
Vol.:(0123456789)1 3

Applied Intelligence (2023) 53:22297–22312
https://doi.org/10.1007/s10489-023-04674-6

Detecting log anomaly using subword attention encoder
and probabilistic feature selection

M. Hariharan1  · Abhinesh Mishra1 · Sriram Ravi1 · Ankita Sharma1 · Anshul Tanwar1 · Krishna Sundaresan1 ·
Prasanna Ganesan1 · R. Karthik2

Accepted: 26 April 2023 / Published online: 26 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Log anomaly is a manifestation of a software system error or security threat. Detecting such unusual behaviours across logs
in real-time is the driving force behind large-scale autonomous monitoring technology that can rapidly alert zero-day attacks.
Increasingly, AI methods are being used to process voluminous log datasets and reveal patterns of correlated anomaly. In this
paper, we propose an enhanced approach to learning semantic-aware embeddings for logs called the Subword Encoder Neural
network (SEN). Solving upon a key limitation of previous semantic log parsing works, the proposed work introduces the
concept of learning word vectors from subword-level granularity using an attention encoder strategy. The learnt embeddings
reflect the contextual/lexical relationships at the word level. As a result, the learnt word representations precisely capture
new log messages previously not seen by the model. Furthermore, we develop a novel feature distillation algorithm termed
Naive Bayes Feature Selector (NBFS) to extract useful log events. This probabilistic technique examines the occurrence pat-
tern of events to only select the salient ones that can aid anomaly detection. To our best knowledge, this is the first attempt
to associate affinity to log events based on the target task. Since the predictions can be traced to the log messages, the AI is
inherently explainable too. The model outperforms state-of-the-art methods by a fair margin. It achieves a 0.99 detection
F1-score on the benchmarked BGL, HDFS and OpenStack log datasets.

Keywords  Deep learning · Self-attention · Naive Bayes · Syslog · Anomaly detection · Encoder-decoder

1  Introduction

As cloud computing applications scale to high loads and
complex distributed environments, they become vulnerable
to software bugs and failures. Usually, these large-scale
systems are designed for robustness and stability. How-
ever, when a service fault or outage occurs, the mean time
to recovery is considerable due to the inherent complexity
of various components. Recently, the Google Cloud was
affected by an incorrect configuration change issue for nearly
two hours [1], while AWS faced a major outage that caused
traffic delays and latency for about 7 h [2]. Thus, the need
for diagnosing system anomaly plays a vital role in building
trustworthy and reliable software. A rapid and precise failure
detection helps troubleshoot issues faster, also motivates the
plausibility of fully self-healing workflows that can perform
auto-actions.

Logs are the preferred data source for root cause diagno-
sis of anomaly, because they record important events and
holistic system status information, and are available on most

 *	 M. Hariharan
	 vshshv3@gmail.com

	 Abhinesh Mishra
	 abhinemi@cisco.com

	 Sriram Ravi
	 srravi@cisco.com

	 Ankita Sharma
	 ankitas6@cisco.com

	 Anshul Tanwar
	 atanwar@cisco.com

	 Krishna Sundaresan
	 ksundar@cisco.com

	 Prasanna Ganesan
	 prasgane@cisco.com

	 R. Karthik
	 r.karthik@vit.ac.in

1	 Cisco Systems India Pvt Ltd, Bengaluru, India
2	 Center for Cyber Physical Systems, Vellore Institute

of Technology, Chennai, India

http://orcid.org/0000-0002-9382-568X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04674-6&domain=pdf

22298	 M. Hariharan et al.

1 3

platforms [3]. However, using logs comes with certain chal-
lenges. Firstly, the structural format and semantics of logs
can vary across systems. Often, linking log messages gen-
erated by different system modules can be non-compatible
given their diverse semantics [4]. Further, concurrent/paral-
lel execution of tasks can produce random events at different
times which does not share proper ordering or a determin-
istic ordering of messages [5]. Also, unexpected events that
occur in real-time need to be evaluated to see if they are
anomalous or not, which can be demanding even for domain
experts [6]. Though heuristics such as regular expressions or
keyword searching help automate to a certain extent, their
scope is highly limited. They generally report false posi-
tives, do not scale and need to be constantly updated for new
failures and code churn.

Such practical difficulties call for efficient analytical
models that can leverage massively large logs to automati-
cally mine valuable information for anomaly capture. Con-
sequently, many works explore Artificial Intelligence (AI)
for processing logs. The state of the art can be roughly clas-
sified into methods that use template-based features [4, 6,
10, 18-20], and ones that encode logs into vectors [7, 9,
11, 12, 15]. In the first category, a log entry is parsed into
its invariant part (template) by discarding numeric infor-
mation as parameter values and timestamps. The templates
are assigned unique event indexes and anomaly detection
is performed over the event index sequences using LSTM.
Some methods create vectors for time windows by counting
unique events, or TF-IDF aggregation. Then, the anomaly is
learnt through unsupervised techniques like Principal Com-
ponent Analysis (PCA) or Invariant Mining (IM). However,
when only using these event indexes as features, valuable
information can be lost because the templates can still con-
tain semantic relationships. Considering these drawbacks,
some methods directly use the extracted log templates as
textual features, but they cannot handle those templates not
seen before. However, in both cases, the quality of features
degrades when the parser is inaccurate. Commonly used FT-
Tree or Longest Common Subsequence (LCS) based parsing
requires ideal settings and extensive tuning to obtain the
best results. In contrast, log vectorization has gained trac-
tion in more recent works because of its capacity to encode
word context. The sequential ordering of words can also be
retained by embedding logs using transformers or recurrent
neural networks. However, word2vec or skipgram create
huge vocabulary spaces that can dilute learning over large-
sized datasets. words not observed in training make it less
resilient to new events that emanate in real-time.

There are a few limitations in the current arts for learning
robust log embeddings. Representability of out-of-vocabulary
(OOV) tokens is a key research gap. Although the Log2vec
[7] approach is able to produce semantic/lexically charged
word vectors, it relies on an offline compositional MIMICK

technique to handle OOV words. Tokenizing logs into sub-
words was tried by a few works, but it substantially increases
the sequence length. There is a need to develop a robust word-
2vec strategy for logs that inherently eliminates OOV without
computation overheads. It should process from subword granu-
larity but render embeddings that reflect the semantic/lexical
properties at the word level. Second, rarely few works explore
feature selection in the context of logs. Since an anomaly is
typically below 2% of the entire log volume, there is a need to
enhance its visibility by eliminating noisy and less useful logs
that do not affect anomaly detection.

In this paper, we propose a novel log encoder and feature
selection mechanism to process log texts. This encoder oper-
ates at subword precision but ensures that the aggregated word
embeddings reflect the semantic/lexical relations. Addition-
ally, the most desired set of events to learn about the presence
of anomaly are auto-selected for anomaly classification. This
is accomplished by modelling the probability distribution of
event occurrences. For example, heartbeat signals, and dae-
mon start/stops correlate to anomaly and are prioritized over
standard info messages.

The main contributions of this work are as follows.

•	 We propose a novel Subword Encoder Neural network
(SEN) as an enhancement over the current Log2vec algo-
rithm. This novelty boosts the representability of pro-
gram/system-level entities such as machine IDs, IP/MAC
addresses, error tracebacks, etc.

•	 The SEN implicitly takes care of handling out-of-vocabu-
lary words. It is robust to new kinds of events, as semantic/
lexical dependencies are encoded in the distributed vectors
through subword-level self-attention.

•	 A novel Naive Bayes-based algorithm is proposed for fea-
ture selection. By evaluating the occurrence probabilities
of different log events under failures, this model precisely
filters the key log messages aiding failure classification.

•	 The proposed selection mechanism improves the efficacy
of existing Machine Learning (ML) detectors. It ensures
better separability of features for outlier tagging.

The remainder of the paper is as follows. Section 2
reviews the latest trends in literature. Section 3 describes
the proposed work in detail, followed by a comprehensive
results analysis in Sect. 4. The conclusion section summa-
rizes the key findings of this work.

2 � Related works

This section reviews the recent AI developments in anom-
aly detection from logs. In addition, popular Natural Lan-
guage Processing (NLP) strategies for feature selection are
discussed.

22299Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

2.1 � Anomaly detection

Several works have explored Long Short Term Memory
Networks (LSTM) to learn log dependencies and predict
the likely next sequence in normal logs. An anomaly mani-
fests in real-time when LSTM finds a lesser chance for its
occurrence. This approach is unsupervised in nature, as the
anomalous patterns are unknown to the model until infer-
ence time. For example, Du et al. proposed the DeepLog
model that relied on the sequential occurrence of log events
to judge anomalous next logs [8]. An LSTM was fit over
the event identifiers and parameters to detect execution path
and performance anomalies. Zhou et al. proposed a log
pattern-driven anomaly detection model that uses statistical
features (frequency, surge) to find transient anomalies [4].
The approach adopts LSTM to correlate long-range temporal
patterns which are collectively supplied into a Back Propa-
gation (BP) neural network to obtain anomaly decisions. Yin
et al. developed a dual LSTM model that combinedly analy-
ses both the sequence of log templates and the components
that emitted them [5]. The fused outputs are iterated over
time steps to predict the next logs. Along similar lines, Chen
et al. exploited pre-order and post-order relationships across
log event sequences to train a dual LSTM [10].

Meng et al. introduced the concept of lexical contrast
embeddings to enhance the template representations over
DeepLog [9]. The template vectors were modelled using
LSTM to identify sequential/quantitative anomalies. In an
earlier work Log2vec, the authors employed similar seman-
tic dependency parsing and synonym/antonym concepts to
learn word vectors in log texts [7]. Lv et al. filtered invalid
log words based on parts of speech and learnt word vectors
[11]. The derived log-level embedding was passed through
LSTM to determine anomaly. Yang et al. added a self-atten-
tion layer over the LSTM to enhance the embedding repre-
sentations [12]. Li et al. proposed time-semantic sentence
embeddings that reflect changes in sequence order, log time
interval, and events. This dual nature of logs is encoded into
two vector sequences that are transformed using bidirec-
tional LSTM [13]. In an updated version of this framework,
the authors introduced identifier-based relationship graphs to
group interleaved messages from different processes [14]. It
also included an enhanced data-driven log parser for produc-
ing effective semantic-temporal embeddings.

Another set of studies involved Bidirectional Encoder
Representations from Transformers (BERT) for efficiently
encoding the log information. Lee et al. trained BERT with
only normal system logs [15]. The predictive probability
for masked tokens out to be low when abnormal logs were
passed to this trained model. Wang et al. applied BERT and
variational autoencoder to extract statistical and semantic
features through contrastive adversarial training [16]. Log-
BERT method proposed by Guo et al. modelled the log

contexts through masked log key prediction and minimizing
closeness between normal logs [17].

Some works explore Convolutional Neural networks
(CNN) for spatio-temporal processing of log sequence data.
For instance, to process streaming logs, Lu et al. and Wang
et al. devised a lightweight temporal (CNN) [6, 33]. The
logs are parsed into key sequences which are then embed-
ded via convolutions and determined to be anomalous or
not. Similarly, Hashemi et al. designed a character-based
hierarchical CNN that performs sequence classification [18].
It aggregates features level-wise from character to line to a
sliding window sequence.

To effectively utilize raw logs without any prior anomaly
information, unsupervised techniques are vastly explored.
For instance, Niwa et al. created a relationship graph based
on the interconnections of system components and their
running state metrics [19]. A centroid-based clustering was
applied to detect outliers in an unsupervised fashion. Simi-
larly, Farzad et al. learnt an autoencoder to vectorize logs
and spotted anomalies using isolation forest [34]. Zeufack
et al. also exploited log keys to create event counting features
useful for density-based clustering [20]. In this approach, an
anomaly is evaluated considering its core and reachability
distances from the found clusters.

2.2 � Feature selection

Feature selection on textual datasets like logs is a strategy
to distil significant keywords/variables that can form a basis
for classification [21]. They effectively process high-dimen-
sional feature spaces, while preserving information gain and
reducing runtime complexity. Bommert et al. experimented
with 22 filter methods to correlate and rank the best ones for
different kinds of data [22]. It is seen that while the essen-
tial features contribute to the objective, their combination
is more significant. In another work, Iqbal et al. discuss the
taxonomy of feature selection and its applicability for text
categorization, remote sensing, and image retrieval [23].

Typically, there are two approaches for picking the ideal
features, the wrapper and filter models. The wrapper models
generate different feature sets and apply classifiers to evalu-
ate and identify the best combinations [24]. On the other
hand, the filter techniques use statistical measures such as
correlations between predictor and target variables to decide
feature weight scoring [25]. These metrics are commonly
drawn from information theory. For example, Prasetiyowati
et al. used entropy criteria as the basis to weigh important
features [26]. Wang et al. investigated trends in the number
of features and their relationship to the classification perfor-
mance to reach the optimal selections [27].

The mechanism proposed in our work defines feature
affinity based on their Naive Bayes occurrence probabili-
ties. It is a derivative of the Naive Bayes algorithm widely

22300	 M. Hariharan et al.

1 3

used in text classification tasks, like sentiment analysis,
topic labelling, etc. [28]. Other feature selection techniques
include Chi-Square, Information Gain (IG), and Recursive
Feature Elimination (RFE) [29]. Ismail et al. proposed a
system that can accurately distinguish between real-human
and bot-generated texts based on the measurements gathered
in a study using the Naive Bayes and entropy classifiers [30].
Similarly, Bird et al. applied relative entropy to select highly
polar sentiments from a dataset of word stem attributes [31].
This enabled precise sentiment recognition. In summary,
both the percentage of information gain and the dependen-
cies between predictor/target variables are major aspects in
the design of accurate feature selectors.

3 � Proposed work

The goal of the proposed deep learning model is to learn
robust distributed representations for the individual words
comprising the logs. These word embeddings are formed
such that they accurately capture the semantic sense of sys-
tem/program entities (numbers, IPs, emails) typically found
in logs, also generalize well to out-of-vocabulary words in
unseen logs.

From the architecture diagram presented in Fig. 1, the
logs are considered in blocks of a fixed number of lines, N.
In the first step, the log messages are converted to a vec-
tor sequence via a novel semantic encoder. The subsequent
step selects the most useful log message vectors for anomaly
detection. This is to ensure that noisy/irrelevant messages
are discarded while the remaining are retained in time order.
The embeddings are merged to produce a log-level represen-
tation which can be passed into an ML classifier. In sum-
mary, the model ascertains whether the log block carries an
anomaly or not in a supervised fashion.

3.1 � Subword encoder neural network (SEN)

Log parsing identifies the underlying format used to gener-
ate the logging statements. Conventional template extraction
methods such as FT-Tree (Frequent Template Tree) or Long-
est Common Subsequence (LCS) produce distinct log event
categories. However, these event categories are not entirely
unique but can still be semantically similar/related to each
other. As illustrated in Fig. 2, FT-Tree assigned different
template IDs to the first two log events, although they con-
vey the same information. Hence there is a need to cluster
the log messages based on their underlying meaning that
strengthens the semantic relationships for determining the
degree of similarity.

In this log parsing layer, we present a new mechanism to
learn rich contextual log embeddings. The steps are illus-
trated in Fig. 3. A log message is split into words on the
space character. The aim here is to generate a unique word-
level embedding for any log word in the dataset. A log mes-
sage can then be expressed as a sum of its word vectors.

However, two key challenges are faced in creating robust
word vectors. Firstly, the vocabulary of words in a log base
constantly changes, resulting in new words/events being
observed during real-time detection. Secondly, the param-
eter terms inherent to logs such as machine IDs, memory
addresses, variables, etc. need to be precisely expressed so
that any unseen IDs or entities can still have similar embed-
ding. To overcome these issues, we introduce an encoder
neural network that operates at the subword level. Specifi-
cally, the Byte-Pair Encoding (BPE) algorithm is run over
all tokens in the corpus to form an all-inclusive vocabulary
set. From 256 bytes base tokens, 50,257 vocabulary size
is reached by performing 50,000 merges. This ensures that
even complex entities can be efficiently decomposed to the
most representative granular sub-entities.

Fig. 1   Schematic diagram of the proposed log anomaly detection framework

22301Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

(a) Parsing templates from logs using pattern-based methods.

(error, fault)

(executing, run)

(storage, memory)

(terminated, complete)

(b) Synonym sets

(minus, plus)

(start, stopping)

(external, internal)

(normalized,

denormalized)

(c) Antonym sets

<Error, receiving, packet>

<FATAL, Error, on>

<receiving, packet, tree>

(d) Word dependency triples.

Fig. 2   Examples of logs ideal for lexical constraints and semantic similarity

Fig. 3   Generating log event vectors

22302	 M. Hariharan et al.

1 3

This proposed log word encoder is presented in Fig. 4.
Here, every word w is treated as a sequence of m subwords.
They are converted to D-dimensional features, F ∈ ℝ

m×D
through an embedding lookup. To integrate deep contex-
tual information across subword features in the word, self-
attention learning is performed over F.

The self-attention layer works by first deriving three
sets of features from F – queries Q , keys K , and values V  .
These entities are formed as linear projections on F using the
weight matrices WQ ∈ ℝ

D×D , WK ∈ ℝ
D×D , and WV ∈ ℝ

D×D ,
as given by Eq. (2–4).

The matrix dot product Q and K yields the attention coef-
ficient map. Its values are row-wise softmax normalised to
ensure appropriate weighing of the features. Each cell in
this attention map carries the degree of correlation between
the subwords referred to by that row and column. Finally,
the transformed feature-set, A ∈ ℝ

m×D is calculated as a
weighted combination of values V over the attention param-
eters. Equation (4) summarizes the computations involved.

By attending to every part of the word, each subword
encoding selectively infuses semantic attributes and linkage
information depending on the words it is present in. The atten-
tion mechanism also retains salient features suppressing any

(1)Q = FWQ

(2)K = FWK

(3)V = FWV

(4)A = softmax

�
QKT

√
D

�
V

irrelevant details, thereby enhancing the intermediate subword
representations for downstream processing.

In the subsequent step, A is additively pooled along the
rows to generate the word embedding E . Given such deep
representations from the encoder, the goal is to train context-
based word vectors to predict the target word. Let W ∈ ℝ

|W|×D
be defined as the collection of SEN encodings for all word
tokens in the dataset V . Then this skip-gram objective can be
expressed as per Eq. (5).

where c is the length of the context window. wi is the input
central word and wi+j denotes its neighbouring words. The
conditional probability function is given by Eq. (6).

Here, Wx and Wy refer to rows in the SEN matrix. In addition
to contextual meaning, it is useful to encode lexical similarities
and contrast among the log words. As demonstrated in Fig. 2,
certain synonymous words convey the same semantic sense.
Naturally, their word vectors should be closer compared to
their antonyms. We adopt the LSWE (Lexical-contrast Seman-
tic Word embeddings) to constrain such semantic relations on
the learnt embeddings [7], as in Eq. (7).

where, SYNwi
 and ANTwi

 denote the synonym and antonym
sets of wi.

We further augment the semantic embeddings by asso-
ciating word dependencies, as described in the Log2vec

(5)Lskipgram = −
∑

−c≤j≤c
log

(
p
(
wi+j|wi

))

(6)p
�
wx�wy

�
=

exp
�
Wx.Wy

�

∑V

k=1
exp

�
Wk.Wy

�

(7)LLSWE = −
∑

u∈SYNwi

log
(
p
(
wi|u

))
+

∑

u∈ANTwi

log
(
p
(
wi|u

))

Fig. 4   Architecture of the subword encoder neural network

22303Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

technique by Meng et al. [7]. Dependency parsing examines
the grammatical relationships that exist between phrases in
the log message. From examples in Fig. 2, a dependency
links a head/root node to a child node via an association.
Therefore, connected pairs (x, y) need to be closer than other
words z in the message. Consequently, a set of relation tri-
ples (x, y, z) can be formed to represent this inequality, where
the sim(x, y) > sim(y, z)orsim(x, z) . This constraint can be
imposed on the objective function as a triplet loss [32].

Thus, to train the SEN model, the final objective to mini-
mize is the addition of these individual losses as presented
in Eq. (9).

Post optimization, any log message can be obtained as a
vector sum of their component word embeddings.

3.2 � Naive bayes feature selection (NBFS)

In practical scenarios, the occurrence of certain log events
can lead to an anomalous pattern. Instead of supplying all
log events in a time window for ML analysis, one level of
feature engineering can be performed to determine the most
helpful log messages that aid in anomaly detection. The
advantages of template selection are three-fold: 1) elimi-
nates unnecessary noise, 2) compresses input without infor-
mation loss, and 3) enables faster convergence and precise
model fitting.

To achieve this goal, we propose a novel probability-
based technique to determine suitable templates. Leveraging
the SEN model, all log lines in the dataset can be mapped
to their corresponding log embeddings. An Agglomerative
Nesting (AGNES) clustering algorithm is run to group simi-
lar messages into unique event categories. These log clusters
are indicative of a specific kind of event, similar in terms to
a template extracted by FT-Tree or LCS techniques. Let C
be the set of distinct clusters obtained.

Since the ML classifier is trained on a fixed-length log
block (N events at a time), let the dataset be prepared as
sliding windows, X . Let y ∈ {0, 1} be the target for anomaly
classification, i.e., whether X points to a failure or not. From
Bayes theorem, the posterior probability of determining y
from X is given by Eq. (10).

Here, the likelihood P(x|y) can further be expressed as
Markov chain function as per Eq. (11).

(8)LDP =
�

u∈RELwi

max
�
‖wi − u‖2 − ‖wi − v‖2 + �, 0

�

(9)L = Lskipgram + LLSWE + LDP

(10)P(y|X) =
P(X|y) × P(y)

P(X)

where xi denotes a log event type from C that is found in the
block X . Therefore, the probability of an event xi to occur
in a specific class of logs can be calculated as per Eq. (12).

Using Eq. (12), P
(
xi|y = 0

)
 gives the plausibility for

event xi to manifest in a normal log. Similarly, P
(
xi|y = 1

)

is the possibility of seeing xi in an anomalous log.
The proposed feature selection technique computes the

P
(
xi|y = 0

)
 and P

(
xi|y = 1

)
 statistics for all events xi ∈ C by

traversing the entire dataset. In case the difference between
these values for an event falls below a set threshold T  , that
event is discarded. It means that the distribution of occur-
rence of that event did not significantly vary/distinguish
between normal and abnormal logs. Evidently, it is a fre-
quent event that bears no significance for the task of anomaly
classification. The value of T is determined empirically. In
summary, only messages belonging to log clusters that sat-
isfy this property are subjected to ML.

3.3 � Anomaly detection

In a log stream, a specific time frame is sampled. The log
messages are encoded via SEN and filtered on the NBFS
event selector layers. Assuming the feature stack to have
k log row embeddings in D-dimensions, they are reshaped
into a 1-D vector. The concatenated feature-set is padded to
a uniform length and classified on supervised ML models,
as illustrated in Fig. 1.

4 � Results and Discussions

This section discusses the datasets, experiments and findings
based on various aspects of the model. In the final subsec-
tion, a performance comparison is drawn with the state-of-
the-art methods for anomaly detection.

4.1 � Data collection

The proposed log analytics framework was evaluated on
three standard open-source datasets: 1) BGL, 2) HDFS,
and 3) OpenStack. Their details are listed in Table 1. These
datasets are a collection of real-time system logs that were
labelled and freely released by authors of previous works. In
the existing literature, they are commonly used as a bench-
mark for assessing the effectiveness of anomaly detectors.

The BGL logs are from the BlueGene/L supercom-
puter at the Lawrence Livermore National Labs (LLNL) in

(11)P(X|y) = P
(
x1|y

)
× P

(
x2|y

)
× ...P

(
xn|y

)

(12)P
(
xi|y

)
=

#occurrences of xi iny

#templates in y

22304	 M. Hariharan et al.

1 3

Livermore, California [35]. The log messages are marked
with alert category tags to indicate anomaly. This label infor-
mation was utilized for supervised learning.

OpenStack is a set of software components to manage
cloud services and infrastructure [36]. The dataset was gen-
erated on the CloudLab platform. It provides VM instances
that have injected anomalies and the abnormal log sections
pertaining to them.

The Hadoop Distributed File System (HDFS) log events
describe the insertion, deletion, and updation of blocks in the
Hadoop ecosystem [8]. An error/failure here can be traced
to the associated block IDs.

4.2 � Experimental setup

All experiments are run on a Ubuntu 18.04 server with
32 GB NVIDIA Tesla V100 GPUs. The memory and pro-
cessors are 128 GB RAM, 96CPUs. The embedding layers
are learnt as PyTorch modules through Adam optimiza-
tion, while the log classification is performed using Sklearn
libraries. The data processing scripts involve NLTK, regex
and Spacy functions. For the log vector neural network, the
initial learning rate is set to 5.0. It is controlled by a multi-
plicative learning rate decay scheduler, that drops by a factor
of 0.1 when no improvement is observed over 10 epochs.

4.3 � Model training and validation

To perform training the logs are traversed as sliding win-
dows. Each window constitutes a chunk of log events that
occurred in that fixed-length time frame. The window size
is a hyper parameter that takes optimal values based on the
dataset. The log blocks are assigned to be normal or anom-
alous based on the labelling information provided (refer
Table 1).

Such data instances are partitioned into train, valida-
tion, and test splits in the ratio of 80:10:10 respectively. A
shuffled and stratified data sampling is applied to preserve
the proportions of normal and erroneous blocks in these
split sets. The evaluation criteria are Precision, Recall and
F1-score. These metrics are widely used for benchmarking
log failure prediction models.

The entire log corpus is first subjected to SEN train-
ing as per Eq. (9) in order to learn appropriate weights for

embedding layers. Table 2 captures the decay in this seman-
tic word2vec loss function. The subword encoder is able to
converge well on all three datasets and generate effective
representations of their textual contents. This is evident as
the loss on the unseen validation set dropped closer to the
training loss towards convergence. It took 3–4 epochs to
fully absorb the semanticity constraints. These log features
are then classified as normal or anomalous using supervised
ML. In the experiments, models tried include logistic regres-
sion, Support Vector Machine (SVM), random forests, and
extreme gradient boosting.

In Table 2, learning curves are plotted for the ideal clas-
sifier and the best set of hyperparameters that gave the high-
est results on each dataset. The cross-entropy loss decays
steadily through epochs. The number of epochs differs based
on dataset complexity and type of classifier. Since HDFS
blocks require processing a larger contextual window, it
takes a longer training time. However, accuracy on unseen
data matches that of the training set over time. Similarly,
the F1 scores on BGL stagger initially but stabilize after 30
epochs. OpenStack logs are the most amenable to anomaly
detection out of the three, hence their learning is smooth
across iterations.

4.4 � Ablation studies

This section aims to evaluate the efficacy of individual com-
ponents in the proposed framework. The effectiveness of the
two key building blocks: 1) SEN and 2) NBFS is studied via
ablation experiments.

Firstly, a vanilla baseline is established so that perfor-
mance gains from the proposed modules can be measured
incrementally. This base algorithm is a combination of
parsed log template features and LSTM for self-supervised
next log prediction. Such an approach is popular in current
arts. It utilizes the error-free log sequences prepared in the
previous step to model the distribution of logs, thereby iden-
tify outliers on the unseen set. Table 3 captures a holistic
view of the ablation studies. It is evident this base method
registers reasonable accuracy close to 90%, leaving much
scope for enhancements. Especially, it needs to handle new
events not observed during training. Also, the template
extraction demands rigorous fine-tuning to predict the event
types precisely.

Table 1   Datasets obtained from three sources. Provided are the counts of normal and erroneous log events present in the files

S. No Dataset Description Total number
of messages

Number of Anom-
alous messages

Number of normal
log messages

Percentage of
Anomaly (%)

1 Blue Gene/L (BGL) [35] Super computer logs 4,747,963 348,460 4,399,503 7.33
2 HDFS [36] Distributed File System Log 11,175,629 288,250 10,887,379 2.57
3 OpenStack [8] Cloud Infrastructure log 207,820 18,434 189,386 8.87

22305Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

To augment this baseline, the SEN is introduced at the
embedding learning stage. It solves both the challenges by
learning robust representations for out-of-vocabulary words,
also eliminates need for pattern-based log parsing. The SEN
technique improves recall by 9.19% on BGL compared to the
conventional method. A major contributing factor is self-
attention learning which only focuses on significant details,
unlike the LSTM that processes the entire context. On HDFS
and OpenStack, the encoder enhances precision by 5.74%
and 10.84% reducing any false positives.

By adding the NBFS layer, only the differential log events
whose occurrence pattern greatly differs in the anomaly

scenarios are supplied to ML. Inducing this event aware-
ness into the context increases precision close to 1.00 on all
the datasets. Evidently, the model exploits useful attributes
to enhance boundary separation and distinguish the outliers,
resulting in a higher recall by 4%.

4.5 � Effects of embedding dimensionality
on anomaly detection

Embedding size is a determinant factor of model perfor-
mance. Choosing an appropriate length can improve the
semantic effectiveness of the produced embedding features.

Table 2   Trends observed during training on the datasets. The embedding loss applies to the word2vec learning at the SEN phase. Cross-entropy
loss is used to classify log blocks at the final detection stage. F1 scores emitted at this ML classifier are tracked through epochs

Trends BGL HDFS OpenStack

Embeddi

ng Loss

Classific

ation loss

F1-score

Table 3   Experimental results to
validate efficacy of the proposed
enhancements

S. No Dataset Models Precision Recall F1-score

1 Blue Gene/L (BGL) Baseline Log template LSTM model 0.93 0.87 0.89
SEN log vectorization 0.96 0.95 0.96
SEN filtered with NBFS 0.98 0.99 0.99

2 HDFS Baseline Log template LSTM model 0.87 1.00 0.91
SEN log vectorization 0.92 0.95 0.93
SEN filtered with NBFS 1.00 0.99 0.99

3 OpenStack Baseline Log word vector LSTM model 0.83 0.91 0.87
SEN log vectorization 0.92 0.96 0.95
SEN filtered with NBFS 0.99 1.00 0.99

22306	 M. Hariharan et al.

1 3

Consequently, it aids in the discriminability of keywords
representing anomalous patterns. In this experiment, the
dimensionality is varied in steps of 64 256, and 1024 and
trained for the best classification model on each dataset
(refer Fig. 5).

The BGL logs contained a greater number of distinct
tokens and synonym-antonym sets. Therefore, it requires
bigger dimensions of 1024 elements to encode this knowl-
edge. Comparatively the OpenStack logs have lesser seman-
tic dependencies, but more machine entities and identifiers.
So, a small size such as 64 dimensions does not capture cat-
egorical similarity in these variable words. A length of 256
fits accurately. On the other hand, HDFS comprises fewer
unique events and variations in the structure of messages. It
responds well at 64 and 256 dimensions but degrades after
that due to overfitting.

4.6 � Effects of window size on the accuracy
of anomaly detection

The size of the contextual window is a critical hyperparam-
eter in the design of a log anomaly detector. A good enough
time range will allow for sufficient correlations across the
events to determine the presence of abnormality. Too small
a size can deprive the ML of essential details that are help-
ful. On the other hand, very large size will invite noise and
complex boundary fitting. It also incurs more memory and
processing.

Specifically, the ideal window size is a characteristic of the
dataset that depends on its nature and complexity. To obtain
the optimal value, the search space for this parameter is varied
through 1, 5, 10, 20, 50, 100, and 200. The F1 scores regis-
tered for the three datasets are visualized in Fig. 6.

It is observed for BGL, that a single alert/non-alert mes-
sage is known to indicate whether an aberration occurred

Fig. 5   Selecting optimal embed-
ding size on different datasets

Fig. 6   Choosing the best win-
dow size to maximize accuracy.
Scores are computed on the
test set

22307Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

or not, hence one-sized window gives the highest F1 score.
For OpenStack, a window size of 5 achieves the best perfor-
mance. Since anomalies are present as transactions revolv-
ing around VM instances, it is expected to span a few sets
of lines. In contrast, models tried on HDFS converge only
for a window size of 100 and slightly dropped beyond that.
As an HDFS anomaly manifests at a file-block level, a big-
ger window can trap most of that block-related messages
amongst other log events. Therefore, it demands a larger size
to observe event activity.

4.7 � Improving efficiency of base classifiers using
naive bayes feature selection

To demonstrate the impact of the proposed NBFS logic in
pruning unnecessary logs, the behaviour of four classifiers
in the presence and absence of this layer are investigated.
Figure 7 plots the trends observed in F1 score before and
after applying NBFS.

It is seen that regardless of the dataset or type of clas-
sification model, NBFS improves the distinguishability of
anomaly. For SVM, it leads to a 25% and 7% increase in the
correctness of predictions on OpenStack and HDFS respec-
tively. With NBFS, the non-linear kernel feature space is
well-formed to enable large-margin separation of outliers. A

similar trend saw Random Forest increase by 3% uniformly
across datasets. The decision trees had a lesser overfitting
effect as the ideal depth decreased post-NBFS. In contrast,
Logistic regression and Extreme Gradient Boosting models
show lesser response to NBFS, as the base classifiers already
reached maximal results.

(a) BGL (b) HDFS

(c) OpenStack

Fig. 7   Trends in ML model performance before and after applying NBFS. (a) BGL. (b) HDFS. (c) OpenStack

Fig. 8   Number of unique events discovered in the logs by parsing as
proportions in the timestamp order

22308	 M. Hariharan et al.

1 3

4.8 � Generalizability to unseen logs

Resiliency to new log events is a key strength of the pro-
posed model. Even new messages only encountered in real-
time can still be assessed as normal or erroneous. Figure 8
provides a plot of total log events encountered at different
percentages of the log corpus.

While the HDFS and OpenStack logs contain a lesser
number of distinct events that remain constant over time,
the BGL comparatively shows more variations. The BGL
dataset produced new log message clusters frequently as the
trendline expands steeply. This property makes it an ideal
candidate to test the robustness of the subword encoder to
handle words unseen during training. The results of such an
experiment for all three datasets are summarized in Table 4.

Especially for BGL, even when only the first 10% logs
were subjected to learning, the model still gave a reason-
able 0.93 F1-score on the remainder 90% data. It improves
with more data, as it reached 0.96 at halfway mark. This
trend confirms efficacy of the approach to function well even
under new logs. In slight contrast, on HDFS and OpenStack
the model already achieved maximal accuracy at 30% and
60% dataset respectively. These datasets had a redundant
pattern of messages that did not greatly impact the unknown
subword representations.

4.9 � Performance comparison

This section presents a comparison of the proposed work
with several state-of-the-art methods for log anomaly detec-
tion. To ensure fairness in comparison, only works that have
experimented with the same datasets as the current work
have been considered. Tables 5, 6 and 7 show the analysis
of existing techniques on BGL, HDFS, and OpenStack data-
sets respectively. It is seen that the proposed SEN encoder
alongside NBFS-augmented classification reached the best
Precision, Recall and F1 score compared to most of the
other works. The biggest advantage of our method lies in
low memory requirement, fast compute times and simplified
workflow integration for streaming logs.

From Table 5, Chen et al. achieved a below-par score on
BGL, because the conventional log parsing to extract tem-
plate/parameters does not cover all possible events (keys)
in the training set for the next log key prediction [10]. This
method gave a 0.97 F1-score on HDFS logs that contained
fixed event types, whereas it could not adapt to the charac-
teristics of the BGL dataset that produces more irregular
events. Similar approaches such as Du et al., Meng et al.,
and Yang et al. also face the same drawback of not being

Table 4   Measuring accuracy when only a proportion of logs is used
for training and rest taken into testing

S. No Percentage of logs
taken into training set

Test set performance (F1-score)

Blue
Gene/L
(BGL)

HDFS OpenStack

1 0.1 0.93 0.96 0.93
2 0.2 0.93 0.97 0.95
3 0.3 0.93 0.99 0.97
4 0.4 0.94 0.99 0.98
5 0.5 0.96 0.99 0.98
6 0.6 0.97 0.99 0.99
7 0.7 0.97 0.99 0.99
8 0.8 0.99 0.99 0.99
9 0.9 0.99 0.99 0.99
10 1.0 0.99 0.99 0.99

Table 5   Performance analysis
of existing methods on the BGL
logs dataset

S. No Source Method Precision Recall F1-score

1 Chen et al. [10] Dual LSTM 0.68 0.99 0.81
2 Yang et al. [12] Self-attention LSTM 0.82 0.94 0.88
3 Guo et al. [17] LogBERT 0.89 0.92 0.90
4 Meng et al. [7] Log vectors clustering 0.94 0.94 0.94
5 Meng et al. [9] LSTM on template features 0.97 0.94 0.96
6 Lee et al. [15] BERT masked language model 0.95 0.96 0.96
7 Z Wang et al. [33] Temporal CNN 0.95 0.99 0.97
8 Lv et al. [11] LSTM on word2vec 0.97 0.99 0.98
9 Farzad et al. [34] Isolation Forest on autoencoder features 0.97 0.98 0.98
10 Q Wang et al. [16] BERT and variational autoencoder 0.99 0.99 0.99
11 Hashemi et al. [18] Hierarchical CNN 0.99 0.99 0.99
12 Li et al. [13] Attention Bi-LSTM 0.97 1.00 0.99
13 Proposed Work Subword Encoder and Naïve Bayes

Feature Selection
0.98 0.99 0.99

22309Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

generalizable for new log keys [7, 8, 12]. Another popular
approach involves modelling BERT to predict the likelihood
of masked tokens. Lee et al. and Guo et al. obtain adequate
F1 scores of 0.96 and 0.90 using BERT [15, 17]. However,
due to diverse variability in logs, BERT predictive prob-
abilities are unlikely to cover all possibilities in each context,
resulting in false positives. Instead, considering these deep
BERT features as input for a supervised classifier layer pre-
vents precision errors.

Employing word vectors in place of log templates
improves resilience in the embeddings for new log formats.
These methods display better results. For instance, Z Wang
et al. designed a semantic vector space model that cleanly
highlights anomalous logs on a temporal CNN [33]. Li
et al. use time and semantic embeddings to detect sequen-
tial anomalies [13]. These approaches acquire efficient
representations but draw excessive contextual details and
invariably noise too. The NBFS module proposed in our
work eliminates such less relevant factors from impacting
decision making. In place of text parsing, an end-to-end
character-level neural network was presented by Hashemi
et al. that achieved a 0.99 F1 score on BGL and HDFS [18].

This technique fails on OpenStack logs where the anomalies
are too finely spread over certain VM instance messages to
be solely distinguished at the character level.

Amongst LSTM methods, analysing multiple relation-
ships such as pre/post order of events and component-aware
templates improves the efficacy of LSTM. Yin et al. and
Chen et al. demonstrate Dual LSTM that can inspect such
patterns [5, 10]. These models capture long-term dependen-
cies yet are not explicitly trained for semantic/contextual
similarities between log words. On the other hand, Lv et al.
that utilized word vectors converged with better precision
[11]. In our proposed architecture, the SEN module ensures
appropriate semantic-aware features for anomaly detection.
Handcrafted features such as frequency, surge and variables
have also been effective inputs for LSTM, as shown by Zhou
et al. [4]. Nevertheless, they are derivative statistics and do
not directly express inherent log contents, which in turn ena-
bles the LSTM to form better correlations.

Besides these approaches, autoencoders are shown to gener-
ate useful low-dimensional features for differentiating anoma-
lies [16, 34]. Autoencoder presents a risk of lossy transforma-
tion. Training an autoencoder requires a lot of data, processing

Table 6   Results comparison of
the proposed model with similar
research works on the HDFS
dataset

S. No Source Method Precision Recall F1-score

1 Guo et al. [17] LogBERT 0.87 0.78 0.82
2 Zeufack et al. [20] OPTICS outlier clustering 0.71 1.00 0.83
3 Meng et al. [9] LSTM on template features 0.96 0.94 0.95
4 Du et al. [8] LSTM on log keys and parameters 0.95 0.96 0.96
5 Lee et al. [15] BERT masked language model 0.95 0.96 0.96
6 Meng et al. [7] Log2vec clustering 0.96 0.96 0.96
7 Yin et al. [5] Dual LSTM 0.93 0.98 0.96
8 Z Wang et al. [33] Temporal CNN 0.94 0.99 0.97
9 Zhou et al. [4] LSTM 1.00 0.94 0.97
10 Chen et al. [10] Dual LSTM 0.96 0.98 0.97
11 Lv et al. [11] LSTM on word2vec 1.00 0.98 0.98
12 Yang et al. [12] Self-attention LSTM 0.97 0.99 0.98
13 Q Wang et al. [16] BERT and variational autoencoder 0.99 0.99 0.99
14 Lu et al. [6] CNN 0.98 0.99 0.99
15 Hashemi et al. [18] Hierarchical CNN 0.99 0.99 0.99
16 Li et al. [13] Attention Bi-LSTM 0.97 1.00 0.99
17 Proposed Work Subword Encoder and Naïve Bayes

Feature Selection
1.00 0.99 0.99

Table 7   Evaluation of AI
methods on the OpenStack
dataset

S. No Source Method Precision Recall F1-score

1 Hashemi et al. [15] Hierarchical CNN 0.11 0.99 0.21
2 Niwa et al. [19] MeanShift clustering 0.94 0.86 0.90
3 Du et al. [8] LSTM on log keys and parameters 0.95 0.99 0.97
4 Farzad et al. [34] Isolation Forest on autoencoder features 0.96 0.97 0.97
5 Zhou et al. [4] LSTM 0.99 0.97 0.98
6 Proposed Work Subword Encoder and Naïve Bayes

Feature Selection
0.99 1.00 0.99

22310	 M. Hariharan et al.

1 3

time and hyper-parameter tuning, whereas the proposed SEN
is tuned directly for the word2vec objective and converges
faster. Overall, in terms of lesser complexity and highest accu-
racy on multiple datasets, our method comes on par with the
state of the art.

5 � Conclusion

This article proposes a novel approach to learn log word
embeddings that takes advantage of semantic/lexical relation-
ships across words. It processes from a subword byte-pair
vocabulary but ensures that contextuality is retained in the
word-level embeddings. Learning such compositional word
vectors inherently solves the representability of out-of-vocab-
ulary tokens which is a key research challenge in this area.
The ability of this module to operate under irregular events
was confirmed through experiments. By only observing the
first 10% logs, it gave a 93% F1 score on the BGL dataset,
which proves its resiliency to new messages. Additionally, this
paper introduces a probabilistic mechanism for selecting the
most significant logs that can aid anomaly detection. It learns a
Naive Bayes probability distribution for the occurrence pattern
of events. Then, it identifies the salient ones that can reflect the
difference between regular logs and abnormal logs. To our best
knowledge, this is the first attempt to develop such a feature
selector for logs. Empirically it was observed that this module
improves performance of the base classifiers, to the extent of
25% for Support Vector Machine on OpenStack dataset.

The proposed framework was demonstrated on three
benchmarked datasets. The learning curves imply that the
models converged optimally. It reached mean 0.99 F1 scores
on all three datasets, which exceed the current arts. As future
work, the model can be expanded to more kinds of logs. The
explainability of target predictions can be back-traced to fea-
tures on the logfile, thereby opening pathways to self-healing
workflows.

Data availability  The syslog data that support the findings of this study
are available in the LogHub public repository with the identifier(s).
https://​doi.​org/​10.​48550/​arXiv.​2008.​06448

Declarations 

Competing interests  The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relation-
ships which may be considered as potential competing interests.

References

	 1.	 Google Cloud Fixes Outage That Hit Home Depot, Snap, Spo-
tify. https://​www.​bloom​berg.​com/​news/​artic​les/​2021-​11-​16/​

home-​depot-​amazon-​web-​servi​ces-​websi​tes-​repor​tedly-​see-​outag​
es (Accessed 28 June 2022)

	 2.	 Amazon Web Services’ third outage in a month exposes a weak
point in the Internet’s backbone. https://​www.​washi​ngton​post.​
com/​busin​ess/​2021/​12/​22/​amazon-​web-​servi​ces-​exper​iences-​
anoth​er-​big-​outage/ (Accessed 28 June 2022)

	 3.	 Lin Q, Zhang H, Lou JG, Zhang Y, Chen X (2016) Log cluster-
ing based problem identification for online service systems. In:
Proceedings of the 38th International Conference on Software
Engineering Companion, pp 102–111

	 4.	 Zhou P, Wang Y, Li Z, Wang X, Tyson G, Xie G (2020) Log-
sayer: Log pattern-driven cloud component anomaly diagnosis
with machine learning. In: 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS). IEEE, pp 1–10

	 5.	 Yin K et al (2020) Improving Log-Based Anomaly Detection with
Component-Aware Analysis. IEEE Int Conf Softw Maint Evol
(ICSME) 2020:667–671. https://​doi.​org/​10.​1109/​ICSME​46990.​
2020.​00069

	 6.	 Lu S, Wei X, Li Y, Wang L (2018) Detecting anomaly in big data
system logs using convolutional neural network. In: 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Comput-
ing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress (DASC/PiCom/DataCom/
CyberSciTech). IEEE, pp 151–158

	 7.	 Meng W, Liu Y, Huang Y, Zhang S, Zaiter F, Chen B, Pei D
(2020) A semantic-aware representation framework for online log
analysis. In: In 2020 29th International Conference on Computer
Communications and Networks (ICCCN). IEEE, pp 1–7

	 8.	 Du M, Li F, Zheng G, Srikumar V (2017) Deeplog: Anomaly
detection and diagnosis from system logs through deep learning.
In: Proceedings of the 2017 ACM SIGSAC conference on com-
puter and communications security, pp 1285–1298

	 9.	 Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y et al (2019) LogA-
nomaly: Unsupervised detection of sequential and quantitative
anomalies in unstructured logs. IJCAI 19(7):4739–4745

	10	 Chen Y, Luktarhan N, Lv D (2022) LogLS: Research on System
Log Anomaly Detection Method Based on Dual LSTM. In Sym-
metry. MDPI AG 14(3):454. https://​doi.​org/​10.​3390/​sym14​030454

	11	 Lv D, Luktarhan N, Chen Y (2021) ConAnomaly: Content-Based
Anomaly Detection for System Logs. In Sensors. MDPI AG
21(18):6125. https://​doi.​org/​10.​3390/​s2118​6125

	12	 Yang R, Qu D, Gao Y, Qian Y, Tang Y (2019) nLSALog: An
Anomaly Detection Framework for Log Sequence in Security
Management. In IEEE Access. Ins Electr Electron Eng (IEEE)
7:181152–181164. https://​doi.​org/​10.​1109/​access.​2019.​29539​81

	13.	 Li X, Chen P, Jing L, He Z, Yu G (2020) Swisslog: Robust and
unified deep learning based log anomaly detection for diverse
faults. In: 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, pp 92–103

	14.	 Li X, Chen P, Jing L, He Z, Yu G (2022) SwissLog: Robust anom-
aly detection and localization for interleaved unstructured logs.
IEEE Transactions on Dependable and Secure Computing

	15.	 Lee Y, Kim J, Kang P (2021) LAnoBERT: System log anomaly
detection based on BERT masked language model. arXiv preprint
arXiv:2111.09564

	16.	 Wang Q, Zhang X, Wang X, Cao Z (2021) Log Sequence Anom-
aly Detection Method Based on Contrastive Adversarial Training
and Dual Feature Extraction. In Entropy. MDPI AG 24(1):69.
https://​doi.​org/​10.​3390/​e2401​0069

	17.	 Guo H, Yuan S, Wu X (2021) LogBERT: Log Anomaly Detection
via BERT. Int Joint Conf Neural Net (IJCNN) 2021:1–8. https://​
doi.​org/​10.​1109/​IJCNN​52387.​2021.​95341​13

	18.	 Hashemi S, Mäntylä M (2021) OneLog: Towards end-to-end
training in software log anomaly detection. arXiv preprint
arXiv:2104.07324

https://doi.org/10.48550/arXiv.2008.06448
https://www.bloomberg.com/news/articles/2021-11-16/home-depot-amazon-web-services-websites-reportedly-see-outages
https://www.bloomberg.com/news/articles/2021-11-16/home-depot-amazon-web-services-websites-reportedly-see-outages
https://www.bloomberg.com/news/articles/2021-11-16/home-depot-amazon-web-services-websites-reportedly-see-outages
https://www.washingtonpost.com/business/2021/12/22/amazon-web-services-experiences-another-big-outage/
https://www.washingtonpost.com/business/2021/12/22/amazon-web-services-experiences-another-big-outage/
https://www.washingtonpost.com/business/2021/12/22/amazon-web-services-experiences-another-big-outage/
https://doi.org/10.1109/ICSME46990.2020.00069
https://doi.org/10.1109/ICSME46990.2020.00069
https://doi.org/10.3390/sym14030454
https://doi.org/10.3390/s21186125
https://doi.org/10.1109/access.2019.2953981
https://doi.org/10.3390/e24010069
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1109/IJCNN52387.2021.9534113

22311Detecting log anomaly using subword attention encoder and probabilistic feature selection﻿	

1 3

	19.	 Niwa T, Kasuya Y, Kitahara T (2017) Anomaly detection for
openstack services with process-related topological analysis. In:
2017 13th International Conference on Network and Service Man-
agement (CNSM). IEEE, pp 1–5

	20	 Zeufack V, Kim D, Seo D, Lee A (2021) An unsupervised anom-
aly detection framework for detecting anomalies in real time
through network system’s log files analysis. In High-Confidence
Computing. Elsevier BV 1(2):100030. https://​doi.​org/​10.​1016/j.​
hcc.​2021.​100030

	21	 Chakraborty B, Divakaran DM, Nevat I, Peters GW, Gurusamy M
(2021) Cost-Aware Feature Selection for IoT Device Classification.
In IEEE Internet of Things Journal. Inst Electr Electron Eng (IEEE)
8(14):11052–11064. https://​doi.​org/​10.​1109/​jiot.​2021.​30514​80

	22	 Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020)
Benchmark for filter methods for feature selection in high-dimen-
sional classification data. In Computational Statistics & Data
Analysis. Elsevier BV 143:106839. https://​doi.​org/​10.​1016/j.​csda.​
2019.​106839

	23.	 Iqbal M, Abid MM, Khalid MN, Manzoor A (2020) Review
of feature selection methods for text classification. In Interna-
tional Journal of Advanced Computer Research (Vo 10, Issue
49, pp 138–152). Association of Computer, Communication
and Education for National Triumph Social and Welfare Society
(ACCENTS). https://​doi.​org/​10.​19101/​ijacr.​2020.​10480​37

	24	 Liu Y, Ju S, Wang J, Su C (2020) A New Feature Selection
Method for Text Classification Based on Independent Feature
Space Search. In Mathematical Problems in Engineering. Hindawi
Limited 2020:1–14. https://​doi.​org/​10.​1155/​2020/​60762​72

	25	 Thabtah F, Kamalov F, Hammoud S, Shahamiri SR (2020) Least
Loss: A simplified filter method for feature selection. In Informa-
tion Sciences. Elsevier BV 534:1–15. https://​doi.​org/​10.​1016/j.​
ins.​2020.​05.​017

	26.	 Gumilar A, Prasetiyowati SS, Sibaroni Y (2022) Performance
analysis of hybrid machine learning methods on imbalanced
data (rainfall classification). Jurnal RESTI (Rekayasa Sistem dan
Teknologi Informasi) 6(3):481–490

	27.	 Wang Z, Lin Z (2019) Optimal Feature Selection for Learn-
ing-Based Algorithms for Sentiment Classification. In Cog-
nitive Computation (Vol 12, Issue 1, pp 238–248). Springer
Science and Business Media LLC. https://​doi.​org/​10.​1007/​
s12559-​019-​09669-5

	28.	 Vangara RVB, Thirupathur K, Vangara SP (2020) Opinion Min-
ing Classification using Naive Bayes Algorithm. In International
Journal of Innovative Technology and Exploring Engineering (Vol
9, Issue 5, pp 495–498). Blue Eyes Intelligence Engineering and
Sciences Engineering and Sciences Publication - BEIESP. https://​
doi.​org/​10.​35940/​ijitee.​e2402.​039520

	29.	 ThakkarA, Lohiya R (2020) Attack classification using feature
selection techniques: a comparative study. In Journal of Ambi-
ent Intelligence and Humanized Computing (Vol 12, Issue 1, pp
1249–1266). Springer Science and Business Media LLC. https://​
doi.​org/​10.​1007/​s12652-​020-​02167-9

	30.	 Ismail Z, Jantan A, Yusoff Mohd N, Kiru MU (2020) The effects
of feature selection on the classification of encrypted botnet. In
Journal of Computer Virology and Hacking Techniques (Vol 17,
Issue 1, pp 61–74). Springer Science and Business Media LLC.
https://​doi.​org/​10.​1007/​s11416-​020-​00367-7

	31.	 Bird JJ, Ekárt A, Buckingham CD, Faria DR (2019) High resolu-
tion sentiment analysis by ensemble classification. In: Intelligent
Computing: Proceedings of the 2019 Computing Conference, vol
1. Springer International Publishing, pp 593–606

	32.	 Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: A unified
embedding for face recognition and clustering. IEEE Conf Com-
put Vision Pattern Recog (CVPR) 2015:815–823. https://​doi.​org/​
10.​1109/​CVPR.​2015.​72986​82

	33.	 Wang Z, Tian J, Fang H, Chen L, Qin J (2022) LightLog: A light-
weight temporal convolutional network for log anomaly detection
on the edge. In Computer Networks (Vol 203, p 108616). Elsevier
BV. https://​doi.​org/​10.​1016/j.​comnet.​2021.​108616

	34.	 Farzad A, Gulliver TA (2020) Unsupervised log message anomaly
detection. In ICT Express (Vol 6, Issue 3, pp 229–237). Elsevier
BV. https://​doi.​org/​10.​1016/j.​icte.​2020.​06.​003

	35.	 Oliner A, Stearley J (2007) What supercomputers say: A study of
five system logs. In: 37th annual IEEE/IFIP international confer-
ence on dependable systems and networks (DSN'07). IEEE, pp
575–584

	36.	 Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting
large-scale system problems by mining console logs. In: Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pp 117–132

Publisher's note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

M. Hariharan  is a Software Engineer at Cisco, primarily focused on
research in machine learning for software productivity, security, and
log incident analytics. He holds a Bachelor’s degree in Computer Sci-
ence from Vellore Institute of Technology, India. He has published
deep learning papers dealing with the analysis of medical imaging
datasets. His research interests revolve around learning theory, robust-
ness and out-of-distribution generalization in machine learning.

Abhinesh Mishra  is a Software Engineering Manager at Cisco. He has
done Master of Science from Liverpool John Moore’s University and
is current pursuing Doctor of Business Administration from Swiss
School of Business Management. His research interest includes Arti-
ficial Intelligence, Computer Networks, with emphasis on Software
Defined WAN, Network Security and Network Analytics.

Sriram Ravi  is a Project Manager at Cisco Systems, India. He has more
than 16 years of professional experience. He joined Cisco as a tools
engineer and has developed many tools. He took over the role of a
project manager and is now leading 3 projects with expertise in Net-
work operating systems, compiler, and coverage utilities. In the last few
years, he has been instrumental in developing many ML-related tracks
which would increase the productivity of the Cisco engineers. One of
his key achievements is the Pioneer Award (2018). He was part of a
defensive publication in predicting vulnerabilities.

Ankita Sharma  is a seasoned software engineer with a focus on Artifi-
cial Intelligence and Machine Learning. Currently employed as a Soft-
ware Engineer 3 at Cisco Systems India Pvt Ltd, Sharma brings 6 years
of industry experience, with a dedicated focus on AI/ML for the past 4
years. Their expertise lies in designing and implementing cutting-edge
AI/ML solutions, leveraging their strong programming skills and in-
depth understanding of algorithms. Through their research, she aims to
contribute to the advancement of AI/ML and its practical applications,
bridging the gap between industry and academia.

Anshul Tanwar  is a Principal Engineer at Cisco Systems. He has more
than 20 years of network design and implementation experience. Over
these years, he has architected many routing and switching products
used by large tier 1 mobile and Metro Ethernet service providers across
the world. He has led the SyncE and PTP architecture definition and

https://doi.org/10.1016/j.hcc.2021.100030
https://doi.org/10.1016/j.hcc.2021.100030
https://doi.org/10.1109/jiot.2021.3051480
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.19101/ijacr.2020.1048037
https://doi.org/10.1155/2020/6076272
https://doi.org/10.1016/j.ins.2020.05.017
https://doi.org/10.1016/j.ins.2020.05.017
https://doi.org/10.1007/s12559-019-09669-5
https://doi.org/10.1007/s12559-019-09669-5
https://doi.org/10.35940/ijitee.e2402.039520
https://doi.org/10.35940/ijitee.e2402.039520
https://doi.org/10.1007/s12652-020-02167-9
https://doi.org/10.1007/s12652-020-02167-9
https://doi.org/10.1007/s11416-020-00367-7
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1016/j.comnet.2021.108616
https://doi.org/10.1016/j.icte.2020.06.003

22312	 M. Hariharan et al.

1 3

implementation for multiple access and pre-aggregation routers in
Cisco. In his most recent role, Anshul was responsible for defining the
deployment architecture of phase timing synchronization for one of
the world’s largest service provider LTE/LTE-A networks. He is also
a co-author of the book, “Synchronizing 5G Mobile Networks” and
co-inventor on four patents.

Krishna Sundaresan  is Vice President, Engineering, leads the Cisco
Intent-Based Networking Group, a team of about 1500+ engineers
responsible for switching, routing, and wireless and controller prod-
uct groups in India. He is the sponsor for Cisco Launchpad which is
the accelerator for early-stage startups. He is closely engaged with N/
core for fostering social entrepreneurship. He represents Cisco India
engineering in many conferences and events, including Your Story,
NASSCOM, and Tie Global Summit. He has Bachelor’s in Computer
Science from MNIT Allahabad and a Master’s in Business Adminis-
tration from Leavy Business School in Santa Clara, US. He has 16
patents in his name.

Prasanna Ganesan  is Director of Software Development Engineering
at Cisco Systems India. He has 16 years of experience in leading engi-
neering teams for Development and Test Tooling, Internet, Enterprise
Architecture, Desktop Integration, Mobile, and Cloud. He is a Technol-
ogy Professional specialized in enterprise software architectural direc-
tion, tools and technology evaluations, and process improvements. He
holds the reputation of being a Change Champion, providing world-
class technology solutions to the business by leading change, managing
budget, planning resources & growth, retaining talents, and managing
the portfolio for globally dispersed teams.

R. Karthik  obtained his Doctoral degree from Vellore Institute of Tech-
nology, India, and Master’s degree from Anna University, India. Cur-
rently, he serves as Senior Assistant Professor in the Research Center
for Cyber Physical Systems, Vellore Institute of Technology, Chennai.
His research interest includes Deep Learning, Computer Vision, Digi-
tal Image Processing, and Medical Image Analysis. He has published
around 32 papers in peer-reviewed journals and conferences.

	Detecting log anomaly using subword attention encoder and probabilistic feature selection
	Abstract
	1 Introduction
	2 Related works
	2.1 Anomaly detection
	2.2 Feature selection

	3 Proposed work
	3.1 Subword encoder neural network (SEN)
	3.2 Naive bayes feature selection (NBFS)
	3.3 Anomaly detection

	4 Results and Discussions
	4.1 Data collection
	4.2 Experimental setup
	4.3 Model training and validation
	4.4 Ablation studies
	4.5 Effects of embedding dimensionality on anomaly detection
	4.6 Effects of window size on the accuracy of anomaly detection
	4.7 Improving efficiency of base classifiers using naive bayes feature selection
	4.8 Generalizability to unseen logs
	4.9 Performance comparison

	5 Conclusion
	References

