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Abstract
Cross-modal retrieval has developed remarkably recently and received extensive attention as an essential method for multi-
modal interaction study. However, most existing models are limited to one of the applications in cross-modal retrieval, i.e.,
text-image retrieval, and neglect the audio modality, which is widely distributed in data and can be integrated into the models
to improve retrieval performance. To address this issue, we propose a text-image-audio cross-modal retrieval (TIAR) model
that, given any or two modalities, implements the retrieval of the remaining modalities. TIAR consists of three modal-specific
encoders to extract the features and a cross-modal encoder to generate joint contextualized representations for all modalities.
To evaluate our model, we present two new cross-modal retrieval tasks, named cross-unimodal and cross-bimodal retrieval,
that are applicable to three modalities. Then, during testing, we propose a weighted multimodal re-ranking (WMR) algo-
rithm which integrates comprehensive ranking information in the similarity matrices of all tasks to improve the performance
without additional training. The experiment results show that TIAR-WMR outperforms state-of-the-art models in traditional
text-image retrieval on Flickr30k, COCO, and ADE20k datasets. Moreover, the retrieval performance of TIAR-WMR is
further boosted in the two proposed tasks when two input modalities are integrated. The code is available at https://github.
com/PeideChi/TIAR.

Keywords Cross-modal retrieval · Audio retrieval · Multimedia · Fusion learning

1 Introduction

In modern society, due to the rapid development of tech-
nology, human beings live in a world full of data. Data
has diverse sources and applications and can be presented
in different modalities. How to effectively process these
enormous amounts of technological by-products has been a
long-standing problem for researchers. Cross-modal retrieval
has received considerable attention as one of the approaches
to solving the problem of processing data with the same
semantics but different modalities.

The past few years have seen increasingly rapid advances
in large pre-trained models in natural language processing
[11, 58] and computer vision [16, 34]. Numerous works [7,
8, 14, 20, 44] have been published on cross-modal retrieval
based on these pre-trainedmodels. Extensive researches have
been carried out on text-image retrieval, one of the tasks
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of cross-modal retrieval, but few studies investigate those
retrieval tasks that comprehensively process threemodalities.
We are interested in audio, a modality widely distributed in
data, and considering integrating it into text-image retrieval.
Both text and image modalities correspond to only the visual
mode in human sensory modes, while the audio modality
corresponds to the auditory mode that ought to have equal
importance for humans as the former [49]. All sensorymodes
are helpful and synthetically contribute to our awareness of
the environment and understanding of the world [50]. It is a
pity that there are fewmodels that can conduct cross-retrieval
among the three modalities of text, image, and audio.

Besides, automatic speech recognition (ASR) has been
widely studied by computer scientists over the past several
decades. Speech is the most efficient, preferred, and natural
way for humans to communicate with each other. ASRs are
considered to be the futuremeans of communication between
humans and machines [38]. Therefore, audio is a significant
modality that should be considered in cross-modal retrieval.
Using audio for retrieval or retrieving audio is an essential
retrieval task. Integrating the audio modality into the model
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can improve retrieval performance and make cross-modal
retrieval more generalized.

In this paper, we propose a Text-Image-Audio cross-
modal Retrieval (TIAR) model to perform a more com-
prehensive retrieval task. Concretely, TIAR consists of
three modal-specific encoders for text, image, and audio
respectively and a cross-modal encoder that conducts cross-
attention among the three modalities to learn cross-modal
alignment. We input texts, images, and audios to the cor-
responding modal-specific encoders of TIAR to generate
modal features at different semantic levels. Thenwegather all
features of the threemodalities and learn joint contextualized
representation for each modality through the cross-modal
encoder. To better align the semantics in different modali-
ties and learn cross-modal interaction, all modules in TIAR
utilize a full transformer design. Benefiting from the excel-
lent performance of the attention mechanism, TIAR works
very well in multimodal fusion. During testing, TIAR inputs
one or two modalities and returns the remaining modalities
that aremost similar to the inputmodalities, corresponding to
two new proposed retrieval tasks, cross-unimodal and cross-
bimodal retrieval.

In addition, multimodal fusion, an essential learning
scheme in training, is ignored by most of the previous
retrieval models during testing, which results in a discrep-
ancy between training and testing. To integrate this scheme
into the testing phase, Wang et al. [54] came up with a basic
assumption: if one modality X has a high ranking among
the retrieval candidates of another modality Y , Y is also
in front of the candidates of X . Following this assumption,
we propose a weighted multimodal re-ranking (WMR) algo-
rithm. By using the top K retrieval candidates to perform a
reverse search, WMR fuses the ranking information of simi-
laritymatrices ofmultimodal into the original ranking results.
Our algorithm bridges the gap between training and test-
ing and remarkably improves retrieval performance without
extra training procedures.

Experimental resultsdemonstrate thatTIAR-WMRachieves
state-of-the-art performance in traditional text-image retrieval
and shows promising results in the two proposed retrieval
tasks on Flickr30k, COCO, andADE20k datasets.Moreover,
experimental results also prove that the retrieval performance
of TIAR-WMR is further improved on the three benchmarks
when two input modalities are integrated, demonstrating our
model’s impressive multimodal fusion capability.

The main contributions of this work are summarized as
follows:

• We propose a new cross-modal retrieval model, TIAR,
that takes the text, image, and audio data as inputs and
implements cross-retrieval among the three modalities.
Two new cross-modal retrieval tasks, named cross-

unimodal and cross-bimodal, are presented to evaluate
the retrieval performance of TIAR.

• We propose a weighted multimodal re-ranking (WMR)
algorithm that makes full use of the ranking information
of similarity matrices in all tasks to improve retrieval
accuracy without additional training.

• TIAR-WMRoutperformsstate-of-the-artmethods remark-
ably in traditional text-image retrieval on Flickr30k,
COCO, and ADE20k datasets. Moreover, the perfor-
mance is further boosted on three experimental bench-
marks when two input modalities are integrated.

The rest of this paper is organized as follows. First the
related works about our work are reviewed in Section 2. The
specific implementation details of our method are described
in Section 3. Finally, we analyze the experiments and sum-
marize our work, outlook for future work respectively in
Sections 4 and 5.

2 Related works

2.1 Text-image retrieval

The existing research on cross-modal retrieval is extensive
and focuses mainly on one of the applications, text-image
retrieval. Text-image retrieval aims to obtain the most rele-
vant images or text descriptions given a query text or image.
The text-image retrieval model consists of two main com-
ponents: the embedding of text and image inputs and the
multimodal fusion in the deep network.

Text and Image Embedding As the first module of the
text-image retrieval model, embedding is used to map dis-
crete inputs of different modalities to a uniform dimensional
space to facilitate the data processing of the model. For
text modality, some models [13, 62, 66] mainly use RNNs
to learn the representation of sentences. Since the emer-
gence of attention mechanism [52], transformers, especially
BERT [24], have led many later proposed models [22, 32,
64, 68] to adopt them as the text encoders of these models
with their superior global feature extraction capability over
RNNs. These models achieve a considerable performance
improvement benefiting from the text processing ability of
pre-trained BERT. For image modality, there are two com-
mon approaches to embedding images. The first approach is
to extract the region features of the image, which are obtained
by an object detector like Faster R-CNN [45] and are also
referred to as bottom-up features [1]. The retrieval models
using this method include IMRAM [4], SGRAF [12], and
L3S-KD [63]. These region features are usually extracted
offline and stored as a specific file instead of the original
images, which has the advantage that the extraction process
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can be done in advance without occupying model training
and testing time. It should be noted that this approach is hard
to reduce the time spent when processing brand-new images
that do not exist in the dataset. The second approach intro-
duced in [21] is to feed the image into a convolutional neural
network such as ResNet [15] or other image transformers
like Swin-Transformer [34] and return the output image grid
features. The primarymotivation for this approach is to avoid
the slow extraction process of the object detector and its pos-
sible extraction errors. Some cross-modal retrieval models
based on this approach, such as X-LXMERT [8], X-VLM
[60], and ViSTA [7], have been proposed successively and
have shown promising retrieval results.

Multimodal Fusion The multimodal fusion module is
the core of the text-image retrieval model. Its function is to
semantically align the extracted input modality embeddings
in a uniformhigh-dimensional space and learn joint contextu-
alized representations for all feature embeddings in the input
sequence. A typical but simple multimodal fusion approach
is to directly dot product the feature embeddings of the input
modalities or feed them into several shallow layers. Several
models based on this approach, such as CRGN [65], CLIP
[44], and MLMUG [37], demonstrate competitive retrieval
accuracy. As proved in [26], the simple multimodal fusion
approachmay perform fairlywell when the size of the dataset
is not too large, yet it is not sufficient for large-scale datasets
or tasks with high modal-fusion requirements. Recently, an
increasing number of models using deep multimodal fusion
modules have been proposed, such as ALIGN [20], TCL
[57], and METER [14], which are usually stacked by several
transformer layers. More sophisticated multimodal fusion
modules boost the retrieval performance of the models, but
they also increase the complexity of thesemodels and require
more time and data to train them. That is a tradeoff between
performance and efficiency that should be considered for all
models when adapting a multimodal fusion scheme.

2.2 Pre-trainingmodels

As a mainstream paradigm in computer vision, natural
language processing, and other research areas, pre-training-
then-fine-tuning remarkably improves model performance
in a number of downstream tasks. Recently, visual lan-
guage pre-training models have also developed significantly,
especially in tasks such as cross-modal retrieval and visual
question answering.

Single-ModalityPre-Training Incomputer vision, numer-
ousmethods adopt pre-training formultimodal tasks. ResNet
and Faster R-CNN mentioned above are two of the most
classic pre-trained visual feature extractors. With the intro-
duction of transformer, an increasing number of pre-trained
visual models have been proposed, and their performance
in conventional tasks such as image classification, semantic

segmentation, and object detection has been improved. Some
current state-of-the-artmodels includeNFNet [3],MFF-PCB
[53], KAZSLM [27], and ViT-G [61]. In natural language
processing, the introduction of transformer has also led to
a promising advancement in pre-trained language models.
Compared to RNN, transformer focuses more on the global
feature representations of all words in a sentence and can
process the whole sentence at once. It is due to these advan-
tages that transformer-based methods are leading the way
in various downstream tasks and have become the dominant
and most preferred paradigm in the field. Among these lan-
guage pre-training models, BERT is the most used models.
Besides, some representative latest models include Routing
Transformer [46] and LTFE [51] . For audio processing, an
increasing number of current mainstream models are grad-
ually inspired by transformer in several downstream tasks.
Taking speech recognition as an example, wav2vec2.0 [2]
introduces transformer on the basis of wav2vec [47], which
reduces the word error rate of the model and becomes the
basis of successive models [9, 56]. In addition, pre-trained
models also contribute to other tasks, such as emotion recog-
nition [35, 36], speech synthesis [5, 55], and spoken language
understanding [25, 43, 48].

Multi-ModalPre-TrainingPre-trainedmultimodalmod-
els perform impressively on many visual and language tasks
based on transformer. These models can be divided into
two main categories: single-encoder and dual-encoder. The
single-encoder models [6, 19, 33] use one multimodal trans-
former to fuse image and text features for modal interaction.
Although this method has excellent performance on some
downstream tasks, its computational cost is too high to be
applied to large-scale cross-modal datasets. To cope with this
drawback, the dual-encodermodels [17, 23, 42] construct two
separate encoders for images and texts, significantly reduc-
ing the computation time of the similarity of the image-text
pairs.

In contrast with the models mentioned above, TIAR con-
siders three inputmodalities simultaneously, i.e., text, image,
and audio, and conducts cross-modal retrieval for these three
modalities given any one or two input modalities.

3 Proposedmethod

Figure 1 illustrates the architecture of the proposed model
TIAR and the weighted multimodal re-ranking algorithm.
TIAR consists of two parts, i.e., threemodal-specific encoders
and one cross-modal encoder. We adopt a full transformer
design for the three modal-specific encoders, namely text,
image, and audio encoder, to generate effective feature rep-
resentations for higher retrieval accuracy. After encoding the
inputs of the three modalities, we gather all the embeddings
as a sequence and feed them into the cross-modal encoder
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Fig. 1 Architecture of the proposed model TIAR (left) and weighted multimodal re-rank (right)

for multimodal fusion. To better fuse the three modalities,
the cross-modal encoder conducts cross-attention to all the
embeddings in the sequence. Contrastive learning loss and
matching prediction loss are used as the training loss function
of the model, encouraging the model to align the semantics
of embeddings of different modalities and generate feature
representations that fuse multimodal information. We finally
use the three [CLS] token embeddings corresponding to the
three modalities for two new proposed cross-modal retrieval
tasks, named cross-unimodal and cross-bimodal retrieval.

Let X = {(Ti , Ii , Ai )}Ni=1 be thedataset,where (Ti , Ii , Ai )

are the text, image, and audio for the i th sample, and N is
the size of the dataset. Denote T = {Ti }Ni=1, I = {Ii }Ni=1,
and A = {Ai }Ni=1 as the text, image, and audio set in X
respectively. Depending on the number of input modalities,
the object of cross-modal retrieval is to conduct two tasks
(the details are defined in Section 3.3):

• Cross-Unimodal Retrieval Given one sample of any
modality, find two samples in the dataset correspond-
ing to each of the two remaining modalities that are most
similar to it respectively.

• Cross-Bimodal RetrievalGiven two samples of any two
modalities, find one sample in the dataset corresponding
to the remaining modality that is most similar to them
simultaneously.

3.1 Modal-specific encoder

Text Encoder The text encoder stacks of several standard
transformer layers from BERT.We first tokenize all words in
the caption to obtain the token sequence T = [t1, t2, ..., tn],
where ti is the i th word token and n is the length of the token
sequence. Let T 0 = [t0cls, t1, t2, ..., tn] = [t0cls, t01 , t02 , ..., t0n ]
be all of input word tokens concatenated with a [CLS] token
t0cls. By feeding T

0 into the text encoder,weobtain the embed-
dings of all words and the [CLS] token of the input caption.
The process can be expressed by the following equations:

T̂ l = MHSA(LN(T l−1))

T l = MLP(LN(T̂ l))
(1)

where T̂ l and T l denote the output embeddings of MHSA
and MLP for layer l(l = 1, 2, ..., NT ), MHSA denotes
multi-head self-attention, MLP denotes multi-layer percep-
tion, LN denotes the layer normalization, and NT is the
number of transformer layers in the text encoder. The
final embeddings for all tokens T E is obtained by passing
through a layer normalization layer T E = LN(T NT ) =
LN([t NT

cls , t NT
1 , t NT

2 , ..., t NT
n ]).

The text encoder takes the original text caption T as input
and outputs the text embeddings T E , where each t E ∈ R

dT

and dT = 768 in the configuration of BERT-base. Different
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from BERT-base, to reduce the number of parameters of
the model, the text encoder uses only the first six trans-
former layers, i.e., NT = 6. The configuration of the text
encoder is inspired by [60]. Experiments show that this set-
ting is adequate to make the model perform competitively
in text-related tasks and is a well-balanced tradeoff between
performance and efficiency.

Image Encoder The image encoder efficiently generates
both global and multi-grained vision representations of an
image. Following Swin-Transformer [34], we first split an
input RGB image I of resolution of 224 × 224 into non-
overlapping patches of size of 32× 32. Each patch is treated
as a “token”, and its feature is the concatenation of the raw
pixel RGB values.

Denote the input image and its patches as I = [p1, p2, ...,
p49] ∈ I = R

3×224×224, where each pi (i = 1, 2, ..., 49) ∈
R
3×32×32.We first feed all patches into a linear patch embed-

ding (LPE) layer and then concatenate with a [CLS] token
to obtain the token sequence of the input image I 0 =
[p0cls,LPE(I )] = [p0cls, p01, p02, ..., p049]. We calculate the
embeddings of all patches in the image as follows:

Î l = WA(LN(I l−1))

I l = MLP(LN( Î l))
(2)

where Î l and I l denote the output embeddings of WA and
MLP for layer l(l = 1, 2, ..., NI ) , WA denotes window
attention, and NI is the number of layers in the image
encoder. After that, we obtain all the embeddings I NI =
[pNI

cls , p
NI
1 , pNI

2 , ..., pNI
49 ]. We pass I NI through a layer nor-

malization layer to calculate the final embeddings of tokens
I E = LN(I NI ).

The image encoder inputs the original image I and outputs
the image embeddings I E , where each pE ∈ R

dI and dI =
1024. By utilizing both global andmulti-grained information
of the image, the image embeddings are sufficient to represent
the image in the subsequent processing.

Audio Encoder We use wav2vec2.0 [2] as the audio
encoder. Given the raw audio A, we initially feed it into a
convolutional feature encoder to get the latent representa-
tions of the input audio CNN(A) = [a01 , a02 , ..., a0m], where
m is the length of audio representations. And then, we
input these representations concatenated with a [CLS] token
A0 = [a0cls, a01 , a02 , ..., a0m] into the audio encoder to calculate
their embedding as follows:

Âl = MHSA(LN(Al−1))

Al = MLP(LN( Âl))
(3)

where Âl and Al denote the output embeddings of MHSA
andMLP for layer l(l = 1, 2, ..., NA), and NA is the number

of transformer layers in the audio encoder. As above, we also
pass ANA through a layer normalization layer to obtain the
final embeddings of audio AE = LN(ANA ).

The audio encoder takes the raw audio A as input and out-
puts the audio embeddings AE , where each aE ∈ R

dA and
dA = 1024. TIARbenefits from thismodel and performs sur-
prisinglywell in audio-involved tasks after carefully adapting
and training.

3.2 Cross-modal encoder

The extraction of text, image, and audio embeddings is
isolated from cross-modal interaction. In order to fuse the
embeddings obtained by independent encoders, the cross-
attention mechanism is used to extract effective features
and semantic information. We gather all embeddings of the
three modalities as a sequence Z E = [T E ; I E ; AE ] =
[t Ecls, t E1 , ..., t En ; pEcls, pE1 , ..., pE49; aE

cls, a
E
1 , ..., aEm ]. Since the

dimensions of the embeddings of the three modalities
are not uniform, we first pass a multi-layer perception
layer to align the dimensions of text embeddings to 1024
before inputting them into the cross-modal encoder Z0 =
[MLP(T E ); I E ; AE ]. Then, we feed the aligned embedding
sequence Z0 into the cross-modal encoder. The cross-modal
encoder processes all embeddings of the three modalities as
follows:

Ẑ l = CA(LN(Zl−1))

Zl = MLP(LN(Ẑ l))
(4)

where Ẑ l and Zl denote the output embeddings of CA
and MLP for layer l(l = 1, 2, ..., NC ), CA denotes cross-
attention and NC is the number of layers in the cross-modal
encoder. We experiment NC with 3 values which are 6, 7, 8,
and set NC = 7 for the best performance (see details in
Section 4.4.2).

After multiple layers of cross-attention processing, the
[CLS] token embeddings of three modalities t NC

cls , pNC
cls , aNC

cls
∈ ZNC fuse the semantics among all modalities which can
be used for cross-modal retrieval.

3.3 Cross-modal retrieval

Depending on the number of input modalities, the cross-
modal retrieval has the following two tasks, namely cross-
unimodal and cross-bimodal retrieval.

Cross-Unimodal Retrieval Figure 2 illustrates an exam-
ple of cross-unimodal retrieval. Given one sample of any
modality, without loss of generality, let it be T ∈ T, the goal
function g1 calculates the similarity between T and all sam-
ples of image and audio modalities in the dataset and selects

22902



123

TIAR: Text-Image-Audio Retrieval with weighted multimodal re-ranking

Fig. 2 An example of the
proposed cross-unimodal
retrieval. Given a query text T ,
the aim is to obtain an image
and audio in the dataset, which
are the most similar to T
respectively

one sample from each modality that is most similar to T as
follows:

g1(T )=(argmax
I∈I

{S(h(I ), h(T ))}, argmax
A∈A

{S(h(A), h(T ))})
(5)

where S(·, ·) is the cosine similarity measurement function,
and h(·) is the function that maps the original input of each
modality to the output [CLS] token embedding of the cross-
modal encoder in Eq. 4:

h(X) =

⎧
⎪⎨

⎪⎩

t NC
cls , X = T

pNC
cls , X = I

aNC
cls , X = A

(6)

Similarly, we define the function g1 for the cases of image
and audio modalities in the same manner. The overall equa-
tion of g1 is defined as follows:

g1(X) (7)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(argmax
I∈I

{S(h(I ), h(T ))}, argmax
A∈A

{S(h(A), h(T ))}), X = T

(argmax
T∈T

{S(h(T ), h(I ))}, argmax
A∈A

{S(h(A), h(I ))}), X = I

(argmax
T∈T

{S(h(T ), h(A))}, argmax
I∈I

{S(h(I ), h(A))}), X = A

Cross-Bimodal Retrieval Figure 3 illustrates an example
of cross-bimodal retrieval. Given two samples of any two
modalities, without loss of generality, let them be I ∈ I and
A ∈ A, the goal function g2 calculates the similarity between
I and A and all samples of text modality in the dataset and
selects one sample from them that is most similar to both I
and A as follows:

g2(I , A)=argmax
T∈T

{α S(h(T ), h(I ))+(1−α)S(h(T ), h(A))}
(8)

where α is a hyper-parameter adjusting the combination of
the two modalities.

Similarly, for the other two cases, we define the function
g2 in the same manner. The overall equation of g2 is defined
as follows:

g2(X , Y ) (9)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

argmax
T∈T

{α S(h(T ), h(I ))+(1−α) S(h(T ), h(A))}, (X , Y )=(I , A)

argmax
A∈A

{β S(h(A), h(T ))+(1−β) S(h(A), h(I ))}, (X , Y )=(T , I )

argmax
I∈I

{γ S(h(I ), h(T ))+(1−γ ) S(h(I ), h(A))}, (X , Y )=(T , A)

where β and γ are also hyper-parameters.
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Fig. 3 An example of the
proposed cross-bimodal
retrieval. Given a query image I
and audio A, the aim is to obtain
a text which is the most similar
to I and A simultaneously in the
dataset

3.4 Loss function

ContrastiveLearningLossContrastive learning loss encour-
ages the model to distinguish samples at semantic level and
focus on learning common features among similar sam-
ples. We sample a random mini-batch of m samples bm =
{(Ti , Ii , Ai )}mi=1, and calculate the in-batch cross-modal sim-
ilarities.

Concretely, for any sample (Ti , Ii , Ai ) ∈ bm and any two
of its modalities, without loss of generality, let them be Ti
and Ii . We treat Ii as the positive example for Ti and the rest
of them−1 images within bm as the negative examples, and
vice versa. Then, we calculate Ti ’s text-to-image similarity
to each image I j and Ii ’s image-to-text similarity to each text
Tj in the mini-batch as:

sT2Ii (I j ) = exp(S(p(Ti ), p(I j ))/τ)
∑m

k=1 exp(S(p(Ti ), p(Ik))/τ)
(10)

sI2Ti (Tj ) = exp(S(p(Tj ), p(Ii ))/τ)
∑m

k=1 exp(S(p(Tk), p(Ii ))/τ)
(11)

where τ is a learnable temperature parameter, and p(·) is the
transformation that map the original input of each modality

to the normalized output [CLS] token embedding of its cor-
responding modal-specific encoder:

p(X) =

⎧
⎪⎨

⎪⎩

t Ecls, X = T

pEcls, X = I

aEcls, X = A

(12)

Let yT2Ii and yI2Ti be the ground-truth one-hot similarity
vectors of Ti and Ii in the mini-batch, where only the pos-
itive example has the probability of one, and the remaining
negative examples have zero. sT2Ii and sI2Ti are the text-to-
image and image-to-text similarity vectors of Ti and Ii in the
mini-batch. The text-image contrastive learning loss of bm is
defined as follows:

LTI
cl = 1

2

(∑m
i=1 H( yT2Ii , sT2Ii )

m
+

∑m
i=1 H( yI2Ti , sI2Ti )

m

)

(13)

where H( p1, p2) is the cross-entropy of two distributions p1
and p2. In the same manner, we can define text-audio loss
LTA
cl and image-audio loss LIA

cl in this mini-batch. The total
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contrastive learning loss in the mini-batch is defined as:

Lcl = 1

3
(LTI

cl + LTA
cl + LIA

cl ) (14)

Matching Prediction Loss Matching prediction loss
encourages themodel tomatch samples in the dataset asmany
as possible. Inspired by [60], we sample one hard negative
image and audio respectively by following sT2I and sT2A for
each text in the mini-batch bm . For image and audio modali-
ties, we perform the same sampling procedure as above. The
more similar the two examples are to each other, the higher
the probability they will be sampled.

Concretely, for any example Xi ∈ {Ti , Ii , Ai } and its hard
negative example, without loss of generality, let Xi = Ti ,
and I j ( j = 1, 2, ...,m) be its hard negative example. we cal-
culate the matching probability pT2Ii by feeding the output
[CLS] embedding of the cross-modal encoder into a specific
multi-layer perception layer. The text-to-image matching
prediction loss of bm is the mean value of the cross-entropy
H between pT2Ii and yT2Ii :

LT2I
match =

∑m
i=1 H( yT2Ii , pT2Ii )

m
(15)

where yT2Ii is a 2-dimensional one-hot vector representing the
ground-truth label.We can define the image-to-text matching
prediction loss of bm in the same manner, and formulate the
text-image loss as:

LTI
match = 1

2
(LT2I

match + LI2T
match) (16)

The total matching prediction loss of bm is defined as:

Lmatch = 1

3
(LTI

match + LTA
match + LIA

match) (17)

Finally, the overall loss of our proposed TIAR can be for-
mulated as follows:

L = Lcl + Lmatch (18)

3.5 Weightedmultimodal re-rank

The retrieval results are obtained by using only the corre-
sponding similarity matrix for each task, for example, the
similarity SI2T for image-to-text retrieval. Wang et al. [54]
argued that low testing accuracy is found due to ignor-
ing the interactions between text-to-image and image-to-text
retrieval and proposed a cross-modal re-ranking method.
Although the performance is improved, the cross-modal re-
ranking considers only two reverse similaritymatrices,which
are still insufficient for both the cross-unimodal and cross-
bimodal retrieval.

In order to fully integrate the information in similarity
matrices of all modalities, we propose a weighted multi-
modal re-rank (WMR) algorithm, shown in Fig. 4. Following
the basic assumption that any sample in a triplet (T , I , A) is
supposed to be retrieved by the rest in all retrievals forwardly
and backwardly, we utilize the similarity matrices, which is
reverse to the retrieval, to correct errors made from the origi-
nal similaritymatrix and improve the retrieval accuracy.After
obtaining the original similarity matrices, we select the K -
nearest neighbors for each retrieved candidate and reversely
search the rank of the query for all of the K candidates. We
then use a ranking position set to calculate an importance
vector and modify the similarity between the query and each
candidate. For cross-unimodal and cross-bimodal retrieval,
we propose two weighted multimodal re-ranking strategies.

Cross-Unimodal Retrieval We take the image-to-text
retrieval task as an example to explain the details of WMR
which is shown in Algorithm 1. Given a query image Iq
and its initial vector sI2Tq in similarity matrix SI2T, we
select K -nearest neighbor texts which have the top K max-
imum similarity to Iq and denote them as RI2T(Iq , K ) =
{T q

1 , T q
2 , ..., T q

K }, where K is the number of the nearest
neighbors. Then for each text T q

j ∈ RI2T(Iq , K ), the reverse
search process is performed. Concretely, we define the K -
nearest images of T q

j as RT2I(T q
j , K ) = {I j1 , I j2 , ..., I jK },

where I ji is the image which has the i th largest similarity to
T q
j according to ST2I. To integrate the similarity information

in both nearest neighbors, we define a ranking position map
function as:

RP(T q
j ) =

{
k, I jk = Iq , I

j
k ∈ RT2I(T q

j , K )

K + 1, other
(19)

Algorithm 1 Weighted multimodal re-rank for cross-
unimodal retrieval.
Input: The similarity matrices SI2T , ST2I , and SAT2I , the size of the

testing set M , the number of nearest neighbors K , hyper-parameters
w1 and w2.

1: for q = 1, 2, ..., M do
2: Select K -nearest neighbor texts RI2T(Iq , K ) according to the

qth row sI2Tq of SI2T .

3: for each T q
j ∈ RI2T(Iq , K ) do

4: Select K -nearest neighbor images RT2I(T q
j , K ) according to

the j th row of ST2I.
5: Select K -nearest neighbor images RAT2I(T q

j , K ) according to

the j th row of SAT2I.
6: end for
7: Calculate the ranking position set pT2I(Iq ) .
8: Calculate the ranking position set pAT2I(Iq ).
9: Calculate the importance vector imp1(Iq ).
10: Calculate the importance vector imp2(Iq ).
11: Calculate the re-ranked similarity vector sI2T∗

q by (22).
12: end for
13: return SI2T∗.
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Fig. 4 Proposed weighted multimodal re-rank algorithm

After that, we obtain the ranking position set p(Iq) by apply-
ing RP(·) on all testing texts:

p(Iq) = {RP(T q
1 ),RP(T q

2 ), ...,RP(T q
M )} (20)

where M is the size of the testing set. According to the defi-
nition of RP(·), the smaller RP(T q

j ) is, the more similar T q
j

and Iq are. Therefore, p(Iq) can be considered as a secondary
expression of similarity between Iq and each text in the test-
ing set. At this point, we define an importance vector of Iq
based on p(Iq) as:

imp1(Iq) = {I(RP(T q
j ) < K + 1) exp(−RP(T q

j ))}Mj=1
∑M

j=1 I(RP(T q
j ) < K + 1) exp(−RP(T q

j ))

(21)

The importance vector imp1(Iq) is a modification of sI2Tq
that increases the similarity scores between Iq and those texts
which are also similar to Iq . For similarity matrix SAT2I in
cross-bimodal retrieval, we can also define the importance
vector imp2(Iq) in the same manner. The final similarity
vector sI2T∗

q of Iq is the weighted sum of three vectors:

sI2T∗
q = sI2Tq + w1imp1(Iq) + w2imp2(Iq) (22)

We repeat the above procedures for each row in the matrix
SI2T to get the WMR similarity matrix SI2T∗.

Cross-bimodal RetrievalHere, we take image and audio
retrieval text task as an example to illustrate WMR in detail
which is shown in Algorithm 2. Given a pair of query
image and audio (Iq , Aq) and their corresponding initial
similarity vector sIA2Tq in matrix SIA2T, K -nearest neighbor
texts RIA2T(Iq , Aq , K ) = {T q

1 , T q
2 , ..., T q

K } can be collected,

Algorithm 2 Weighted multimodal re-rank for cross-
bimodal retrieval.
Input: The similarity matrices SIA2T, ST2I, and ST2A, the size of the

testing set M , the number of nearest neighbors K , hyper-parameters
w1 and w2.

1: for q = 1, 2, ..., M do
2: Select K -nearest neighbor texts RIA2T(Iq , Aq , K ) according to

the qth row sIA2Tq of SIA2T.

3: for each T q
j ∈ RIA2T(Iq , Aq , K ) do

4: Select K -nearest neighbor images RT2I(T q
j , K ) according to

the j th row of ST2I.
5: Select K -nearest neighbor audios RT2A(T q

j , K ) according to

the j th row of ST2A.
6: end for
7: Calculate the ranking position set pT2I(Iq ).
8: Calculate the ranking position set pT2A(Aq ).
9: Calculate the importance vector imp1(Iq ).
10: Calculate the importance vector imp2(Aq ).
11: Calculate the re-ranked similarity vector sIA2T∗

q by (26).
12: end for
13: return SIA2T∗.

where K is the number of the nearest neighbors. Likewise,
we use two similarity matrices, ST2I and ST2A, to perform
the reverse search. First for ST2I, the K -nearest images of
T q
j is RT2I(T q

j , K ) = {I j1 , I j2 , ..., I jK }. The ranking position
map function for each text is defined as:

RP(T q
j ) =

{
k, I jk = Iq , I

j
k ∈ RT2I(T q

j , K )

K + 1, other
(23)

We apply RP(·) on all testing texts to obtain the ranking
position set of Iq :

p(Iq) = {RP(T q
1 ),RP(T q

2 ), ...,RP(T q
M )} (24)
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Based on p(Iq),the importance vector of Iq is defined as:

imp1(Iq) = {I(RP(T q
j ) < K + 1) exp(−RP(T q

j ))}Mj=1
∑M

j=1 I(RP(T q
j ) < K + 1) exp(−RP(T q

j ))

(25)

Second for ST2A, we also define the importance vector
imp2(Aq) in the same manner. Finally, the similarity vec-
tor sIA2T∗

q is the weighted sum of three vectors:

sIA2T∗
q = sIA2Tq + w1imp1(Iq) + w2imp2(Aq) (26)

The WMR similarity matrix SIA2T∗ is obtained by perform-
ing the above procedures on each row of SIA2T.

4 Experiments

4.1 Experimental configuration

4.1.1 Evaluation metric and datasets

The retrieval performance is measured by the widely-used
metric named recall at top K (R@K). Three recalls R@1,
R@5, and R@10, are reported for all tasks.

The modified Flickr30k [40], COCO [30], and ADE20k
[67] datasets we use are provided by [41]. These datasets
combine localized narratives (LN) and synchronized speech
with the original datasets. Specifically, Flickr30k-LN, COCO-
LN, andADE20k-LNcontain the same images as the original
versions, but provide a completely different text descrip-
tion for each image. The number of text descriptions for
each image is one, whereas the original datasets had five
text descriptions per image. Additionally, the datasets with
localized narratives have different splits for training and
testing sets, as displayed in Table 1. In these datasets, the
audio for each image is the pronunciation of the corre-
sponding text description. These text descriptions convey
more fine-grained objects and semantics of the images and
contain some redundant words. The audios also contain
multiple mute clips. These factors increase the difficulty
of cross-modal retrieval and are among the reasons for the

Table 1 Statistics of three datasets and their mean duration

Dataset Train Split Test Split
Size Mean Duration

(s)
Size Mean Duration

(s)

Flickr30k 30546 25.84 1023 25.02

COCO 134272 21.95 8573 21.96

ADE20k 20476 20.20 2053 21.27

substantial performance degradation of most models on the
three datasets in Section 4.2. We use only the text-image-
audio triplets of each dataset.

Due to hardware limitations, we only use the first 14 sec-
onds of each audio in the dataset. On this condition, only
those audios whose duration is shorter than 14 seconds can
be input in their entirety; otherwise, the exceeding parts will
be truncated. Table 1 shows the size andmean audio duration
of each dataset (we pre-process the audio data, i.e., remove
as many of the mute clips of the audio as possible to increase
our available input without adversely affecting the audio con-
tent). Figure 5 shows the statistical information about the
duration of the audio data. As shown in this figure, merely
about 30% of the audio samples in the Flickr30k and COCO
datasets can be processed in their entirety, and this proportion
is less than 40% in the ADE20k dataset. Nevertheless, this
available duration of audio input is long enough to enable our
proposed TIAR to perform competitively in retrieval tasks
with audio involved. The audio-related retrieval capability
of this model can be improved even more if a longer avail-
able duration can be used.

4.1.2 Evaluation baseline models

We adopt six state-of-the-art text-image retrieval models as
baselines for comparison: ALBEF [28], GSMN [31], BLIP
[29], VinVL [64], TCL [57], andX-VLM [60].We also adopt
ACT [39] for text-audio retrieval and TNN-C-CCA [59] for
image-audio retrieval. Considering that the audio in each
dataset is the pronunciation of its corresponding text, we
adopt HUBERT [18], a state-of-the-art speech recognition
model, as the baseline for audio-to-text retrieval. Concretely,
we input the entire audio data into HUBERT and use the
word error rate, a common metric in speech recognition, to
evaluate its performance.

For the ease of experiments, we initialize the parameters
of our proposed model except the audio encoder using the
pre-trained model provided in [60]. For the audio encoder,
we use the pre-trained model provided in [10].

4.2 Cross-unimodal retrieval

Tables 2, 3, and 4 present the comparison results of TIAR,
TIAR-WMR, and other state-of-the-art methods. These
tables reveal that TIAR-WMR achieves state-of-the-art per-
formance in traditional text-image retrieval across all three
datasets. Additionally, TIAR achieves competitive retrieval
accuracy and outperforms most of the compared models,
except for X-VLM, in text-image retrieval. Notably, TIAR
still demonstrates promising performance and outperforms
the baseline models significantly in retrieval tasks involving
audio, particularly in audio-text retrieval. Although TIAR’s
mean recall in text-image retrieval is around 1% lower than
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Fig. 5 Box plot of the audio duration statistics for three datasets. The orange line inside each box represents the median duration of the audio. The
yellow line marks the position of 14 seconds, and the proportion of audio samples with duration no longer than 14 seconds is annotated

X-VLM, this slight decrease serves as a tradeoff for TIAR’s
impressive performance in the two audio-involved retrieval
tasks. One probable explanation for this decline is that the
additional audio-related losses introduced into TIAR act as
regularization terms. Themost surprising aspect of the results
is that both TIAR and TIAR-WMR use only the first 14
seconds of each audio input to achieve their performance,
meaning that more than half of the input audios are not pro-
cessed in their entireties.

4.3 Cross-bimodal retrieval

Table 5 presents the experimental data on cross-bimodal
retrieval of TIAR and TIAR-WMR. This table is pretty
revealing in three ways. First, with another modality input,
all TIAR’s retrieval recalls are boosted by varying percent-
ages. In particular, for the image and audio retrieval text task,
TIAR significantly outperforms R@1 of the best compared
model in the image-to-text task on the Flickr30k, COCO, and
ADE20k datasets by 99.51%, 96.98%, and 94.45% respec-
tively, with a significant gap of 47.99% and 29.18% on the
latter two datasets. As shown in Fig. 6, the R@1 gain of
TIAR in text retrieval with audio input is greater than that

of TIAR with just integrating WMR. Though these compar-
isons are somewhat unfair, they demonstrate TIAR’s efficient
processing of limited audio and sufficient multimodal fusion
with image and audio. Second, TIAR further improves audio
retrieval performance with the simultaneous use of text and
image. The performance of TIAR in image-audio retrieval
is considered relatively poor because of limited audio. How-
ever, this performance is improved when both text and image
are used simultaneously. The audio retrieval performance of
TIAR surpasses that of TIAR with unimodal input remark-
ably. Third, when WMR is deployed, the performance of
TIAR-WMR is still improved in all cross-bimodal tasks and
becomes the optimal result on the three datasets, further ver-
ifying the superiority of the proposed weighted multimodal
re-ranking algorithm.

4.4 Hyper-parameter analysis

We perform three hyper-parameter experiments: parameters
of theweightedmultimodal re-ranking algorithm, the number
of layers in the cross-modal encoder, and themodal combina-
tion weights in the cross-bimodal retrieval. All experiments
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Table 2 Cross-unimodal
retrieval comparison results to
TIAR-WMR on Flickr30k
dataset. TIAR-WMR achieves
state-of-the-art retrieval
performance in traditional
text-image retrieval

Methods Time (ms) Image→Text Text→Image
R@1 R@5 R@10 R@1 R@5 R@10

ALBEF [28] ∼510 66.18 87.98 92.31 65.40 87.29 91.98

GSMN [31] ∼690 73.12 93.03 96.65 74.76 93.54 96.82

BLIP [29] ∼1130 72.82 93.16 96.68 73.12 92.77 96.09

VinVL-base [64] ∼3500 87.53 97.92 98.96 88.77 97.82 98.75

TCL [57] ∼520 62.76 85.14 91.59 61.19 85.53 90.62

X-VLM [60] ∼450 92.96 99.71 99.90 92.86 99.32 99.61

TIAR ∼1140 90.32 99.51 99.71 91.10 98.92 99.51

TIAR-WMR ∼1150 93.65 99.51 99.71 97.17 99.41 99.51

Text→Audio Audio→Text

HUBERTa [18] ∼110 - - - 24.48 76.11 97.52

ACT [39] ∼700 14.88 37.51 63.58 16.47 37.36 68.26

TIAR ∼1140 76.44 99.22 99.61 79.57 99.12 99.80

TIAR-WMR ∼1150 79.77 99.61 99.61 83.94 99.61 99.80

Image→Audio Audio→Image

TNN-C-CCA [59] ∼50 5.38 14.77 23.15 5.84 15.31 24.69

TIAR ∼1140 18.57 45.75 61.97 17.11 44.48 61.97

TIAR-WMR ∼1150 25.40 47.89 63.28 25.79 46.85 63.95

aword error rate (WER) is less than or equal to 0.2, 0.4, and 0.8 for R@1, R@5, and R@10 hits

are conducted on the Flickr30k dataset and keep the same
configuration as the above experiments.

4.4.1 Weightedmultimodal re-rank

To analyze the sensitivity of the parameters K , w1, and w2

of WMR, we experiment with them. Figure 7 shows the

R@1 of TIAR and TIAR-WMR in different tasks (TIAR-
WMR for cross-unimodal retrieval and TIAR-WMR+audio
for cross-bimodal retrieval). When any of the three param-
eters increases and the remaining parameters are fixed in
cross-unimodal retrieval, R@1 increases slightly. As for
cross-bimodal, the R@1 is relatively stable when the three
parameters vary.

Table 3 Cross-unimodal
retrieval comparison results to
TIAR-WMR on COCO dataset.
TIAR-WMR achieves
state-of-the-art retrieval
performance in traditional
text-image retrieval

Methods Time (ms) Image→Text Text→Image
R@1 R@5 R@10 R@1 R@5 R@10

ALBEF [28] ∼510 34.33 72.29 82.46 34.75 73.29 82.14

GSMN [31] ∼690 39.46 68.00 78.84 42.88 72.22 81.90

BLIP [29] ∼1130 40.90 81.51 90.28 40.45 82.96 90.11

TCL [57] ∼520 33.76 70.57 80.93 32.92 71.42 81.22

X-VLM [60] ∼450 48.99 90.55 96.22 49.70 91.96 95.93

TIAR ∼1140 47.15 89.09 95.19 47.39 89.51 95.01

TIAR-WMR ∼1150 49.76 90.26 95.42 54.83 95.84 96.37

Text→Audio Audio→Text

HUBERTa [18] ∼110 - - - 20.82 63.44 95.95

ACT [39] ∼700 18.35 41.85 72.40 19.46 42.11 73.84

TIAR ∼1140 90.49 98.40 98.69 92.23 97.23 98.26

TIAR-WMR ∼1150 96.34 98.59 98.71 95.89 98.15 98.32

Image→Audio Audio→Image

TNN-C-CCA [59] ∼50 3.52 12.88 21.45 3.77 13.42 23.79

TIAR ∼1140 15.57 43.81 59.07 15.19 44.77 60.52

TIAR-WMR ∼1150 24.12 48.00 62.88 24.32 48.70 63.09

aword error rate (WER) is less than or equal to 0.2, 0.4, and 0.8 for R@1, R@5, and R@10 hits

22909



123

Chi et al.

Table 4 Cross-unimodal
retrieval comparison results to
TIAR-WMR on ADE20k
dataset. TIAR-WMR achieves
state-of-the-art retrieval
performance in traditional
text-image retrieval

Methods Time (ms) Image→Text Text→Image
R@1 R@5 R@10 R@1 R@5 R@10

ALBEF [28] ∼510 43.50 70.82 79.69 44.47 71.51 80.18

BLIP [29] ∼1130 47.54 75.35 84.61 51.53 76.18 85.29

TCL [57] ∼520 40.62 68.39 78.18 42.52 69.65 78.57

X-VLM [60] ∼450 65.27 88.55 93.91 66.78 89.67 94.06

TIAR ∼1140 63.22 88.07 93.03 65.08 88.75 93.77

TIAR-WMR ∼1150 69.46 88.85 93.18 72.58 94.11 95.23

Text→Audio Audio→Text

HUBERTa [18] ∼110 - - - 21.09 59.43 94.69

ACT [39] ∼700 13.66 30.83 64.49 14.63 30.73 62.68

TIAR ∼1140 71.02 95.71 98.00 75.84 94.64 96.69

TIAR-WMR ∼1150 79.72 97.71 98.30 82.24 95.66 96.83

Image→Audio Audio→Image

TNN-C-CCA [59] ∼50 1.92 6.51 10.46 2.01 6.86 11.04

TIAR ∼1140 5.70 22.50 35.41 5.21 22.31 34.83

TIAR-WMR ∼1150 12.80 23.40 37.76 12.38 24.18 36.52

aword error rate (WER) is less than or equal to 0.2, 0.4, and 0.8 for R@1, R@5, and R@10 hits

Table 5 Cross-bimodal retrieval
results of TIAR-WMR. When
inputting two modalities, the
retrieval performance of
TIAR-WMR is significantly
improved

Methods Flickr30k COCO ADE20k
Image+Audio→Text Image+Audio→Text Image+Audio→Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

TIAR 99.51 99.90 99.90 96.98 98.60 98.68 94.45 97.86 97.91

TIAR-WMR 99.61 99.90 99.90 97.49 98.61 98.67 95.37 97.71 97.95

Text+Audio→Image Text+Audio→Image Text+Audio→Image

TIAR 91.59 98.92 99.41 47.37 89.95 95.12 65.27 88.80 93.86

TIAR-WMR 93.35 99.12 99.41 49.03 90.27 95.16 68.92 89.97 94.01

Text+Image→Audio Text+Image→Audio Text+Image→Audio

TIAR 92.08 99.61 99.61 93.47 98.13 98.44 79.64 96.10 97.47

TIAR-WMR 93.74 99.61 99.61 95.72 98.06 98.18 85.05 96.49 97.37

Table 6 Mean recalls of different number of the transformer layers of the cross-modal encoder

Number of layers Image→Text Text→Image Text→Audio Audio→Text Image→Audio Audio→Image

6 95.73 95.67 90.13 90.03 45.26 45.26

7 96.51 96.51 91.76 92.83 42.10 41.19

8 96.35 95.63 86.45 88.56 43.04 42.49
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Fig. 6 R@1 of text retrieval of X-VLM and two variants of TIAR on
Flickr30k, COCO, and ADE20k datasets

4.4.2 Number of layers of cross-modal encoder

As stated above, we divide the 12 layers of the BERT-base
model into two parts: the first six layers as the text encoder
of TIAR and the last six layers as the cross-modal encoder of
TIAR. Because of the introduction of audio data, we consider
increasing the number of transformer layers of the cross-
modal encoder to fuse the three modalities better. Also, it
needs to be noted that adding too many transformer layers
will significantly increase the complexity of the model and
even lead to performance degradation in the case of limited
data. Therefore, the number of layers should not be too large.

Table 6 shows the mean recalls of different numbers of
the layers of the cross-modal encoder. Our primary concern
is the number of retrieval tasks with the highest mean recall
for the model. When the cross-modal encoder consists of 7
transformer layers, TIAR achieves the highest mean recall
in 4 out of 6 retrieval tasks. Therefore, we set the number
of layers of the cross-modal encoder to 7 to achieve the best
overall performance.

Table 7 α, β, and γ columns report the R@1 and mean recall of image
and audio retrieval text, text and image retrieval audio, and text and audio
retrieval image in cross-bimodal retrieval, respectively. The mean recall
is the mean of R@1, R@5, and R@10

Values α β γ

R@1 mR R@1 mR R@1 mR

0.1 95.80 98.44 59.24 75.33 59.24 75.37

0.2 98.44 99.32 78.20 88.63 76.25 87.55

0.3 99.02 99.61 86.90 93.91 82.80 92.67

0.4 99.32 99.71 89.64 95.80 88.07 95.05

0.5 99.51 99.77 91.01 96.71 89.44 95.86

0.6 99.51 99.77 91.69 96.97 90.32 96.22

0.7 99.12 99.61 92.08 97.10 89.93 96.09

0.8 98.53 99.35 91.69 96.97 90.81 96.38

0.9 96.58 98.60 89.15 96.12 91.59 96.64

4.4.3 Modal combination weights

Table 7 shows the R@1 and mean recall of TIAR in cross-
bimodal retrieval when the three hyper-parameters in Eq. 9
are set to 9 different values, respectively. The table illustrates
that different modal combination weights can lead to drasti-
cally different cross-bimodal retrieval results. TIAR obtains
the best performance when α is set to 0.5 or 0.6, β is set to
0.7, and γ is set to 0.9. TIAR balanced the similarity infor-
mation of the two input modalities for α and β. However,
for γ , TIAR prefers text-to-image similarity to obtain a bet-
ter performance due to the low accuracy of audio-to-image
retrieval.

4.5 Ablation study

To verify the effectiveness of WMR and the multimodal
fusion of TIAR, we conduct an ablation study on the

Fig. 7 Sensitivity analysis of K , w1, and w2 in WMR
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Fig. 8 Qualitative analysis of text and image retrieval for comparisons between the top 1 retrieved results of TIAR with and without audio. Critical
text descriptions are bold. Better viewed with zoom-in

Flickr30k dataset. Specifically, we ablate WMR and one of
the three input modalities.

Table 8 shows the experimental data of all variants of
TIAR. This table shows that when any of the input modali-
ties is ablated, the retrieval performance drops. For example,
TIAR is trained as a traditional text-image retrieval model in
the case of audio ablation. The R@1 of TIAR w/o audio in
text retrieval is 88.17%, which is lower than that of the origi-
nal TIAR.When anymodality is introduced, the performance
improves significantly, strongly demonstrating the capabil-
ity of multimodal fusion of TIAR. The results also prove the

Table 8 Ablation study of TIAR on Flickr30k.Models w/o text, image,
and audio are the variants where one input modality and WMR are
ablated. Model w/o WMR is the variant where WMR is ablated

Methods Image→Text Text→Image
R@1 R@5 R@10 R@1 R@5 R@10

w/o audio 88.17 98.92 99.71 87.10 98.92 99.61

w/o WMR 90.32 99.51 99.71 91.10 98.92 99.51

TIAR-WMR 93.65 99.51 99.71 97.17 99.41 99.51

Text→Audio Audio→Text

w/o image 41.15 84.07 92.38 47.12 83.97 91.69

w/o WMR 76.44 99.22 99.61 79.57 99.12 99.80

TIAR-WMR 79.77 99.61 99.61 83.94 99.61 99.80

Image→Audio Audio→Image

w/o text 11.63 31.67 40.08 9.48 27.08 37.63

w/o WMR 18.57 45.75 61.97 17.11 44.48 61.97

TIAR-WMR 25.40 47.89 63.28 25.79 46.85 63.95

effectiveness of WMR by a performance improvement when
WMR is combined with TIAR.

4.6 Qualitative analysis

TIAR benefits from multimodal fusion in learning and has
boosted performance during testing. To visually analyze the
effectiveness of the multimodal fusion of our model, we
inspect some examples that are predicted wrongly by TIAR
without audio but correctly by TIAR with audio. As shown
in Fig. 8, though the retrieved results have similar semantics
in some sentences of the caption or parts of the image, they
differ in other detailed descriptions or visual objects, which
results in the mistakes of TIAR without audio. For example,
“few seashells” are the critical clues between the correct and
incorrect results in the third row of Fig. 8(a). These clues are
ignored by TIAR without audio but are detected by TIAR
with audio, which leads to the different predictions of the
two variants of TIAR. This result is because the audio plays
the role of prompting and emphasizing in both tasks, allow-
ing the model to distinguish the differences between correct
and incorrect samples.

5 Conclusion and future work

In this paper, we proposed TIAR, a novel text-image-audio
cross-modal retrieval model, and two cross-modal retrieval
tasks, named cross-unimodal and cross-bimodal retrieval, to
evaluate the performance of TIAR. A weighted multimodal
re-ranking algorithm was devised to improve retrieval accu-
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racy without additional training. The experimental results
show that TIAR-WMRachieves state-of-the-art performance
in traditional text-image retrieval and has a promising per-
formance in the two proposed retrieval tasks on Flickr30k,
COCO, and ADE20k datasets. The experiments also demon-
strate the impressive multimodal fusion capability of TIAR.
The retrieval performance of TIAR-WMR is further boosted
on the three benchmarks when two input modalities are
integrated. In particular, the text retrieval accuracy of TIAR-
WMR is significantly improved when provided with addi-
tional audio for only 14 seconds (about 30% of the audio
samples in the dataset were processed in its entirety).

We still have the following two directions for future
research to consider. First, we will continue our work to
enable the model to obtain performance gains in audio-
involved retrieval taskswithout suffering a drop in text-image
retrieval. Second, seeking solutions to the problem of only
using the first 14 seconds of audio will also be one of our
primary efforts in the future.
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