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Abstract
The rotation characteristics of point clouds are challenging to capture in current multimodal fusion methods for 3D object
detection. A single fusion method cannot well balance the accuracy and speed in object detection. Therefore, a multi-sensor
segmental fusion of frustum is proposed for 3D object detection in autonomous driving. A monocular camera, lidar, and radar
are used for piecewise distributed feature-level fusion through frustum association. Firstly, a fully convolutional network is
used to obtain a 2D detection frame and a center point of an object from an image. Frustum is generated according to the depth
and scale information in a 3D space. Secondly, region of interest in the lidar and radar point clouds is determined by using the
frustum association method. Then, spherical voxelization and spherical voxel convolution are performed on the lidar point
cloud while extracting the rotation-invariant feature. Finally, feature-level fusion is performed with object attributes extracted
from an image and the radar point cloud to improve the detection results. Meanwhile, a dynamic adaptive neural network of
parameters for feature fusion is proposed, and it quickly obtains fusion features and ensures the accuracy of fusion results.
The proposed method is both compared with other algorithms on the nuScenes dataset and tested on a severe weather dataset
Radiate and in a real scenario. The proposed method has achieved the highest NDS score and the highest average accuracy
in severe weather compared with other advanced methods. The experimental results indicate that the proposed method has
higher accuracy and more excellent adaptability in various complex and severe weather driving environments.

Keywords 3D object detection · Autonomous driving · Multi-sensor fusion · Frustum association

1 Introduction

Autonomous driving is often equipped with different types
of sensors to handle various complex driving environments
and to improve system robustness and accuracy. With the
rapid development of various sensors, an increasing num-
ber of sensor fusion algorithms have emerged, and among
them, 3D object detection has the most significant devel-
opment tendency [1–5]. Most fusion algorithms currently
focus on 3D object detection fused by a camera and lidar,
which have achieved excellent results, such as multi-view
3D object detection (MV3D) [1] and Frustum PointNets
[3]. The advantages of each sensor, particularly in complex
environments, can be fully utilized and combined by fusion
algorithms. A monocular camera can provide rich RGB
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information, which can be quickly processed and analyzed
by algorithms. Therefore, the detection result can be obtained
quickly.However, depth information and the shape contour of
an object are difficult to obtain. Lidar has very high accuracy
at short distances, which copes with complex environments,
including many vehicles, pedestrians, and buildings. How-
ever, it loses its detection ability in long-distance detection
because of too sparse point clouds as the effective distance
is within 100m. The combination of these two types of sen-
sors is sufficient for most normal environments. However,
both a camera and lidar, which do not have long-range detec-
tion capabilities, are subject to strong interference in bad
weather conditions. Radar distinguishes objects by emitting
millimeter waves, which has the characteristics of all weather
conditions, all day, and all night. Even during bad weather
conditions, radar still has a good detection capability, and its
detection distance is two or three times longer than that of
lidar. Furthermore, the radar point cloud is sparse, which is
faster to process than the lidar point cloud. Therefore, radar
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is fused with a camera and lidar for 3D object detection in
this study.

Generally, object rotation information is crucial for driv-
ing scenarios. The rotation information of an object is
often not obtained using conventional algorithms for anchor-
based object detection. Moreover, the rotation invariance
and scale invariance of point clouds are not considered by
the point cloud model. In PointNet [6], T-net is used to
the learn rotation features of point clouds. However, if no
data enhancement occurs, the effect of the model remains
greatly affected by simply rotating an object. Meanwhile, a
conventional point cloud network [7–9], based on common
coordinate systems, is limited by the disorder of point clouds
as the rotation characteristics of point clouds are difficult
to capture. In recent years, center-based methods have been
widely used in object detection for their ability of to adapt
well to rotational models without complex post-processing.
For multi-sensor fusion methods, image detection results of
2Dmethods are often projected into a 3D point cloud to form
a 3D region of interest (ROI) space. Another method is by
using the ROI generated from a 2D image to limit the search
space of point clouds, which can significantly reduce the
amount of computation. This study also adopted this tech-
nique to generate a frustum through 2D detection boxes and
furthermore combine depth information to determine theROI
in point clouds.

Multi-modality fusion for autonomous driving includes
pixel, feature, and decision-level fusion. Most studies are
presently focused on pixel-level fusion and have achieved
remarkable results and reached the application-level. How-
ever, object detection of pixel-level fusion has a poor
real-time performance, which is limited by different types
of sensor fusion. Meanwhile, a large amount of information
is lost in decision-level fusion, and its recognition ability is
poor. Object features are extracted from the information of
each sensor through feature-level fusion, and feature quan-
tity is obtained using a fusion algorithm to detect objects.
Feature-level fusion not only maintains a sufficient amount
of valid information and removes redundant information
from the object but also improves the detection accuracy.
Therefore, a method originated from feature-level fusion is
proposed, that is, segmentally fusing features from the three
types of sensors. The ROI spaces in the lidar and radar point
clouds are determined by a frustum associationmethod using
the detection frameof amonocular camera at a close distance.
For the detection by the lidar point cloud, a method of spher-
ical voxelization of the point cloud is proposed based on the
core concept of a center-based method. A rotation-invariant
feature is extracted by spherical voxel convolution and trilin-
ear interpolation, and then the rotation direction of the object
is further determined. Moreover, a dynamic adaptive neural
network of parameters is used to perform feature-level late

fusion,where a fusion feature is used to improve the detection
results and supplement object attributes. To predict the posi-
tion and direction of pedestrians, a monocular camera and
radar are used at a long distance so that the autonomous driv-
ing system can perform path planning and provide advance
warning.

The following are the innovations of this paper:

• Based on the core concept of a center-based method, the
center point of an object is detected, and an object model
is constructed. Further, the irregular point cloud is spher-
ically voxelized with the center point as the center of
sphere. Spherical voxel convolution and trilinear inter-
polation are used to extract the rotation-invariant feature
of points and can obtain the rotation information of an
object.

• Based on the different characteristics of the three types
of sensors, a segmental distributed feature-level fusion
is adopted. Meanwhile, a frustum association method is
used to correspond lidar and radar point clouds to the
frustumof theROI,which generated by visual inspection.
Furthermore, according to depth, scale, and other types
of information, the scope of the ROI is further reduced to
remove all irrelevant points outside the scope. Thus, the
detection speed and accuracy are improved.

• A dynamic adaptive neural network of parameters is pro-
posed for feature fusion, which solves the divergence
problem of fusion networks and improves the opera-
tion efficiency of the proposed algorithm. The detection
results are improved by the optimized fusion feature, and
the robustness of the proposed algorithm is improved as
well.

2 Related work

Generally, 3D object detection algorithms for multi-modal
fusion can be divided into two categories: early and late
fusion. Owing to the continuous development of fusion algo-
rithms, all algorithms cannot be fully included in the above
classification scheme [10, 11]. Therefore,multi-modal fusion
methods for object detection can be divided into two cate-
gories: sequential and parallel fusion.

2.1 Methods based on sequential fusion

Sequential fusion means that latter stage relies on the pro-
cessing results of previous stage, and multi-level features
are used in sequence. Qi et al. proposed Frustum PointNets
[3] for 3D object detection. The ROI was first extracted by
a 2D detector, and then 2D coordinates were transformed
into a 3D space to obtain region proposals from a frus-
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tum. The frustum was segmented into blocks to obtain the
points of interest for further regression. Themethod achieved
good results by restricting search in a 3D space using a
well-established 2D detection method. F-ConvNet [12] was
proposed based on the above cascaded method, where the
frustum sequence between near and far planes was generated
by 2D region proposals. The point-by-point feature in the
point cloud was converted into feature vectors at the frustum
level and hence improved the running efficiency of the algo-
rithm. CenterFusion [13] based on camera and lidar fusion
was proposed based on the concept of a frustum. Preliminary
detection results obtained from lidar data and images were
associated. 3D bounding boxes of objects and 3D properties
(e.g., depth, velocity, and rotation) were estimated by com-
bining them with image features. Since radar was used for
attribute regression, this method sacrificed, to some extent,
object accuracy (e.g., geometric information of the object)
for sufficient object attributes. Tao et al. proposed F-PVNet
[14], which made full use of local sensitive points and con-
textual features by using a frustum to group local points
and aggregate them with features obtained from submani-
fold voxel convolution. Tao et al. proposed a ground culling
algorithm for 3D object detection, which reduced the amount
of computation to a certain extent and accelerated the run-
ning speed [15]. It is an attempt to remove the irrelevant point
cloud idea. Point cloud projection is also a sequential fusion
method. Vora et al. proposed a method called PointPainting
for 3D object detection [16]. 2D semantic segmentation was
first performed through a semantic network, and then lidar
points were projected into the segmentation mask accord-
ing to a transformation matrix. Finally, a 3D detector was
used for classification and localization. Semantic segmenta-
tion information was supplemented by this method with lidar
detection, which continuously enhanced existing networks
with segmentation scores [17, 18]. However, only depend-
ing on semantic segmentation itself, the fusion method has
a counterproductive result due to the too low semantic seg-
mentation accuracy. Pseudo-LiDAR [19] was proposed by
Wang et al. as another attempt at sequential fusion. A pyra-
mid stereo matching network [20] was first used to estimate
depth information. Then each pixel in the image was back-
projected into a 3D space, generating a Pseudo-LiDARsignal
similar to the lidar point cloud. Finally, the existing lidar
detector was used for detection. Based on Pseudo-LiDAR,
You et al. proposed Pseudo-LiDAR++, which used very few
real and accurate lidar points to correct depth estimation bias.
Nakrani et al. attempted to solve the problem of not end-to-
end in Pseudo-LiDAR [21]. The technique of changing the
representation data was considered to address the problem
of poor vision-based depth estimation, providing a valuable
idea for image-only perception algorithms.

2.2 Methods based on parallel fusion

Parallel fusion indicates that each fusion stage is carried out
simultaneously. Multiple modalities are first fused to obtain
a representation result and then input to the network, or each
modality is processed by its respective network and then
fused. These methods often employ different approaches to
integration; they have a wide variety, but lack uniform stan-
dards. MV3D [1] was proposed by Chen et al., which only
used image and bird’s eye view (BEV) of point clouds. The
amount of computation was reduced while retaining enough
information. The ROI was first extracted from the BEV,
whichwas then projected into the image and the front view of
the point cloud. After pooling and integrating into the same
dimensional information, features were finally extracted and
fused. However, this method has a drawback in small object
detection. Unlike MV3D, Ku et al. proposed a 3D object
detectionmethod calledAVOD [22],which performed fusion
before the region proposal stage. Feature maps, including
images and the BEV of point clouds, were generated through
the FPN [23] network. A 3D anchor frame was used to select
corresponding regions in both of them for fusion. The fusion
result was finally input into the fully connected layer for 3D
object detection. To avoid information loss caused by the
point cloud projection, Xie et al. proposed PI-RCNN [24] by
using a new fusionmethod to fuse 2D semantic segmentation
into 3D region proposals. Pixel-level fusion is also a form of
parallel fusion. Liang et al. proposed ContFuse [25], which
used continuous convolution to fuse multi-sensor features at
multiple scales through pixel-level fusion. ResNet-18 [26]
was first used to extract features from the image and BEV
of a point cloud and then adopted multi-scale feature fusion
for the image. Then, PCCN [27] was used to fuse it into
the BEV to achieve 3D object detection. Yoo et al. proposed
a 3D-CVF [28] method.The point cloud was voxelized and
then transformed into a 2D BEV feature map through sparse
convolution. Then, ResNet-18 [26] was used to extract image
feature and fused them into BEV feature maps. The prob-
lem of misplaced views was solved by using this method,
but feature blur [16] inevitably led to bias due to pixel-
level fusion. While a multitasking problem is often solved
using different networks, MMF [29] used a single network
to solve a multi-tasking problem, which achieved point-wise
andROI-wise feature fusion. EPNet [30], proposed byHuang
et al., was a lidar-guided image fusion method. A point-by-
point correspondence was directly established between the
original point cloud data and image, and the importance of
semantic information was estimated to enhance useful fea-
tures and suppress interfering ones. 4D-Net [31], designed
by Piergiovanni et al., combined image, lidar, and temporal
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information. Moreover, motion cues were better used in the
dynamic connection learning method. Although the perfor-
mance of fusion algorithms has been greatly improved, a
certain gap remained compared with algorithms only based
on lidar [32, 33]. Additionally, Cao et al. proposed an acceler-
ated point-voxel representation [34],which fused the features
of points and voxels into a single 3D representation. Wang
et al. proposed BrT [35], which unified multimodal data
from different sources by transformer and achieved seam-
less fusion of point clouds with multi-view images using
an aggregated form of point-to-patch projection. Inspired by
the application of transformer in 2D vision tasks, Gao et al.
proposed LFT-Net [36] to solve the local feature extraction
problem in point cloud segmentation tasks by associating
local features with point clouds through a local feature trans-
former network.

Overall, both types of abovemethods have advantages and
disadvantages. The sequential fusion method is similar to
cascade, and the processing results of previous stage directly
affect the effectiveness of the latter stage.Nodirect and strong
correlation exists between the stages of the parallel fusion
method, but the misalignment of views between sensors is a
problem that should be solved by each algorithm. Therefore,
combining the advantages of these two types of methods, a
multi-sensor segmentation fusionmethod based on a frustum
is proposed, and sensor fusion is performed in two stages. The
first stage is based on sequential fusion, where 2D region
proposals in an image, preliminary 3D detection boxes, and
center points are obtained by CenterNet [37]. A frustum is
generated to determine the ROI in the lidar and radar point
clouds, filtering out invalid information in the point cloud.
In the second stage, the concept of parallel fusion is used,
where three types of sensor data are extracted through their
respective networks to perform feature fusion. Feature fusion
is used to reduce the inaccuracy of initial detection results.
The first stage improves the efficiency of feature extraction
in the second stage, whereas the second stage reduces the
errors caused by the cascade in the first stage.

3 Algorithm of multi-sensor segmental
fusion of frustum association

In this paper, a segmental fusion association algorithm is
proposed based on three sensors: camera, lidar, and radar for
3D object detection. The detection range of the point cloud
is narrowed by using a frustum association method. Then,
the lidar point cloud is spherically voxelized. Furthermore,
the rotation-invariant feature is extracted through a spher-
ical voxel convolution. Meanwhile, a neural network with
dynamic parameter adaptation is used to perform feature-

level fusion for the improvement of the detection results.
Figure 1 shows the framework of the proposed method.

Firstly, the fully convolutional network is used to obtain
the 2D detection frame and center point of objects in the
image. At a short distance, ROI in the lidar and radar
point clouds which extended to the pillar are determined by
the frustum association method. Thereafter, spherical vox-
elization and spherical voxel convolution are performed on
the lidar point cloud to extract the rotation-invariant fea-
ture. Finally, feature-level fusion is performed with object
attributes, which are extracted from the image and radar point
cloud to improve the detection results and generate a feature
map. Furthermore, lidar point clouds that are too sparse are
not used at a long distance.

3.1 Generation of detection boxes and center points

CenterNet is used to generate detection boxes and center
points for frustum association, while object-related proper-
ties, such as scale, depth, and 3D position, are regressed. As a
representative among anchor-free series of algorithms, Cen-
terNet represents an object as a center point when creating
a model, which addresses some problems of anchor-based
methods [38]. The CenterNet network uses I ∈ RW×H×3

as input image, W and H are the width and height of the
image, respectively. Then, a keypoint heatmap is generated
as follows:

Ŷ ∈ [0, 1]W
R × H

R ×C , (1)

where R is the output stride and C is the number of object
categories. The detected object of class c is output as Ŷx,y,c =
1, and its center point is (x, y). The output of the area where
no object is detected is represented by Ŷx,y,c = 0.

Each keypoint of the ground truth at position r ∈ R2

is equivalently replaced with the corresponding keypoint
r̃ = [ r

R

]
on the downsampled low-resolution image. The

keypoints of the ground truth are passed through a Gaussian
kernel function to scatter onto the heatmap of the ground
truth.

Yxyc = exp

(

− (x − r̃x )
2 + (

y − r̃y
)2

2σ 2
r

)

, (2)

where σr is the standard deviation of object size adaptation

andYxyc ∈ [0, 1]W
R × H

R ×C . If two overlappingGaussian func-
tions exists for the same class c, the element-wise largest one
is selected.

Object information, including depth, dimension, and ori-
entation, is regressed from the detected center points to
generate 3D detection boxes through CenterNet. The depth

123



3D object detection algorithm based on multi-sensor segmental fusion of... 22757

Fig. 1 Network frame diagram of the proposed method (HM, heat map; Off, offset; WH, width and height; Dim, dimension; Dep, depth; Rot,
rotation; Vel, velocity; Att, attributes)

is computed and output as an additional channel D̂ ∈
[0, 1]W

R × H
R . The dimension contains three scalars, which

are directly regressed to their absolute value via �̂ ∈
[0, 1]W

R × H
R ×3. Orientation is represented as two bins, and

each bin contains four scalars for encoding. To avoid dis-
cretization errors in the network due to output strides,
a local drift is also computed for each center point.

The training objective function is defined as follows:

Lk = 1

N

∑

xyc

⎧
⎨

⎩

(
1 − Ŷxyc

)α

log Ŷxyc Yxyc = 1
(
1 − Yxyc

)β
(
Ŷxyc

)α

log
(
1 − Ŷxyc

)
otherwise

,

(3)

where N is the number of targets and α and β are the hyper-
parameters of focal loss [39].

3.2 Frustum association

The precise 2D detection frame, rough 3D detection frame
of each object in a scene, and center point of the object can
be obtained through CenterNet. To fully use radar informa-

tion and reduce irrelevant calculations, this paper proposes a
result-level fusion method of frustum association.

A ROI frustum is created for the object by using the 2D
detection frame, which is obtained from the image as well
as the depth and size of the estimated object. As shown in
Fig. 2, all irrelevant point cloud data outside the view frus-
tum can be filtered out by mapping the frustum to the point
cloud, which effectively reduces the computational load of
subsequent point cloud detection. Meanwhile, the proposed
method solves the object overlapping problem in 2D image
detection. As objects are separated in a 3D point cloud, sepa-
rated ROI frustums can be created for 2D overlapping objects
to more accurately detect the overlapping objects in the seg-
mented 2D image.

Unlike the lidar point cloud, the radar point cloud has the
problem of inaccurate Z dimension or no Z dimension at
all, resulting in inaccurate height information of the object.
Therefore, a preprocess method for pillar expansion of the
radar point cloud is proposed. Each radar detection point is
expanded into a fixed pillar, which is associated with the
Z dimension in a 3D space. A portion of radar detection
is considered within the ROI if the corresponding strut is
located fully or partially within the ROI frustum.
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Fig. 2 Schematic BEV (left).
Schematic diagram of frustum
generation (right)

Different types of sensors are not synchronized tempo-
rally and spatially when acquiring data. Due to their different
acquisition cycles and perspectives, aligning the camera and
lidar, as well as the camera and radar, is essential before cor-
relation, and then the fusion can be performed.

3.2.1 Camera and lidar calibration

Feature alignment of the calibration plate in this study is per-
formed to estimate the parameters in the calibration of the
camera and lidar [40]. The plane normal of the calibration
plate is defined as nL , rotation matrix as RL

C , camera normal

matrix as NC = [
n0C , n1C , n2C

]T
, and lidar normal matrix as

NL = [
n0L , n1L , n2L

]T
. The centroid of the calibration plate

and the plane normal nL are firstly extracted [41]. The rota-
tion matrix RL

C can be aligned with the lidar normal matrix
NL by rotating the camera normal matrix NC using the fol-
lowing equation:

RL
C NC = NL , (4)

where NC and NL are known quantities; hence, RL
C can be

found.

Although existing methods often include more samples
in the computation to improve their robustness [42], they
also tend to over-tune the calibration plate. Therefore, three
bit-pose sets are selected to fully constrain Eq. (4). Fur-
thermore, NC and NL are a formed square matrix for the
analysis [40].

During solving RL
C in Eq. (4), N−1

C should be calculated.
Therefore, the linear correlation is identified in the normal
matrix, which is important for the accuracy of the calibra-
tion results.Moreover, lidar is subject tomeasurement errors.
Matrix condition numbers are used to evaluate the linear cor-
relation and quality of the rotation parameters. Meanwhile,
errors in calibration plate measurements are used to evaluate
the translation parameters. The variability of quality (VOQ)
is defined as

V OQ = κLC + ebe, (5)

where κLC denotes the most unstable result in the inverse
matrix of NL and NC and ebe denotes the average plate error
of the three bit poses. Thus, a lower VOQ score indicates
better alignment. Figure 3 shows the actual calibration.

Fig. 3 Actual calibration results
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3.2.2 Camera and radar calibration

The calibration of the camera and radar is relatively easy.
Since the radar only obtains the X and Y-axis coordinates of
the object, the coordinate system conversion between them
is a conversion of a 2D X − Y coordinate system.

The camera coordinate system is defined as OC =
[xC , yC , 1]T , the radar coordinate system as OR =
[xR, yR, 1]T , and the rotation angle as θ . Then, the conver-
sion relationship of the coordinate system is expressed as
follows:

⎡

⎣
xC
yC
1

⎤

⎦ =
⎡

⎣
cos θ − sin θ xt
sin θ cos θ yt
0 0 1

⎤

⎦ ×
⎡

⎣
xR
yR
1

⎤

⎦ , (6)

where xt and yt are the translations in the X and Y-axis
directions(see Fig. 4).

3.3 Spherical voxelization of the lidar point cloud

Vehicles in driving scenes often have a certain rotation rel-
ative to their driving direction. Considering the influence of
multiple factors (e.g. road slope and curves), this rotation can
be arbitrary. Control of the object direction is also a key fac-
tor in predicting the movement of the objects and preventing
collisions.

After the interest part of the lidar point cloud and its cen-
ter point through frustum association are obtained, spherical
voxelization and spherical voxel convolution [43] are used
to classify the objects. Then, the rotation-invariant feature
and object rotations information are extracted. To convert
the point cloud into spherical voxels with a Euclidean struc-
ture, a density-aware adaptive sampling (DAAS) method is

Fig. 4 Transformation diagram of the coordinate system

proposed, rather than uniform sampling, to solve the problem
of sparse points around the poles and dense points around the
equator (Fig. 5). This problem can lead to bias in the spheri-
cal signal; that is, the point cloud is not uniformly distributed,
resulting in a failure to align the feature extracted from the
spherical voxel convolution with the original point cloud fea-
ture. TheDAASmethod samples the point cloud at both poles
using a wider filter to adjust for density differences, and the
exacted implementation is given in Eq. (7).

A unit sphere is defined as a set of points x ∈ R
3, which

is normalized to norm. The spherical voxel space is defined
as S2 × H . Moreover, points in the space are described by
(α, β, h), where (α, β) ∈ S2; α and β are the polar and
azimuth angles, respectively; and h is the straight-line dis-
tance from the point to the center of the sphere. The position
of a spherical voxel is determined by its center

(
ai , b j , ck

)
,

where (i, j, k) ∈ I×J×K . I×J×K is the spatial resolution,
called bandwidth. The coordinate of the nth point in S2 × H
is (αn, βn, hn). Furthermore, a total of N points exists. The
calculation formula of spherical signal f : S2 × H → R is
expressed as

f
(
ai , b j , ck

) =
∑N

n=1 ωn · (δ − ‖hn − ck‖)
∑N

n=1 ωn
, (7)

where ωn is the normalization factor, which is defined as

ωn =1 (‖αn−ai‖<δ)·1 (∥∥βn − b j
∥∥<ηδ

)·1 (‖hn−ck‖<δ),

(8)

where η is the density-aware sampling factor, δ is the pre-
defined filter width, and η = sin(β) is used to control f
to adaptively sample point set under non-uniform density.
Equation (9) is used to express information along the H-axis
orthogonal to S2, which remains unchanged under random
rotations.

(δ − ‖hn − ck‖) ∈ [0, δ]. (9)

3.4 Spherical voxel convolution

Spherical signal S2 × H serves as input of the spherical
voxel convolution. The rotation group SO(3) is a special
orthogonal group, which can be transformed into the ZYZ-
Euler angle (α, β, γ ), where α ∈ [0, 2π ], β ∈ [0, π ] and
γ ∈ [0, 2π ]. To conveniently extract the rotation-invariant
feature, the rotation operator LR of the spherical voxel signal
is defined as

[LR f ] (s) = f
(
R−1s

)
, (10)
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Fig. 5 Spherical voxelization of
the lidar point cloud. The closer
to the poles, the wider the filter,
a technique to adjust for the
differences in sampling density

where R ∈ SO(3), s ∈ S2 × H , f : S2 × H → R. The
rotation only affects the spherical coordinate S2, which has
no effect on the H domain (see Fig. 6).

Equation (8) is the calculation formula for the convolution
of two spherical signals

[ψ ∗ f ](p) = 〈LPψ, f 〉
=

∫

S2×H
ψ

(
P−1s

)
f (s)ds, (11)

where, ψ represents the filter, f : S2 × H → R, p ∈
S2 × H , and P represents the element corresponding to p in
SO(3).

To prove the rotation invariance, the point cloud is
assumed to be rotated by an arbitrary rotationmatrix R. Then,
for ∀p ∈ S2×H , p → Rp is given. Since f is sampled from
the input point cloud, the spherical signal rotation is rep-

resented by f → LR f . Subsequently, the spherical voxel
convolution was applied to the rotated input signal

[ψ ∗ LR f ](Rp) = 〈LRPψ, LR f 〉
=

∫

S2×H
ψ

(
P−1R−1s

)
f
(
R−1s

)
ds

=
∫

S2×H
ψ

(
P−1s

)
f (s)ds

= [ψ ∗ f ](p), (12)

where the simplification of the second-third step is from [43].
Therefore, the output of the spherical voxel convolution is
not affected by the rotation. The rotation information of the
object can be obtained by solving the transformation relation-
ship between the corresponding feature (e.g., those of the tire
and front of the car) and their counterparts in the standard
orientation in the world coordinate system.

Fig. 6 Spherical voxel convolution

123



3D object detection algorithm based on multi-sensor segmental fusion of... 22761

The spherical voxel convolution firstly converts the input
and filter to a frequency spectrum via fast Fourier transform
(FFT). Secondly, they are multiplied and converted to the
spatial domain via inverse FFT (IFFT) [44]. Thirdly, point
resampling is performed; that is, the feature is resampled at
the original point positions. Trilinear interpolation is used
as operator � : RS2×H×C → R

N×C . The feature of each
point is the weighted average values of eight nearest voxels
from each point. The weight is inversely proportional to the
distance between the point and each spherical voxel. A point-
wise feature was obtained through fully connected layers.

3.5 Feature extraction and feature-level fusion

In practical applications, each single sensor can indepen-
dently perform object detection and attribute regression.
However, the advantage of the sensor often cannot be fully
exerted. Three different sensors were used in this study
to extract object features. An object feature was extracted
through a fully convolutional network for predicting the cen-
ter of the object and generating a bounding box. The extracted
features include 2D size, 3D size, depth, rotation, and center
offset of the object, which is used as the primary regres-
sion. The lidar point cloud extracts rotation-invariant features
through a spherical voxel convolution, which is used to pre-
dict the true 3D rotation direction of an object. Furthermore, a
detection frame was generated, which fits the rotation direc-
tion of the object. Radar detection can directly obtain the
depth information of the object. Meanwhile, the object’s
speed information can be extracted according to the Doppler
effect. Eigenvalues in the eigenvectors were extracted by
the three sensors through the network, which has constraint
and complementary relations. According to these relations,
a dynamic adaptive neural network of parameters was pro-
posed to perform feature fusion on eigenvectors.

A late fusion method with distributed feature-level was
adopted in this study. As shown in Fig. 7, a feature was
extracted from three types of sensor data. Moreover, the
dynamic adaptive neural network of parameters was pro-
posed for feature fusion.

The network comprises an input layer, a hidden layer
with Gauss function neurons, and an output layer with lin-
ear neurons. M and Q denote the number of neurons on
the hidden and output layers, respectively. The input mode
is X , X = [x1, x2, . . . , xR]T , and the output is Y ,Y =[
y1, y2, . . . , yQ

]T. The output of the hidden unit is expressed as

Z j = exp

(
−

∥∥∥∥
X − C j

σ j

∥∥∥∥

)
, (13)

where Z j is the output value of the j th neuron in the hidden
layer, j =1, 2, . . . , M . Further, C j =

[
C j1,C j2, . . . ,C j R

]T

is the center of the j th neuron in the hidden layer, composed
of the center components of all neurons in the output layer
that corresponds to the neuron. σ j is the width of the j th
neuron in the hidden layer that corresponds to C j .

The following expression presents the relationship between
the input and output of the neurons in the output layer:

yk =
M∑

j=1

wk j Z j , (14)

where yk is the output value of the j th neuron in the output
layer, k = 1, 2, . . . , Q, and wk j is the weight between the
kth and j th neurons in the output and hidden layers. Given
that the neurons are enough in the hidden layer, the network
can approximate any functions with any desired accuracy.
Parameters such as the center and width of the neurons in
the hidden layer and the weights of the output layer deter-
mine the network performance. If these parameters cannot be
accurately determined, then network divergence may occur
[45].

In this paper, a dynamic adaptive particle swarm opti-
mization was proposed to optimize three parameters: center,
base width, and weight vectors. The proposed algorithm was
firstly initialized as a group of random particles. Then, the
optimal solution was obtained through iteration. The parti-
cle updates itself by tracking two extrema: pbest and gbest
[46]. After obtaining these two optimal values, the speed and
position are updated by following Eq. (15)

{
vi =ωvi + c1×rand()×(

pbesti −xi
)+c2×rand()×(

gbesti −xi
)

xi (t + 1) = xi (t) + vi (t)
,

(15)

where i = 1, 2, . . . , N , N is the total number of particles, ω
is the inertia weight, vi is the particle velocity, rand() is a
random number between (0, 1), xi is the current position of
the particle, and c1 and c2 are the learning factors.

To increase its global convergence ability and avoid falling
into local optimum in the early stage, the learning factor and
inertia weight were dynamically and adaptively changing in
this study. The initial value of learning factor c1 is denoted
by c1m , which is reduced to c′

1m in a nonlinear manner during
iteration. The initial value of c2 is recorded as c2m , which is
increased to c′

2m in a non-linear manner. The initial value of
ω is recorded as ωm , which is reduced to ω′

m in a non-linear
manner. The following is the relevant formula:

⎧
⎪⎨

⎪⎩

c1(k) = c′
1m + (m−i

m

)α (
c1m − c′

1m

)

c2(k) = c′
2m + (m−i

m

)β (
c2m − c′

2m

)

ω(k) = ω′
m + (m−i

m

)β (
ωm − ω′

m

)
, (16)
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Fig. 7 Schematic diagram of the feature-level late fusion

wherem is themaximumnumber of iterations, i is the current
number of iterations, and α, β ∈ {0.5, 1, 1.5, 2.0}.

Meanwhile, the mutation in the later stage of evolution
divides the entire population into two parts: one part still
follows the original update formula, whereas the position
updated formula of the other part is changed to Eq. (17).
Part of the particles move in the opposite direction of gbest ,
increasing group diversity and avoiding falling into local
optimal solution.

xi (t + 1) = xi (t) − vi (t). (17)

The values of the three parameters (i.e. center, base width,
and weight vectors) were encoded as the particle parameters.
Moreover, the fitness was calculated for each particle accord-
ing to the fitness function defined by normalized root mean
square error(NRMSE), as follows:

f = N RMSE =
√√√
√

∑N
k=1 (y(k) − ym(k))2

N
∑N

i=1 y
2(k)

. (18)

Then, f is compared with the fitness of pbesti and that
of gbest , and the relevant parameters are updated. When
optimization reaches the maximum number of iterations or
the ideal approximation accuracy, three parameters of the
optimized neural network are output.

3.6 Loss function

The following is the definition of the overall multi-task loss
function of the proposed algorithm:

L = λrcLrc + λar Lar + λ f oL f o, (19)

where λ represents adjustment coefficient; rc, the bounding
box and center point extraction; ar , the attribute regression;
and f o , the optimization module of feature fusion. The
adjustment factor λ controls the weight of each task, which

determineswhether themodel has excellent performance and
training efficiency. A dynamic weight average approach was
used in this study to dynamically adjust the weights of each
loss [47]. Here,wk(·) denotes the relative rate of loss decline
in task k, i.e., the ratio of the current loss to the previous loss

wk(t − 1) = Lk(t − 1)

Lk(t − 2)
, (20)

where Lk(·) denotes the current loss in task k. The larger the
ratio, the harder the current task to train, and a larger weight
must be assigned. The weight λk of task k was updated as
follows:

λk(t) =
K exp

(
wk (t−1)

T

)

∑
i exp

(
wk (t−1)

T

) , (21)

where K = ∑
i λi (t) ensures that all weights are active

within a range and T is the modulation coefficient of the
task distribution. That is, the larger the task distribution, the
more uniform the task distribution. Initialization should be
set up with consistent weights for each task. Further, a priori
unbalanced initialization can be introduced according to an
actual scenario.

The loss Lrc of the bounding box and center point extrac-
tion module is defined as

Lrc = Lk + γs
1

N

N∑

k=1

|Ŝk − sk | + γo
1

N

∑

r

|Ôr̃ −
( r

R
− r̃

)
|,

(22)

where, γ is the adjustment factor, N is the number of objects,
Ŝ is the single size prediction, s is the object size, and Ô is
the local offset.

To increase the robustness of the attribute regression and
optimization modules of feature fusion, Huber loss is uni-
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Table 1 Comparison of
different object detection
algorithms on nuScenes dataset

Method Modality NDS↑ mAP↑ Error↓
C R L mATE mASE mAOE mAVE mAAE

InfoFocus [50]
√

0.395 0.395 0.363 0.265 1.132 1.000 0.395

MonoDIS [52]
√

0.384 0.304 0.738 0.263 0.546 1.533 0.134

CenterNet [37]
√

0.400 0.338 0.658 0.255 0.629 1.629 0.142

PointPillars [51]
√

0.454 0.305 0.731 0.314 0.748 1.497 0.201

CenterFusion [13]
√ √

0.449 0.326 0.631 0.261 0.516 0.614 0.115

DWD-Fusion [53]
√ √ √

0.461 0.331 0.496 0.270 0.495 0.599 0.142

Ours
√ √ √

0.485 0.357 0.334 0.259 0.463 0.588 0.104

formly used, which is defined as

L∗ =
{ 1

2 (�P)2 |�P| ≤ ξ

ξ |�P|2 − 1
2ξ

2 |�P| > ξ
, (23)

where, �P is the prediction residual and ξ is the hyperpa-
rameter determined during training.

4 Experimental verification and analysis

In this study, the proposed algorithm was evaluated on the
nuScenes [48] and Radiate [49] datasets and then compared
with the current popular object detection algorithms. The
robustness of the proposed algorithm under different weather
conditions was tested on the Radiate dataset. Ablation exper-
iments were also performed on the nuScenes dataset. Finally,
to verify the operation effect of the proposed algorithm in an
actual scene, relevant experiments were conducted based on
a real autonomous car platform. The proposed algorithm ran
in a PyTorch framework, which was loaded on a computer
with Ubuntu20.04, i7-9700k CPU, and dual 2080Ti GPU.

4.1 Tests on nuScenes dataset

The nuScenes dataset is a large-scale autonomous driving
dataset, and it includes a camera and lidar and records
radar data. It comprises over 1,000 scenes, including 28,130

training and 6,019 validation samples [48]. It also generally
uses the NuScenes detection score (NDS) as a metric, which
is a weighted sum of mAP and error metrics.

The performance of several 3D algorithms for object
detection was compared on the nuScenes dataset, including
lidar-based InfoFocus [50] and PointPillars [51], camera-
based MonoDIS [52] and CenterNet [37], camera-radar-
based CenterFusion [13], and camera-lidar-radar-based
DWD-Fusion [53]. As presented in Table 1, “C,” “R,” and
“L” represents whether a camera, radar, or lidar was used.
Several indicators, including NDS, mAP, mATE, mASE,
mAOE, mAVE, and mAAE, were selected for the evalua-
tion. Meanwhile, mATE, mASE, mAOE, mAVE, andmAAE
represented errors in mean translation, scale, orientation,
velocity, and attributes, respectively. The up arrow “ ↑ ” and
the down arrow “ ↓ ” imply that higher was better and lower
was better, respectively.

In Table 1, the NDS of the proposed algorithm was higher
than that of other methods. Specially, it was 21.25%, 6.83%,
8.02%, and 5.21% higher than CenterNet, PointPillars, Cen-
terFusion, and DWD-Fusion, respectively. The indicator
showed the remarkable comprehensive performance of the
proposed algorithm. Moreover, lidar-based InfoFocus not
only outperformedother algorithms inmAP, but also the error
in feature and attribute prediction was significantly lower
than that of other algorithms. Compared with CenterFusion
[13], the proposed algorithm incorporated a more accurate
lidar,which had a significant improvement in all performance

Table 2 Comparison of the
per-class performance for 3D
object detection on the nuScenes
dataset

Method Modality mAP↑
C R L Car Truck Bus Pedestrian Motorcycle Bicycle

InfoFocus [50]
√

0.779 0.314 0.448 0.634 0.290 0.061

MonoDIS [52]
√

0.478 0.220 0.188 0.370 0.290 0.245

CenterNet [37]
√

0.536 0.270 0.248 0.375 0.291 0.207

PointPillars [51]
√

0.685 0.234 0.283 0.403 0.302 0.212

CenterFusion [13]
√ √

0.509 0.258 0.234 0.370 0.314 0.201

DWD-Fusion [53]
√ √ √

0.664 0.253 0.269 0.445 0.278 0.220

Ours
√ √ √

0.785 0.331 0.315 0.467 0.329 0.245
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Fig. 8 Recall-Precision curves

indicators. These results demonstrated the reliability of fus-
ing lidar data. Similar to CenterFusion [13], DWD-Fusion
[53] also incorporated three types of sensor features. Com-
pared with this method, the proposed algorithm still achieved
higher scores in all performance indicators. Moreover, not
only the prediction results were accurate, but also ensured
the error minimization in terms of speed and direction.

Table 2 presents the detection accuracy of each algorithm
on the nuScenes dataset for various objects. The average
accuracy of the proposed algorithm for cars, trucks, motor-
cycles, and bicycles was better than that of other algorithms,
which also had better detection results for medium objects.
Compared with CenterFusion [13] and DWD-Fusion [53],
the proposed algorithm achieved higher scores in detection
accuracy for all types of targets, which indicated the superior
detection performance of the proposed algorithm.

Figure 8 shows the precision and recall curves of different
algorithms. The proposed algorithm considered both preci-
sion and recall, which had a better overall performance. As
object detection algorithms often required a large amount of
time to process complex point cloud information, a direct
method to improve the efficiency of the algorithms is remov-
ing invalid information in the point cloud. The proposed
frustum association method effectively filtered out almost
all invalid information in the point cloud. Meanwhile, the
valid point cloud information is retained in the ROI frus-
tum. As shown in Fig. 9, only the valid information of each
vehicle was retained on the road associated with the frus-
tum, greatly reducing the time for subsequent detection and
feature extraction. Furthermore, the detection accuracy was
improved to a certain extent.

Figure 10 shows the impact of the presence or absence
of frustum association regarding detection time and accu-
racy in various scenarios. The frustum association effectively
reduced the detection time in various scenarios. Furthermore,
the maximum reduction reached 70.95% compared with no
frustum association. Moreover, the detection accuracy was
effectively improved by the frustum association in most sce-
narios.

To verify effectiveness of each module among the pro-
posed algorithms, an ablation experiment was performed
on the nuScenes dataset. The proposed algorithm associated
lidar and radar point cloudwith objects through frustumasso-
ciation based on CenterNet. Then, features were extracted
from three types of sensors through a feature-level fusion
network, which was fused to obtain a final detection result.
Therefore, the ablation experiment was divided into two
parts. In the first part of the experiment, CenterNet was
selected as a baseline to examine the effects of the frustum

Fig. 9 The valid point cloud
information retained by the view
frustum association. After the
frustum association, only the
valid point cloud information of
the object vehicle and the
necessary road contour
information were retained in the
point cloud BEV below the
corresponding image, greatly
reducing the amount of point
cloud processing
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Fig. 10 Impact on the presence or absence of frustum association
regarding detection time and accuracy of the detector in different sce-
narios. The bar graphs and curves represent time and average accuracy,
respectively

association, spherical voxel convolution, and feature-level
fusion network on the detection results.

Table 3 presents the results of the ablation experiments,
as well as the impact of each module on the performance
metrics. In the table, FA represents frustumassociation; SVC,
spherical voxel convolution; and FFN, feature-level fusion
network. The change in percentage data was compared with
the benchmarking CenterNet method.

In the first experiment, only point cloud was associated
with objects through the frustum. Information directly used
to supplement object feature without convolution extraction
and feature fusion includes such as depth, speed, and size.
This simple point cloud processing method improved the
NDS by 8.6% and mAP by 2.9% compared with CenterNet,
which only used a camera. Various attribute errors were also
reduced. In the second part of the experiment, point cloud
was directly projected onto image plane. Then, an image
feature and two unprocessed point cloud features were fused
through a feature-level fusion network. The NDS and mAP
were increased by 17.4% and 3.4%, respectively. Unlike that
in the first experiment, the errors of various attributes were
greatly improved. The frustum association and feature-level
fusion networkwere further used to improve the performance

of the proposed algorithm on the previous basis. Further-
more, the spherical voxel convolution greatly reduced the
directional error. Finally, the NDS of the proposed algorithm
was improved by 21.3% compared with that of the baseline
method, and its mAP was improved by 5.6% (see Fig. 11).

For object detection algorithms, the number and type of
sensors were not the more the better. A large amount of sen-
sor data sometimes affected the judgment of the algorithm to
correctly detect objects, as well as the speed and efficiency of
detection. Therefore, the performance of some multimodal
algorithms maybe lower than that of a single lidar-based
algorithm. Comparing the role of each sensor in the fusion
algorithm became the basis for judging whether the algo-
rithm was reasonable and whether made full use of various
data. The influence about three types of sensor data on the
detection accuracy of the proposed algorithm was compared
in the next part (see Fig. 12).

The NDS score and mAP in the four models were tested:
camera-only, camera-radar, camera-lidar, and camera-radar-
lidar. Figure 13 presents the results. The experimental results
indicate that themultimodalmethodwas higher thanother the
single-camera basedmethod. In the case of the camera-radar-
lidar model, the NDS score increased by 12.01%, and the
mAP increased by 4.39% compared with that of the camera-
radarmodel. Although radar suppliesmore extra features, the
average accuracy still cannot be improved. However, the high
accuracy of lidar significantly improves the average accuracy
of the proposed algorithm. The camera-radar-lidar model is
integrated in this study,which improves the accuracy andpro-
vides more object attribute feature. Therefore, the proposed
method based on this model meets the need of automatic
driving systems for object detection in the greatest extent.

4.2 Tests on Radiate dataset

Radiate is a severe weather dataset released by the Radiate
project of Heriot-Watt University in Scotland, comprising 3h
of radar images and 200,000 marked road signs, including
other vehicles and pedestrians, especially for common severe
weather conditions [49]. The actual effect of the algorithms
validated on this dataset is helpful in examining the safety of
autonomous driving in bad weather conditions.

Table 3 Ablation experiments on nuScenes dataset

Method FA SVC FFN NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
Baseline 0.400 0.338 0.658 0.255 0.629 1.629 0.142

Ours
√

+8.6% +2.9% -15.7% +1.9% -4.9% -31.6% -11.3%

Ours
√

+17.4% +3.4% -37.4% +2.2% -8.2% -42.0% -17.0%

Ours
√ √

+20.0% +4.9% -43.1% +1.7% +11.9% -52.5% -22.3%

Ours
√ √ √

+21.3% +5.6% -49.2% +1.6% -26.4% -63.9% -26.8%

123



22766 C. Tao et al.

Fig. 11 Visualization in 3D
maps. The top and bottom
images indicate the 3D frame
prediction in the images and 3D
frame prediction in the point
cloud, respectively

This experimental module mainly verified the robustness
of the proposed algorithmunder differentweather conditions.
In this paper, three states of the art algorithms using differ-
ent sensors were selected for comparison with the proposed
algorithm, and average accuracy was tested in five weather
conditions: day, night, rainy, snowy, and foggy. Table 4
presents the results of the accuracy comparison among dif-
ferent algorithms.

The experimental results presented in Table 4 indicate that
the accuracy of InfoFocus based on lidar-only was slightly
higher than that of the proposed algorithm in normal weather,
such as day and night. However, the proposed algorithm had

clear advantages in rainy, snowy, and foggy weather condi-
tions.Comparedwith that of theCenterFusionmethod,which
achievedgood results in rainy, snowy, and foggyweather con-
ditions, the accuracy of the proposed algorithm was 8.83%,
7.02%, and 7.99% higher in these three weather conditions,
respectively. The average accuracy of this algorithmwas also
6.73% higher than that of DWD-Fusion, which also used
three sensors.

To more intuitively reflect the performance of various
algorithms, test data were drawn in a graph in Fig. 14. Gener-
ally, a camera and lidar were easily interfered in bad weather
conditions and could not provide accurate scene information

Fig. 12 BEV prediction. The
top and bottom images indicate
the original image and 2D box
prediction in the BEV,
respectively
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Fig. 13 Sensor ablation experiments of the proposed algorithm on the
nuScenes dataset. “C,” “R,” and “L” represent the camera, radar, and
lidar, respectively

for object detection, whereas radar was well-adapted to bad
weather conditions. In normalweather conditions, lidar could
provide high-precision 3Dpoint cloud information compared
to a camera and radar. Figure 12 shows that the detection
accuracy of InfoFocus was higher than the other algorithms
during day and night, whereas multimodal algorithms were
limited by different sensor fusion methods, whose accu-
racy was slightly lower. In rainy, snowy, and foggy weather
conditions, the accuracy of InfoFocus and F-PointNet was
significantly reduced, while CenterFusion, DWD-Fusion,
and the proposed algorithm could still maintain a relatively
stable level. Specially, the detection results were improved
based on feature-level fusion by using three types of sensors.
Therefore, the accuracy of the proposed algorithm was the
highest in bad weather conditions.

The model was trained on the experimental platform and
the loss curves were plotted in Fig. 15 for different weather
conditions. In this case, the batch setting was 12, the learning
rate was set to 0.01, and training was performed 100 times.
Furthermore, the loss curves varied in different weather
conditions. Among them, the best and second best perfor-
mance were in daytime and rainy, respectively. Generally,
the gradient decline was particularly evident at the beginning
and then converged to a stable level at the later stage. The

Fig. 14 Accuracy comparison curves among different algorithms on
Radiate under different weather conditions

experimental results showed that the algorithm model had
excellent prediction ability.

Based on these experiments, the proposed algorithm had
better robustness in different weather conditions, and the
detection performance had better stability.

Figures 16 and 17 show the visualization effect of the
proposed algorithm on the Radiate dataset under normal day
and that in night, rainy, snowy, and foggy weather condi-
tions, respectively. The experimental results indicate that the
proposed algorithm could achieve good detection accuracy,
regardless in normal weather conditions during daytime or
in extreme weather conditions (e.g., night, rainy, snowy, and
foggy days).

4.3 Tests on real test site

To verify the actual operation effect of the proposed algo-
rithm, this paper relies on an actual vehicle platform that was
used to conduct road experiments in the test site of Suzhou
AutomotiveResearch Institute ofTsinghuaUniversity,where
all types of advanced facilities were used to simulate various
weather conditions. As shown in Fig. 18, the actual plat-
form mainly comprises three types of sensors: camera, lidar,
and radar. The camera provided clear image information, and
the 64-line lidar provided rich point cloud information in a
short distance.Moreover, the radar provided relatively sparse

Table 4 Accuracy comparison
among different algorithms on
Radiate under different weather
conditions

Method Modality mAP↑
C R L day night rain fog snow average

InfoFocus [50]
√

0.857 0.830 0.552 0.626 0.479 0.669

F-PointNet [3]
√ √

0.763 0.659 0.507 0.537 0.530 0.599

CenterFusion [13]
√ √

0.801 0.736 0.759 0.741 0.726 0.753

DWD-Fusion [53]
√ √ √

0.828 0.768 0.683 0.752 0.761 0.758

Ours
√ √ √

0.844 0.799 0.826 0.793 0.784 0.809
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Fig. 15 Loss curves for different weather on the Radiate dataset

point cloud information in a wide range, still obtaining good
results in bad weather. This algorithm mainly handled these
three types of sensor data to detect surrounding vehicles in
bad weather.

In the actual experiment, the detection accuracy of the pro-
posed algorithm can meet the need of practical applications

and was verified under different weather conditions. Three
types of sensor data were collected from the actual platform,
constructed into a dataset, and input into the proposedmodel.
Finally, the obtained detection results were plotted to a graph
in Fig. 19. The experimental results indicate that the pro-
posed algorithm had a satisfactory detection accuracy for
three types of medium and large vehicles in various weather
conditions. Moreover, the mAP could reach a maximum of
0.855, which still maintained a sufficiently high accuracy
even in snowy and foggy weather conditions. Experiments
showed that the proposed algorithm had excellent robust-
ness and strong generalization ability in various weather and
environments.

Finally, the real scene data collected by the actual platform
was placed into a trained model, and 3D object detection was
performed in real time. Figure 20 shows the output feature
mapof point cloud. This algorithmaccurately identified com-
plex vehicles and pedestrians, which relied on the advantages
of segmented fusion tomake full and reasonable use of sensor
data. Furthermore, the proposed method made rough predic-
tions for distant objects, which further proved the excellent
performance and mechanism of the proposed algorithm.

Fig. 16 Visualization under
normal weather conditions
during daytime. The prediction
results of the camera, lidar, and
radar were from top to bottom,
respectively
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Fig. 17 Visualization effect on
night, rainy, snowy and foggy
days. a Night scene, b rainy
scene, c snowy scene, d foggy
scene

5 Conclusion

This paper proposed a multi-sensor segmental fusion of the
frustum method for the 3D object detection algorithm in
autonomous driving. The fusion fully exploited the advan-
tages of each sensor and hence improved its accuracy in terms

of complex weather conditions during the driving process.
The frustum association method accurately associates lidar
and radar detection to objects, greatly reducing the amount
of point cloud detection. The spherical voxel convolution
method was also exploited to extract the rotation-invariant
feature of point clouds, supplementing rotation information
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Fig. 18 Real vehicle platform in a real test site

of the object. The dynamic adaptive feature-level fusion
network both quickly and accurately obtains fusion fea-
tures and improves detection results and supplements object
attributes. Finally, experiments were performed on the
nuScenes dataset, the Radiate dataset, and a real test site.
The results indicate that the proposed algorithm has higher
accuracy, richer object information, stronger generalization
ability, and better robustness in complex weather conditions

Fig. 19 Detection accuracy of various objects in different weather con-
ditions

compared with other algorithms. Considering that the pro-
posed algorithm relies on the 2D detection frame in the
image to generate the frustum, and the image cannot pro-
vide sufficient information in extreme weather conditions
(e.g., completely lightless darkness and very dense fog), fur-
ther work will improve the fusion method to handle various
complex situations.

Fig. 20 Visualization of the
detection results from the real
dataset
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