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Abstract
Arranging and orchestration are critical aspects of music composition and production. Traditional accompaniment arranging
is time-consuming and requires expertise in music theory. In this work, we utilize a deep learning model, the flow model, to
generate music accompaniment including drums, guitar, bass, and strings based on the input piano melody, which can assist
musicians in creating popular music. The main contributions of this paper are as follows: 1) We propose a new pianoroll
representation that solves the problem of recognizing the onset of a musical note and saves space. 2) We introduce the
MuseFlow accompaniment generation model, which can generate multi-track, polyphonic music accompaniment. To the
best of our knowledge, MuseFlow is the first flow-based music generation model. 3) We incorporate a sliding window into
the model to enable long sequence music generation, breaking the length limitation. Comparisons on datasets such as LDP,
FreeMidi, and GPMD verify the effectiveness of the model. MuseFlow produces better results in accompaniment quality and
inter-track harmony. Additionally, the note pitch and duration distributions of the generated accompaniment are much closer
to the real data.

Keywords Accompaniment generation · Flow-based model · New pianoroll · Deep learning

1 Introduction

Music composition and production are both professional
endeavors. Even an amateur who wishes to write a sim-
ple melody should be familiar with music theories such as
harmonics, composition, and musicology. The accompani-
ment arranging (or orchestration) stage in music production
transforms music for a single instrument into music that
involves a set of performers. With different accompaniment
arrangements, a single melody can express entirely different
emotions. This stage necessitates a thorough understanding
of music theory and, in some cases, the collaboration of mul-
tiple professionals, which makes it a mission impossible for
an amateur.

In recent years, the idea of creating music by AI (Arti-
ficial Intelligence) has attracted extensive attentions. The
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related research includes automatic melody generation, auto-
matic orchestration, intelligent lyrics and so on. This research
focuses on the generation of accompaniment and tries to
make the arranging easier for both professionals and non-
professionals. This paper contains a large number of music
terms. For the convenience of readers, explanations for most
of the terms can be found here [1].

Essentially, without considering the constraints of instru-
mental diversity in musical orchestration, accompaniment
arranging can be deemed as a multi-track generation task.
Several deep generation models have been adapted to gener-
ate multi-track sequences.

At present, most music accompaniment models, which
are mainly based on GAN [2], VAE [3] and Transformer
[4] models, have the limitation of long sequence generation
problem and the inter-track dependency problem. For more
details, please refer to the next section of this paper.

In this paper, we propose a new music representation
and music accompaniment generation model to analyze the
potential rhythm patterns in melody and learn the correlation
between tracks. We generate multi-track accompaniment for
the input piano melody, including drums, guitar, bass and
strings.

The main contributions of this paper are as follows:
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• We designed a new pianoroll representation, which can
solve the problem of recognizing the onset of a musical
note in the pianoroll representations as well as saving
space.

• We proposed the MuseFlow accompaniment generation
model,which cangeneratemulti-track, polyphonicmusic
accompaniment. To the best of our knowledge, Muse-
Flow is the first Flow-based music generation model.

• We introduced sliding window into the model for long
sequence music generation, breaking the length limita-
tion. footnotenote

• Evaluations show that MuseFlow generates higher qual-
ity composition than MMM and MuseGAN do.

2 Related work

Generative Adversarial Networks (GAN) [2] has been
widely used since its introduction in 2014. MuseGAN [5] is
the first GAN-based model capable of producing multi-track
music. MuseGAN provides three generation techniques:
interference model, composer model, and mixed model.
The team of MuseGAN also proposed another GAN-based
model:MidiNET [6], in which the chord information is inno-
vatively added to input data.However,MidiNet employs only
24 notes to represent the melody without any rest.

Auto-Encoding Variational Bayes (VAE)[3] is a type of
likelihood-based generative model. MusicVAE [7] is a VAE-
based model that uses Recurrent Neural Network (RNN)
structure as “conductor” in the decoder to overcome the prob-
lem of long sequence generation. It also uses feature vector
operations to control note density and pitch difference.

Microsoft designed a representative multi-track music
generation model “”XiaoIce Band” [8], which devises
a Chord based Rhythm and Melody Cross Generation
model (CRMCG) and proposes a Multi-Instrument Co-
Arrangement Model (MICA) using multi-task learning for
multi-track music arrangement. Microsoft also designed
PopMAG [9] model based on Transformer-XL [10]. How-
ever, PopMAG does not avoid the problem of long sequence
dependency.

LakhNES[11], a Transformer-XL based model, demon-
strates the difficulty in learning the dependence between
musical instruments and poor coordinates in the generated
results. MMM [12], a GPT2 based model, also has length
limitations on bars.

Our proposed model, MuseFlow, is based on the Flow
model. Flow model is designed by L.Dinh for NICE [13] in
2015, and was later optimized by Real NVP [14]. In 2018,
google created the Glowmodel [15] to apply the Flowmodel
to face generation. Later NVIDIA applies the Flow model
to audio generation, and puts forward the WaveGlow [16]

model to generate speech. Microsoft used the Flow model to
detect the video target [17]. MoGlow [18] uses standardized
Flowmodel to realize speech, and thengenerates humanbody
pose.

The core idea of Flow is to transform the real sample data
X into data Y which obeys a specified prior distribution, and
the transformation function between them is expressed by
y = f (x). The model is trained by fitting the transformation
function x = f −1(y) with neural networks, and its solu-
tion is derived from the variable replacement Equation (1)
of two PDFs(Probability Density Functions), where ∂ f (x)

∂x is
the Jacobian matrix of the function f at x, and det represents
the determinant.

pX (x) = qθ ( f (x))

∣
∣
∣
∣
det

∂ f (x)

∂x

∣
∣
∣
∣

(1)

The generative procedure is an estimation of the probabil-
ity distribution with parameters θ . In general, the maximum
likelihood method is used to compute θ , so the goal of the
Flow algorithm optimization is to maximize Equation (2).

log(pX (x)) = log(qθ ( f (x))) + log(|det ∂ f (x)

∂x
| ) (2)

The difficulty in solving the equation lies in the need for a
known inverse function to calculate the Jacobian determi-
nant. This requirement mandates that the transfer function f
must be a continuous, differentiable, and reversible nonlin-
ear function. However, the Flowmodel’s clever design solves
these issues. For more details, please refer to [13].

The Flow model’s key characteristic is its conversion
reversibility. It enables transformation from X distribution
to Y distribution and from Y distribution to X distribu-
tion simultaneously. In other words, the Flow model solves
the two-way channel of two distributions, implying that the
dimensions of X and Y must be the same.

3 Proposedmodel

Choosing an appropriate music data representation is crucial
for the model’s performance. In this section, we first intro-
duce the new pianoroll representation and then discuss the
MuseFlow model structure and optimization scheme.

3.1 Data representation

The pianoroll is a music representation that uses a two-
dimensional matrix to store information, with time and pitch
represented on the horizontal and vertical axes, respectively.
The corresponding values in the matrix indicate the veloc-
ity of each music note. This allows for the representation of
multi-track accompaniment in a single matrix. However, the
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Fig. 1 Example of pianoroll
representation

pianoroll representation encounters difficulties when there
are consecutive identicalmusic notes in the score. Figure 1(a)
shows an examplewhere four adjacent quarter notes of differ-
ent colors cannot be distinguished from onewhole note when
converted into the pianoroll representation. To overcome this
challenge, we propose a new representation.

The proposed new representation, called the newpianoroll
representation (NPR), stores each music note using an 8-bit
binary byte (uint8), while maintaining the same semantics
for the horizontal and vertical coordinates. The vertical axis
represents pitch, the horizontal axis represents time, and the
numerical values indicate velocity. In addition, we designed
three states of velocity information to distinguish onset notes.

1. No sound or zero velocity: 0000 0000 = 0
2. Delay (i.e. the sound after pressing the key): 0000

0001 0111 1111 = [1,127]
3. Start (the first position of the sound): 1000 0001 1111

1111 = [129,255]

The velocity range of the NPR is from 0 to 127, which
uses only half of the uint8 range from 0 to 255. A velocity
value of 0 indicates no sound. The values of state 1 and state
2 represent the actual velocity values. The value of state 3 is
obtained by inverting the original velocity value, i.e., [-127,-
1], which is then represented using uint8 as [129,255], and
corresponds to onset notes. Figure 1(b) provides an example
of the NPR representation.

NPRmarks the onset of a note and saves space, especially
when training the model using GPU, as it reduces memory
usage. To determine if the data is a onset note, we only need
to perform a logical AND operation with 1000000. To obtain
the original velocity value, we only need to perform a logical
AND operation with 01111111.

NPRmay improve the quality of the generated music seg-
ments, as shown in Table 2 and Table 4.

3.2 MuseFlow

TheMuseFlow is a deep learning model based on Flow, used
for generatingmusic accompaniment. It possesses a nice fea-

ture: forward training is the encoding process, and music
materials are mapped to multi-dimensional Gaussian space
by multiple encoders; the reverse operation is the genera-
tion, i.e., decoding process, where the trained encoders are
generators. This section describes the encoder and generator
structures of MuseFlow, as well as further optimization of
the model structure in experiments.

3.2.1 Encoders

To capture the diverse characteristics of different musical
tracks, MuseFlow utilizes multiple encoders with distinct
parameters but the same internal structure. For training,
MuseFlowusedfive-track pianorolls (shown inFig. 2),which
included piano, drums, guitar, bass, and strings. The piano
track serves as the guiding melody for the other tracks,
while the accompaniment tracks are transformed by mul-
tiple encoders, with each dimension mapped to a Gaussian
distribution. The encoder output, represented as the hidden
variable Z, is obtained for all five tracks, including the piano
melody and the four accompanying tracks. This Z vector is
then used to generate a new set of pianorolls for the accom-
panying tracks.

Compared with Flow, the structure of MuseFlow incorpo-
rates two main improvements.

Fig. 2 MuseFlow training process
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1. MuseFlow simplifies the structure by eliminating the
need to exchange constant parts between encoders. Addi-
tionally, the main melody track remains unchanged and
is used as lead data.

2. MuseFlow enables parallelmapping ofmultiple channels
by processing all four accompaniment tracks simultane-
ously.

The calculation process for each encoder is shown in
Equation (7), where xpiano represents the input piano
melody and xother represents the input accompaniment tracks
(drums, guitar, bass, strings). Theoutput feature vector for the
i-th encoder is represented by zi,other , with z0,other = xother .
The transformation function An is implemented using a neu-
ral network, with MuseFlow using a Bi-directional Gated
Recurrent Unit (Bi-GRU) [19]. At each time step, the pitch
at the current time point is used as input to the Bi-GRU.

{
xpiano = xpiano

zi, other = g−1
n (zi−1,other , An(xpiano))

(3)

zn, other = g−1
n ◦ ... ◦ g−1

1 (xother ) (4)

The xpiano has two paths in the encoder: one path
is output directly as part of the next encoder input; the
other path, xpiano enters the neural network An to obtain
An(xpiano), which has the same dimension as xother . The
vectors An(xpiano) and zi−1,other are input to the linear func-
tion g−1

n to obtain zi,other . After merging xpiano and zi,other ,
the resulting vector is then input to the next encoder, and so
on, through n encoders. As shown in Equation (8), zn,other

represents the final feature vector of the accompaniment track
output by the model after n encoders.

3.2.2 Generators

The generation process of MuseFlow is illustrated in Fig. 3.
The generator takes as input the piano track xpiano and a ran-
dom vector zn,other sampled from a Gaussian distribution,
which has the same tensor size as the tracks to be gener-
ated. As in the training phase, the piano track xpiano is first
converted into a feature vector An(xpiano) by the Bi-GRU

Fig. 3 MuseFlow generation process

network. An(xpiano) and the random vector zn,other are then
fed into the function gn to obtain zi−1,other , where gn and
g−1
n are inverse functions. The resulting vector zi−1,other is

combined with xpiano and input to the next generator, and
the process is repeated for n generators. Finally, the output
is the pianoroll with five tracks, where xother represents the
generated accompaniment tracks.

{

xpiano = xpiano
zi−1, other = gn(z)i,other , An(xpiano)

(5)

xother = g1(g2(...gn(zn,other ) (6)

3.2.3 Sliding generation

The Flow-based model requires input and output dimensions
to be equal, which can consume a large amount ofGPUmem-
ory during training and limit the length of generated music
segments. To address this issue, we propose a sliding win-
dow scheme to aid in training and generation. Specifically,
we set the size of the sliding window to be the length of
the music segment (eight bars in our work). The encoder
employs a bidirectional gated recurrent unit (Bi-GRU) to
reduce discontinuity in the melody caused by the segmenta-
tion. When dividing the music data into segments, we move
forward by only four bars each time. Therefore, the gener-
ated result is influenced by the adjacent music segment in
the input data. The sliding generation process is illustrated in
Fig. 4, where Zi represents the random vectors of four bars
and Xi represents the generated result of four bars. G repre-
sents the MuseFlow generator. Except for segments X1 and
X2, the subsequent generation process is as follows: (1) The
G generator converts the two random variables [Zi , Zi+1]
into [Xi , Xi+1, ]; (2) The generated sequence Xi+1 is spliced
with the previous sequence [X1, X2, ..., Xi−1]. This design

Fig. 4 Sliding generation
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Table 1 Statistics for the
datasets

Dataset MusicalPieces

LPD 35396

Freemidi 19271

GPMD 22130

helps to generate longer music sequences under limited GPU
memory and computational power. However, we must point
out that a potential issue is that the randomness of vector Zi

may lead to an unsmooth connection between two adjacent
music segments.

4 Experimental Setup

In this paper, we employ several datasets to demonstrate the
validity of our model. In this section, we first describe the
datasets and data processing procedures. Then, we discuss
the comparison with other models.

4.1 Data Preprocessing

The experiment utilized three datasets: the Lakh Pianoroll
Dataset (LPD)[20], Freemidi1, and our collection of global
popular music datasets (GPMD). The original MIDI files in
these datasets contained significant noise and required exten-
sive data processing. After data cleaning and filtering, we
obtained the processed data shown in Table 1. For testing,
1000 pieces were randomly extracted from these datasets,
while the remaining data were used for training.

The data processing procedures are as follows:

1. Data Cleaning: We removed tracks with few notes or
empty tracks. Specifically, we discarded tracks whose
sum of notes was less than 10

2. Melody Identification: If the MIDI file had a marked
melody,we used themarked track directly. If therewas no
mark, we used the MIDI Miner[21] random forest model
to identify the mainmelody. Any unrecognizedMIDI file
was discarded.

3. Data Filtering: We filtered the MIDI files using the fol-
lowing conditions:

(a) 4/4 beat (or tempo).
(b) There are five tracks including drums, guitar, bass,

strings and piano, with at least three tracks present.
(c) Piano as the main melody.
(d) If the same instrument had more than one track, we

sorted them based on their duration and kept the
longest track.

1 https://freemidi.org/genre-pop

4. Music Segmentation: We converted the music sequences
of different lengths into pianorolls and sliced them with
uniform length. In the experiment, we used 8 bars as
one segment, with 4 beats in each bar. Furthermore, we
divided each beat into 24 time slots, resulting in a time
dimension of 24 * 4 * 8 = 768 for eachmusic segment.We
observed that the common pitch range was 22-88 (i.e., 60
pitches in total). Therefore, the total data dimension of a
music segment was 768 * 60 * 5.

4.2 Model training

The MuseFlow model had four encoders, and the additive
coupling layer was used inside. The mapping process of a
function was as follows: the input xpiano first passed through
the Normalization Layer, to prevent over-fitting, then entered
the Bi-GRU network with 128 neural units. It outputted
the hidden state of each time step and passed through the
fully connected neural network with dimension 60, to ensure
that the tensor dimensions of An(xpiano) and xother were
the same in the coupling operation. We trained the model
on an NVIDIA 3090 GPU, using the Adam optimizer, log-
likelihood loss function, and batch size of 128.

In Fig. 5, we show the results of the MuseFlow model at
different stages of training, with tracks for drums, piano, gui-
tar, bass, and strings. The model generates music segments
of 8 bars, with 4 beats in each bar and each beat divided into
24 time slots. The x-axis represents time, and the y-axis rep-
resents pitch. As the training epoch increases, the generated
music becomes clearer andmore coherent. Figure 5(b) shows
a zoomed-in detail of the guitar track in (a), highlighted by
a red border.

4.3 EvaluationMetrics

The quality of music is inherently subjective, but we can
use certain measurements to evaluate it. Inspired by Yang
and Lerch [22], Harte et al. [23], Dong et al. [5], we have
selected the following metrics to assess the quality of our
music accompaniment generated using the models:

• Pitch Classes (PC): This measures the number of used
pitch classes per bar, on a scale of 0 to 12.

• Pitch Shift (PS): This measures the average interval
between two consecutive pitches, in semitones.

• Inter-onset-interval (IOI): Thismeasures the timebetween
two consecutive notes.

• Polyphony Rate (PR): This measures the ratio of time
steps where multiple pitches are played simultaneously.
We ignore the drum track in this calculation.
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Fig. 5 MuseFlow training
results

• Tonal Distance (TD):This measures the harmonicity
between a pair of tracks. Smaller TD values indicate
greater harmonicity.

In addition, we also evaluated the distribution of pitch and
note duration. To do so, we used the following metrics:

• NoteDurationHistogram (NDH): This calculates the dis-
tribution of note duration across 12 categories based on
the beat, including full, half, quarter, 8th, 16th, dot half,
dot quarter, dot 8th, dot 16th, half note triplet, quarter
note triplet, and 8th note triplet.

• Pitch Class Histogram (PCH): This is an octave-indepen-
dent representation of the pitch content, with a dimen-
sionality of 12 for a chromatic scale.

Our evaluation process involves three steps. First, we
calculate the pitch histogram and note duration histogram
metrics for all generated results. Second, we use kernel den-
sity estimation to convert each histogram into a probability
distribution function. Finally, we calculate the coverage area
between the resulting distribution and the ground-truth dis-
tribution using Equation (11).

Dx = 1

Ntracks ∗ Nbars

Ntracks∑

i=1

Nbars∑

j=1

OA(Px
i, j , P̂

x
i, j ) (7)

Where, x represents the pitch histogram or the note
duration histogram; Px

i, j represents the x metric in the

ground-truth set; P̂ x
i, j represents the generated data; OA

reprents the Overlapping Area of two PDFs(Probability Dis-
tribution Function).

4.4 Results and analysis

To evaluate these models, we randomly selected 1,000 music
pieces from the LPD, FreeMidi, and GPMD datasets as test
cases. We used the MuseGAN, MMM, and MuseFlow mod-
els to generate accompaniments for drums, guitar, bass, and
strings based on the main piano melody. To verify the useful-
ness of NPR, we usedMuseFlow to represent the effect of the
model without NPR, and MuseFlow+NPR to represent the
effect of using NPR. Ground-Truth represents the evaluation
results of the true music data used for reference.

4.4.1 Intra-track quality

Table 2 shows the distances between the generated results
and the Ground-Truth, with Ground-Truth serving as the
baseline. In terms of intra-track metrics, MuseFlow is
closer to the real accompaniment situation compared to the
MuseGAN and MMMmodels. Moreover, MuseFlow+NPR,
which marks the onset point of notes to retain the original
information of the music and avoid confusion between con-
tinuous notes and long notes, further improves the generation
quality compared to MuseFlow itself.

4.4.2 Inter-track quality

The results of the inter-trackmetrics are presented in Table 3,
which compares the relationship between the piano and any
of the other four tracks (P: piano,D: drums,G: guitar, B: bass,
S: string) by calculating the TD distance. Among the three
models, MuseFlow shows relatively stronger harmonization.
It was observed that the new pianoroll representation (NPR)
has almost no effect on the inter-track distance in the exper-
iments, so we did not include its own comparison results.
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Table 2 Intra-track evaluation
(the best indicators are marked
in bold)

DataSet PC PS IOI PR

LDP Ground-Truth 3.546 3.969 2.329 0.434

MuseGan +4.750 +12.148 -0.848 +0.557

MMM +0.758 +1.299 +0.278 -0.180

MuseFlow -0.479 -1.092 +0.201 -0.167

MuseFlow+NPR -0.472 -1.009 +0.109 -0.167

FreeMidi Ground-Truth 3.624 4.873 2.471 0.454

MuseGan +4.524 +7.166 -1.019 +0.536

MMM +0.993 +1.181 -0.389 +0.196

MuseFlow -0.423 -1.160 -0.171 -0.155

MuseFlow+NPR -0.416 -1.133 -0.117 -0.153

GPMD Ground-Truth 3.624 4.873 2.471 0.454

MuseGan +4.477 +6.711 -0.942 +0.600

MMM +0.729 +3.525 -0.163 -0.192

MuseFlow -0.665 -1.798 -0.046 -0.155

MuseFlow+NPR -0.454 -1.609 -0.041 -0.088

This is because while the NPR representation improves the
intra-track storage quality, it does not affect the inter-track
relationship. Generally, the results generated by MuseGAN
are quite different from the real dataset, especially in terms
of pitch shift. On the other hand, the results generated by
MMM exhibit higher intra-track quality but lack good har-
mony among the tracks. In comparison, MuseFlow performs
better in both intra-track and inter-track metrics.

4.4.3 The distribution of note pitch and note duration

The distribution of pitch and note duration can be crucial fea-
tures of a melody. In our evaluation, we calculated the pitch
histogram and note duration histogram metrics for all gen-
erated results. We then applied kernel density estimation to

convert the histograms into probability distribution functions
and calculated the overlapping areawith the ground-truth dis-
tribution using Equation (11).

Table 4 shows the results of the overlapping area (OA) cal-
culations, where MuseFlow achieved the highest OA values,
indicating that it is closer to the real data compared to the
other models. Furthermore, the new pianoroll representation
(NPR) method improves the similarity of the generated data
to the real data to some extent.

Figure 6 displays the probability distribution of note dura-
tion (a) and pitch (b) for each model. The accompaniments
generated by theMMMmodel exhibit large variances in pitch
and duration, with the mean values deviating slightly from
the real data. Conversely, the mean values of the MuseGAN
model are close to those of the real dataset, but the vari-
ances are too small. The use of the NPR representation has

Table 3 Inter-track evaluation
(smaller values are better)

DataSet P-D P-G P-B P-S B-G B-S

LDP Ground-Truth 1.568 0.957 1.612 0.750 1.152 1.003

MuseGan 0.937 1.188 1.254 1.180 0.835 1.035

MMM 1.514 1.409 1.596 1.172 1.740 1.718

MuseFlow 0.936 0.644 1.063 0.793 0.607 0.688

FreeMidi Ground-Truth 1.645 1.045 1.524 0.423 1.211 0.507

MuseGan 0.738 1.194 1.318 1.285 0.843 1.048

MMM 1.588 1.301 1.778 1.495 1.571 1.853

MuseFlow 0.646 0.732 0.974 0.999 0.785 0.774

GPMD Ground-Truth 1.538 0.777 1.688 0.772 1.017 0.988

MuseGan 0.779 1.194 1.318 1.285 0.843 1.048

MMM 1.473 1.274 1.385 1.126 1.460 1.566

MuseFlow 0.749 0.731 0.898 0.817 0.614 0.683
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Table 4 OA distance on NDH and PCH (larger values are better)

MuseGan MMM MuseFlow MuseFlow+NPR

NDH 0.751 0.717 0.889 0.902

PCH 0.768 0.405 0.932 0.936

a positive effect on the model generation, and the difference
between the two data distributions is not significant.

In summary, the pitch and note duration distributions are
important features in evaluating the quality of generated
music. The results show that MuseFlow outperforms the
other models in terms of pitch and duration distributions,
and the NPR representation further improves the generation
quality.

4.4.4 The sliding window

The experiment conducted aimed to demonstrate the effec-
tiveness of using sliding windows in long sequence music
generation. Three models were trained with different train-
ing data segmentation: (a) 2 bars without sliding window, (b)
4 bars without sliding window, and (c) 4 bars with sliding
window. The models were evaluated by generating accom-
paniment for Beethoven’s "Ode to Joy" piano melody.

The results are shown in Fig. 7, where the generated tracks
are represented by small rectangles, and the second track
(from top to bottom) represents the input piano melody.
Subfigure (a) shows the generated results without sliding
window, where the drum and guitar tracks break obviously
between the two segments (bar[1-2] and bar[3-4]). In subfig-
ure (b), where the models were trained with 4 bars without
sliding window, there is a better continuity within the inter-
nal bars of bar[1-4] and bar[5-8], but the continuity between
adjacent bar segments is poor, especially in the bass and

string tracks. This suggests that the model may learn the
melody patterns and generate accompaniment within one
whole segment, which alsomeans the longer the segment, the
greater the consistency of the accompaniment. In subfigure
(c), with the use of sliding windows, the adjacent segments
show apparent continuity, denoted by the red box. This sug-
gests that slidingwindows canhelp themodel generate longer
accompaniment by building connections between two seg-
ments.

Overall, the results suggest that the use of slidingwindows
can be an effective technique for improving the continuity
and consistency of long sequence music generation.

4.4.5 The robustness of the model

The robustness of themodel can be evaluated in variousways.
One approach is to train the model on one dataset and test
it on another to assess its robustness. We trained MuseFlow,
MMM, and MuseGAN models on three datasets, resulting
in nine trained models. We randomly selected 1000 samples
from each dataset and evaluated the trained models’ perfor-
mance. Without loss of generality, approximately 2/3 of the
samples in the test set are not included in the training set
and can be regarded as reflecting the model’s robustness to
a certain extent. We roughly used the deviation of evalua-
tion metrics on three models trained on three datasets (e.g.,
training MuseFlow on three datasets resulted in MuseFlow1,
MuseFlow2, and MuseFlow3 models). Using the same test
set to generate outputs on these three models and calculating
the standard deviation of the evaluation results represents the
deviation to measure the model’s robustness.

As shown in Table 5, in the comparison of Intra-track
metrics, except for IOI, the MuseFlow model has the small-
est variation in evaluation metrics across the three datasets,

Fig. 6 Probability distribution of the note duration and pitch
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Fig. 7 Track continuity with or
without sliding window

Table 5 Intra-track variation

PC PS IOI PR

MuseGan 0.146 3.016 0.086 0.033

MMM 0.145 1.321 0.339 0.221

MuseFlow 0.127 0.389 0.189 0.007

MuseFlow+NPR 0.029 0.317 0.115 0.042

Table 6 Inter-track variation

P-D P-G P-B P-S B-G B-S

MuseGan 0.105 0.003 0.037 0.061 0.005 0.008

MMM 0.058 0.071 0.197 0.201 0.141 0.144

MuseFlow 0.147 0.051 0.083 0.113 0.101 0.051

indicating that its robustness is better than MuseGAN and
MMM.

As shown in Table 6, in the comparison of Inter-trackmet-
rics, except for P-D, the variation inmetrics of theMuseFlow
model ismoderate, indicating that its robustness isworse than
MuseGAN but significantly better than MMM.

5 Conclusion

In this paper, we propose a new pianoroll representation
that can mark the onset point of notes. Our experiments
demonstrate that this representation also improves the real-
ism of generated accompaniment. Additionally, we propose
the MuseFlow model for accompaniment generation, which
enhances the quality and track harmony of multi-track
accompaniment generation. We introduce a sliding window
into the model to provide a feasible solution for long-time
sequence generation.

To validate our model, we collect and process three music
datasets: LPD, FreeMidi, and GPMD. We extract test cases
to evaluate MuseFlow, MuseGAN, and MMMmodels using
the same quantifiable evaluation indexes. The results indicate
that MuseFlow outperforms MuseGAN and MMM in terms

of pitch and duration distribution, intra-track continuity, and
inter-track harmony.

The limitations of this study are the inherent dimension-
ality waste of the Flow model, which requires extensive
computational space during training. On an Nvidia 3090
graphics card, the maximum segment length for training data
is 8 bars, making it challenging for the model to learn music
patterns longer than 8 bars. However,most popular 4/4 tempo
music exceeds 40 bars in length, which demands a high-
performance training environment.

There are two future research directions:

1. Explore new music encoding methods that can accom-
modate the expression of multi-track music, reduce the
space occupied by the encoding, and address the problem
of dimensionality waste.

2. Consider adopting the channel swapping technique used
in the Glow model to enhance the coordination between
accompaniment tracks and improve the overall harmony
of multi-track accompaniments.

Data Availibility The source codes of themodel introduced in this paper
are publicly available at https://github.com/nuoyi-618/MuseFlow.
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