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Abstract
Examining the genome sequences of the SARS-CoV-2 virus, that causes the respiratory disease known as coronavirus disease
2019 (COVID-19), play important role in the proper understanding of this virus, its main characteristics and functionalities.
This paper investigates the use of alignment-free (AF) sequence analysis and sequential pattern mining (SPM) to analyze
SARS-CoV-2 genome sequences and learn interesting information about them respectively. AF methods are used to find
(dis)similarity in the genome sequences of SARS-CoV-2 by using various distance measures, to compare the performance
of these measures and to construct the phylogenetic trees. SPM algorithms are used to discover frequent amino acid patterns
and their relationship with each other and to predict the amino acid(s) by using various sequence-based prediction models.
In last, an algorithm is proposed to analyze mutation in genome sequences. The algorithm finds the locations for changed
amino acid(s) in the genome sequences and computes the mutation rate. From obtained results, it is found that that both AF
and SPMmethods can be used to discover interesting information/patterns in SARS-CoV-2 genome sequences for examining
the variations and evolution among strains.

Keywords COVID-19 · SARS-CoV-2 · Genome sequence · Amino acids · Alignment-free · Sequential pattern mining ·
Mutation

1 Introduction

The COVID-19(novel coronavirus 2019) [1] disease is
caused by the virus officially known as Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) [2]. For a
disease, particularly for a pandemic, finding its genome char-
acteristics (or features) and performing experiments allow
biomedical experts to come with a hypothesis on the effect
of these features on the disease’s manifestations. However,
this process is not only slow but also resource intensive and
requires following certain safety protocols. Computational
and computer-assisted studies, on the other hand, are fast
and can be performed easily. They provide important infor-
mation that is sometimes challenging to obtain from wet-lab
experiments. Thus, we believe that sequence alignment [3]
and frequent patternmining [4] can be used to find actionable
insights that may provide a better global response.

B Philippe Fournier-Viger
philfv@szu.edu.cn

Extended author information available on the last page of the article

The sequence alignment field in bioinformatics deals with
comparing and finding (dis)similarities between biological
sequences. Now, various alignment-free (AF) approaches
for sequence comparison and analysis are available [5–8].
Over the years, these approaches have emerged as a nat-
ural framework to understand the patterns and important
characteristics and properties of biological sequences. AF
approaches are based on the principle of converting the
symbolic biological sequences into vectors spaces. This
conversion enables one to efficiently use various filter-
ing, normalization, (dis)similarity calculation and clustering
techniques on biological sequences. AF approaches are used
in the phylogenetic study, regulatory elements, sequence
assembly and protein classification. However, their applica-
bility and potential for the analysis of SARS-CoV-2 genome
sequence needs further investigation and exploration.

Similarly, the patternmining field is also used in the analy-
sis of complex and large genetic and genomic data. In pattern
mining, sequential pattern mining (SPM) [9] is a special
case of structured data mining that has been used not only
in genomics [10–12] but also in other areas such as market
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basket analysis [13], text analysis [14, 15], proof sequence
learning [16, 17], energy reduction in smarthomes [18], mal-
ware detection [19] and webpage click-stream analysis [20].
For genome data, SPM can provide new and useful insights
related to virus behavior, severity (virulence) and other dis-
ease manifestations. Moreover, using SPM in genomes to
discover important hidden information can help in speeding
up the biological research process and can be of great impor-
tance to the biological world.

AF methods and SPM were used in some early stud-
ies [12, 21] to analyze and compare SARS-CoV-2 genome
sequences, and to discover hidden interesting patterns of
nucleotides and their prediction(s) in those sequences. The
SARS-CoV-2 genome sequences in nucleotide form contain-
ing four nucleotides (Adenine-A, Guanine- G, Cytosine-C
and Thymine-T) were considered in both studies. In this
work, we explore the use of AFmethods and SPM on SARS-
CoV-2 genome sequences in protein form. Proteins are final
products of gene expression which consist of long chains
of amino acids (AAs). More specifically, this paper extends
the authors’ previous work [12, 21]. Following are the main
contributions of this paper:

1. Investigating various AF methods to analyze SARS-
CoV-2 genome sequences in protein form: More
specifically, two tools that implement various AF meth-
ods are used to (1) find (dis)similarity by using various
distance measures, (2) compare the performance of these
measures, and (3) examine and explore various AFmeth-
ods in the phylogenetic tree as well as the consensus tree
construction.

2. UsingSPMtoanalyzeSARS-CoV-2genomesequences:
SPM algorithms are used to (1) discover frequent AA
patterns and their relationship with each other, and
(2) predict the AA(s) by using various state-of-the-art
sequence prediction models.

3. Mutation analysis in SARS-CoV-2 genome sequences:
An algorithm is proposed for point-wise mutation anal-
ysis of AAs and to compute the mutation rate.

The remainder of this paper is organized as follows. Back-
ground on SARS-CoV-2 is provided in Section 2, followed
by a review of computational and computer-assisted stud-
ies about COVID-19 in Section 3. The proposed approaches
where AF methods and SPM are used to analyze SARS-CoV-
2 genome sequences are presented in Section 4. Section 5
discusses the evaluation of the proposed approaches and
obtained results. The proposed mutation analysis technique
is described in Section 6, followed by a conclusion in
Section 7.

2 SARS-CoV-2 background

The genome sequences of a virus can be made from DNA or
RNA. SARS-CoV-2 is from the family of beta-coronavirus
with non-segmented positive-sense, single-stranded ribonu-
cleic acid (RNA) having spherical to pleomorphic shape and
a length between 80 to 160 nm. This virus is made from some
non-structural proteins and four structural proteins, that are
S: Spike, E: Envelope, M: Membrane and N: Nucleocapsid
(Fig. 1). The outer layer of this virus is made from three
structural proteins, S, M, and E. E is also involved in the
maturation and production of this virus. Whereas, S and M
also play important role in the virus attachment process dur-
ing replication. The nucleocapsid inside is formed by the N
protein.

This virus can enter in the human body by interacting with
the host angiotensin-converting enzyme 2 (ACE2). Note that
ACE2 receptor can be found in various organs inside the
human body such as kidneys, heart, lungs and the gastroin-
testinal tract. S1 and S2, the two sub-units of the S protein, are
mainly responsible for the receptor binding in the host cells
[23]. After the S protein binds with the receptor, the enve-
lope fuses with the cell membrane. Thus, this virus genome
is released into the target cell.

SARS-CoV-2 releases its genomicmaterial asmRNA.The
genome contains about six to twelve open reading frames
(ORFs) and its size is in the range of 29.8 kb to 30 kb. At the
5’untranslated region (UTR), approximately two-thirds of
the genome consists of the ORF1a and ORF1b polyproteins.
At the 3’UTR, one third of the genome comprises the four
structural proteins. Some accessory proteins such as ORF3a,
ORF6,ORF7ab,ORF8 andORF10 are also present in SARS-
CoV-2 [24].

SARS-CoV-2 genome sequence contains four main
nucleotide bases (Adenine-A, Cytosine-C, Guanine-G, and
Thymine-T) that appear in a specific order. A sequence of
three nucleotide bases is called a codon. As there are 4 nul-
ceotides, so there are 43 = 64 different codons in total. From
these 64 codons, 61 represent different amino acids (AAs)
and the remaining three codons play the role of stop sig-
nals. As there are 61 codons but only 20 different AAs, more
than one codon is used to encode different AAs. For map-
ping codons to AAs, the genetic code is used, where one
codon that contains three nucleotides encodes one AA [25].
In genome sequences, the term k-mers represents unique sub-
sequences of length k. For example, there are four k-mers for
k = 1, which are A, C , G and T . The sequence GCCT A
contains four 2-mers (GC, CC, CT , and T A) and three 3-
mers (GCC , CCT and CT A). A sample of SARS-CoV-2
genome sequences is shown in Fig. 2. Each sequence (row)
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Fig. 1 SARS-CoV-2
structure[22]

is represented in nucleotide form (top) and protein form (bot-
tom). In the first genome sequence with ID 1, the first three
nucleotides are G, A and T , that is the codon GAT, which
encodes the Aspartate (D) amino acid.

3 Related work

The reviews [26–31] provide a comprehensive overview on
the use of artificial intelligence (AI), machine learning (ML)
and deep learning in COVID-19 studies. Thesemethods have
been utilized in the past mostly for medical imaging (such as
computed tomography (CT) and X-Ray) segmentation and
diagnosis ofCOVID19 [32].However, asDriggs et al. argued

Fig. 2 SARS-CoV-2 genome sequences represented as nucleotides and
AAs

in an editorial [33], almost all the machine learning based
studies for COVID-19 diagnosis or prognosis did not fol-
low any standard approach for development or evaluation.
This makes it very hard, even for the experts, to select the
model that may provide the most clinical benefits. Roberts
et al. [34] reviewed 62 published articles for COVID-19 diag-
nosis or prognosis from CXR or CT images. It was found
that models proposed in these articles have no potential clin-
ical use because of underlying biases and/or methodological
flaws. Similarly, 169 studies that described prediction mod-
els for COVID-19 were reviewed by Wynants et al. [35],
which concluded that prediction models are badly reported
and highly biased. They recommended and suggested that
well documented data from COVID-19 studies should be
used in predictionmodels andmethodological guidancemust
be followed to develop reliable prediction models.

Noor et al. [36] performed a thematic analysis of COVID-
19 related tweets using the VOSviewer software to evaluate
public reactions towards the pandemic. SPMalgorithmswere
also used in that study to discover frequent words/patterns in
tweets and their relationshipswith each other. Heng et al. [37]
compared three SARS-CoV-2 genome sequences by using
twopairwise sequence alignment (PSA) algorithms knownas
the Needleman-Wunsch and Smith-Waterman algorithms for
mutation analysis. Pathan et al. [38] computed the mutation
rate in the genome sequences of COVID-19. They calcu-
lated the codon mutation and missense nucleotide mutation
rates. Moreover, a deep learning method was used for pre-
dicting the future mutation rate of SARS-CoV-2. The study
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[39] analyzed 329,942 SARS-CoV-2 genome sequence that
were downloaded from the GISAID [40] website, exclud-
ing the ORF1ab gene of sequences. They found 155 single
nucleotide polymorphsim (SNP) in more than 0.3% of the
sequences.Moreover, clustering results showed the existence
of B.1.1.7 (Alpha) variant subtype and the two most con-
served genes were E and ORF6.

For SARS-CoV-2 genome sequence classification and
detection, two CpG-based features have been used [41, 42].
Four classifiers were compared [41] and it was found that
the random forest classifier was more accurate than SVM
(Support Vector Machines, NB (Naive Bayes) and kNN (k-
Nearest Neighbors).

Theperformanceof kNNwas also investigatedbyusing19
distance measures under five categories [42]. Besides, three
similarity features have been integrated with the two CpG-
based features to improve SARS-COV-2 genome sequence
classification and prediction [43]. We believe that label-
ing genome sequences for these studies [41–43] was done
manually, which consumes a lot of time. Moreover, authors
claim that their proposed approach for COVID-19 genome
sequence detection is fast. However, no experiments are per-
formed in this regard. Representative genomic sequences of
SARS-CoV-2 were discovered by Lopez-Rincon et al. [44]
by coupling a deep learning method with explainable AI
techniques. In another study [45], the discrete Cosine and
Fourier transforms and various moment invariants were uti-
lized for feature extraction from 76 SARS-CoV-2 genome
sequences.Moreover, kNNanda cascade-forwardbackprop-
agation neural network were used for classification, where
kNN performed better. In both [44, 45], the dataset contain
few sequences and their feature extractionmethod are expen-
sive. Randhawa et al. [46] designed a classification method
using an intrinsic genomic signature found in SARS-CoV-2
with a machine learning-based AF method for classification
of SARS-CoV-2 genome sequences. Ahmed and Jeon [47]
compared genome sequences of four viruses, SARS-CoV-1,
SARS-CoV-2, MERS and Ebola by using various analysis
techniques. ML algorithms were also used for the classifica-
tion of genome sequences.

4 Analyzing SARS-CoV-2 genome sequences
with AF and SPMmethods

This section provides the detail of the proposed approach for
the first two contributions, where AF methods and SPM are
used for the analysis of SARS-CoV-2 genome sequences that
contain AAs. The approach consists of two main parts:

1. Various AF methods are first used to discover fre-
quent AA patterns and identify (dis)similarities between
SARS-CoV-2 genome sequences. Various distance mea-

sures performance is also compared. Moreover, various
AF methods are used to construct the phylogenetic tree
of SARS-CoV-2 genome sequences and the consensus
tree.

2. The AAs present in the genome sequences of SARS-
CoV-2 are first transformed into integers. SPM algo-
rithms are then used to not only find the AAs that occur
frequently, but also the sequential relationships between
AAs.Moreover, various sequence-based predictionmod-
els are used and compared for the prediction of the next
AA in a sequence(s).

More details on the two parts are provided next.

4.1 AFmethods

An overview on AFmethods are provided in this section that
are used to analyze the genome sequences of SARS-CoV-2.
AF methods can be divided into two main categories, that
are:

1. Word-based methods: Find the total occurrence of word
patterns (k-mers or k-tuples) in genomic sequences and
compare sequences using similarity/dissimilarity mea-
sures based on k-mer frequencies.

2. Information theory-basedmethods: Find and compute the
information shared among genomic sequences.

Besides the aforementioned two categories, some other
AF methods are based on the common substrings length,
iterated maps, Fourier-transformation, sequence representa-
tionbasedon chaos theory,micro-alignments andnucleotides
positions moments, etc. More details about AF methods and
their categories can be found in other studies [5–8, 48–50].
From a mathematical point of view, all AF methods are well
founded in the areas of linear algebra, probability, statis-
tics and information theory. Pairwise measures are generally
used to calculate similarity/dissimilarity or distance among
sequences.

4.1.1 AF methods based on word/k-mer

These AF methods compute the similarity/dissimilarity in
genome sequences on the basis of occurrences of all k-
mers. These methods are based on the concept that similar
words/k-mers are present in similar sequences and using
mathematical operations on the occurrences of k-mers give
a good measure to compute similarity/dissimilarity between
sequences. Over the years, various similarity/dissimilarity
measures have been proposed and developed. These mea-
sures can be divided into two main groups: (1) measures
that do not need background word frequencies and (2) mea-
sures that require background word frequencies. For the
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first type of measures, the observed word count/frequency
or word presence/absence are used to find the similar-
ity/dissimilarity measures. Thus, these measures are based
on k-mer counts/frequencies and measures based on pres-
ence/absence of k-mers. The three main steps for word
count/frequency-based AF methods (Fig. 3(a)) are [5]:

1. Divide sequences into k-mers: The sequences are first
divided into unique words of a given length (k-mer). A
simple example is provided for explanation. Let x =
ATGTGTG and y = CATGTG are two sequences.
For 3-mer that contain 3 elements, x and y are cut
into: Wx

3 ={ATG, TGT , GTG, TGT ,GTG} and Wy
3

= {CAT , ATG, TGT , GTG}. Note that three unique
words (ATG, TGT , GTG) are present in Wx

3 . Sets of
words present in both Wx

3 and W y
3 are combined using

the union to generate the full word setW 3 ={ATG,CAT ,
GTG, TGT }. Note that the words present in W 3 belong
to either Wx

3 or W y
3 .

2. Transform sequences into vectors: The word set obtained
after splicing are transformed into vectors. Take the
sequence x as example. The vector for x contains the
number of occurrences for each particular k-mer (from
W 3) appearance in x . Thus for two sequences (x and y),
the two created vectors are: cx3 = (1, 0, 2, 2) and cy3 =(1,
1, 1, 1).

3. Apply distance functions to find similarity/dissimilarity:
The similarity/dissimilarity among sequences is calcu-
lated by applying a distance function on the vectors cx3
and cy3 . For example, the Euclidean (EU) distance can be
used to find the similarity/dissimilarity [51]:

Eu(x, y) =
√ ∑

w∈Ak

( f (x)
w − f (y)

w )2

where Ak denotes the set of all k-mers that are present in
two sequences and f (x)

w and f (y)
w denotes the occurrence

frequencies of a k-mer w in the two sequences x and y.

A high similarity/dissimilarity value shows that the
sequences are more similar/distant. In word-based AF
methods, the conversion of sequences into vectors gives
one the advantage of using various distance measures
(such as Manhattan distance, Chebyshev distance,
Euclidean distance, Canberra distance, to name a few)
to compute the similarity/dissimilarity.

For measures that are based on the presence/absence
of words, the k-mers are treated as binary data. For two
sequences G(1) and G(2), the Hamming distance can be cal-
culated as [51]:

Hamming = (B + C)/N

where B denotes the k-mers present in G(1) that are absent
from G(2), C denotes the opposite of B and N indicates the
total number of k-mers.

In the measures that do not require background word
frequencies (CVTree, d2 and dS

2 ), the discovered word
counts/frequencies orword presence/absence are used directly
to evaluate similarity/dissimilarity. Calculating these mea-
sures also requires obtaining knowledge about the approx-
imate distribution of word counts/frequencies in the back-
ground sequences, for which Markov chains (MC) [52] are
widely used.

4.1.2 AF methods based on information theory

For AF sequence analysis, the field of information theory
has provided successful methods. They can find and com-
pute the amount of information shared among two sequences.
Genomic sequences are made from nucleotides and AAs.
Both of them are basically strings of symbols. Thus, infor-
mation theory metrics such as entropy and complexity can
naturally interpret the digital organization of nucleotides and
AAs.

Fig. 3 Word and information
theory-based distances
calculation [5]

(a) Word-based (b) Information theory-based
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TheKolmogorov complexity of genome sequences can be
calculated as the length of their shortest descriptions. Natu-
rally, sequences having longer descriptions generally show
a higher complexity. Thus, the Kolmogorov complexity in
this case cannot discover the shortest description for a given
character string. To solve this problem, general compression
algorithms can be used for complexity approximation. With
such algorithms, the compressed sequence length offers a
good estimate for the complexity. Thus, a complex string
will be less compressible. Computing the distance between
sequences by using complexity (also called compression)
involves three main steps: (Fig. 3(b)).

1. The sequences under consideration (x = ATGTGTG
and y = CATGTG) are combined to generate a long
sequence (xy = ATGTGTGCATGTG).

2. Complexity calculation. If x and y are exactly the same,
then xy complexity will be very close either to x or y. If
both sequences (x and y) are not same, then xy complex-
ity will be close to their cumulative complexities. Various
information-based distance functions can be found in the
literature. For example, the Lempel-Ziv complexity [53]
finds the different subsequences that are observed when
a sequence is read from start to end (Fig. 3(b)).

3. Normalized compression distance (NCD) [54], which is
a compressed distance measure, can be used to find the
similarity/difference between sequences:

NCD(x, y) = C(xy) − min{C(x),C(y)}
max{C(x),C(y)}

where the compressor such as bzip2 or gzip is represented
with C .

A popular entropy-based measure is the Kullback-Leibler
divergence, which is another information measurement that
can be used for sequence comparison. The comparison pro-
cess involves (1) finding the frequencies/counts of symbols
or words in a sequence, and (2) summing their entropies in
the compared sequences. Similarly, theBase-base correlation
(BBC) measure offers a novel sequence feature for studying
the genome information structure. This measure has been
used for the differentiation of various functional regions of
genomes. A genome sequence is converted in this measure
into a unique 16-dimensional numeric vector by using the
following equation [49]:

Ti j (K ) =
K∑

n=1

Pi j (n).log2

(
Pi j (n)

Pi Pj

)

where Pi and Pj are the probabilities of nucleotides i and j ,
Pi j (n) is the probability of nucleotides (i and j) at distance n

in the genome and K denotes themaximumdistance between
i and j . Interested readers can read more about compression
algorithms for AF methods in [55].

In this work, we used two tools Alfree [5] and CAFE
[51] that implement various AF methods. Methods that
are implemented in Alfree compute the distances among
sequences by finding various patterns and their properties
in sequences that are unaligned. Alfree provides implemen-
tation for 38 AF methods. These methods can be used to
calculate the distances among nucleotides, amino acids or
protein sequences, and for tree construction. The main fea-
ture of Alfree is that one can create consensus phylogenetic
trees. These trees give a good estimation for the support
level (agreement) among trees obtained by various individual
methods. Through this tree, one can examine the reliability
of phylogenetic relationships between methods. The word
and information theory-based AF methods implemented in
Alfree are listed in Table 1. Alfree also implements methods
that are based on graphical representations. Such methods
are not discussed here as they accept only DNA as input.

The CAFE (aCcelerated Alignment-FrEe sequence anal-
ysis) [51] tool offers the platform for AF sequence com-
parison to study the relationships between genomes and

Table 1 AF methods in Alfree

Method Distance

Word-based methods

Euclidean distance dS , dE , dEseq1, dEseq2

Minkowski distance dMinkowski

Absolute-based metrics dabs_mean , dabs_mult , dManhattan ,
dCanberra

Absolute-based metrics dabs_mult1, dabs_mult2,
dBray−Curtis , dChebyshev

Angle metrics dEV OL1, dEV OL2

Composition distance dCV

Feature Frequency Pro-
files

dFFP

Normalized Google Dis-
tance

dGoogle

Linear Correlation Coef-
ficient

dLCC

Return Time Distribu-
tion

dRT D

Boolean vectors dJaccard , dHamming , dSorensen−Dice

Frequency Chaos Game
Repr.

dFCGR

Information Theory-based methods

Lempel-Ziv complexity dLZ , dLZ∗ , dLZ1 , dLZ∗1 , dLZ∗∗1
NCD dNCD

Base-Base Correlation dBBC
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meta-genomes. CAFE has a user-friendly GUI (graphical
user interface) and in total, 28 AF measures are imple-
mented in CAFE. Out of 28, 10 distance measures are
based on k-mer counts/frequencies, 15 measures are based
on absence/presence of k-mers, and 3 measures are based on
background adjusted k-mer counts. In CAFE, one can see the
results for distance measures in different visualizations that
include dendrogram, heatmap, principal coordinate analysis
(PCoA) and network analysis display. Table 2 lists the word-
based AF methods that are implemented in CAFE.

4.2 SPM-based approach to analyze SARS-CoV-2
genome sequences

Genome sequences are built from nucleotides that make up
AAs, which are generally strings of characters. Thus, SPM
techniques are selected for their analysis.

The overall proposed learning approach with SPM and
sequence prediction models is shown in Fig. 4. The approach
has two parts:

1. Development of Corpus: Genome sequences of SARS-
CoV-2 are converted into a corpus of discrete sequences,
where AAs in the whole sequence are represented with
distinct integers.

2. ApplyingSPMandSequencePrediction forLearning:
SPM algorithms are used on the corpus to not only dis-
cover AAs that occur frequently, but also the sequential
relationships between them. Moreover, prediction tech-

Table 2 AF methods in CAFE

Word-based methods

Chebyshev Euclidean

Manhattan Canberra

d2 or cosine Pearson

Feature Frequency Profiles Jensen-Shannon divergence

Co-phylog

Background adjusted word-based methods

CVTree d∗
2

dS
2

Presence/absence of words

Gower Kulczynski

Dice Anderberg

Russel Tanimoto

Jaccard Antidice

Yule Ochiai

Phi Hamman

Sneath Hamming

Matching

niques are used to predict the next amino acid(s) in a
genome sequence.

More details on the two parts are provided next.

4.2.1 Corpus development

The online database GenBank [56] was used to obtain the
genome sequences of SARS-CoV-2 strains. National Center
for Biotechnology Information (NCBI) supports the Gen-
Bank and at the time of this paper submission, the NCBI
database for SARS-CoV-21 contains 6,728,463 nucleotide
records for SARS-CoV-2.

To efficiently use SPM and sequence prediction models,
genome sequence data is first transformed into a suitable elec-
tronic format where the “AAs to integers” abstraction is used.
Thus, each AA is converted into a distinct positive integer.
This general abstraction allows one to use SPM algorithms
and sequence prediction models to discover interesting and
important patterns in the corpus and perform accurate pre-
diction respectively.

The SARS-CoV-2 genome sequences corpus acquired
from the GenBank [56] in protein form lists genome
sequences in a FASTA format that contain the genes names,
followed by AAs sequence. In the pre-processing step, the
genes field in the genome sequences are removed. Thus, the
complete genome sequence is a sequence ofAAs.Combining
all these AAs generates a corpus that has discrete sequences.

Let AAs = {A, C , D, E , F , G, H , I , K , L , M , N , P , Q,
R, S, T , V , W , Y } be the set of all distinct amino acids in
sequences. The alphabets in the set represent different amino
acids such as A and C represent the Alanine and Cysteine
amino acids, respectively. |AAs| represents the set cardinal-
ity of AAs. Thus, |AAs| = 20 as there are 20 distinct amino
acids that make the proteins.

Now, a COVID-19 (SARS-CoV-2) genome sequence,
represented as SGS, is an ordered list of amino acids,
SGS = 〈AAs1, AAs2 , ..., AAsn〉, such that AAsi ⊆ AAs
(1 ≤ i ≤ n). Similarly, the SARS-CoV-2 genome sequences
corpus, represented as SGSC , is a list of genome sequences
SGSC = 〈 SGS1, SGS2, ..., SGSp〉. As an example, a
SGSC containing four lines (genome sequences) with four
identifiers (IDs) is shown in Table 3.

As the genome sequences of SARS-CoV-2 in protein form
contain sequences of AAs, each AA in the final step is
replaced by a distinct positive integer. For example, the amino
acid Alanine (A), Cysteine (C), Aspartate (D) and Glutamate
(E) are replaced by 1, 2, 3 and 4 respectively. Moreover, for
some SPM algorithms, -1 should be added between each AA
and the row (line) must end with -2 [57].

1 https://www.ncbi.nlm.nih.gov/sars-cov-2/
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Fig. 4 The approach based on
SPM and sequence prediction to
analyze AAs in the genome
sequences of SARS-CoV-2

SPM

SARS-CoV-
2 Genome Corpus

Frequent AAs

Sequential rules between
frequent AAs 

Predictions of AAs

Abstraction
SARS-CoV-
2 Genome
Sequences Sequence 

Prediction

(1) Corpus Development (2) Learning

4.2.2 Applying SPM and sequence prediction for learning

SPM techniques can find patterns (subsequences of AAs)
that are present in genome sequences. A sequence, genome
sequence in this work, Sα = 〈 α1, α2, ...,αn 〉 is present (or
contained) in another sequence Sβ = 〈β1, β1, ..., βm〉 iff
there exist integers 1 ≤ i1 < i2 < ... < in ≤ m, such that
α1 ⊆ βi1, α2 ⊆ βi2, ..., αn ⊆ βim (denoted as Sα � Sβ ).
The sequences Sα is a subsequence of Sβ if Sα is contained
in Sβ . The support of Sα , denoted as sup(Sα), in a corpus
SGSC refers to the total number of sequences containing Sα .
It is is defined as: sup(Sα) = |{S|Sα � S ∧ S ∈ SGSC}|.
For a SGSC , frequent SPM deals with identifying all the
frequent genome subsequences. For a user-defined minimum
support threshold minsup (minsup > 0) and a SGSC , a
genome subsequence S is frequent if sup(S) ≥ minsup.
Take Table 3 as an example, the subsequence 〈CEF〉 that
contains three AAs has a support of 4 as the subsequence
〈CEF〉 is present in four lines.

The task of frequent SPM in a corpus that contains genome
sequence of SARS-CoV-2 is not an easy task. The main rea-
son is that genome sequences are generally similar to each
other, with little difference, and they are very long. A genome
sequence that contains n items (AAs in this work) can have
up to 2n − 1 distinct subsequences. Thus, using the naive
approach to calculate the support of all subsequences is infea-

Table 3 A sample of a SGSC

ID Sequence

1 〈....WQTGDFVKANCEFCGTENLTKEGATTCGYL.....〉
2 〈....LEILQKEKVNINIVGDFKLNCEFNEIIILASF.....〉
3 〈....DGISQYSLRLIDAMMFTSDLATNNCEFXMAY.....〉
4 〈....TNCEFTLGGAPTKVTFGDDTVIEVQGYKSVN.....〉

sible. However, efficient algorithms have been proposed and
developed in recent years that use various optimizations for
finding the exact solution for aSPMproblemwithout the need
to explore the whole search space. SPM algorithms explore
the pattern search space by first finding all frequent subse-
quences that contain 1 item (AA), called 1-sequences. Then,
more items are appended to these subsequences recursively
to find larger subsequences. Two operations (s-extensions
and i-extensions) are used to do this. Both s-extensions and
i-extensions are used to produce a (k + 1)-sequence from
one or more k-sequences. Note that SPM can be used on
more general cases where simultaneous items are allowed in
a sequence. However, in this work, AAs are always totally
ordered.

In SPM, it is necessary to define a total order relation ≺
on items so that sequential patterns can be identified rapidly
and also to avoid discovering duplicate sequences. Note that
the total order has no effect on the final result generated by
SPM. Thus any total order relation can be used. In this work,
the order ≺ is simply defined on AAs as the lexicographical
order, that is A ≺ C ≺ D ≺ E ≺ F ≺ G ≺ H ≺ I ≺ K ≺
L ≺ M ≺ N ≺ P ≺ Q ≺ R ≺ S ≺ T ≺ V ≺ X ≺ Y .
SPM algorithms either employ a depth-first search or a
breadth-first search. Moreover, SPM algorithms utilize the
Apriori (also known as anti-monotonicity) property to avoid
exploring the whole search space. This property basically
states that for Sα and Sβ , if Sα is a subsequence of Sβ , then
the support of Sβ should be equal or less than that of Sα . For
instance, if a sequence that contains (〈L〉) has a support of 3,
then the sequence 〈LV 〉 cannot have a support greater than 3.
This property helps in reducing the search space as it proves
that the extensions of an infrequent sequence are also infre-
quent. Thus, they cannot be considered as sequential patterns.
For example, ifminsup = 4, finding the extensions of 〈L〉 is
unnecessary as they are all infrequent. SPM algorithms differ
from each other in the following aspects:
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1. Whether a depth-first search or breadth-first is used,
2. Whether a vertical database representation or horizontal

database representation is used, and internal data struc-
tures,

3. How the support is computed for those patterns that sat-
isfy the minsup constraint.

SPAM [58], TKS [59] and CM-SPAM [60] are some effi-
cient SPM algorithms.

The CM-SPAM [60] algorithm is an improved version of
SPAM. To discover all the sequential patterns, CM-SPAM
uses a depth-first search and a vertical database repre-
sentation. CM-SPAM utilizes the CMAP (Co-occurrence
MAP) data structure, that saves information about item
co-occurrences, to reduce the search space. However, in CM-
SPAM, setting the minsup value on a new dataset is not
intuitive. This is because a large value ofminsup may result
in discovering no patterns or missing important patterns. On
the other hand, a small value of minsup may generate large
patterns, most of which are redundant. To overcome this, the
TKS (Top-k Sequential) algorithm was proposed. A user can
find a certain number of patterns by using the TKS algorithm
through the parameter k. In TKS, various strategies are used
for the search space reduction.

In genome sequences, sometimes it is also interesting to
discover those sets of AAs that occur frequently without tak-
ing into account the sequential ordering. Frequent itemset
mining (FIM) [61], which is a special case of SPM, can be
used for this purpose. Let AAS represents an amino acids
set, such that AAS ⊆ AAs. For a SGSC and a minsup
threshold (minsup > 0), the support of AAS, represented
as sup(AAS), in SGSC is the total occurrence of sequences
containing AAs from AAS: sup(AAS) = |{S|∃x ∈ S ∀x ∈
AAS}|. The task of FIM in SGSC is to enumerate all fre-
quent amino acids sets. If sup(AAS) ≥ minsup, then AAS
is frequent. For example, the amino acids set {N ,C, E, F}
in Table 3 is frequent as the four genome sequences contain
this AAS.

For FIM, Apriori [62] is the first algorithm and is arguably
themost famous. In large databases, Apriori can discover fre-
quent itemsets and proceeds by finding those common items
that are extendable to larger itemsets that appear frequently.
Itemsets (AAS here) discoveredwithApriori can also be used
to derive association rules (relationships) among items. Some
fast and memory efficient FIM algorithms are now present in
the literature.

In this paper, sequential rules are also studied in genome
sequences. The motivation to discover these rules is that fre-
quent sequential patterns provide frequent subsequences of
AAs. However, some discovered frequent sequential patterns
may be redundant or spurious because these are found with-
out checking the probability or confidence that some AAs

follow others. Therefore, sequential frequent patternsmay be
misleading in some cases. Algorithms developed for mining
sequential rules find patterns by taking into account both their
support and confidence [63]. Thus for a genome sequence, a
sequential rule Y → Z represents a relationship between two
AAs Y , Z ⊆ AAS, such that Y ∩ Z = ∅ and Y , Z �= ∅. A
rule r : Y → Z means that if items ofY appear in a sequence,
items of Z will appear afterward in the same sequence.

An AA set Y is contained in a sequence Sα (written as
Y � Sα) if an only if Y ⊆ ⋃n

i=1{αi }. A rule r : Y → Z
is present or contained in Sα (r � Sα) if and only if there
exists an integer k such that 1 ≤ k < n, Y ⊆ ⋃k

i=1{αi } and
Z ⊆ ∪n

i=k+1{αi }. The support and confidence of a rule r in
a SGSC are calculated as:

supSGSC (r) = |{S|r � S ∧ S ∈ SGSC}|
|SGSC |

con fSGSC (r) = |{S|r � S ∧ S ∈ SGSC}|
|{S|X � S ∧ S ∈ SGSC}|

For a SGSC , a minsup > 0 (user-defined minimum sup-
port) and a mincon f ∈ [0, 1] (minimum confidence thresh-
old), if supSGSC (r) ≥ minsup then the rule r is a frequent
sequential rule. On the other hand, r is a valid sequential
rule iff it is frequent and con fSGSC (r) ≥ mincon f . Min-
ing sequential rules task deals with discovering all the valid
sequential rules in a corpus.

ERMiner (Equivalence class based sequentialRuleMiner)
[63] is a representative sequential rule mining algorithm
that uses a vertical database representation and depends
on the equivalence classes of rules concept that have the
same antecedent and consequent. Two operations are used
in ERMiner, namely left and right merges, for the generation
of larger rules from smaller rules. The Sparse Count Matrix
(SCM) technique is used to reduce the search space. In [63],
it was shown that ERMiner performed better than several
other previous sequential rule mining algorithms.

In this study, another task performed is to use sequence
prediction models to see if the arrangement of AAs is pre-
dictable in SARS-CoV-2 genome sequences. For this, several
popular models are used to examine their performance and
compare their results to see which model performs well. The
models used in this paper include CPT+ [64], CPT [65],
DG [66], AKOM [67], Mark1 [68], TDAG [69] and LZ78
[70]. DG (Dependency Graph) [66] is a light-weight Markov
basedmodel that is used to perform sequence predictions.DG
takes a set of training sequences as input and computes the
probabilities that each symbol is followed by each symbol.
However, in DG, only the last symbol is used for the predic-
tion of the next symbol. The AKOM (All-k Order Markov)
[67] model overcomes the limitation of DG by considering
the last k symbols in the prediction. The value of k is set by the
user. On the other hand, in Mark1, only the current symbol

21928



123

Using alignment-free and pattern mining methods for SARS-CoV-2 genome analysis

is used for the prediction of the next symbol. In LZ78 [70]
and TDAG (Transition Directed Acyclic Graph) [69], data
compression techniques are used in the prediction.

The Compact Prediction Tree (CPT) and its improved ver-
sion CPT+ consider more than one symbol and their different
orderings for prediction. Their main drawback is that they
require a large memory. For prediction, CPT+ takes as input
a set of training sequences and generates three data struc-
tures: (1) a prediction tree, (2) a lookup table and (3) an
inverted index. These three structures are constructed incre-
mentally and during the training process, each sequence is
considered one by one. For Sα containing n elements, the
suffix of Sα with the size y (1 ≤ y ≤ n) is defined as
Py(Sα) = 〈αn−y+1, αn−y+2, ..., αn〉. For Sα , predicting the
nextAA is performed by discovering sequences that are simi-
lar to Py(Sα). The discovered sequences can be in any order.
CPT+ also uses each sequence consequent that is similar
to Sα in the prediction. Let Sβ be another sequence that is
similar to Sα . With respect to Sα , the consequent of Sβ is
the longest subsequence 〈βv, βv+1, ..., βm〉 of Sβ such that⋃v−1

k=1{βk} ⊆ Py(Sα) and 1 ≤ v ≤ m. The count table (CT)
data structure stores each AA that is found in the consequent
of a similar sequence of Sα . In last, the AA with the highest
support in the CT is returned by CPT+ as prediction.

The SPMF data mining library [57], developed in Java,
implements more than 230 data mining algorithms. In this
work, we use SPMF since it implements the aforementioned
SPM and sequence prediction algorithms.

5 Experiments and results

The results obtained by using the AF methods discussed in
Section 4.1 and SPM algorithms in Section 4.2 on SARS-
CoV-2 genome sequences are presented in this section.

Table 4 presents the statistics about the collected genome
sequences. Through GenBank, one can download genome
sequences in three forms: (1) nucleotide, (2) coding region,
and (3) protein. In thiswork, the genome sequences in protein
form are used. Note that NC_045512 is the RefSeq (refer-
ence sequence) for SARS-CoV-2 in NCBI. This sequence
was released by the Public Health Clinical Center and School
of Public Health in Shanghai, China [1]. A ninth generation
Intel Celeron processor laptop with 16 GB RAM is used to
perform the experiments.

5.1 Results for AFmethods

We first provide the results obtained by using AF methods
offered by Alfree, followed by the results obtained by using
AF methods offered by CAFE on SARS-CoV-2 genome
sequences.

5.1.1 Alfree results

We ranAlfree on the corpus that contains the sequences listed
in Table 4 to find frequent AA sets. Some frequent AAs that
are discovered by Alfree in the RefSeq (NC_045512) and in
all the sequences are listed in Table 5. It is interesting to find
that the extracted frequent AAs in one genome (NC_045512)
and all genome sequences are almost the same. For exam-
ple, the most frequent AA was Leucine (L) in NC_045512
and in all genome sequences. Same is the case for other fre-
quent amino acid patterns. There are a total of 25,650 AAs
in NC_045512 and approximately 9.62% of them are L, fol-
lowed by Valine (V) with a share of approximately 8.26%.
On the other hand, there are 87,935 AAs in all considered
genome sequences and approximately 9.60% of them are L,
followed by V with a share of approximately 8.13%. It is

Table 4 Characteristics of
SARS-CoV-2 genome
sequences

Accession Number Date of Release Location Date of Collection

NC_045512 2020-01-13 China 2019-12

MW052550 2020-11-03 South Korea 2020-07-07

MW192918 2020-10-31 Gabon 2020-03-14

MW173089 2020-10-26 USA 2020-04-25

MW165491 2020-10-24 Iran 2020-04

MW161041 2020-10-23 Russia 2020-06-04

MW092768 2020-10-12 Sweden 2020-02-25

MW040503 2020-09-26 Venezuela 2020-05-22

MT843234 2020-08-28 Italy 2019-12-18

MT750057 2020-07-13 USA 2020-06-17

MT750058 2020-07-13 USA 2020-06-09

MT291827 2020-04-06 China 2019-12-30

MT291828 2020-04-06 China 2019-12-30
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Table 5 Extracted frequent AAs NC_045512 All sequences
Patterns Occurrence Patterns Occurrence Patterns Occurrence Patterns Occurrence

L 2468 LL 236 L 8394 LL 826

V 2121 VL 231 V 7152 VL 782

T 1935 LK 219 T 6630 LK 702

A 1763 VV 210 A 5989 VV 689

S 1705 LA 185 S 5961 LA 601

K 1548 LLS 32 G 5245 LLL 113

G 1516 LLL 31 K 5150 LLS 97

N 1382 GVV 28 N 4833 GVV 91

D 1322 TTT 28 I 4537 ALL 90

I 1286 VLL 27 D 4469 VLL 90

F 1265 LKTL 12 F 4420 LKTL 36

E 1260 LLSV 12 E 4189 LLSV 36

Y 1173 TTTL 12 Y 3984 TTTL 36

P 996 VVTT 12 P 3479 VVTT 36

Q 906 EGSV 10 Q 3244 NLLL 34

R 856 EVVLK 8 R 2975 EVVLK 24

C 798 LAKAL 8 C 2707 LAKAL 24

M 585 LEGSV 8 M 1894 LEGSV 24

H 484 LLSVL 8 H 1606 LLSVL 24

W 281 LSEQL 8 W 957 LSEQL 24

important to point here that Alfree was fast and generated
the frequent AAs in seconds.

Various distance measure in Alfree are used next to com-
pute the pairwise (dis) similarities between the SARS-CoV-2
genome sequences. Figure 5 shows the heatmaps for the
two word-based methods (dE and dCanberra), the informa-
tion theory-based method (dNCD) and dW . It is observed that
the four measures produced different heatmaps for the same
sequences. Interestingly, the heatmap of dCanberra was most
similar to the heatmap of dNCD as compared to dE and dW .

The calculated distance by various word and informa-
tion theory-based AF methods on two genome sequences
(MT750057 and MT750058) is shown in Table 6 for com-
parison. The calculated (dis)similarity by dS and dE (both
are Euclidean distance-based measures) was very different,
whereas the results for dEseq1 and dEseq2 were the same.
The two measures dMinkowski and dS generated the same
results. The Angle metrics measures (dEV OL1 and dEV OL2)
also generated the same results. The performance of five
absolute-basedmetrics measures (dabs_mean , dabs_Manhattan ,
dabs_Bray−Curtis , dabs_Canberra and dChebyshev) was differ-
ent from each other. Similarly, the performance of three
Boolean vectors-based measures (dSorenson_dice, dJaccard

and dHamming) was different from each other. The Kullback-
Leibler divergence (DK L ) uses entropy-based measure to

compare genome sequences. The two information theory-
based methods (dBBC and dNCD) performed almost simi-
larly. In summary, we find that different AF methods can be
compared easily and efficiently in Alfree.

The constructedphylogenetic tree for thegenomesequences
of SARS-CoV-2 in Table 4 with three measures (dE ,
dCanberra and dNCD) is shown in Fig. 6 as dendogram. The
consensus tree that summarizes the agreement between var-
ious AF methods is also shown in Fig. 6. For an organism
or group of organisms, a phylogeny (also known as phyloge-
netic tree) or evolutionary tree diagrammatically illustrates
the relationship and evolutionary history. Phylogeny rela-
tionships can provide very important information related to
shared ancestry. Here, the phylogenetic tree is built for 24
AF methods. Out of 24, 21 are word-based methods, 2 are
information theory-based methods and 1 is a hybrid method.
In the consensus tree, the range [0, 1] is used to represent the
support values of all nodes. The four trees in Fig. 6 describe
how strains of a virus (SARS-CoV-2 in this work) are con-
nected with each other and how they have evolved.

Note that the k-mer word frequencies-based method
(dFCGR) and the three graphical representation-based meth-
ods (d2DSV , d2DMV and d2DNV ) work on DNA sequences
in Alfree. Next, we provide the results obtained by using
various AF methods in CAFE.
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Fig. 5 Calculated distance among genome sequences by using dE , dCanberra , dNCD and dW

Table 6 Measured distance for
MT750057 and MT750058

Measures AD* ND** Measure AD ND

MT750057, MT750058

dE 132 0.001 dS 11.489 0.025

dEseq1 0.009 0.001 dEseq2 0.009 0.001

dMinkowski 11.489 0.025 dabs_mean 0.015 0.003

dBBC 0.003 0.005 dManhattan 72 0.003

dBray_Curtis 0.002 0.003 dCanberra 16.499 0.004

dEV OL1 0.0005 0.001 dEV OL2 0.0005 0.001

dFFP 0.00016 0.001 dGoogle 0.0025 0.003

dLCC 0.0014 0.003 dChebyshev 2 0.063

dK L 3.67 0.000 dSorenson_Dice 0.0007 0.001

dJaccard 0.0014 0.001 dHamming 7 0.002

dRT D 0.004 0.004 dCV 0.0004 0.001

dNCD 0.035 0.036

*AD: The actual distance, **ND: The normalized distance
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dE dCanberra

DNCD Consensus Tree

Fig. 6 Phylogeny for SARS-CoV-2 strains

5.1.2 CAFE results

The heatmaps obtained for different SARS-CoV-2 strains
in CAFE are shown in Fig. 7. The heatmaps are obtained
by using four measures (Manhattan, Pearson, Hamming and
dS
2 ). The value of K is set to 4 for all four measures, whereas
Markov order 3 is used for the dS

2 measures that is based
on background adjusted k-mer counts. It can be seen that
the k-mer-based AF dissimilarity measures (Manhattan and
Pearson) generated the same heatmaps whereas the heatmap
for the measure based on background adjusted k-mer counts
(dS

s ) ismore similar to the heatmap for theHamming distance
measure that is based on absence/presence of k-mers as com-
pared to the heatmaps for Manhattan and Pearson measures.
The phylogenetic trees for different SARS-CoV-2 strains in
CAFE are shown in Fig. 8. The trees are obtained by using
four measures with the same parameter for K and markov
order. Interestingly, the trees for three measures (Manhattan,
Hamming and dS

2 ) are very similar to each other.
Compared to Alfree, CAFE does not provide the feature

of counting the frequent patterns of nucleotides and AAs.
Moreover, one can not runmore than onemeasure at the same
time, and can only get the results for one measure at a time.
Alfree provides the implementation for the Kullback-Leibler

(KL) divergence, whereas CAFE implements a more smooth
and symmetric version of KL divergence called the Jensen-
Shannon (JS) divergence. Computation wise, we found that
CAFE speed is about the same as Alfree. Obviously, Alfree
takes more time in the case where more than one measure
is used to analyze strains of SARS-CoV-2. CAFE provides
results for principal component analysis (PCoA) and network
analysis that are discussed next.

Figure 9 shows the 2-dimensional projections obtained
by using the PCoA with four measures. PCoA is a statistical
method that summarizes the (dis)similarity among SARS-
CoV-2 strains in a low-dimensional, Euclidean space. From
the figure, we can see that four measures generated different
projections. Figure 10 shows the network analysis using four
measures for strains of SARS-CoV-2 with respect to the 10%
quantile of the edgeswith smallest distance asweight. Again,
the results for four measures were different from each other.

NCBI uses alignment-based method called Basic Local
Alignment Search Tool (BLAST) [71] for genome analysis
and building a phylogenetic tree. A study [72] used the Nat-
ural Vector AF method for the analysis of the phylogeny
among SARS-CoV-2 and human coronaviruses. Through
the distance measured among SARS-CoV-2 and coron-
avirus genomes residing in animals, it was established that
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Fig. 7 Distance between genome sequences calculated using Manhattan, Pearson, Hamming and dS
S measures

SARS-CoV-2was likely transmitted frombats to pangolins to
humans. We also found that AF methods can efficiently ana-
lyze and compare genome sequences. Alfree provides certain
features that can be used to extract frequent patterns from
nucleotides and AAs and to build consensus phylogenetic
tree that is not available in CAFE. Whereas, CAFE provides
the PCoA analysis and network analysis features that are not
available in Alfree.

5.2 Results for SPM

This section presents the obtained results by using SPMalgo-
rithms on the corpus.

5.2.1 Frequent AA sets

The frequent AA sets are discovered in the corpus first
by applying the Apriori algorithm. Apriori takes a minsup
threshold and a corpus as input and generates the frequent
AA sets as output. Table 7 lists the extracted AA sets by
Apriori in one genome sequence (MT291828) for different
minsup values. We found that for the minsup in the range
of 70% - 100%, Apriori produced only 19 frequent patterns.
By decreasingminsup to 10%, Apriori produced 35 patterns
and for minsup of 1%, Apriori produced 283 patterns. Note
that the amino acid Tryptophan (W) is not included as its
occurred only 157 times. It occurred when minsup is set to
60%. Similar to the results obtained for frequent AAs with
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Fig. 8 Phylogeny for SARS-CoV-2 strains using different measures

Alfree in Table 5, it can be seen in Table 7 that inMT291828,
L occurred the most frequently, followed by V.

For biologists, the frequent AA sets may not be interesting
because they are unordered and the Apriori algorithm does
notmake sure that anAA from theAA set occur contiguously
in a genome sequence. This means that an AA set can be
considered as occurring in a genome sequence if all its AAs
occurs in it. However, the AAs are separate from each other
in the sequence through some other sub-patterns. These sub-
patterns are called gaps.

Next, the results for SPM algorithms are presented that
overcome the aforementioned limitations. Thus they find and
reveal more interesting and meaningful patterns.

5.2.2 Frequent sequential patterns

SPM algorithms are used on genome sequences in the corpus
to find hidden sequential patterns amongAAs. First, the CM-

SPAM algorithm, that requires a minsup threshold and a
corpus, is executed.

Some frequent patterns for AA that are discovered in
MT291828 by using CM-SPAM are listed in Table 8. The
first three patterns on the left side are found for aminsup of at
least 95% of the lines in the genome sequence (MT291828).
For example, SL has a support of 232 and occurred in approx-
imately 230 lines in MT291828. Similarly, the first three
patterns on the right side occurred in at least 70% of lines in
MT291828.

The mining process to discover frequent AAs was fast in
terms of computation time and memory usage. For various
minsup threshold values, the performance of CM-SPAM is
provided in Table 9. It can be see that CM-SPAM finds more
frequent patterns by decreasing minsup, while the runtime
and the memory usage increases.

Next, the TKS algorithm was applied for mining the top-
k sequential AA patterns. TKS takes k (the total number of
patterns that a user needs) and a corpus as input. It returns
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Fig. 9 PCoA of SARS-CoV-2 strains using four measures

the top-k most frequent sequential patterns as output. The
parameter k is used in TKS in place of minusp because:

1. Selecting the proper minsup to find the desired useful
patterns affects the performance of SPM algorithms. For
example, we already observed that with a decrease in
minsup, CM-SPAM generated more frequent patterns.
Most of the patterns may be redundant and its hard for
users to look for specific patterns in a file that contain
thousands of patterns.

2. It is hard and time consuming to fine-tune the minsup
value to find enough but not too many patterns.

Thus, the parameter k overcomes these limitations by
putting a bound on the total discovered patterns by TKS.
Some top frequent AAs patterns discovered inMT291828 by
the TKS algorithm of different lengths are shown in Table 10.
We can see that frequent patterns for AAs discovered by
CM-SPAM and TKS are similar to each other. Moreover, we

observe that AAs that occurred in most sequences appear
frequently in frequent AA patterns.

5.2.3 Sequential rules

Next, sequential rules in the genome sequences are studied.
Some sequential rules discovered by the ERMiner algorithm
in one genome sequence (MT291828) are shown in Fig. 11
that indicate a strong relationships among AAs. Both the
mincon f and minsup were set to 90%. Thus, those rules
were discovered by ERMiner that have confidence of 90%,
at least. In a sequential rule Y → Z with a 90% confi-
dence, AAs set in Z follows AAs set in Y no more than 90%
of the times when Y occurs in a sequence. For mincon f
and minsup of 90%, 28 sequential rules were generated by
ERMiner in total. In Fig. 11, the values above and below an
arrow is for the support and confidence respectively. The first
rule S → A shows that the amino acid Alanine (A) follows
the amino acid Serine (S) 93.2% of the times with a support
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Fig. 10 Network display of SARS-CoV-2 strains using four measures

of 222. We found that the total number of AAs in a genome
sequence has an effect on the performance of SPMalgorithms
and the discovered frequent patterns and sequential rules.

5.2.4 Amino acid (AA) prediction

AA(s) prediction in SARS-CoV-2 genome sequence is
performed to investigate the predictability of a genome
sequence. To predict the next AA and their patterns, several
models are compared. AAs and their frequent patterns in a
genome sequence are used to train each model. After train-
ing, the next AA and their patterns in a genome sequence are
predicted by using a prediction model. Predicting the next
AA and their pattern(s) is based on the scores computed by
the prediction model for each AA.

The performance of seven prediction models (LZ78,
AKOM, DG, CPT+, CPT, TDAG and Mark1) are com-
pared. 10-fold cross-validation is used for model training
and testing. In machine learning, cross-validation is a statis-

tical method that is used for characterizing the performance
of models. Through cross-validation, one can evaluate and
access the generalization of independent dataset over the
results of statistical analysis provided by the model. In the
k-fold cross-validation, the dataset is divided randomly into
k equal sized subdatasets. In k subdatasets, one subdataset is
used as the validation set to test the model and the remaining
k−1 sub-datasets are used to train the model. This process is
used k times which means that each subdataset is used once
as the validation set. The average of k results provides the sin-
gle estimation for the overall result . 10-fold cross-validation
is used here to make sure that low variance is achieved dur-
ing each run. Table 11 provides the details about the dataset
containing only one genome sequence (MT291828).

The results of the prediction models are interpreted and
evaluated with three measures: (1) success: if the model cor-
rectly predicts, (2) failure: if the model incorrectly predicts,
and (3) no match if the model is unable to predict. For all pre-
diction, the three measures (success, failure and no match)
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Table 7 Discovered frequent AA sets

Pattern(s) Support Min.
Support

Pattern(s) Support Min.
Support

A 967 100% VY 135 50%

C 434 100% TY 74 30%

D 733 100% SY 65 20%

E 681 100% TV 50 20%

F 708 100% SV 52 15%

G 840 100% SVY 40 15%

H 264 100% TVY 44 15%

I 728 100% PY 34 10%

K 838 100% LY 35 10%

L 1365 100% PVY 25 10%

M 312 100% LVY 23 5%

N 765 100% RVY 19 5%

P 558 100% VWY 18 5%

Q 516 100% STVY 13 5%

R 481 100% NVY 20 4%

S 955 100% LPVY 9 3%

T 1063 100% PTVY 9 3%

V 1152 100% PSTVY 5 2%

Y 643 100% GPTVY 4 1%

are expressed as percentage. Among these measures, the
accuracy is generally considered the most important mea-
sure for model comparison as it shows the ability of a model
to perform better predictions. Besides, the training and test-
ing times for the models were measured in seconds.

Results for the predictionmodels are shown inTable 12 for
MT291828. This table also includes the results for a baseline
model, called Random that randomly predicts the next AA
in a genome sequence.

We found that CPT+ and CPT achieved the highest accu-
racy (100%), followed by AKOM, TDAG and LZ78. On

Table 8 Frequent AAs extracted by using the CM-SPAM algorithm

Pattern Support Min. Sup Pattern Support Min. Sup

LL 233 95% AVLL 182 70%

SL 232 95% GLLL 179 70%

VL 234 95% VNLL 176 70%

AL 224 90% LLALL 147 60%

VLT 219 90% TLVVL 147 60%

VT 228 90% VSVLL 149 60%

VLL 224 90% ALAVL 123 50%

AAL 196 80% AVLLLL 100 40%

VVT 200 80% AAALLL 74 30%

VSL 217 80% YYVTGV 52 20%

Table 9 CM-SPAM performance for varying minsup

Min. Sup % Time (Sec) Patterns Memory (Mb) Min. Sup.

95% 0.26 8 41.40 231

80% 0.123 231 32.85 195

60% 1.5 3,583 125.786 146

40% 15.9 47,411 125.78 98

20% 272 136,984,0 125.31 49

the other hand, DG, Mark1 and Random generate the same
results with the highest number of failures. Both CPT+ and
CPT performed well as they take into account not only many
symbols but also their different orderings for prediction.

We also found two more interesting observations: (1)
No Match is always zero which means that all the models
were able to do the predictions, and (2) models train-
ing and testing times were very low and remained quite
similar.

Other than CPT+ and CPT, the accuracy of six models
to predict AA in genome sequences was comparatively low.
The main reason for this is the fact that genome sequences
contain 20 distinct AAs and their distribution is unequal (or
not uniform). The predictionmodels has onemain limitation.
They can be used to predict only one AA in the genome
sequence.

6 Mutation

This section presents the approach to analyze SARS-CoV-2
genome sequences in protein form for mutations.

Taking prior work [12] as starting point, the focus here is
on mutation analysis in SARS-CoV-2 genome sequences in
protein form and the pseudocode is presented in Algorithm 1.
Algorithm 1 takes as input two genome sequences of SARS-
CoV-2 (GS1 and GS2) and compares the AAs in the two
sequences line by line. The line numbers and the locations in
line where AAs are different are stored in a set called Di f f ,

Table 10 Frequent AAs extracted by using TKS algorithm

Pattern Length Support Pattern Length Support

VLT 3 219 NVTLP 5 85

SL 2 232 TLLTGL 6 85

GS 2 217 AVLLLL 6 100

AAL 3 196 YYVTGV 6 52

VNLL 4 176 GVVLLLV 7 72

ALLL 4 182 LLLLVTL 7 75

AL 2 224 VLL 3 224

LLTLV 5 144 TLVVL 5 147
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Fig. 11 Discovered sequential rules by using the ERMiner algorithm

that also stores the changed AAs. The following formula is
used to calculate the mutation rate (MR):

MR = T M

T AA
× 100 (1)

where T M represents the number of changes that have
occurred and T AA represents the total number of AAs.

Algorithm 1 Mutation Analysis of SARS-CoV-2 genome
sequences in protein form
Input: Genome sequences in protein form (GS1, GS2)
Output: Locations with changed AAs in GS1, GS2 and the mutation
rate

1: Di f f ← ∅;
2: T L ← total lines in GS1,GS2; � len(GS1) = len(GS2)
3: T M, T AA ← 0
4: for k ← 1 to T L do
5: for i ← 1 to length(T L) do
6: if GS1(i) �= GS2(i) then
7: Di f f ← k, i,GS1(i),GS2(i);
8: T M ← T M + 1
9: end if
10: T AA ← T AA + 1
11: end for
12: T AA ← T AA + 1
13: end for
14: MR ← T M

T AA × 100
15: return Di f f , MR

This algorithm is implemented in Python. The algo-
rithm is first run on two genome sequences (MT750057 and
MT750058) from Table 4. The algorithm returns the loca-
tions and lines number where the AAs in MT750057 and
MT750058 are changed (shown in Table 13). The column
four and column eight in Table 13 provide the information
for the changed AAs. For example, the first entry (S → P)
in column four shows that the amino acid Serine (S) (in
MT750057) was replaced by the amino acid Proline (P) (in

Table 11 Statistics for the dataset used for sequence prediction

Parameter Value

Sequences number 240

Distinct items 21

ID of Itemsets 25

Distinct items per sequence 18.53

Each item occurrence 3.23

Size of the corpus size in MB 960.057

MT750058). The last amino acid (Valine (V)→Leucine (L))
change in Table 13 occurred in the S protein of MT750058.
Whereas other changes occurred in ORF1ab and ORF1a
polyproteins. It was observed that the strain MT750058 has
12 locations where AAs are changed (listed in Table13) than
MT750057. In a previous study [12], we found 8 changes
in MT750057 and MT750058 genome sequences that were
downloaded from NCBI in nucleotide form.

For two genome sequence (MT750057 and MT750058),
the computed mutation rate is 0.0848% Similarly, for
MT291827 and MT291828, the computed mutation rate is
0.000%, which means that no AAs were changed. In our
prior study [12] on analyzing the SARS-CoV-2 genome
sequences in nucleotide form,we found that one nucleotideA
(in MT291827) was changed to G (in MT291828). Because
of this, the codon AAA (in MT291827) was changed to AAG
(inMT291828). However, bothAAA andAAGmake the same
amino acid called Lysine. Besides, note that China genome
sequences (MT291827 and MT291828) were reported and
submitted earlier to NCBI than USA genome sequences
(MT750057 and MT750058). Moreover, the China genome
sequences belong to the same city. Whereas the USA
genome sequences belong to different cities. Through ini-
tial results obtained in this section, different mutation rates
were observed for the genome sequences of SARS-CoV-2.
Moreover, the results indicate an increase in the mutation
rate with the passage of time. In summary, the developed
algorithms in this paper and in prior work [12] for mutation
analysis can be used to analyze:

– The point mutation and mutation rate for genome
sequences in both nucelotide and protein forms.

– Whether the changes in nucleotides indeed changes the
AAs thatmakes the proteins or the changes in nucleotides
only change the codon that encodes the same amino acid.

– There are variations between mutations from place to
place. Strains of SARS-CoV-2 from different locations
(places) can be analyzed to investigate whether they
coexist with each other or not. A similar study [73] found
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Table 12 Prediction models
accuracy

Models DG TDAG CPT+ CPT Mark1 AKOM LZ78 Random

Success 0 57.917 100 100 0 57.917 4.583 0

Failure 100 42.083 0 0 100 42.083 95.417 100

No Match 0 0 0 0 0 0 0 0

Train Time 0.005 0.045 0.026 0.002 0.001 0.038 0.004 –

Test Time 0 0 0.001 0.011 0 0 0.001 –

that SARS-CoV-2 strains from Asia, North America and
Europe might coexist.

.
The algorithm for the mutation analysis is compared with

some of the recent (published in last two years) approaches.
The work [38] investigated the nucleotide mutation rate and
codon mutation rate in genomes of SARS-CoV-2. The com-
puted mutation rates in [38] for genomes from China, Aus-
tralia, USA and rest of the world were 4.775%, 7.3%, 6.65%
and 6.725% respectively. The highest computed codonmuta-
tion rate in [38] was 0.12%. Moreover, the work [37] used
Needleman-Wunsch (NW) and Smith-Waterman (SW) algo-
rithms to analyze two genome sequences (MT750057 and
MZ359831) against the RefSeq. They found that MT750057
and MZ359831 has seven and nine nucleotide differences,
respectively, when compared to RefSeq. Both NW and SW
scores for (MT750057, RefSeq) and (MZ359831, RefSeq)
are 18308 and 18303 respectively. The works [37, 38] com-
pared the genomeswith theRefSeq formutation analysis. The
codons in [38] were converted into positive integers (from 1
to 64) on the basis of their index number. Our previous work
[12] investigated the mutation rate in SARS-CoV-2 genome
sequences in nucleotide form. The computed mutation rate
in [12] for genomes from China and USA were 0.0268%
and 0.0003% respectively. Whereas the computed amino
acid mutation rate in this work for genomes from China is
0.848%. In [12] and in this work, the genomes are com-
pared with each other and not with the the reference genome
sequence.

The approaches for mutation analysis presented here and
in [12] have two limitations. First, it is required that the length
of both genome sequences be the same. Note that that the

AF methods and SPM algorithms do not suffer from this
length limitation and both work well on genome sequences
of varying length. Second, the input to the mutation analysis
approaches is thewhole genome sequenceswithout themeta-
data that provides information for proteins and ORFs. In the
future, we intend to work on these two limitation. The main
aim is the development of a generic approach that has the
ability to analyze genome sequences in nucleotide, coding
region and protein forms and can handle genome sequences
of (un)equal lengths.

7 Conclusion

Genome sequences of SARS-CoV-2 in protein form, taken
from NCBI’s GenBank, have been compared and analyzed
with AF and SPM methods to: (1) extract frequent AAs in
the sequences, (2) find the (dis)similarity between sequences
by using various distance measures and their performance
comparison, (3) construct phylogeny using various AFmeth-
ods for sequences, (4) find frequent patterns of AAs and the
sequential relationships between suchpatterns and (5) predict
the next amino acid in a sequence. Moreover, for mutation
analysis, an algorithm was proposed that can find the loca-
tion(s) in genome sequences where the AAs are changed
to compute the rate of mutation. We found that AF and
SPM provide efficient frameworks to compare and analyze
SARS-CoV-2 genome sequences. The analysis and learning
approaches are not limited to the SARS-CoV-2 virus and
can be used to compare and analyze other human viruses
too.

There aremany interesting future work opportunities such
as:

Table 13 Results for mutation
analysis of AAs in MT750057
and MT750058

Line Location Position Change Line Location Position Change

23 1 1,321 S → P 31 3 1,803 S → P

37 54 2,214 S → L 43 4 2,524 F → L

46 9 2,709 I → V 108 51 6,471 H → Q

142 1 8,416 S → P 150 3 8,899 S → P

156 54 9,310 S → L 162 4 9,620 F → L

165 9 9,805 I → V 212 42 12,623 V → L
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– Applying descriptive pattern mining sub-tasks such as
contrast pattern (set)mining, also called emerging pattern
mining [74], on the SARS-CoV-2 genome sequences.
This will allow to find contrasting (or emerging) pat-
terns (trends) in sequences that show a clear difference
between two classes or disjoint features.

– Using pattern mining and deep learning to predict the
codon pairs and codon families in the genome sequences
of SARS-CoV-2.

– Improving the mutation analysis approach in Section 6
to make it more general. For example, proposing strate-
gies to overcome the limitation of the sequence length
and adding the gene information.Moreover, themutation
detection technique can be extended for the comparison
of a new genome sequence with a dataset of SARS-CoV-
2 genomic sequences.
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