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Abstract
Log anomaly is a manifestation of a software system error or security threat. Detecting such unusual behaviours across logs 
in real-time is the driving force behind large-scale autonomous monitoring technology that can rapidly alert zero-day attacks. 
Increasingly, AI methods are being used to process voluminous log datasets and reveal patterns of correlated anomaly. In this 
paper, we propose an enhanced approach to learning semantic-aware embeddings for logs called the Subword Encoder Neural 
network (SEN). Solving upon a key limitation of previous semantic log parsing works, the proposed work introduces the 
concept of learning word vectors from subword-level granularity using an attention encoder strategy. The learnt embeddings 
reflect the contextual/lexical relationships at the word level. As a result, the learnt word representations precisely capture 
new log messages previously not seen by the model. Furthermore, we develop a novel feature distillation algorithm termed 
Naive Bayes Feature Selector (NBFS) to extract useful log events. This probabilistic technique examines the occurrence pat-
tern of events to only select the salient ones that can aid anomaly detection. To our best knowledge, this is the first attempt 
to associate affinity to log events based on the target task. Since the predictions can be traced to the log messages, the AI is 
inherently explainable too. The model outperforms state-of-the-art methods by a fair margin. It achieves a 0.99 detection 
F1-score on the benchmarked BGL, HDFS and OpenStack log datasets.

Keywords  Deep learning · Self-attention · Naive Bayes · Syslog · Anomaly detection · Encoder-decoder

1  Introduction

As cloud computing applications scale to high loads and 
complex distributed environments, they become vulnerable 
to software bugs and failures. Usually, these large-scale 
systems are designed for robustness and stability. How-
ever, when a service fault or outage occurs, the mean time 
to recovery is considerable due to the inherent complexity 
of various components. Recently, the Google Cloud was 
affected by an incorrect configuration change issue for nearly 
two hours [1], while AWS faced a major outage that caused 
traffic delays and latency for about 7 h [2]. Thus, the need 
for diagnosing system anomaly plays a vital role in building 
trustworthy and reliable software. A rapid and precise failure 
detection helps troubleshoot issues faster, also motivates the 
plausibility of fully self-healing workflows that can perform 
auto-actions.

Logs are the preferred data source for root cause diagno-
sis of anomaly, because they record important events and 
holistic system status information, and are available on most 
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platforms [3]. However, using logs comes with certain chal-
lenges. Firstly, the structural format and semantics of logs 
can vary across systems. Often, linking log messages gen-
erated by different system modules can be non-compatible 
given their diverse semantics [4]. Further, concurrent/paral-
lel execution of tasks can produce random events at different 
times which does not share proper ordering or a determin-
istic ordering of messages [5]. Also, unexpected events that 
occur in real-time need to be evaluated to see if they are 
anomalous or not, which can be demanding even for domain 
experts [6]. Though heuristics such as regular expressions or 
keyword searching help automate to a certain extent, their 
scope is highly limited. They generally report false posi-
tives, do not scale and need to be constantly updated for new 
failures and code churn.

Such practical difficulties call for efficient analytical 
models that can leverage massively large logs to automati-
cally mine valuable information for anomaly capture. Con-
sequently, many works explore Artificial Intelligence (AI) 
for processing logs. The state of the art can be roughly clas-
sified into methods that use template-based features [4, 6, 
10, 18-20], and ones that encode logs into vectors [7, 9, 
11, 12, 15]. In the first category, a log entry is parsed into 
its invariant part (template) by discarding numeric infor-
mation as parameter values and timestamps. The templates 
are assigned unique event indexes and anomaly detection 
is performed over the event index sequences using LSTM. 
Some methods create vectors for time windows by counting 
unique events, or TF-IDF aggregation. Then, the anomaly is 
learnt through unsupervised techniques like Principal Com-
ponent Analysis (PCA) or Invariant Mining (IM). However, 
when only using these event indexes as features, valuable 
information can be lost because the templates can still con-
tain semantic relationships. Considering these drawbacks, 
some methods directly use the extracted log templates as 
textual features, but they cannot handle those templates not 
seen before. However, in both cases, the quality of features 
degrades when the parser is inaccurate. Commonly used FT-
Tree or Longest Common Subsequence (LCS) based parsing 
requires ideal settings and extensive tuning to obtain the 
best results. In contrast, log vectorization has gained trac-
tion in more recent works because of its capacity to encode 
word context. The sequential ordering of words can also be 
retained by embedding logs using transformers or recurrent 
neural networks. However, word2vec or skipgram create 
huge vocabulary spaces that can dilute learning over large-
sized datasets. words not observed in training make it less 
resilient to new events that emanate in real-time.

There are a few limitations in the current arts for learning 
robust log embeddings. Representability of out-of-vocabulary 
(OOV) tokens is a key research gap. Although the Log2vec 
[7] approach is able to produce semantic/lexically charged 
word vectors, it relies on an offline compositional MIMICK 

technique to handle OOV words. Tokenizing logs into sub-
words was tried by a few works, but it substantially increases 
the sequence length. There is a need to develop a robust word-
2vec strategy for logs that inherently eliminates OOV without 
computation overheads. It should process from subword granu-
larity but render embeddings that reflect the semantic/lexical 
properties at the word level. Second, rarely few works explore 
feature selection in the context of logs. Since an anomaly is 
typically below 2% of the entire log volume, there is a need to 
enhance its visibility by eliminating noisy and less useful logs 
that do not affect anomaly detection.

In this paper, we propose a novel log encoder and feature 
selection mechanism to process log texts. This encoder oper-
ates at subword precision but ensures that the aggregated word 
embeddings reflect the semantic/lexical relations. Addition-
ally, the most desired set of events to learn about the presence 
of anomaly are auto-selected for anomaly classification. This 
is accomplished by modelling the probability distribution of 
event occurrences. For example, heartbeat signals, and dae-
mon start/stops correlate to anomaly and are prioritized over 
standard info messages.

The main contributions of this work are as follows.

•	 We propose a novel Subword Encoder Neural network 
(SEN) as an enhancement over the current Log2vec algo-
rithm. This novelty boosts the representability of pro-
gram/system-level entities such as machine IDs, IP/MAC 
addresses, error tracebacks, etc.

•	 The SEN implicitly takes care of handling out-of-vocabu-
lary words. It is robust to new kinds of events, as semantic/
lexical dependencies are encoded in the distributed vectors 
through subword-level self-attention.

•	 A novel Naive Bayes-based algorithm is proposed for fea-
ture selection. By evaluating the occurrence probabilities 
of different log events under failures, this model precisely 
filters the key log messages aiding failure classification.

•	 The proposed selection mechanism improves the efficacy 
of existing Machine Learning (ML) detectors. It ensures 
better separability of features for outlier tagging.

The remainder of the paper is as follows. Section  2 
reviews the latest trends in literature. Section 3 describes 
the proposed work in detail, followed by a comprehensive 
results analysis in Sect. 4. The conclusion section summa-
rizes the key findings of this work.

2 � Related works

This section reviews the recent AI developments in anom-
aly detection from logs. In addition, popular Natural Lan-
guage Processing (NLP) strategies for feature selection are 
discussed.
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2.1 � Anomaly detection

Several works have explored Long Short Term Memory 
Networks (LSTM) to learn log dependencies and predict 
the likely next sequence in normal logs. An anomaly mani-
fests in real-time when LSTM finds a lesser chance for its 
occurrence. This approach is unsupervised in nature, as the 
anomalous patterns are unknown to the model until infer-
ence time. For example, Du et al. proposed the DeepLog 
model that relied on the sequential occurrence of log events 
to judge anomalous next logs [8]. An LSTM was fit over 
the event identifiers and parameters to detect execution path 
and performance anomalies. Zhou et al. proposed a log 
pattern-driven anomaly detection model that uses statistical 
features (frequency, surge) to find transient anomalies [4]. 
The approach adopts LSTM to correlate long-range temporal 
patterns which are collectively supplied into a Back Propa-
gation (BP) neural network to obtain anomaly decisions. Yin 
et al. developed a dual LSTM model that combinedly analy-
ses both the sequence of log templates and the components 
that emitted them [5]. The fused outputs are iterated over 
time steps to predict the next logs. Along similar lines, Chen 
et al. exploited pre-order and post-order relationships across 
log event sequences to train a dual LSTM [10].

Meng et al. introduced the concept of lexical contrast 
embeddings to enhance the template representations over 
DeepLog [9]. The template vectors were modelled using 
LSTM to identify sequential/quantitative anomalies. In an 
earlier work Log2vec, the authors employed similar seman-
tic dependency parsing and synonym/antonym concepts to 
learn word vectors in log texts [7]. Lv et al. filtered invalid 
log words based on parts of speech and learnt word vectors 
[11]. The derived log-level embedding was passed through 
LSTM to determine anomaly. Yang et al. added a self-atten-
tion layer over the LSTM to enhance the embedding repre-
sentations [12]. Li et al. proposed time-semantic sentence 
embeddings that reflect changes in sequence order, log time 
interval, and events. This dual nature of logs is encoded into 
two vector sequences that are transformed using bidirec-
tional LSTM [13]. In an updated version of this framework, 
the authors introduced identifier-based relationship graphs to 
group interleaved messages from different processes [14]. It 
also included an enhanced data-driven log parser for produc-
ing effective semantic-temporal embeddings.

Another set of studies involved Bidirectional Encoder 
Representations from Transformers (BERT) for efficiently 
encoding the log information. Lee et al. trained BERT with 
only normal system logs [15]. The predictive probability 
for masked tokens out to be low when abnormal logs were 
passed to this trained model. Wang et al. applied BERT and 
variational autoencoder to extract statistical and semantic 
features through contrastive adversarial training [16]. Log-
BERT method proposed by Guo et al. modelled the log 

contexts through masked log key prediction and minimizing 
closeness between normal logs [17].

Some works explore Convolutional Neural networks 
(CNN) for spatio-temporal processing of log sequence data. 
For instance, to process streaming logs, Lu et al. and Wang 
et al. devised a lightweight temporal (CNN) [6, 33]. The 
logs are parsed into key sequences which are then embed-
ded via convolutions and determined to be anomalous or 
not. Similarly, Hashemi et al. designed a character-based 
hierarchical CNN that performs sequence classification [18]. 
It aggregates features level-wise from character to line to a 
sliding window sequence.

To effectively utilize raw logs without any prior anomaly 
information, unsupervised techniques are vastly explored. 
For instance, Niwa et al. created a relationship graph based 
on the interconnections of system components and their 
running state metrics [19]. A centroid-based clustering was 
applied to detect outliers in an unsupervised fashion. Simi-
larly, Farzad et al. learnt an autoencoder to vectorize logs 
and spotted anomalies using isolation forest [34]. Zeufack 
et al. also exploited log keys to create event counting features 
useful for density-based clustering [20]. In this approach, an 
anomaly is evaluated considering its core and reachability 
distances from the found clusters.

2.2 � Feature selection

Feature selection on textual datasets like logs is a strategy 
to distil significant keywords/variables that can form a basis 
for classification [21]. They effectively process high-dimen-
sional feature spaces, while preserving information gain and 
reducing runtime complexity. Bommert et al. experimented 
with 22 filter methods to correlate and rank the best ones for 
different kinds of data [22]. It is seen that while the essen-
tial features contribute to the objective, their combination 
is more significant. In another work, Iqbal et al. discuss the 
taxonomy of feature selection and its applicability for text 
categorization, remote sensing, and image retrieval [23].

Typically, there are two approaches for picking the ideal 
features, the wrapper and filter models. The wrapper models 
generate different feature sets and apply classifiers to evalu-
ate and identify the best combinations [24]. On the other 
hand, the filter techniques use statistical measures such as 
correlations between predictor and target variables to decide 
feature weight scoring [25]. These metrics are commonly 
drawn from information theory. For example, Prasetiyowati 
et al. used entropy criteria as the basis to weigh important 
features [26]. Wang et al. investigated trends in the number 
of features and their relationship to the classification perfor-
mance to reach the optimal selections [27].

The mechanism proposed in our work defines feature 
affinity based on their Naive Bayes occurrence probabili-
ties. It is a derivative of the Naive Bayes algorithm widely 
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used in text classification tasks, like sentiment analysis, 
topic labelling, etc. [28]. Other feature selection techniques 
include Chi-Square, Information Gain (IG), and Recursive 
Feature Elimination (RFE) [29]. Ismail et al. proposed a 
system that can accurately distinguish between real-human 
and bot-generated texts based on the measurements gathered 
in a study using the Naive Bayes and entropy classifiers [30]. 
Similarly, Bird et al. applied relative entropy to select highly 
polar sentiments from a dataset of word stem attributes [31]. 
This enabled precise sentiment recognition. In summary, 
both the percentage of information gain and the dependen-
cies between predictor/target variables are major aspects in 
the design of accurate feature selectors.

3 � Proposed work

The goal of the proposed deep learning model is to learn 
robust distributed representations for the individual words 
comprising the logs. These word embeddings are formed 
such that they accurately capture the semantic sense of sys-
tem/program entities (numbers, IPs, emails) typically found 
in logs, also generalize well to out-of-vocabulary words in 
unseen logs.

From the architecture diagram presented in Fig. 1, the 
logs are considered in blocks of a fixed number of lines, N. 
In the first step, the log messages are converted to a vec-
tor sequence via a novel semantic encoder. The subsequent 
step selects the most useful log message vectors for anomaly 
detection. This is to ensure that noisy/irrelevant messages 
are discarded while the remaining are retained in time order. 
The embeddings are merged to produce a log-level represen-
tation which can be passed into an ML classifier. In sum-
mary, the model ascertains whether the log block carries an 
anomaly or not in a supervised fashion.

3.1 � Subword encoder neural network (SEN)

Log parsing identifies the underlying format used to gener-
ate the logging statements. Conventional template extraction 
methods such as FT-Tree (Frequent Template Tree) or Long-
est Common Subsequence (LCS) produce distinct log event 
categories. However, these event categories are not entirely 
unique but can still be semantically similar/related to each 
other. As illustrated in Fig. 2, FT-Tree assigned different 
template IDs to the first two log events, although they con-
vey the same information. Hence there is a need to cluster 
the log messages based on their underlying meaning that 
strengthens the semantic relationships for determining the 
degree of similarity.

In this log parsing layer, we present a new mechanism to 
learn rich contextual log embeddings. The steps are illus-
trated in Fig. 3. A log message is split into words on the 
space character. The aim here is to generate a unique word-
level embedding for any log word in the dataset. A log mes-
sage can then be expressed as a sum of its word vectors.

However, two key challenges are faced in creating robust 
word vectors. Firstly, the vocabulary of words in a log base 
constantly changes, resulting in new words/events being 
observed during real-time detection. Secondly, the param-
eter terms inherent to logs such as machine IDs, memory 
addresses, variables, etc. need to be precisely expressed so 
that any unseen IDs or entities can still have similar embed-
ding. To overcome these issues, we introduce an encoder 
neural network that operates at the subword level. Specifi-
cally, the Byte-Pair Encoding (BPE) algorithm is run over 
all tokens in the corpus to form an all-inclusive vocabulary 
set. From 256 bytes base tokens, 50,257 vocabulary size 
is reached by performing 50,000 merges. This ensures that 
even complex entities can be efficiently decomposed to the 
most representative granular sub-entities.

Fig. 1   Schematic diagram of the proposed log anomaly detection framework
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(a) Parsing templates from logs using pattern-based methods.

(error, fault)

(executing, run)

(storage, memory)

(terminated, complete)

(b) Synonym sets

(minus, plus)

(start, stopping)

(external, internal)

(normalized, 

denormalized)

(c) Antonym sets

<Error, receiving, packet>

<FATAL, Error, on>

<receiving, packet, tree>

(d) Word dependency triples.

Fig. 2   Examples of logs ideal for lexical constraints and semantic similarity

Fig. 3   Generating log event vectors
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This proposed log word encoder is presented in Fig. 4. 
Here, every word w is treated as a sequence of m subwords. 
They are converted to D-dimensional features, F ∈ ℝ

m×D 
through an embedding lookup. To integrate deep contex-
tual information across subword features in the word, self-
attention learning is performed over F.

The self-attention layer works by first deriving three 
sets of features from F – queries Q , keys K , and values V  . 
These entities are formed as linear projections on F using the 
weight matrices WQ ∈ ℝ

D×D , WK ∈ ℝ
D×D , and WV ∈ ℝ

D×D , 
as given by Eq. (2–4).

The matrix dot product Q and K yields the attention coef-
ficient map. Its values are row-wise softmax normalised to 
ensure appropriate weighing of the features. Each cell in 
this attention map carries the degree of correlation between 
the subwords referred to by that row and column. Finally, 
the transformed feature-set, A ∈ ℝ

m×D is calculated as a 
weighted combination of values V  over the attention param-
eters. Equation (4) summarizes the computations involved.

By attending to every part of the word, each subword 
encoding selectively infuses semantic attributes and linkage 
information depending on the words it is present in. The atten-
tion mechanism also retains salient features suppressing any 

(1)Q = FWQ

(2)K = FWK

(3)V = FWV

(4)A = softmax

�
QKT

√
D

�
V

irrelevant details, thereby enhancing the intermediate subword 
representations for downstream processing.

In the subsequent step, A is additively pooled along the 
rows to generate the word embedding E . Given such deep 
representations from the encoder, the goal is to train context-
based word vectors to predict the target word. Let W ∈ ℝ

|W|×D 
be defined as the collection of SEN encodings for all word 
tokens in the dataset V . Then this skip-gram objective can be 
expressed as per Eq. (5).

where c is the length of the context window. wi is the input 
central word and wi+j denotes its neighbouring words. The 
conditional probability function is given by Eq. (6).

Here, Wx and Wy refer to rows in the SEN matrix. In addition 
to contextual meaning, it is useful to encode lexical similarities 
and contrast among the log words. As demonstrated in Fig. 2, 
certain synonymous words convey the same semantic sense. 
Naturally, their word vectors should be closer compared to 
their antonyms. We adopt the LSWE (Lexical-contrast Seman-
tic Word embeddings) to constrain such semantic relations on 
the learnt embeddings [7], as in Eq. (7).

where, SYNwi
 and ANTwi

 denote the synonym and antonym 
sets of wi.

We further augment the semantic embeddings by asso-
ciating word dependencies, as described in the Log2vec 

(5)Lskipgram = −
∑

−c≤j≤c
log

(
p
(
wi+j|wi

))

(6)p
�
wx�wy

�
=

exp
�
Wx.Wy

�

∑V

k=1
exp

�
Wk.Wy

�

(7)LLSWE = −
∑

u∈SYNwi

log
(
p
(
wi|u

))
+

∑

u∈ANTwi

log
(
p
(
wi|u

))

Fig. 4   Architecture of the subword encoder neural network
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technique by Meng et al. [7]. Dependency parsing examines 
the grammatical relationships that exist between phrases in 
the log message. From examples in Fig. 2, a dependency 
links a head/root node to a child node via an association. 
Therefore, connected pairs (x, y) need to be closer than other 
words z in the message. Consequently, a set of relation tri-
ples (x, y, z) can be formed to represent this inequality, where 
the sim(x, y) > sim(y, z)orsim(x, z) . This constraint can be 
imposed on the objective function as a triplet loss [32].

Thus, to train the SEN model, the final objective to mini-
mize is the addition of these individual losses as presented 
in Eq. (9).

Post optimization, any log message can be obtained as a 
vector sum of their component word embeddings.

3.2 � Naive bayes feature selection (NBFS)

In practical scenarios, the occurrence of certain log events 
can lead to an anomalous pattern. Instead of supplying all 
log events in a time window for ML analysis, one level of 
feature engineering can be performed to determine the most 
helpful log messages that aid in anomaly detection. The 
advantages of template selection are three-fold: 1) elimi-
nates unnecessary noise, 2) compresses input without infor-
mation loss, and 3) enables faster convergence and precise 
model fitting.

To achieve this goal, we propose a novel probability-
based technique to determine suitable templates. Leveraging 
the SEN model, all log lines in the dataset can be mapped 
to their corresponding log embeddings. An Agglomerative 
Nesting (AGNES) clustering algorithm is run to group simi-
lar messages into unique event categories. These log clusters 
are indicative of a specific kind of event, similar in terms to 
a template extracted by FT-Tree or LCS techniques. Let C 
be the set of distinct clusters obtained.

Since the ML classifier is trained on a fixed-length log 
block (N events at a time), let the dataset be prepared as 
sliding windows, X . Let y ∈ {0, 1} be the target for anomaly 
classification, i.e., whether X points to a failure or not. From 
Bayes theorem, the posterior probability of determining y 
from X is given by Eq. (10).

Here, the likelihood P(x|y) can further be expressed as 
Markov chain function as per Eq. (11).

(8)LDP =
�

u∈RELwi

max
�
‖wi − u‖2 − ‖wi − v‖2 + �, 0

�

(9)L = Lskipgram + LLSWE + LDP

(10)P(y|X) =
P(X|y) × P(y)

P(X)

where xi denotes a log event type from C that is found in the 
block X . Therefore, the probability of an event xi to occur 
in a specific class of logs can be calculated as per Eq. (12).

Using Eq.  (12), P
(
xi|y = 0

)
 gives the plausibility for 

event xi to manifest in a normal log. Similarly, P
(
xi|y = 1

)
 

is the possibility of seeing xi in an anomalous log.
The proposed feature selection technique computes the 

P
(
xi|y = 0

)
 and P

(
xi|y = 1

)
 statistics for all events xi ∈ C by 

traversing the entire dataset. In case the difference between 
these values for an event falls below a set threshold T  , that 
event is discarded. It means that the distribution of occur-
rence of that event did not significantly vary/distinguish 
between normal and abnormal logs. Evidently, it is a fre-
quent event that bears no significance for the task of anomaly 
classification. The value of T  is determined empirically. In 
summary, only messages belonging to log clusters that sat-
isfy this property are subjected to ML.

3.3 � Anomaly detection

In a log stream, a specific time frame is sampled. The log 
messages are encoded via SEN and filtered on the NBFS 
event selector layers. Assuming the feature stack to have 
k log row embeddings in D-dimensions, they are reshaped 
into a 1-D vector. The concatenated feature-set is padded to 
a uniform length and classified on supervised ML models, 
as illustrated in Fig. 1.

4 � Results and Discussions

This section discusses the datasets, experiments and findings 
based on various aspects of the model. In the final subsec-
tion, a performance comparison is drawn with the state-of-
the-art methods for anomaly detection.

4.1 � Data collection

The proposed log analytics framework was evaluated on 
three standard open-source datasets: 1) BGL, 2) HDFS, 
and 3) OpenStack. Their details are listed in Table 1. These 
datasets are a collection of real-time system logs that were 
labelled and freely released by authors of previous works. In 
the existing literature, they are commonly used as a bench-
mark for assessing the effectiveness of anomaly detectors.

The BGL logs are from the BlueGene/L supercom-
puter at the Lawrence Livermore National Labs (LLNL) in 

(11)P(X|y) = P
(
x1|y

)
× P

(
x2|y

)
× ...P

(
xn|y

)

(12)P
(
xi|y

)
=

#occurrences of xi iny

#templates in y
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Livermore, California [35]. The log messages are marked 
with alert category tags to indicate anomaly. This label infor-
mation was utilized for supervised learning.

OpenStack is a set of software components to manage 
cloud services and infrastructure [36]. The dataset was gen-
erated on the CloudLab platform. It provides VM instances 
that have injected anomalies and the abnormal log sections 
pertaining to them.

The Hadoop Distributed File System (HDFS) log events 
describe the insertion, deletion, and updation of blocks in the 
Hadoop ecosystem [8]. An error/failure here can be traced 
to the associated block IDs.

4.2 � Experimental setup

All experiments are run on a Ubuntu 18.04 server with 
32 GB NVIDIA Tesla V100 GPUs. The memory and pro-
cessors are 128 GB RAM, 96CPUs. The embedding layers 
are learnt as PyTorch modules through Adam optimiza-
tion, while the log classification is performed using Sklearn 
libraries. The data processing scripts involve NLTK, regex 
and Spacy functions. For the log vector neural network, the 
initial learning rate is set to 5.0. It is controlled by a multi-
plicative learning rate decay scheduler, that drops by a factor 
of 0.1 when no improvement is observed over 10 epochs.

4.3 � Model training and validation

To perform training the logs are traversed as sliding win-
dows. Each window constitutes a chunk of log events that 
occurred in that fixed-length time frame. The window size 
is a hyper parameter that takes optimal values based on the 
dataset. The log blocks are assigned to be normal or anom-
alous based on the labelling information provided (refer 
Table 1).

Such data instances are partitioned into train, valida-
tion, and test splits in the ratio of 80:10:10 respectively. A 
shuffled and stratified data sampling is applied to preserve 
the proportions of normal and erroneous blocks in these 
split sets. The evaluation criteria are Precision, Recall and 
F1-score. These metrics are widely used for benchmarking 
log failure prediction models.

The entire log corpus is first subjected to SEN train-
ing as per Eq. (9) in order to learn appropriate weights for 

embedding layers. Table 2 captures the decay in this seman-
tic word2vec loss function. The subword encoder is able to 
converge well on all three datasets and generate effective 
representations of their textual contents. This is evident as 
the loss on the unseen validation set dropped closer to the 
training loss towards convergence. It took 3–4 epochs to 
fully absorb the semanticity constraints. These log features 
are then classified as normal or anomalous using supervised 
ML. In the experiments, models tried include logistic regres-
sion, Support Vector Machine (SVM), random forests, and 
extreme gradient boosting.

In Table 2, learning curves are plotted for the ideal clas-
sifier and the best set of hyperparameters that gave the high-
est results on each dataset. The cross-entropy loss decays 
steadily through epochs. The number of epochs differs based 
on dataset complexity and type of classifier. Since HDFS 
blocks require processing a larger contextual window, it 
takes a longer training time. However, accuracy on unseen 
data matches that of the training set over time. Similarly, 
the F1 scores on BGL stagger initially but stabilize after 30 
epochs. OpenStack logs are the most amenable to anomaly 
detection out of the three, hence their learning is smooth 
across iterations.

4.4 � Ablation studies

This section aims to evaluate the efficacy of individual com-
ponents in the proposed framework. The effectiveness of the 
two key building blocks: 1) SEN and 2) NBFS is studied via 
ablation experiments.

Firstly, a vanilla baseline is established so that perfor-
mance gains from the proposed modules can be measured 
incrementally. This base algorithm is a combination of 
parsed log template features and LSTM for self-supervised 
next log prediction. Such an approach is popular in current 
arts. It utilizes the error-free log sequences prepared in the 
previous step to model the distribution of logs, thereby iden-
tify outliers on the unseen set. Table 3 captures a holistic 
view of the ablation studies. It is evident this base method 
registers reasonable accuracy close to 90%, leaving much 
scope for enhancements. Especially, it needs to handle new 
events not observed during training. Also, the template 
extraction demands rigorous fine-tuning to predict the event 
types precisely.

Table 1   Datasets obtained from three sources. Provided are the counts of normal and erroneous log events present in the files

S. No Dataset Description Total number 
of messages

Number of Anom-
alous messages

Number of normal 
log messages

Percentage of 
Anomaly (%)

1 Blue Gene/L (BGL) [35] Super computer logs 4,747,963 348,460 4,399,503 7.33
2 HDFS [36] Distributed File System Log 11,175,629 288,250 10,887,379 2.57
3 OpenStack [8] Cloud Infrastructure log 207,820 18,434 189,386 8.87
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To augment this baseline, the SEN is introduced at the 
embedding learning stage. It solves both the challenges by 
learning robust representations for out-of-vocabulary words, 
also eliminates need for pattern-based log parsing. The SEN 
technique improves recall by 9.19% on BGL compared to the 
conventional method. A major contributing factor is self-
attention learning which only focuses on significant details, 
unlike the LSTM that processes the entire context. On HDFS 
and OpenStack, the encoder enhances precision by 5.74% 
and 10.84% reducing any false positives.

By adding the NBFS layer, only the differential log events 
whose occurrence pattern greatly differs in the anomaly 

scenarios are supplied to ML. Inducing this event aware-
ness into the context increases precision close to 1.00 on all 
the datasets. Evidently, the model exploits useful attributes 
to enhance boundary separation and distinguish the outliers, 
resulting in a higher recall by 4%.

4.5 � Effects of embedding dimensionality 
on anomaly detection

Embedding size is a determinant factor of model perfor-
mance. Choosing an appropriate length can improve the 
semantic effectiveness of the produced embedding features. 

Table 2   Trends observed during training on the datasets. The embedding loss applies to the word2vec learning at the SEN phase. Cross-entropy 
loss is used to classify log blocks at the final detection stage. F1 scores emitted at this ML classifier are tracked through epochs

Trends BGL HDFS OpenStack

Embeddi

ng Loss

Classific

ation loss

F1-score

Table 3   Experimental results to 
validate efficacy of the proposed 
enhancements

S. No Dataset Models Precision Recall F1-score

1 Blue Gene/L (BGL) Baseline Log template LSTM model 0.93 0.87 0.89
SEN log vectorization 0.96 0.95 0.96
SEN filtered with NBFS 0.98 0.99 0.99

2 HDFS Baseline Log template LSTM model 0.87 1.00 0.91
SEN log vectorization 0.92 0.95 0.93
SEN filtered with NBFS 1.00 0.99 0.99

3 OpenStack Baseline Log word vector LSTM model 0.83 0.91 0.87
SEN log vectorization 0.92 0.96 0.95
SEN filtered with NBFS 0.99 1.00 0.99
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Consequently, it aids in the discriminability of keywords 
representing anomalous patterns. In this experiment, the 
dimensionality is varied in steps of 64 256, and 1024 and 
trained for the best classification model on each dataset 
(refer Fig. 5).

The BGL logs contained a greater number of distinct 
tokens and synonym-antonym sets. Therefore, it requires 
bigger dimensions of 1024 elements to encode this knowl-
edge. Comparatively the OpenStack logs have lesser seman-
tic dependencies, but more machine entities and identifiers. 
So, a small size such as 64 dimensions does not capture cat-
egorical similarity in these variable words. A length of 256 
fits accurately. On the other hand, HDFS comprises fewer 
unique events and variations in the structure of messages. It 
responds well at 64 and 256 dimensions but degrades after 
that due to overfitting.

4.6 � Effects of window size on the accuracy 
of anomaly detection

The size of the contextual window is a critical hyperparam-
eter in the design of a log anomaly detector. A good enough 
time range will allow for sufficient correlations across the 
events to determine the presence of abnormality. Too small 
a size can deprive the ML of essential details that are help-
ful. On the other hand, very large size will invite noise and 
complex boundary fitting. It also incurs more memory and 
processing.

Specifically, the ideal window size is a characteristic of the 
dataset that depends on its nature and complexity. To obtain 
the optimal value, the search space for this parameter is varied 
through 1, 5, 10, 20, 50, 100, and 200. The F1 scores regis-
tered for the three datasets are visualized in Fig. 6.

It is observed for BGL, that a single alert/non-alert mes-
sage is known to indicate whether an aberration occurred 

Fig. 5   Selecting optimal embed-
ding size on different datasets

Fig. 6   Choosing the best win-
dow size to maximize accuracy. 
Scores are computed on the 
test set
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or not, hence one-sized window gives the highest F1 score. 
For OpenStack, a window size of 5 achieves the best perfor-
mance. Since anomalies are present as transactions revolv-
ing around VM instances, it is expected to span a few sets 
of lines. In contrast, models tried on HDFS converge only 
for a window size of 100 and slightly dropped beyond that. 
As an HDFS anomaly manifests at a file-block level, a big-
ger window can trap most of that block-related messages 
amongst other log events. Therefore, it demands a larger size 
to observe event activity.

4.7 � Improving efficiency of base classifiers using 
naive bayes feature selection

To demonstrate the impact of the proposed NBFS logic in 
pruning unnecessary logs, the behaviour of four classifiers 
in the presence and absence of this layer are investigated. 
Figure 7 plots the trends observed in F1 score before and 
after applying NBFS.

It is seen that regardless of the dataset or type of clas-
sification model, NBFS improves the distinguishability of 
anomaly. For SVM, it leads to a 25% and 7% increase in the 
correctness of predictions on OpenStack and HDFS respec-
tively. With NBFS, the non-linear kernel feature space is 
well-formed to enable large-margin separation of outliers. A 

similar trend saw Random Forest increase by 3% uniformly 
across datasets. The decision trees had a lesser overfitting 
effect as the ideal depth decreased post-NBFS. In contrast, 
Logistic regression and Extreme Gradient Boosting models 
show lesser response to NBFS, as the base classifiers already 
reached maximal results.

(a) BGL (b) HDFS

(c) OpenStack

Fig. 7   Trends in ML model performance before and after applying NBFS. (a) BGL. (b) HDFS. (c) OpenStack

Fig. 8   Number of unique events discovered in the logs by parsing as 
proportions in the timestamp order
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4.8 � Generalizability to unseen logs

Resiliency to new log events is a key strength of the pro-
posed model. Even new messages only encountered in real-
time can still be assessed as normal or erroneous. Figure 8 
provides a plot of total log events encountered at different 
percentages of the log corpus.

While the HDFS and OpenStack logs contain a lesser 
number of distinct events that remain constant over time, 
the BGL comparatively shows more variations. The BGL 
dataset produced new log message clusters frequently as the 
trendline expands steeply. This property makes it an ideal 
candidate to test the robustness of the subword encoder to 
handle words unseen during training. The results of such an 
experiment for all three datasets are summarized in Table 4.

Especially for BGL, even when only the first 10% logs 
were subjected to learning, the model still gave a reason-
able 0.93 F1-score on the remainder 90% data. It improves 
with more data, as it reached 0.96 at halfway mark. This 
trend confirms efficacy of the approach to function well even 
under new logs. In slight contrast, on HDFS and OpenStack 
the model already achieved maximal accuracy at 30% and 
60% dataset respectively. These datasets had a redundant 
pattern of messages that did not greatly impact the unknown 
subword representations.

4.9 � Performance comparison

This section presents a comparison of the proposed work 
with several state-of-the-art methods for log anomaly detec-
tion. To ensure fairness in comparison, only works that have 
experimented with the same datasets as the current work 
have been considered. Tables 5, 6 and 7 show the analysis 
of existing techniques on BGL, HDFS, and OpenStack data-
sets respectively. It is seen that the proposed SEN encoder 
alongside NBFS-augmented classification reached the best 
Precision, Recall and F1 score compared to most of the 
other works. The biggest advantage of our method lies in 
low memory requirement, fast compute times and simplified 
workflow integration for streaming logs.

From Table 5, Chen et al. achieved a below-par score on 
BGL, because the conventional log parsing to extract tem-
plate/parameters does not cover all possible events (keys) 
in the training set for the next log key prediction [10]. This 
method gave a 0.97 F1-score on HDFS logs that contained 
fixed event types, whereas it could not adapt to the charac-
teristics of the BGL dataset that produces more irregular 
events. Similar approaches such as Du et al., Meng et al., 
and Yang et al. also face the same drawback of not being 

Table 4   Measuring accuracy when only a proportion of logs is used 
for training and rest taken into testing

S. No Percentage of logs 
taken into training set

Test set performance (F1-score)

Blue 
Gene/L 
(BGL)

HDFS OpenStack

1 0.1 0.93 0.96 0.93
2 0.2 0.93 0.97 0.95
3 0.3 0.93 0.99 0.97
4 0.4 0.94 0.99 0.98
5 0.5 0.96 0.99 0.98
6 0.6 0.97 0.99 0.99
7 0.7 0.97 0.99 0.99
8 0.8 0.99 0.99 0.99
9 0.9 0.99 0.99 0.99
10 1.0 0.99 0.99 0.99

Table 5   Performance analysis 
of existing methods on the BGL 
logs dataset

S. No Source Method Precision Recall F1-score

1 Chen et al. [10] Dual LSTM 0.68 0.99 0.81
2 Yang et al. [12] Self-attention LSTM 0.82 0.94 0.88
3 Guo et al. [17] LogBERT 0.89 0.92 0.90
4 Meng et al. [7] Log vectors clustering 0.94 0.94 0.94
5 Meng et al. [9] LSTM on template features 0.97 0.94 0.96
6 Lee et al. [15] BERT masked language model 0.95 0.96 0.96
7 Z Wang et al. [33] Temporal CNN 0.95 0.99 0.97
8 Lv et al. [11] LSTM on word2vec 0.97 0.99 0.98
9 Farzad et al. [34] Isolation Forest on autoencoder features 0.97 0.98 0.98
10 Q Wang et al. [16] BERT and variational autoencoder 0.99 0.99 0.99
11 Hashemi et al. [18] Hierarchical CNN 0.99 0.99 0.99
12 Li et al. [13] Attention Bi-LSTM 0.97 1.00 0.99
13 Proposed Work Subword Encoder and Naïve Bayes 

Feature Selection
0.98 0.99 0.99
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generalizable for new log keys [7, 8, 12]. Another popular 
approach involves modelling BERT to predict the likelihood 
of masked tokens. Lee et al. and Guo et al. obtain adequate 
F1 scores of 0.96 and 0.90 using BERT [15, 17]. However, 
due to diverse variability in logs, BERT predictive prob-
abilities are unlikely to cover all possibilities in each context, 
resulting in false positives. Instead, considering these deep 
BERT features as input for a supervised classifier layer pre-
vents precision errors.

Employing word vectors in place of log templates 
improves resilience in the embeddings for new log formats. 
These methods display better results. For instance, Z Wang 
et al. designed a semantic vector space model that cleanly 
highlights anomalous logs on a temporal CNN [33]. Li 
et al. use time and semantic embeddings to detect sequen-
tial anomalies [13]. These approaches acquire efficient 
representations but draw excessive contextual details and 
invariably noise too. The NBFS module proposed in our 
work eliminates such less relevant factors from impacting 
decision making. In place of text parsing, an end-to-end 
character-level neural network was presented by Hashemi 
et al. that achieved a 0.99 F1 score on BGL and HDFS [18]. 

This technique fails on OpenStack logs where the anomalies 
are too finely spread over certain VM instance messages to 
be solely distinguished at the character level.

Amongst LSTM methods, analysing multiple relation-
ships such as pre/post order of events and component-aware 
templates improves the efficacy of LSTM. Yin et al. and 
Chen et al. demonstrate Dual LSTM that can inspect such 
patterns [5, 10]. These models capture long-term dependen-
cies yet are not explicitly trained for semantic/contextual 
similarities between log words. On the other hand, Lv et al. 
that utilized word vectors converged with better precision 
[11]. In our proposed architecture, the SEN module ensures 
appropriate semantic-aware features for anomaly detection. 
Handcrafted features such as frequency, surge and variables 
have also been effective inputs for LSTM, as shown by Zhou 
et al. [4]. Nevertheless, they are derivative statistics and do 
not directly express inherent log contents, which in turn ena-
bles the LSTM to form better correlations.

Besides these approaches, autoencoders are shown to gener-
ate useful low-dimensional features for differentiating anoma-
lies [16, 34]. Autoencoder presents a risk of lossy transforma-
tion. Training an autoencoder requires a lot of data, processing 

Table 6   Results comparison of 
the proposed model with similar 
research works on the HDFS 
dataset

S. No Source Method Precision Recall F1-score

1 Guo et al. [17] LogBERT 0.87 0.78 0.82
2 Zeufack et al. [20] OPTICS outlier clustering 0.71 1.00 0.83
3 Meng et al. [9] LSTM on template features 0.96 0.94 0.95
4 Du et al. [8] LSTM on log keys and parameters 0.95 0.96 0.96
5 Lee et al. [15] BERT masked language model 0.95 0.96 0.96
6 Meng et al. [7] Log2vec clustering 0.96 0.96 0.96
7 Yin et al. [5] Dual LSTM 0.93 0.98 0.96
8 Z Wang et al. [33] Temporal CNN 0.94 0.99 0.97
9 Zhou et al. [4] LSTM 1.00 0.94 0.97
10 Chen et al. [10] Dual LSTM 0.96 0.98 0.97
11 Lv et al. [11] LSTM on word2vec 1.00 0.98 0.98
12 Yang et al. [12] Self-attention LSTM 0.97 0.99 0.98
13 Q Wang et al. [16] BERT and variational autoencoder 0.99 0.99 0.99
14 Lu et al. [6] CNN 0.98 0.99 0.99
15 Hashemi et al. [18] Hierarchical CNN 0.99 0.99 0.99
16 Li et al. [13] Attention Bi-LSTM 0.97 1.00 0.99
17 Proposed Work Subword Encoder and Naïve Bayes 

Feature Selection
1.00 0.99 0.99

Table 7   Evaluation of AI 
methods on the OpenStack 
dataset

S. No Source Method Precision Recall F1-score

1 Hashemi et al. [15] Hierarchical CNN 0.11 0.99 0.21
2 Niwa et al. [19] MeanShift clustering 0.94 0.86 0.90
3 Du et al. [8] LSTM on log keys and parameters 0.95 0.99 0.97
4 Farzad et al. [34] Isolation Forest on autoencoder features 0.96 0.97 0.97
5 Zhou et al. [4] LSTM 0.99 0.97 0.98
6 Proposed Work Subword Encoder and Naïve Bayes 

Feature Selection
0.99 1.00 0.99
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time and hyper-parameter tuning, whereas the proposed SEN 
is tuned directly for the word2vec objective and converges 
faster. Overall, in terms of lesser complexity and highest accu-
racy on multiple datasets, our method comes on par with the 
state of the art.

5 � Conclusion

This article proposes a novel approach to learn log word 
embeddings that takes advantage of semantic/lexical relation-
ships across words. It processes from a subword byte-pair 
vocabulary but ensures that contextuality is retained in the 
word-level embeddings. Learning such compositional word 
vectors inherently solves the representability of out-of-vocab-
ulary tokens which is a key research challenge in this area. 
The ability of this module to operate under irregular events 
was confirmed through experiments. By only observing the 
first 10% logs, it gave a 93% F1 score on the BGL dataset, 
which proves its resiliency to new messages. Additionally, this 
paper introduces a probabilistic mechanism for selecting the 
most significant logs that can aid anomaly detection. It learns a 
Naive Bayes probability distribution for the occurrence pattern 
of events. Then, it identifies the salient ones that can reflect the 
difference between regular logs and abnormal logs. To our best 
knowledge, this is the first attempt to develop such a feature 
selector for logs. Empirically it was observed that this module 
improves performance of the base classifiers, to the extent of 
25% for Support Vector Machine on OpenStack dataset.

The proposed framework was demonstrated on three 
benchmarked datasets. The learning curves imply that the 
models converged optimally. It reached mean 0.99 F1 scores 
on all three datasets, which exceed the current arts. As future 
work, the model can be expanded to more kinds of logs. The 
explainability of target predictions can be back-traced to fea-
tures on the logfile, thereby opening pathways to self-healing 
workflows.
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