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Abstract
For multivariate time series forecasting problems, entirely using the dependencies between series is a crucial way to achieve
accurate forecasting. Real-life multivariate time series often have complex time dependence, spatial dependence and high
nonlinearity simultaneously, so Euclidean space is no longer sufficient to describe them. graph neural network presents
a vital idea to solve this problem by modelling multivariate time series as graphs. Using the nature of graphs makes it
possible to capture the dependencies between multivariate time series. However, no graph structure can perfectly characterize
the relationships among multivariate time series; the facts underlying multivariate time series are much more complex.
Therefore, we propose an integrated model (iGoRNN), which improves the model’s understanding of the deep relationships
of multivariate time series by fusing the information captured by multiple graph operators through an integrator with a specific
structure. In addition, we conducted experiments on theMetr-LA and PeMS-BAY datasets. The experimental results show that
the proposed model outperforms the baseline model in three evaluation metrics, MAE, MAPE and RMSE, and can forecast
complex multivariate time series.

Keywords Multivariate time series · Graph neural networks · Graph operator integrator · Space dependence ·
Time dependence

1 Introduction

A time series is a set of random variables arranged in time
order. Time series forecasting, on the other hand, uses known
experience to estimate unknown future values of random
variables based on the analysis of historical observations. In
the field of traditional time series analysis, most of the studies
are on univariate time series. The classical ones are Auto-
Regressive (AR) [1] model, Moving Average (MA) [2], and
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Auto Regressive Moving Average (ARMA) [3] model. The
ARmodel focuses on the historical observations themselves.
The MA model focuses on the cumulative error in the fore-
cast, eliminating the random fluctuations in the forecast. The
ARMA model combines the two in a simple linear fashion,
allowing the model to be analyzed from both perspectives
in an integrated manner. However, this model can only be
used to deal with small-scale smooth time series in uni-
variate, homoskedasticity settings. Later, the proposal of the
AutoRegressive Integrated Moving Average(ARIMA) [4]
modelmade dealingwith non-stationary time series possible.
Themain idea of thismodel is to transform the non-stationary
series into a stationary series by differencing it to study it. On
the other hand, many models emerged in heteroskedasticity,
multivariate, and nonlinear time series analysis. For exam-
ple, the Threshold Autoregressive (TAR) [5] model and the
Auto-regressive conditional heteroskedasticity (ARCH) [6]
model. The TAR model can divide the state space by setting
a threshold and then use various linear forms to deal with
nonlinear time series. The ARCH model applies to the case
of heteroskedasticity. Its basic idea is to assume that the vari-
ance is a random variable obeying a normal distribution and
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to use a linear combination of the squared values of past finite
duration series for regression analysis. Another central idea
of traditional time series analysis is transforming it to the
frequency domain. The spectral analysis method is a power-
ful tool for mining the hidden periodicity of time series. The
main idea is to model the time series with a linear combi-
nation of sine and cosine by Fourier transform [7]. Modern
spectral analysis methods are still applied in many fields and
perform excellently.

Traditional models are usually effective only for specific
temporal patterns. Machine learning models are more gen-
eralizable than traditional models and can often be used to
deal with more complex time series. The common ones are
Support Vector Regression (SVR) [8], Random Forests (RF)
[9], and ExtremeGradient Boosting (Xgboost) [10, 11]. SVR
belongs to the application of SVM to regression problems,
and it can handle linear and nonlinear regression problems by
selecting different kernel functions.RF is an integratedmodel
that chooses a decision tree as its base model. It combines
the outputs of the base models with specific rules to obtain
the final predicted values. Xgboost, like Random Forest, is
also an integration algorithm. However, instead of simply
combining the outputs of the base model, the tree is contin-
uously added to fit the residuals of the previous base model
predictions so that the predicted values keep approximating
the actual values.

In recent times,with thedevelopment of hardware technol-
ogy, the arithmetic power of computers has been significantly
improved. Neural networks became popular and developed.
Many models for processing time series have also been born
in this field. For example, an LSTM [12, 13] model with tem-
poral information enhancement (T-LSTM) was proposed by
Mou et al. [14]. The model is based on the original LSTM
model and improves prediction accuracy by capturing the
intrinsic correlation between traffic flow and temporal infor-
mation. The above model relies purely on recurrent neural
networks. Later, Wen et al. [15] made the first attempt to
use CNNs [16–18] in time series prediction problems. The
main idea is to model the anomaly detection problem in time
series as an image segmentation problem and then use a U-
net-like[19, 20] model architecture to process the time series
in a convolutional manner, and it also achieves good results.

Although the above models have satisfied most of the
time series prediction tasks, the multivariate prediction still
needs improvements. The birth of graph neural networks
(GNN)[21, 22] has dramatically impacted the dominance of
traditional neural networks. Due to the graph structure that
can represent non-Euclidean data, it has received attention
from several research fields, such as computer vision [23,
24] and natural language processing [16, 25]. Breakthroughs
have also occurred in the field of multivariate time series pre-
diction. In 2020, Wu et al.[26] proposed a Multivariate Time
series forecasting with Graph Neural Networks (MTGNN)

model specifically for multivariate time series forecasting
problems. In the same year, Song et al. [27] proposed the
Spatial-Temporal Synchronous Graph Convolutional Net-
works (STSGCN) model. This model can effectively capture
graphs’ complex correlations and heterogeneities through
a spatiotemporal synchronous modelling mechanism. Time
series analysis models based on graph neural networks have
flourished.

Graphical neural networks have been an essential tool for
mining the spatial dependence of multivariate time series.
Many scholars have attempted to improve modeling meth-
ods to exploit the inherent dependencies among multivariate
time series to improve prediction accuracy. As a result, var-
ious graph models have emerged. These graph operators act
similarly to the different convolution kernels in convolutional
networks. Aswe know, in image processing, it is often neces-
sary to match different convolution kernels, such as dilation
convolution[28, 29], grouped convolution [30], and separa-
ble convolution. [31, 32], as needed if we want to achieve the
desired results. Different convolutional kernels can extract
different levels of features from the image. Inspired by con-
volutional networks, this paper is the first attempt to use
multiple graph operators in feature extraction, using different
graph operators to explore the spatial dependencies between
nodes from different perspectives and then improve the accu-
racy of the model prediction.

2 Research background

Traffic flow is a typical multivariate time series, which refers
to the number of traffic entities or other traffic indicators pass-
ing through a location, section, or road lane during a specific
period. Most traffic flows are highly nonlinear [33], time-
dependent and uncertain, making it difficult for traditional
time series models to meet the needs of practical appli-
cations. In recent years, graph neural networks have seen
rapid development. Their powerful representations can use
to model multivariate time series spatially and achieve accu-
rate predictions. Furthermore, this has become an important
method for studying multivariate series problems. Typical
ones are Diffusion Convolutional Recurrent Neural Net-
works (DCRNN) [34] and Gated Attention Networks for
Learning on Large and Spatiotemporal Graphs (GaAN) [35].
The DCRNN model is based on a diffusion mechanism that
captures spatial dependencies between nodes by randomly
wandering around the graph; the GaAN is based on a multi-
headed attention mechanism but adds a gated value to each
head to adjust the importance of each attention head.

Most of the above algorithms only model traffic flow
from a single perspective. However, considering the com-
plexity of traffic road networks, there may bemultiple spatial
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dependencies at their underlying layers, so a single type of
network cannot fully exploit the dependency information
among nodes. This paper proposes an integrated model —
Recurrent Neural Networks Integrating Graph gated atten-
tion and Graph diffusion convolution Operators (iGoRNN)
to address the above problems. The model is based on an
encoder-decoder architecture with a core building block for
a graph operator integrator that efficiently fuses informa-
tion captured by different graph operators to improve the
network’s ability to understand the spatial dependence of
multivariate time-series data.

3 Researchmethodology

3.1 Problem description

In this paper, the sensor network in the road section is abstract
as a weighted directed graph G = (V, E,W). where V is the
set of sensors in the road network; N = |V| denotes the
number of sensors; E denotes the set of edges, representing
the existence of links between sensors. W ∈ R

N×N is a
weighted proximity matrix representing nodes’ proximity.

To facilitate the description of the problem, we define
the traffic flow signals collected by all sensors at time t
as X(t) ∈ R

N×P , where P denotes the number of traffic
indicators detected by the sensors; and define X̂(t) ∈ R

N×P

denotes the predicted value of the traffic indicators at time

t . In turn, X =
{
X(t−T ′+1),X(t−T ′+2), · · · ,X(t)

}
can rep-

resent the observed values for the historical T ′ timestamps;

X̂ =
{
X̂(t+1), X̂(t+2), · · · , X̂(t+T )

}
can represent the pre-

dicted values for the future T timestamps. Therefore, the
ultimate goal of this paper is to learn a function H (·) that
maps T ′ historical timestamp data to future T timestamp
data.

X̂ = H (X ) (1)

3.2 Model architecture

In this paper, we design a encoder-decoder architecture,
Fig. 1. Its encoding and decoding process is mainly done
through graph operator integrators(Go-Integrator), and the
vertical flow of information in the graph can be understood
as the encoding and decoding process. The horizontal flow
can be understood as the feature capture process. For more
complex multivariate timing data, the depth of information
mining can be increased by stacking integrator layers hori-
zontally.

The encoder’s input in the model is the historical observa-
tion X ; the output of the decoder is the future prediction X̂ ;

Fig. 1 Model Body Architecture

H ∈ R
N×Q denotes the input or output of the intermediate

hidden layer.

3.2.1 Graph operator integrator

The Graph Operator Integrator (Go-Integrator) is the core
building block of iGoRNN, which is used upwards to con-
trol the overall flow of information and downwards to fuse
the information captured by each graph operator. In order
to enable the integrator to perform information fusion effi-
ciently, We present for the first time a feasible integrator
architecture, see Fig. 2. Subfigure (a) is a standard informa-
tion integrator for the start and intermediate nodes of the
codec. At the same time, since the last layer of the encoder
does not need to obtain an output, we have designed a simpli-
fied architecture subfigure (b), which can save computational
resources to a certain extent.

Two graph networks are used inside the integrator for
informationmining, a diffusion convolutional network based
on static graphs and a gated attention network based on
dynamic graphs. The static graph can objectively portray the
physical distance between sensors, and the dynamic graph
can filter out the neighbouring nodes that have a high impact
on the central node. The two graph networks, one based on
physical space and one based on value space, each capture the
spatial dependencies between nodes. Finally, an integrator is
used to achieve the fusion of multiple features.

In the complete integrator unit, historical data is sent to
two Graph Gated Recurrent Units (GGRU) [36, 37] along
with implicit data for computation. Then its output is stitched
with the original input and finally mapped to the specified
dimension by the Feed Forward layer. Equation (2) gives the
detailed process of fusion.

Ĥ(t)
o = F τ

do

(
X(t) ‖

I∐
i=1

R[�i ]
(
X(t),H(t−1)

i

))
(2)
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Fig. 2 Go-integrator unit

Here,X(t) denotes the historical observation at the current
moment; I denotes the number of GGRU units involved in
the calculation. H(t−1)

i denotes the output of the i-th GGRU
unit from the iGGRU of the previous layer, which is also
used as the input of the i-th GGRU unit in this layer, and
Ĥ(t)

o denotes the final output of the Go-Integrator.‖ denotes
cascade, and

∐
indicates sequential cascade.R[�i ] denotes

the GGRU unit using the �i graph operator,F τ
do

denotes the
feedforward neural network, do represents the dimension of
model input, and τ denotes using the tanh activation function.

3.2.2 Graph gated recurrent unit

TheGraphGated Recurrent Unit (GGRU) is a particular type
of Gated Recurrent Unit (GRU). GGRU uses a graph opera-
tor instead of the fully connected layer in theGRU, see Fig. 3.
Compared with the classical GRU model, GGRU does not
only learn time series patterns but also mines spatial depen-
dencies between sequences by graph operators, making it
applicable to spatial time series data.

Themacro architecture of GGRU is consistent with that of
a normal GRU, Fig. 3. whereX(t),H(t) denotes the input and
output of the t timestamp; r(t),u(t) denotes the gating state
of the Reset gate and Update gate of the t timestamp; and
�r ,�u,�C is the different filter parameters. �G denotes the
execution of the � operator in the specified graph network

Fig. 3 Graph gated recurrent unit

G, and � denotes the Hadamard product. The specific calcu-
lation process is in the following equations.

r(t) = σ(�G�r [X(t) ‖ H(t−1)] + br ) (3)

u(t) = σ(�G�u [X(t) ‖ H(t−1)] + bu) (4)

C(t) = tanh(�G�C [X(t) ‖ (r(t) � H(t−1))] + bc) (5)

H(t) = u(t) � H(t−1) + (1 − u(t)) � C(t) (6)

Equations (3) and (4) are the update process of the gated
state. The GGRU first fuses the input data X(t) of the current
moment with the output data H(t−1) of the last moment and
then feeds it into the graph operator network for capturing
the spatial dependence. Finally, After activation by the sig-
moid function, the gating states r(t) and u(t) at the t time are
obtained, where r,u ∈ (0, 1). After the gating signal update,
the reset and update gates can capture the essential features
in the current message.

Equation (5) is the process of capturing essential features
using reset gates. First, the reset gate resets the hiddenmatrix
H(t−1). The reset process is similar to the forgetting process,
in which the historical information retained in the matrix
H(t−1) will further reduce. Then it is fused with the observed
data X(t) at the current moment and fed into the graph oper-
ator network for the spatial feature extraction. Finally, after
the tanh function activation will obtain the candidate matrix
C(t).

The final step of the algorithm is the update process of
updating the historical information H(t−1) using the candi-
date matrix C(t), (6). Thus, we obtain the output H(t) at the
current moment.

In practice,We embed the diffusion convolution and gated
attention operators into GGRU to obtain two types of feature
capturers, GGRU(DC) and GGRU(GA), respectively. These
two GGRUs can capture node information from different
perspectives and thus improve the network’s understanding
of spatial-temporal data.

3.2.3 Graph diffusion convolution operator

Graph Convolutional Networks (GCN) [38–40] introduces
convolution to general graph-structured data. For such non-
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gridded data, instead of predicting each node individually,
GCN aggregates useful information from neighboring nodes
as much as possible for each node in a process similar to
image convolution. Like CNN, GCN has features such as
feature learning, parameter binding, and invariance.

However, GCN uses only the direct neighbors of each
node. Nevertheless, we cannot simply interpret the nodes in
the graph as a binary relationship. The basic facts between
nodes are much more complex than that. The proposed Dif-
fusion Convolutional Neural Networks (DCNN) [41, 42]
breaks through this layer of limitation and is a special kind of
GCN network. DCNN aims at mining the spatial dependen-
cies between nodes at a deeper level. In 2018, Li et al. [34]
constructed the first DCRNN model based on the DCNN
model to solve the prediction problem of spatial timing.
Equation (7) expresses the diffusion convolution process.

H =
Q∐

q=1

⎛
⎝a

P∑
p=1

(�OPK
O + �IPK

I )X[:,p]

⎞
⎠

PK
O =

K∑
k=0

α(1 − α)k(D−1
O W)k

PK
I =

K∑
k=0

β(1 − β)k(D−1
I W)k (7)

Here, X ∈ R
N×P represents the model’s input, and H ∈

R
N×Q represents the model’s output. The diffusion process

is truncated using a finite number of K steps and eventually
maps the inputs of P-dimensional features to Q-dimensional
outputs. DO ,DI denotes each node’s outgoing and incom-
ing degree matrices in the graph, respectively, and further
D−1

O W,D−1
I W represents the forward state transfer matrix

and the reverse state transfer matrix. α, β ∈ [0, 1] denotes
the restart probability of random wandering, �O ,�I ∈
R

Q×P×K indicates the model parameters, and �O[q,p,k] =
α(1 − α)k,�I [q,p,k] = β(1 − β)k . PK

O[i,:],PK
I [i,:] denotes

the probability of performing K -step diffusion from node i
to its neighboring nodes, where the former denotes the for-
ward diffusion probability and the latter denotes the reverse
diffusion probability.

Equation (7) describes a two-way diffusion process, and
using this two-waydiffusionprocess allows themodel to have
the ability to capture both upstream and downstream traffic
impacts. Exceptionally, if the restart probability value β = 0,
themodel will change to a one-way diffusion process that can
apply to capture features on particular road segments. They
are giving the model more flexibility and adaptability.

Since graph diffusion convolution operator is based on
static graphs, its adjacency matrix is constructed using a
distance-based Gaussian kernel[43], see (8).

wi j =

⎧
⎪⎨
⎪⎩
exp

(
−dist(vi , v j )

2

σ 2

)
if dist(vi , v j ) ≤ κ

0 otherwise
(8)

Here, vi denotes the i-th sensor in the road, dist(vi , v j )

and wi j denote the actual distance and weight between two
sensors, respectively, and σ is the standard deviation of the
distance set. κ is the threshold parameter; by setting a higher
threshold value, the graph can be made sparse, and thus the
convergence speed of the model can be improved.

3.2.4 Graph gated attention operator

Graph-gated attention networks(GaAN) are special graph
attention networks (GAT)[44, 45]. Classical attentional
mechanisms emerged in the field of computer vision and
flourished in the field of natural language processing. Instead
of focusing on the information as awhole, the attentionmech-
anism focuses limited attention on the critical information.
The advantage of introducing the attentionmechanism is that
it has fewer parameters to get the most helpful information
and avoid wasting resources. However, at the same time, it
may cause information loss. To solve this problem, Vaswani
et al.[46] propose the Multi-head Attention mechanism[47,
48], which is to add multiple attention heads to the net-
work, each expanding into a separate subspace, allowing the
model to capture information more comprehensively about
several different perspectives simultaneously. However, the
multi-headed attentionmechanism needs to be revised in that
it needs to consider the differences in importance between
multiple heads. Later, Zhang et al.[35] proposed the gated
attentionmechanism,which can exploremultiple representa-
tion subspaces between the central node and its neighbouring
nodes while focusing on the value of these subspaces to
dynamically adjust each contribution subspace to the out-
come in a gated manner.

Suppose the K -head attention mechanism is applied to
GraphGatedAttention networks for feature capture. For each
node i , a K -dimensional gating vector gi is used to regulate
the contribution of each attention head. Equation (9) gives
the specific calculation of the gating vector gi .

gi = [g(1)
i , · · · , g(K )

i ]

= L σ
θK

(
xi ‖ Max

j∈Ni

({Lθm (z j )}
) ‖

∑
j∈Ni

z j
|Ni |

)
(9)
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Given node i , all its neighboring nodes are represented by
the set Ni . xi = Xi,: denotes the input feature vector of this
node; zNi = {z j | j ∈ Ni }means the set of reference vectors
of all its adjacent nodes, where zi = Lθh (xi ).Max indicates
the maximum value element-wise.L σ

θK
denotes the mapping

of the vectors to the K dimension and scaling the result to
the [0, 1] interval using the sigmoid function.

Since Graph Gated Attention is a dynamic network, it
needs to calculate theweight relationship between node i and
its neighbors in real-time. The specific calculation process is
shown in (10).

wk
i j = exp (φ

(k)
w (xi , z j ))∑|Ni |

l=1 exp (φ
(k)
w (xi , zl))

φ(k)
w (x, z) = 〈L

θ
(k)
xa

(x),L
θ

(k)
za

(z)〉 (10)

Since there are a total of K attention heads in the Graph
Gated Attention Operator algorithm, we must compute a
weight matrix for each head. Herewk

i j denotes the weights of
node i and node j under the k-th attention head.L

θ
(k)
xa

,L
θ

(k)
za

is used to generate the query and key vectors of dimension
da . 〈·, ·〉 denotes the inner product operation.

Once the gating values and weight matrices of each atten-
tion head are obtained, the graph aggregation process of node
i can be completed. The information captured by the K atten-
tion heads is first multiplied by their respective gating vectors
and then stitched together with the original input. Finally,
the output vector yi is obtained after mapping by the fully
connected layer. Equation (11) describes the specific imple-
mentation process.

yi = Lθo

⎛
⎝xi ‖

K∐
k=1

⎛
⎝g(k)

i

∑
j∈Ni

w
(k)
i, jL

ι

θ
(k)
v

(z j )

⎞
⎠

⎞
⎠ (11)

Here, L
θ

(k)
v

generates a value vector of dimension dv ,
Lθo is responsible for mapping the final output to a specific
dimension, and ι denotes the LeakRelu activation function.

4 Experimental design

4.1 Experimental setup

The METR-LA and PeMS-BAY datasets used in the experi-
ment were obtained from Li et al. [34]. The dataset contains
traffic information for the Los Angeles and California Free-
way. The nodes in the dataset represent the measured traffic
speed sensor IDs, and the edges are the proximity calculated
based on the distance between sensors in the road network
using (8). The sampling interval of the sensor is 5 minutes.
Table 1 records the detailed statistical information of the data.

Table 1 Statistical information of the experimental dataset

Dataset #Nodes #Edges #Timestamps E(X) D(X)

METR-LA 207 1722 34272 54.41 19.49

PeMS-BAY 325 2694 52116 62.74 9.44

Figure 4 shows the traffic speed variation over 48 hours on
three road segments for both data sets.

This paper uses the first 70% of the data set as the train-
ing set, the middle 10% as the validation set, and the last
20% as the test set. The sliding window is used to group the
sequences, and thewindow size is set to 12. The grouped data
is used as the input to the model to predict the traffic flow
in the next hour. In the integrator, the diffusion convolution
operator uses a bi-directional diffusion mode with truncation
steps set to 2. The number of attention heads in the gated
attention operator is set to 2. The learning rate is initialized
to 0.01 and dynamically adjusted using the Adam optimizer
with a multiplier of 0.99epoch.

Before the model starts training, the data are transformed
into a distribution with mean 0 and variance 1 based on
the expectation and sample variance of the training set. The
advantage of performing normalization is that the data set
is limited to a smaller range of values, which facilitates the
computation of gradients in the post-order and ensures fast
convergence of the model. The uniformity of the data scale
can avoid the influence of different representations on the
training results. Equations (12) and (13) correspond to the
normalization and denormalization processes, respectively.

X∗ = X − E(X)√
D(X)

(12)

X = X∗ · √
D(X) + E(X) (13)

Here, X denotes the training set sample, and E(X), D(X)

indicates the training set sample mean and sample variance,
respectively.

4.2 Comparison experiments

In this section,we selected four significant classes of standard
time series analysis models in the field of time series. These
include the statistical learning model ARIMA [49], machine
learning model LSVM [50], deep learning model FC-lSTM
[51] and graph-based deep learning models DCRNN[34],
STGCN [52], GaAN [35], ASTGCN [53], and GMAN [54].
Experiments use Mean Absolute Error (MAE), Root Mean
Square Error ( RMSE) and Mean Absolute Percentage Error
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Fig. 4 Traffic flow changes over
48 hours on three road sections
of the METR-LA and
PeMS-BAY datasets

(MAPE) is used as evaluationmetrics to assess the prediction
performance of the models.

MAE(x, x̂) = 1

|�|
∑
i∈�

|xi − x̂i | (14)

RMSE(x, x̂) =
√√√√ 1

|�|

∣∣∣∣∣
∑
i∈�

(xi − x̂i )2

∣∣∣∣∣ (15)

MAPE(x, x̂) = 1

|�|
∑
i∈�

∣∣∣∣
xi − x̂

xi

∣∣∣∣ (16)

Tables 2 and 3 compare the prediction results of the
iGoRNN model with the other baseline models. By com-
paring the scores of each model on long-term and short-term
time series predictions, we can see that the graph-based neu-
ral network model achieves better prediction accuracy. For
smoother sequences (PeMS-BAY), some traditional mod-
els achieved good results even for short-term predictions
(15 min) but performed poorly for long-time predictions
(60 min). For unstable sequences (Metr-LA), conventional
models perform poorly in both short- and long-term predic-
tions. On the other hand, the GaAN model performs well on
the Metr-LA dataset. GMAN is more suitable for smoother
series. All these illustrate the importance of introducing
graph structure in complex time series forecasting.Moreover,

the model we designed shows optimal or suboptimal perfor-
mance in long-term and short-term forecasting, especially for
more complex time series, because it simultaneously intro-
duces the advantages of multiple graph structures.

4.3 Ablation experiments

We designed several similar Integrator structures (Fig. 5) to
evaluate our model comprehensively and did further ablation
experiments using the METR-LA dataset.

Figure 6 shows the reduction of MAE loss values on the
training and validation sets for different prediction forecast
lengths. The figure shows that most integrators can reduce
the forecast accuracy to an approximate value, except for
the individual model, which requires better convergence.
Fig. 7-a shows the magnitude of the MAE loss values for the
final eight models, from which we can see that iGoRNN‡↓′
achieves the best results for short-term predictions. In the
long-term forecast, iGoRNN†↓′ works best. Fig. 7-b shows
the number of Floating Point Operations (FLOPs) required
for each model. The parallel structure is generally less
computationally intensive than the series structure, mainly
because the second graph operator of the latter is susceptible
to the intermediate dimensionality of the model. Moreover,
the parallel structure is more conducive to deploying par-

Table 2 Performance
comparison of different traffic
speed prediction models on the
METR-LA dataset

Models/T 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.52 10.11 15.80%

LSVR 3.99 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.59 10.50%

STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

GaAN 2.71 5.24 6.99% 3.12 6.36 8.56% 3.64 7.65 10.62%

ASTGCN 2.75 5.62 7.51% 3.31 6.98 9.32% 4.52 9.24 12.62%

GMAN 2.69 5.55 7.42% 3.15 6.78 9.02% 4.03 8.11 11.72%

iGoRNN 2.67 5.22 6.91% 3.09 6.20 8.51% 3.24 7.43 9.97%
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Table 3 Performance
comparison of different traffic
speed prediction models on the
PeMS-BAY dataset

Models/T 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%

LSVR 1.85 3.59 3.80% 2.48 5.18 5.50% 3.28 7.08 8.00%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%

DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%

STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

GaAN 1.41 3.21 3.11% 1.70 3.83 3.86% 2.12 4.80 5.34%

ASTGCN 1.32 2.78 2.75% 1.75 3.98 3.95% 2.32 5.41 5.51%

GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%

iGoRNN 1.30 2.73 2.80% 1.63 3.66 3.62% 1.83 4.29 4.26%

allelized computations and thus has better advantages in
large-scale computations.

Due to the limitation of experimental resources, here we
only compare the performance and efficiency of the iGoRNN

Fig. 5 Eight different Integrator
structures. † indicates the use of
a serial structure, ‡ indicates the
use of a parallel structure, ⇓
indicates that each GGRU unit
has separate hidden layer
integrator inputs and outputs,
and ↓ indicates that all GGRU
units share the same hidden
layer. ′ indicates the inclusion of
a residual-like structure
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Fig. 6 The decreasing curve of
Loss value for different time
lengths predicted by iGoRNN
model with different Integrator

model with a single-layer stacking structure. Nevertheless,
it has shown a relatively good performance. We expect to
conduct more in-depth analysis on more complex datasets in

the future, including exploring more efficient ways of information
aggregation and the combined effect of the number of model
stacking layers on prediction results and time consumption.

Fig. 7 Performance Analysis of
the iGoRNN Model Using
Different Integrators. Sub-Fig.a
represents the optimal MAE loss
value of the model for different
prediction lengths, and
sub-Fig.b represents the number
of floating point operations for
each model
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5 Conclusion

Multivariate time series analysis has applications in eco-
nomics, sociology, meteorology, environmental science,
engineering, etc. Previous authors have proposed many time
series models to meet the needs of various sectors of society.
These models have a core concept of the mining as much
quality information as possible from historical observations
to achieve accurate forecasting. For univariate time series,
the models can only achieve precise forecasting by thor-
oughly learning the hidden periodic statement of the time
series. However, for multivariate time series, in addition
to mining the frequent patterns from the time series itself,
exploiting the potential dependencies between multiple time
series will also positively affect the final prediction results.
To fully exploit the spatial dependencies among multivariate
time series, this paper designs an integrated model iGoRNN.
The model assumes no single graph network can mine all
the underlying correlations among multivariate time series.
Hence, the iGoRNN model utilizes multiple graph opera-
tors to capture quality information from the series more
comprehensively from different perspectives. The network
as a whole also adopts a recurrent structure based on an
encoder-decoder so that the model can aggregate temporal
features while capturing spatial features instead of fragment-
ing the intersectionality of spatiotemporal features. Finally,
this paper conducts comparison experiments with the base-
line model using the publicly available METR-LA dataset
and PeMS-BAY dataset. The experimental results show that
the iGoRNN network is better than the other models in terms
of prediction accuracy and can be competent for multivari-
ate time series prediction tasks. Meanwhile, this paper gives
seven other Integrator modules to complement the prediction
tasks in different domains.

Funding This research was funded by the National Natural Science
Foundation of China and General Project Fund In The Field of
Equipment Development Department, grant number No.61901079,
No.61403110308. The APC was funded by Dalian University.

Data Availability The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Declaration

Conflicts of interest The authors declare no conflict of interest.

References

1. Chen Y, Tong C, Ge Y, Lan T (2021) Fault detection based on
auto-regressive extreme learning machine for nonlinear dynamic
processes.Appl SoftComput 106:107319. https://doi.org/10.1016/
j.asoc.2021.107319

2. Finesso L, Spreij P (2019) Approximation of nonnegative systems
by moving averages of fixed order. Automatica 107:1–8. https://
doi.org/10.1016/j.automatica.2019.05.007

3. Caliwag A, Lim W (2021) Optimal least square vector autore-
gressive moving average for battery state of charge estimation and
forecasting. ICT Express 7(4):493–496. https://doi.org/10.1016/j.
icte.2021.03.008

4. Yao L, Ma R, Wang H (2021) Baidu index-based forecast of daily
tourist arrivals through rescaled range analysis, support vector
regression, and autoregressive integrated moving average. Alexan-
dria Eng J 60(1):365–372. https://doi.org/10.1016/j.aej.2020.08.
037

5. Yang Y, Ling S (2017) Self-weighted LAD-based inference for
heavy-tailed threshold autoregressive models. J Econ 197(2):368–
381. https://doi.org/10.1016/j.jeconom.2016.11.009

6. Chang F, Huang H, Chan AHS, Man SS, Gong Y, Zhou H (2022)
Capturing long-memory properties in road fatality rate series by an
autoregressive fractionally integrated moving average model with
generalized autoregressive conditional heteroscedasticity: a case
study of florida, the united states, 1975–2018. J Saf Res 81:216–
224. https://doi.org/10.1016/j.jsr.2022.02.013

7. Khan NA, Ali S, Choi K (2022) An efficient and accurate multi-
sensor if estimator based on doa information and order of fractional
fourier transform. Entropy 24(4):452

8. Liu X, Dong X, Zhang L, Chen J, Wang C (2023) Least squares
support vector regression for complex censored data. Artif Intell
Med 136:102497. https://doi.org/10.1016/j.artmed.2023.102497

9. GaoW, Xu F, Zhou Z-H (2022) Towards convergence rate analysis
of random forests for classification.Artif Intell 313:103788. https://
doi.org/10.1016/j.artint.2022.103788

10. Turska E, Jurga S, Piskorski J (2021) Mood disorder detection in
adolescents by classification trees, random forests and xgboost in
presence of missing data. Entropy 23(9):1210

11. Lee S, Park J, Kim N, Lee T, Quagliato L (2023) Extreme gradient
boosting-inspired process optimization algorithm for manufactur-
ing engineering applications. Mater Des 226:111625. https://doi.
org/10.1016/j.matdes.2023.111625

12. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural
networks: lstm cells and network architectures. Neural Comput
31(7):1235–1270

13. Lombardo E, Rabe M, Xiong Y, Nierer L, Cusumano D, Placidi
L, Boldrini L, Corradini S, Niyazi M, Reiner M, Belka C, Kurz
C, Riboldi M, Landry G (2023) Evaluation of real-time tumor
contour prediction using LSTM networks for MR-guided radio-
therapy. Radiother Oncol 182:109555. https://doi.org/10.1016/j.
radonc.2023.109555

14. Mou L, Zhao P, Xie H, Chen Y (2019) T-lstm: a long short-term
memory neural network enhanced by temporal information for traf-
fic flow prediction. Ieee Access 7:98053–98060

15. Wen TKeyes R (2019) Time series anomaly detection using convo-
lutional neural networks and transfer learning. arXiv:1905.13628

16. Wang S, Ren P, Takyi-Aninakwa P, Jin S, Fernandez C (2022) A
critical review of improved deep convolutional neural network for
multi-timescale state prediction of lithium-ion batteries. Energies
15(14):5053. https://doi.org/10.3390/en15145053

17. Xie Y, Sun W, Ren M, Chen S, Huang Z, Pan X (2023) Stacking
ensemble learning models for daily runoff prediction using 1d and
2d CNNs. Expert Syst Appl 217:119469. https://doi.org/10.1016/
j.eswa.2022.119469

18. Li R, Gao R, Suganthan PN (2023) A decomposition-based hybrid
ensemble CNN framework for driver fatigue recognition. Inf Sci
624:833–848. https://doi.org/10.1016/j.ins.2022.12.088

19. Al-Battal AF, Lerman IR, Nguyen TQ (2023) Multi-path decoder
u-net: a weakly trained real-time segmentation network for object
detection and localization in ultrasound scans. Comput Med Imag-

123

26076 B. Penf et al.

https://doi.org/10.1016/j.asoc.2021.107319
https://doi.org/10.1016/j.asoc.2021.107319
https://doi.org/10.1016/j.automatica.2019.05.007
https://doi.org/10.1016/j.automatica.2019.05.007
https://doi.org/10.1016/j.icte.2021.03.008
https://doi.org/10.1016/j.icte.2021.03.008
https://doi.org/10.1016/j.aej.2020.08.037
https://doi.org/10.1016/j.aej.2020.08.037
https://doi.org/10.1016/j.jeconom.2016.11.009
https://doi.org/10.1016/j.jsr.2022.02.013
https://doi.org/10.1016/j.artmed.2023.102497
https://doi.org/10.1016/j.artint.2022.103788
https://doi.org/10.1016/j.artint.2022.103788
https://doi.org/10.1016/j.matdes.2023.111625
https://doi.org/10.1016/j.matdes.2023.111625
https://doi.org/10.1016/j.radonc.2023.109555
https://doi.org/10.1016/j.radonc.2023.109555
http://arxiv.org/abs/1905.13628
https://doi.org/10.3390/en15145053
https://doi.org/10.1016/j.eswa.2022.119469
https://doi.org/10.1016/j.eswa.2022.119469
https://doi.org/10.1016/j.ins.2022.12.088


ing Graph 102205. https://doi.org/10.1016/j.compmedimag.2023.
102205

20. Li Wang Y, Lai Y-Z, Li Q-Q, Huang S-T (2022) RU-net: an
improved u-net placenta segmentation network based on ResNet.
Comput Methods Prog Biomed 227:107206. https://doi.org/10.
1016/j.cmpb.2022.107206

21. Gao J, Wu J, Zhang X, Li Y, Han C, Guo C (2022) Partition and
learned clustering with joined-training: active learning of GNNs
on large-scale graph. Knowl-Based Syst 258:110050. https://doi.
org/10.1016/j.knosys.2022.110050

22. Shi M, Tang Y, Zhu X, Huang Y,Wilson D, Zhuang Y, Liu J (2022)
Genetic-GNN: evolutionary architecture search for graph neural
networks.Knowl-BasedSyst 247:108752. https://doi.org/10.1016/
j.knosys.2022.108752

23. Liu K, Gao L, Khan NM, Qi L, Guan L (2021) Integrating vertex
and edge features with graph convolutional networks for skeleton-
based action recognition. Neurocomputing 466:190–201. https://
doi.org/10.1016/j.neucom.2021.09.034

24. Sun Y, Huang H, Yun X, Yang B, Dong K (2022) Triplet atten-
tion multiple spacetime-semantic graph convolutional network for
skeleton-based action recognition. Appl Intell 52(1):113–126

25. Liu F, Zheng J, ZhengL,ChenC (2020)Combining attention-based
bidirectional gated recurrent neural network and two-dimensional
convolutional neural network for document-level sentiment clas-
sification. Neurocomputing 371:39–50. https://doi.org/10.1016/j.
neucom.2019.09.012

26. Wu Z Pan S Long G Jiang J Chang X Zhang C (2020) Connect-
ing the dots: multivariate time series forecasting with graph neural
networks. In: Proceedings of the 26th ACMSIGKDD international
conference on knowledge discovery & data mining, pp 753–763

27. Song C, Lin Y, Guo S, Wan H (2020) Spatial-temporal syn-
chronous graph convolutional networks: a new framework for
spatial-temporal network data forecasting. Proc AAAI Conf Artif
Intell 34(01):914–921. https://doi.org/10.1609/aaai.v34i01.5438

28. Tao H, Duan Q (2023) An adaptive frame selection network
with enhanced dilated convolution for video smoke recogni-
tion. Expert SystAppl 215:119371. https://doi.org/10.1016/j.eswa.
2022.119371

29. Salehi A, Balasubramanian M (2023) DDCNet: deep dilated con-
volutional neural network for dense prediction. Neurocomputing
523:116–129. https://doi.org/10.1016/j.neucom.2022.12.024

30. Liu S, Wang A, Deng X, Yang C (2022) MGNN: a multiscale
grouped convolutional neural network for efficient atrial fibrillation
detection. Comput Biol Med 148:105863. https://doi.org/10.1016/
j.compbiomed.2022.105863

31. Lu Y, Jiang M, Wei L, Zhang J, Wang Z, Wei B, Xia L (2021)
Automated arrhythmia classification using depthwise separable
convolutional neural network with focal loss. Biomed Signal Proc
Control 69:102843. https://doi.org/10.1016/j.bspc.2021.102843

32. Gan C, Wang L, Zhang Z, Wang Z (2020) Sparse attention based
separable dilated convolutional neural network for targeted senti-
ment analysis. Knowl-Based Syst 188:104827. https://doi.org/10.
1016/j.knosys.2019.06.035

33. Bas E, Egrioglu E, Aladag CH, Yolcu U (2015) Fuzzy-time-series
network used to forecast linear and nonlinear time series. Appl
Intell 43(2):343–355. https://doi.org/10.1007/s10489-015-0647-0

34. Li Y Yu R Shahabi C Liu Y (2017) Diffusion convolu-
tional recurrent neural network: data-driven traffic forecasting.
arXiv:1707.01926

35. Zhang J Shi X Xie J Ma H King I Yeung D-Y (2018) Gaan: gated
attention networks for learning on large and spatiotemporal graphs.
arXiv:1803.07294

36. Man J, Dong H, Yang X, Meng Z, Jia L, Qin Y, Xin G (2022)
GCG:graph convolutional network andgated recurrent unitmethod
for high-speed train axle temperature forecasting. Mech Syst

Signal Process 163:108102. https://doi.org/10.1016/j.ymssp.2021.
108102

37. Liu Y, Song Z, Xu X, Rafique W, Zhang X, Shen J, Khosravi MR,
Qi L (2022) Bidirectional gru networks-based next poi category
prediction for healthcare. Int J Intell Syst 37(7):4020–4040

38. Wu F Souza A Zhang T Fifty C Yu TWeinberger K (2019) Simpli-
fying graph convolutional networks. In: International conference
on machine learning, PMLR, pp 6861–6871

39. Schlichtkrull M Kipf TN Bloem P Berg Rvd Titov I Welling
M (2018) Modeling relational data with graph convolutional
networks. In: European semantic web conference, Springer, pp
593–607

40. Jiang Y, Lin H, Li Y, RongY, Cheng H, Huang X (2023) Exploiting
node-feature bipartite graph in graph convolutional networks. Inf
Sci 628:409–423. https://doi.org/10.1016/j.ins.2023.01.107

41. Atwood J Towsley D (2016) Diffusion-convolutional neural net-
works. Adv Neural Inf Process Syst 29

42. Mallick T, Balaprakash P, Rask E, Macfarlane J (2020) Graph-
partitioning-based diffusion convolutional recurrent neural net-
work for large-scale traffic forecasting. Transp Res Rec: J
Transp Res Board 2674(9):473–488. https://doi.org/10.1177/
0361198120930010

43. Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P
(2013) The emerging field of signal processing on graphs: extend-
ing high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Proc Mag 30(3):83–98

44. Wang Y, Wang H, Lu W, Yan Y (2023) HyGGE: hyperbolic graph
attention network for reasoning over knowledge graphs. Inf Sci
630:190–205. https://doi.org/10.1016/j.ins.2023.02.050

45. Zhang X, Zhang C, Guo J, Peng C, Niu Z, Wu X (2023)
Graph attention network with dynamic representation of relations
for knowledge graph completion. Expert Syst Appl 219:119616.
https://doi.org/10.1016/j.eswa.2023.119616

46. Vaswani A Shazeer N Parmar N Uszkoreit J Jones L Gomez AN
Kaiser Ł Polosukhin I (2017) Attention is all you need. Advances
in neural information processing systems 30

47. Chen Y, Xiong Q, Guo Y (2022) Session-based recommendation:
learningmulti-dimension interests via a multi-head attention graph
neural network. Appl Soft Comput 131:109744. https://doi.org/10.
1016/j.asoc.2022.109744

48. Zeng P, Hu G, Zhou X, Li S, Liu P, Liu S (2022) Muformer: a long
sequence time-series forecasting model based on modified multi-
head attention. Knowl-Based Syst 254:109584. https://doi.org/10.
1016/j.knosys.2022.109584

49. Williams BM,Hoel LA (2003)Modeling and forecasting vehicular
traffic flow as a seasonal ARIMA process: theoretical basis and
empirical results. J Transp Eng 129(6):664–672. https://doi.org/
10.1061/(asce)0733-947x(2003)129:6(664)

50. Wu C-H, Ho J-M, Lee D-T (2004) Travel-time prediction with
support vector regression. IEEE Trans Intell Transp Syst 5(4):276–
281

51. Sutskever IVinyalsOLeQV (2014) Sequence to sequence learning
with neural networks. Adv Neural Inf Process Syst 27

52. Yu B Yin H Zhu Z (2017) Spatio-temporal graph convolu-
tional networks: a deep learning framework for traffic forecasting.
arXiv:1709.04875

53. Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based
spatial-temporal graph convolutional networks for traffic flow
forecasting. Proceedings of theAAAI conference on artificial intel-
ligence 33:922–929

54. ZhengC,FanX,WangC,Qi J (2020)Gman: a graphmulti-attention
network for traffic prediction. Proceedings of theAAAI conference
on artificial intelligence 34:1234–1241

123

26077Recurrent neural networks integrate multiple graph operators...

https://doi.org/10.1016/j.compmedimag.2023.102205
https://doi.org/10.1016/j.compmedimag.2023.102205
https://doi.org/10.1016/j.cmpb.2022.107206
https://doi.org/10.1016/j.cmpb.2022.107206
https://doi.org/10.1016/j.knosys.2022.110050
https://doi.org/10.1016/j.knosys.2022.110050
https://doi.org/10.1016/j.knosys.2022.108752
https://doi.org/10.1016/j.knosys.2022.108752
https://doi.org/10.1016/j.neucom.2021.09.034
https://doi.org/10.1016/j.neucom.2021.09.034
https://doi.org/10.1016/j.neucom.2019.09.012
https://doi.org/10.1016/j.neucom.2019.09.012
https://doi.org/10.1609/aaai.v34i01.5438
https://doi.org/10.1016/j.eswa.2022.119371
https://doi.org/10.1016/j.eswa.2022.119371
https://doi.org/10.1016/j.neucom.2022.12.024
https://doi.org/10.1016/j.compbiomed.2022.105863
https://doi.org/10.1016/j.compbiomed.2022.105863
https://doi.org/10.1016/j.bspc.2021.102843
https://doi.org/10.1016/j.knosys.2019.06.035
https://doi.org/10.1016/j.knosys.2019.06.035
https://doi.org/10.1007/s10489-015-0647-0
http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/1803.07294
https://doi.org/10.1016/j.ymssp.2021.108102
https://doi.org/10.1016/j.ymssp.2021.108102
https://doi.org/10.1016/j.ins.2023.01.107
https://doi.org/10.1177/0361198120930010
https://doi.org/10.1177/0361198120930010
https://doi.org/10.1016/j.ins.2023.02.050
https://doi.org/10.1016/j.eswa.2023.119616
https://doi.org/10.1016/j.asoc.2022.109744
https://doi.org/10.1016/j.asoc.2022.109744
https://doi.org/10.1016/j.knosys.2022.109584
https://doi.org/10.1016/j.knosys.2022.109584
https://doi.org/10.1061/(asce)0733-947x(2003)129:6(664)
https://doi.org/10.1061/(asce)0733-947x(2003)129:6(664)
http://arxiv.org/abs/1709.04875


Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

26078 B. Penf et al.


	Recurrent neural networks integrate multiple graph operators   for spatial time series prediction
	Abstract
	1 Introduction
	2 Research background
	3 Research methodology
	3.1 Problem description
	3.2 Model architecture
	3.2.1 Graph operator integrator
	3.2.2 Graph gated recurrent unit
	3.2.3 Graph diffusion convolution operator
	3.2.4 Graph gated attention operator


	4 Experimental design
	4.1 Experimental setup
	4.2 Comparison experiments
	4.3 Ablation experiments

	5 Conclusion
	References


