it to
be of minor consequence to the learning performance.

Fig. 14 Performance of policies trained on learned (and frozen)
context-encoders from PEARL and RBF-PEARL: Test-task perfor-
mance during meta-training on the linear gaze-control environment. It
shows no significant differences between the two encoders, indicating
that the performance difference between PEARL and RBF-PEARL is
not due to their differences in the learned task representation z

123

27264 Ballaou et al.

Fig. 15 RBF-PEARL’s task representation with the Gaussian asso-
ciated with dimension z1 with no posterior collapse: The RBF layer
projects task representation z1 ∈ R in a higher dimension z̃1 ∈ R

3,
where each RBF Gaussian learns to represent a specific task type. Each
colored dot corresponds to the representation of one of the 100 meta-
training tasks. The color represents the predominant reward weight
component of the reward function, i.e., the task type. Red: largest
weight is the visual weight. Blue/brown: high audio weights. Green:

high movement weights. (left): Three-dimensional task representation
z learned by the task encoder. The tasks are only spread in dimension
z1. The other dimensions (z2, z3) have a posterior collapse. (middle):
RBF Gaussians associated with the input dimension without posterior
collapse (z1). Each Gaussian specializes in order to represent a different
task type. (right): The three-dimensional representation obtained by the
RBF layer for input dimension z1

4.5.3 Influence of the output representation z̃

The final influence that the RBF layer has on the perfor-
mance of RBF-PEARL is through its output representation
z̃, which is given as an input to the downstream policy and
value networks instead of z. We visualized this represen-
tation for the RBF neurons that encode the non-collapsing
dimension z1 (Fig. 15, right). It lifts the one-dimensional
representation z1 into a three-dimensional space z̃1. Analyz-
ing the shape of the Gaussians associated with z̃1 (Fig. 15,
middle), each Gaussian is centered around a specific cluster
of task representations. The first Gaussian z̃1,1 specializes in
tasks with a high weight on the movement component (green
colored). Representations of tasks with a high weight on the
audio component (blue/brown colored) are centered around
the activation region of the second Gaussian z̃1,2. The third
Gaussian z̃1,3 specializes in tasks with a high weight on the
visual component (red colored). We believe that this effect
is the main cause of the RBF layer’s performance increase.
The objective of the downstream networks is to learn spe-
cific policies and value functions for the different tasks, i.e.,
tasks in which the visual, audio, or movement component is
more important. Differentiating between these tasks is diffi-
cult from the one-dimensional representation z1 learned by
the standard PEARL. For example, to identify audio tasks
which are clustered in the middle of the representation in z1
(Fig. 2, left-bottom), the downstream networks have to learn
a rule that defines this region using two borders: y > z1 > x .
In contrast, for RBF representation z̃1 it is only necessary to
identify whether a certain Gaussian has a large activation.
In the case of audio tasks, the second Gaussian should be
mainly activated: z̃1,2 > x . This seems to reduce the com-
plexity of the rules that the downstream networks have to

learn to identify tasks, making it easier to learn specific poli-
cies and values for them.

In summary, we believe that the main effect that the RBF
layer has in improving performances is based on its changed
task representation z̃. The representation seems to allow the
downstream networks to identify certain tasks more eas-
ily and to learn specific outputs for them. Nonetheless, this
explanation is only an intuition and should be explored fur-
ther in future research.

4.6 Open research directions

Meta-RL for social robotics is currently underexplored and
several research directions are still open. This section dis-
cusses some of these directions.

4.6.1 Partially observable environments

In social robotics, it is often unrealistic to assume that the
agent has complete information. Factors such as sensor noise,
occlusions, and limited field of view can all contribute to
incomplete observation data. Incomplete observations can
have a significant impact on the training performance of the
agent,which canmake it challenging to learn an effective pol-
icy for the task at hand [49, 50].Meta-reinforcement learning
is a promising approach to tackle the problem of partially
observable environments. By leveraging previous experience
and learning how to learn, the agent can quickly adapt to new
tasks and environments, even when observation information
is incomplete or noisy. Meta-RL has already been studied in
the context of adapting to unseen environments with a lim-
ited field of view [51] or sim2real scenarios [52], where the
agent needs to generalize to new and diverse settings. In our

123

27265Variational meta reinforcement learning for social robotics

paper, the gaze control environment can be considered a par-
tially observable environment, as the visual information the
robotic head can obtain is limited by the field of view of the
camera. However, further research is needed to explore the
effectiveness of off-policy meta-RL for partially observable
environments in the specific context of social robotics.

4.6.2 Safe reinforcement learning

Safe reinforcement learning can be particularly important in
the context of social robotics, where robots are designed to
interact with humans in shared environments. Social robots
are expected to operate safely and interact with humans
in a way that is consistent with social norms and values.
While meta-RL in itself cannot guarantee that a robot will
operate safely in social environments at test time, it is pos-
sible to integrate existing approaches from the literature into
meta-RL algorithms. Some common approaches to safe rein-
forcement learning include adding constraint/regularization
methods to the objective function [53], using ensemble net-
works to capture uncertainties in the environment [54], or
using a hierarchical control architecture with a manually
designed set of constraints to control the low-level pol-
icy [55]. Recent approaches also propose to use meta-RL in
environments with non-stationary disturbances to adapt the
safety constraints to the disturbances in the environment [56].
Nevertheless, further research is needed to integrate safety
constraints into themeta-reinforcement learning framework.

4.6.3 Multi-agent reinforcement learning

In the context of social robotics, multi-agent reinforcement
learning (MARL) has been proposed to address situations
that involve several agents/robots [57, 58]. In MARL, each
agent is represented by a learning algorithm that interacts
with the environment and other agents to optimize its perfor-
mance. The agents can be homogeneous, meaning that they
are identical and have the same objective, or heterogeneous,
meaning that they have different objectives and learning algo-
rithms. The environment can be either cooperative, where
agents work together to achieve a common goal, or compet-
itive, where agents compete with each other to achieve their
individual goals.

One of the primary challenges in this setup is to coordi-
nate several continuously learning and differently behaving
agents. The changing behavior of one agent can result in a
negative outcome for another agent because it is not adapted
to the new behavior. Social environments involve human par-
ticipants, making the problem of generalization even more
challenging. Somemeta-RL approaches [59, 60] address this
by assuming a distribution of agents available for practicing.
The resulting policy should then be able to generalize and
adapt to environments with agents cooperating in different

ways. A similar approach could be used for social robotics
where not only are other agents considered for adaptation,
but also humans.

5 Conclusion

In this exploratory study, we investigate the use and limi-
tations of variational meta-RL for social robotics. We show
that meta-RL successfully learns to adapt quickly (within
200 steps) to a new reward function that describes a desired
social behavior in a different environment. Nonetheless, in
our task state-of-the-art methods (PEARL) exhibited pos-
terior collapse, which is problematic in meta-RL since the
encoder is supposed to accumulate information for better
generalization, and collapsed encoding dimensions cannot
do so. We started investigating how to mitigate posterior col-
lapse in variational meta-RL by adding an RBF network after
each encoded dimension. Based on the result in Table 1, and
the analysis of the representation learned by RBF-PEARL,
our algorithm improves the performances of meta-RL algo-
rithms for reward design in social robotics. Our RBF layer
improves the asymptotic performances of the PEARL algo-
rithm in several different problem domains, all inspired by
social robotics tasks. The PEARL algorithm learns a sub-
optimal representation of the task. While we do not solve
this issue, the RBF-PEARL algorithm mitigates the effect
of this sub-optimal representation, providing the actor and
critic networkwith a different representation of the task using
the dimensions of the task representation that do not suf-
fer from posterior collapse. The results clearly demonstrate
that an RBF layer reduces the effect of posterior collapse,
and allows for steeper learning curves and higher asymp-
totic performance. We believe that such studies pave the way
to a better understanding of meta-RL for social robotics, a
clearly underinvestigated domain. We hope that our findings
will help foster research in this direction.

Funding Partial financial support was received from the ANR MIAI
institute (ANR-19-P3IA-0003), H2020 SPRING (#871245), and from
the ANRML3RI (ANR-19-CE33-0008-01). The authors have no com-
peting interests to declare that are relevant to the content of this article.

Code Availability The code used during the current study is available
from the corresponding author on reasonable request.

References

1. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially
interactive robots. Robotics and autonomous systems. 42(3–
4):143–66

2. Liu H, Liu T, Zhang Z, Sangaiah A, Yang B, Li YA (2022)
Asymmetric Relation-Aware Representation Learning for Head
Pose Estimation in Industrial Human-Computer Interaction. IEEE
Transactions on Industrial Informatics. 18:7107–17

123

27266 Ballaou et al.

3. Davison DP, Wijnen FM, Charisi V, van der Meij J, Evers V,
Reidsma D. Working with a social robot in school: a long-term
real-world unsupervised deployment. In: ACM/IEEE international
conference on human-robot interaction; 2020. p. 63-72

4. Kubota A, Peterson EI, Rajendren V, Kress-Gazit H, Riek LD.
Jessie: Synthesizing social robot behaviors for personalized neu-
rorehabilitation and beyond. In: ACM/IEEE international confer-
ence on human-robot interaction; 2020. p. 121-30

5. Colledanchise M, Ögren P. Behavior trees in robotics and AI: An
introduction. CRC Press; 2018

6. Sutton RS, Barto AG. Reinforcement learning: An introduction.
MIT press; 2018

7. Akalin N, Loutfi A (2021) Reinforcement learning approaches in
social robotics. Sensors. 21(4):1292

8. Beck J, Vuorio R, Liu EZ, Xiong Z, Zintgraf L, Finn C et al
(2023) A Survey of Meta-Reinforcement Learning. arXiv preprint
arXiv:2301.08028

9. Chen YF, Liu M, Everett M, How JP. Decentralized non-
communicating multiagent collision avoidance with deep rein-
forcement learning. In: IEEE International Conference onRobotics
and Automation; 2017. p. 285-92

10. Zhou Z, Zhu P, Zeng Z, Xiao J, Lu H, Zhou Z. Robot navigation
in a crowd by integrating deep reinforcement learning and online
planning. Applied Intelligence. 2022:1-17

11. Li C, Castellano G, Gao Y. Efficient Learning of Socially
Aware Robot Approaching Behavior Toward Groups via Meta-
Reinforcement Learning. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems; 2020. p. 12156-9

12. KingmaDP,WellingM.Auto-encoding variational bayes. In: Inter-
national Conference on Learning Representatnions; 2014.

13. Rakelly K, Zhou A, Finn C, Levine S, Quillen D. Efficient
off-policy meta-reinforcement learning via probabilistic context
variables. In: International conference on machine learning; 2019.
p. 5331-40

14. Liu T, Wang J, Yang B, Wang X (2021) NGDNet: Nonuniform
Gaussian-label distribution learning for infrared head pose esti-
mation and on-task behavior understanding in the classroom.
Neurocomputing. 436:210–20

15. Girin L, Leglaive S, Bie X, Diard J, Hueber T, Alameda-Pineda
X (2021) Dynamical Variational Autoencoders: A Comprehensive
Review. Foundations and Trends in Machine Learning. 15(1–2):1–
175

16. Broomhead DS, Lowe D. Radial basis functions, multi-variable
functional interpolation and adaptive networks. Royal Signals and
Radar Establishment Malvern; 1988

17. Park J, Sandberg IW (1991) Universal approximation using radial-
basis-function networks. Neural computation. 3(2):246–57

18. Vidnerová P, Neruda R. Deep networks with rbf layers to prevent
adversarial examples. In: Artificial Intelligence and Soft Comput-
ing. Springer; 2018. p. 257-66

19. Abpeykar S, Ghatee M, Zare H (2019) Ensemble decision forest
of RBF networks via hybrid feature clustering approach for high-
dimensional data classification. Computational Statistics & Data
Analysis. 131:12–36

20. Asadi K, Parikh N, Parr RE, Konidaris GD, Littman ML. Deep
radial-basis value functions for continuous control. In: AAAI Con-
ference on Artificial Intelligence. vol. 35; 2021. p. 6696-704

21. Möller R, Furnari A, Battiato S, Härmä A, Farinella GM
(2021) A survey on human-aware robot navigation. Robotics and
Autonomous Systems. 145:103837

22. Lathuilière S, Massé B, Mesejo P, Horaud R (2019) Neural net-
work based reinforcement learning for audio-visual gaze control
in human-robot interaction. Pattern Recognition Letters. 118:61–
71

23. Breazeal C, Dautenhahn K, Kanda T. Social robotics. Springer
handbook of robotics. 2016:1935-72

24. Sheridan TB (2020) A review of recent research in social robotics.
Current opinion in psychology. 36:7–12

25. Henschel A, LabanG, Cross ES (2021)What makes a robot social?
a review of social robots from science fiction to a home or hospital
near you. Current Robotics Reports. 2:9–19

26. Ahmad MI, Mubin O, Orlando J (2017) A systematic review of
adaptivity in human-robot interaction. Multimodal Technologies
and Interaction. 1(3):14

27. Martins GS, Santos L, Dias J (2019) User-adaptive interaction in
social robots: A survey focusing on non-physical interaction. Inter-
national Journal of Social Robotics. 11:185–205

28. Nocentini O, Fiorini L, Acerbi G, Sorrentino A, Mancioppi G,
Cavallo F (2019) A survey of behavioral models for social robots.
Robotics. 8(3):54

29. Patompak P, Jeong S, Nilkhamhang I, Chong NY (2020) Learning
proxemics for personalized human-robot social interaction. Inter-
national Journal of Social Robotics. 12:267–80

30. Choi J,DanceC,Kim Je, ParkKs,Han J, Seo J, et al. Fast adaptation
of deep reinforcement learning-based navigation skills to human
preference. In: IEEE International Conference on Robotics and
Automation; 2020. p. 3363-70

31. Oh J, HesselM,CzarneckiWM,XuZ, vanHasselt HP, Singh S et al
(2020) Discovering reinforcement learning algorithms. Advances
in Neural Information Processing Systems. 33:1060–70

32. Kirsch L, van Steenkiste S, Schmidhuber J. Improving generaliza-
tion in meta reinforcement learning using learned objectives. In:
International Conference on Learning Representations; 2020.

33. Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for
fast adaptation of deep networks. In: International Conference on
Machine Learning; 2017. p. 1126-35

34. Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I, Abbeel P
(2016) Fast reinforcement learning via slow reinforcement learn-
ing. arXiv preprint arXiv:1611.02779

35. Zhao Z, Nagabandi A, Rakelly K, Finn C, Levine S. MELD:Meta-
Reinforcement Learning from Images via Latent State Models. In:
Conference on Robot Learning; 2021. p. 1246-61

36. Dai B,Wang Z,Wipf D. The usual suspects? Reassessing blame for
VAE posterior collapse. In: International Conference on Machine
Learning; 2020. p. 2313-22

37. Zhao S, Song J, Ermon S (2017) Infovae: Information maximizing
variational autoencoders. arXiv preprint arXiv:1706.02262

38. Razavi A, van den Oord A, Poole B, Vinyals O. Preventing Pos-
terior Collapse with delta-VAEs. In: International Conference on
Learning Representations; 2019

39. Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O. Lad-
der variational autoencoders. In: Advances in neural information
processing systems; 2016.

40. HuangCW, Tan S, Lacoste A, Courville AC. Improving explorabil-
ity in variational inference with annealed variational objectives. In:
Advances in neural information processing systems; 2018.

41. Reinke C, Etcheverry M, Oudeyer PY. Intrinsically motivated
exploration for automated discovery of patterns in morphogenetic
systems. In: International Conference on Learning Representa-
tions; 2020.

42. He J, Spokoyny D, Neubig G, Berg-Kirkpatrick T. Lagging Infer-
enceNetworks andPosteriorCollapse inVariationalAutoencoders.
In: International Conference on Learning Representations; 2019.

43. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning;
2018.

44. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D et al (2013) Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602

45. GitHub (2019) Garage: A toolkit for reproducible reinforcement
learning research. https://github.com/rlworkgroup/garage

123

27267Variational meta reinforcement learning for social robotics

http://arxiv.org/abs/2301.08028
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1312.5602
https://github.com/rlworkgroup/garage

46. PedicaC,VilhjálmssonH. Social perception and steering for online
avatars. In: International Workshop on Intelligent Virtual Agents.
Springer; 2008. p. 104-16

47. Satake S,KandaT,GlasDF, ImaiM, IshiguroH,HagitaN (2012)A
robot that approaches pedestrians. IEEE Transactions on Robotics.
29(2):508–24

48. Reinke C, Alameda-Pineda X (2023) Successor feature represen-
tations. Transactions on Machine Learning Research

49. Quintero-Pena C, Chamzas C, Sun Z, Unhelkar V, Kavraki LE.
Human-Guided Motion Planning in Partially Observable Envi-
ronments. In: IEEE International Conference on Robotics and
Automation; 2022. p. 7226-32

50. RosanoM, Furnari A,Gulino L, FarinellaGM.On embodied visual
navigation in real environments through habitat. In: IAPR Interna-
tional Conference on Pattern Recognition; 2021. p. 9740-7

51. Wortsman M, Ehsani K, Rastegari M, Farhadi A, Mottaghi R.
Learning to learn how to learn: Self-adaptive visual navigation
usingmeta-learning. In: IEEE/CVF conference on computer vision
and pattern recognition; 2019. p. 6750-9

52. Arndt K, Hazara M, Ghadirzadeh A, Kyrki V. Meta reinforcement
learning for sim-to-real domain adaptation. In: IEEE international
conference on robotics and automation; 2020. p. 2725-31

53. Yang Q, Simão TD, Tindemans SH, Spaan MT. WCSAC: Worst-
case soft actor critic for safety-constrained reinforcement learning.
In: AAAI Conference on Artificial Intelligence; 2021. p. 10639-46

54. Lütjens B, Everett M, How JP. Safe reinforcement learning with
model uncertainty estimates. In: International Conference on
Robotics and Automation; 2019. p. 8662-8

55. Xiong Z, Agarwal I, Jagannathan S. HiSaRL: A Hierarchical
Framework for Safe Reinforcement Learning. In: SafeAI@AAAI;
2022.

56. ChenB, Liu Z, Zhu J,XuM,DingW,Li L, et al. Context-aware safe
reinforcement learning for non-stationary environments. In: IEEE
International Conference on Robotics and Automation; 2021. p.
10689-95

57. Everett M, Chen YF, How JP. Motion planning among dynamic,
decision-making agents with deep reinforcement learning. In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems; 2018. p. 3052-9

58. Semnani SH, Liu H, EverettM, De Ruiter A, How JP (2020)Multi-
agent motion planning for dense and dynamic environments via
deep reinforcement learning. IEEE Robotics and Automation Let-
ters. 5(2):3221–6

59. Charakorn R, Manoonpong P, Dilokthanakul N. Learning to Coop-
erate with Unseen Agents ThroughMeta-Reinforcement Learning.
In: International Conference on Autonomous Agents and MultiA-
gent Systems; 2021. p. 1478-9

60. He JZY, Erickson Z, BrownDS, Raghunathan A, Dragan A. Learn-
ing Representations that Enable Generalization in Assistive Tasks.
In: Conference on Robot Learning; 2023. p. 2105-14

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Anand Ballou received his M.Sc.
degree in computer science and
applied mathematics from Greno-
ble INP - Ensimag, France in 2019.
He is currently working as a Ph.D.
student in the RobotLearn team at
the Inria center of the University
Grenoble Alpes, France, under the
supervision of Dr. Chris Reinke
and Dr. Xavier Alameda-Pineda.
His research areas include deep
learning, reinforcement learning,
preference-based learning, meta-
learning, robotics, and human-
robot interaction.

Xavier Alameda-Pineda is a
(tenured) Research Scientist at
Inria and the Leader of the Robot
Learn Team.He obtained the M.Sc.
(equivalent) in Mathematics in
2008, in Telecommunications in
2009 from BarcelonaTech and in
Computer Science in 2010 from
Université Grenoble-Alpes (UGA).
He then worked towards his Ph.D.
in Mathematics and Computer Sci-
ence, and obtained it in 2013,
from UGA. After a two-year post-
doc period at the Multimodal
Human Understanding Group, at

the University of Trento, he was appointed to his current position.
Xavier is an active member of SIGMM, a senior member of IEEE,
and a member of ELLIS. He is the Coordinator of the H2020 Project
SPRING: Socially Pertinent Robots in Gerontological Healthcare and
is co-leading the “Audio-visual machine perception and interaction for
companion robots” chair of the Multidisciplinary Institute of Artifi-
cial Intelligence. Xavier’s research interests are at the crossroads of
machine learning, computer vision, and audio processing for scene
and behavior analysis and human-robot interaction.

Chris Reinke is currently a post-
doctoral researcher in the Robot
Learn team at Inria Grenoble
(France). He is leading the Learn-
ing Robot Behavior work package
of the European H2020 SPRING
project (Socially Pertinent Robots
in Gerontological Healthcare)
which explores deep reinforcement
learning methods and their appli-
cation to social robotics. He received
his Bachelor’s (2009) and Mas-
ter’s degree (2012) in Cognitive
Science from the University of
Osnabrück (Germany). He pursued

his Ph.D. degree in the Neural Computation Unit of Prof. Dr. Kenji
Doya at the Okinawa Institute of Science and Technology (OIST) and
obtained it in 2018. Before starting his current position in 2020 he was
a postdoctoral researcher in the Flowers team of Pierre-Yves Oudeyer
located in Bordeaux (France). His research interests are artificial intel-
ligence, machine learning, and cognitive science with a main focus on
adaptive learning mechanisms.

123

27268 Ballaou et al.

	Variational meta reinforcement learning for social robotics
	Abstract
	1 Related work
	1.1 Adaptive Social Robotics and Reinforcement Learning
	1.2 Deep Meta Reinforcement Learning
	1.3 Posterior Collapse

	2 Approach
	2.1 Preliminaries
	2.1.1 Reinforcement Learning
	2.1.2 Variational Meta-RL (PEARL)

	2.2 RBF for Variational Meta-RL

	3 Experimental Results
	3.1 Evaluation protocol
	3.1.1 Baselines
	3.1.2 Procedure

	3.2 Gaze control environment
	3.2.1 Environment description
	3.2.2 Reward components
	3.2.3 Tasks
	3.2.4 Results

	3.3 Social navigation environment
	3.3.1 Environment description
	3.3.2 Reward components
	3.3.3 Tasks
	3.3.4 Results

	3.4 Racer environment
	3.4.1 Environment description
	3.4.2 Reward components
	3.4.3 Tasks
	3.4.4 Results

	4 Discussion
	4.1 Variational Meta-RL for Social Robotics
	4.2 Sample efficiency of off-policy meta-RL
	4.3 Performance of PEARL vs. RBF-PEARL
	4.4 Impact of trainability and number of RBF neurons
	4.5 How does the RBF layer improve performance?
	4.5.1 Influence on the learned input task representation z
	4.5.2 Influence on the temporal dynamics of learning task representation z
	4.5.3 Influence of the output representation tildez

	4.6 Open research directions
	4.6.1 Partially observable environments
	4.6.2 Safe reinforcement learning
	4.6.3 Multi-agent reinforcement learning

	5 Conclusion
	References

