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Abstract
Artificial neural network (ANN) models with attention mechanisms for eliminating noise in audio signals, called speech
enhancement models, have proven effective. However, their architectures become complex, deep, and demanding in terms
of computational resources when trying to achieve higher levels of efficiency. Given this situation, we selected and evaluated
simple and less resource-demanding models and utilized the same training parameters and performance metrics to conduct
a fair comparison among the four selected models. Our purpose was to demonstrate that simple neural network models with
multihead attention are efficient when implemented on computational devices with conventional resources since they provide
results that are competitive with those of hybrid, complex and resource-demanding models. We experimentally evaluated
the efficiency of multilayer perceptron (MLP), one-dimensional and two-dimensional convolutional neural network (CNN),
and gated recurrent unit (GRU) deep learning models with and without multiheaded attention. We also analyzed the
generalization capability of each model. The results showed that although these architectures were composed of only one
type of ANN, multihead attention increased the efficiency of the speech enhancement process, yielding results that were
competitive with those of complex models. Therefore, this study is helpful as a reference for building simple and efficient
single-type ANN models with attention.
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1 Introduction

Attention involves selectively focusing on specific elements
while ignoring less relevant or important elements accord-
ing to a goal. The notion of selective attention in humans
is related to senses such as sight, hearing and smell. Audi-
tory attention is a selection process or set of processes that
focuses sensory and cognitive resources on the most rele-
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vant events in the sound landscape [5]. Therefore, attention
has allowed humans to focus their interest on only a frac-
tion of the available information, making optimal use of
resources to better achieve their goals [8].

Attention is a mechanism that is being increasingly
used in a wide range of deep learning architectures. The
mechanism itself is available in various formats [3]. The use
of attention mechanisms has become more relevant due
to the publication of the proposed transformer architecture
based mainly on an attention mechanism, operating even
with recurrence and convolutions [26]. The authors high-
lighted its high degree of parallelization, thus increasing its
computational speed.

An increasing number of architectures are using attention
mechanisms and are being applied to natural language
problems [3] and different types of data, especially sequen-
tial data. Examples include the improvement of biomedical
image segmentation [24], speech recognition [2, 33], and
speech enhancement [11, 32].

Among all the different attention mechanisms in the lit-
erature [1, 15], we selected multihead attention because
it is a mechanism that can be efficiently parallelized and
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implemented in many models. Furthermore, its implemen-
tations with different types of neural networks are less
complex and allow us to keep the general architecture of the
attention module; also, the number of trainable parameters
added is not excessive.

Work in the literature have been conducted on neural
networks incorporating attention into speech enhancement
in a single channel with a single type of noise at various
signal-to-noise ratios (SNRs). We did not find works in
the literature that investigated different models consisting
entirely of single types of neural network incorporating
multihead attention mechanisms for speech enhancement.
Furthermore, model performance needs to be assessed
under fair conditions during training and evaluation
(same input data, training settings, and performance
metrics) to determine the impact of multihead attention on
performance. Similarly, the generalization capabilities of
models must be evaluated by feeding them with new data.
The generalization capability of a model is its ability to
obtain efficient results when we introduce new data from a
new dataset. For example, data from a dataset other than the
one used for training may include new features that are not
contained in the training dataset [28].

To address this lack of knowledge, we used performance
metrics to show the degrees of improvement exhibited
by models when incorporating an attention module into
different types of specific neural networks, as well as their
generalization capabilities. Then, we compared our with
against those provided by other authors using complex
architectures

Artificial neural networks (ANNs) can be categorized
into three common types of networks with their own
mathematically defined internal operations, and they serve
as the basis for various architectures. Multilayer perceptrons
(MLPs) are the most basic neural networks, consisting of
three or more fully connected layers with an activation
function at each node. Convolutional networks incorporate
one or more layers with a convolution process, which
consists of multiplying a kernel (weight matrix) by the input
data matrix, which can possess one or more dimensions.
Recurrent networks are networks in which the connections
between nodes can form a cycle, allowing the outputs of
some nodes to affect the nodes in the same or subsequent
layers.

The neural network models we selected were a MLP,
one-dimensional and two-dimensional convolutional neural
networks (CNNs), and a gated recurrent unit (GRU) because
these are all conventional and commonly used models.
Furthermore, all models were full neural networks with
simple (not complex) architectures containing less than two
million hyperparameters.

The experimental evaluation carried out in this work is
essential for determining the performance of each type of

neural network and the improvement that each type presents
when incorporating an attention mechanism, as well as
for analyzing the generalization capacity of each model.
The results of this study are helpful as a reference for
the construction of solutions in which speech enhancement
models are not complex but simultaneously efficient,
representing an opportunity when deploying our proposal in
computational devices with limited resources.

Our research questions were as follows: (i) How much
do neural network models (MLP, 1D-CNN, 2D-CNN, and
GRU) improve by incorporating a multihead attention
mechanism to solve the speech enhancement problem?
(ii) What are the generalization capabilities of the MLP,
1D-CNN, 2D-CNN, and GRU models with a multihead
attention mechanism?

We organized the rest of this paper as follows. First,
Sections 2 and 3 explain characteristics, theory and similar
proposals in the literature. Then, Section 4 presents the
details of the four constructed models and the implemented
attention module. Section 5 explains the datasets used and
the experimental setups. Next, Section 6 presents the results
and a discussion of the experiments performed. Finally,
Section 7 provides the conclusion of this article.

2 Background

For speech enhancement, a fundamental challenge involves
selectively listening to a single audio signal since the sounds
that we commonly perceive result from mixing acoustic
signals. Extracting features from a single sound source
is especially difficult in single-channel recordings. Speech
enhancement is the process of removing or attenuating the
added noise in a speech signal. It is generally concerned
with improving the intelligibility and quality of speech that
suffers from degradation due to the inclusion of noise.
Speech enhancement acts as a preprocessing technique in
applications such as automatic speech recognition. Single-
channel speech enhancement aims to solve the problem
regarding the use of recordings made with a single
microphone. However, single-channel speech enhancement
is considered a challenging problem since there are no
directional clues for determining the origins of the various
audio signals that compose the presented noises.

In the real world, speech signals are easily corrupted
by noise. Noises generally belong to stationary noises
(which do not change over time) and nonstationary noises
(which change over time). Some noises that belong to
the nonstationary category are street noises, the noise of
a train, babbling noises (other people’s voices), and the
sounds of musical instruments. Some noises that belong to
the stationary category come from air conditioners, fans,
compressors, or impeller pumps.
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Audio signals are usually artificial when training neural
network models since adding speech with noise signals
is necessary. To emulate natural noise environments in
speech signals, it is necessary to collect noise signals
from databases. These databases contain environmental
sounds from different sources and different areas, where the
aggregated noise is the sum of sounds with variable shapes
and magnitudes. The use of environmental sounds impacts
the complexity of the speech enhancement problem since it
is difficult to establish a noise signal pattern. Researchers
typically use SNR values ranging from + 10 dB to − 10 dB,
where an audio signal at + 10 dB is equivalent to a school
classroom (the speech signal is greater than the noise signal)
and -10 dB is equivalent to a train station (the noise signal is
greater than the speech signal) [13]. In more negative SNR
ranges, the values of the resulting metrics will not be high
because the speech signals are more corrupt than expected.

We can define the relationship between speech and noise
signals in the time domain as (1).

y(t) = x(t) + n(t), (1)

where x(t) is a clean speech signal, and n(t) is the added
noise, resulting in y(t) being a noisy speech signal. Let t be
the time index; we can represent the signal as y = [y(1), ...,
y(T)], where t is the length of the audio fragment.

We based our experiments on magnitude spectrogram
mapping. In the mapping-based method, the training
objective of the model is to map a nonlinear function F from
the noisy speech signal y(t) to an enhanced clean speech
signal x(t), as shown in (2):

y(t) →F x(t). (2)

Because problems associated with fast variation occur
when using raw speech signals (in the time domain),
researchers usually apply the mapping-based method to the
magnitude spectrogram of the speech signals (frequency
domain). First, the short-time Fourier transform (STFT)
creates a magnitude spectrogram by using the time
windowing responses of a filter bank. Subsequently, the
inverse operation of the STFT reconstructs the spectrogram
back to the signal in the time domain by using the phase
information of the original speech signal with noise [30].

Based on the mapping method, neural networks learn
to reconstruct the output data from the input data during
training. The output data come from the clean speech signal
x(t), while the input data come from the speech signal
mixed with noise y(t). The neural network model learns a
function F by minimizing the mean squared error (MSE)
loss between the input spectrogram and its reconstructed
input, as in (3):

LMSE = ‖Y − F(X)‖2. (3)

The fusion of models based on deep learning and
attention mechanisms has helped the resulting models to
emphasize the most informative features and suppress the
less useful features. The attention mechanisms used in
deep learning originated as improvements of the encoder-
decoder architecture used in natural language processing
(NLP). Later, this mechanism and its variants were applied
to other areas, such as computer vision and speech
processing. Before attention mechanisms were developed,
the encoder-decoder architecture was based on stacked
units of recurrent-type ANNs and long short-term memory
(LSTM) [31].

As parts of neural network architectures, attention
mechanisms dynamically highlight the relevant features
contained in the input data. The central idea behind an
attention mechanism is not to discard the intermediate states
of the encoder but to use them to build the context vectors
required by the decoder to generate the output data; this is
done by calculating the distribution of weights in the input
sequence and assigning higher values to the most relevant
elements while assigning lower weights to the less relevant
elements [3].

One of the most recently used attention mechanisms is mul-
tihead attention, which is a module that runs several atten-
tion mechanisms in parallel [26]. The independent attention
outputs are concatenated and linearly transformed into the
expected dimension. Intuitively, the use of multiple atten-
tion heads allows the mechanism to treat various parts of the
sequence differently, and we express this concept as (4):

MultiHead(Q,K,V) = Concat[head1, ..., headh]WO,

(4)

where:

headi = Attention(QW
Q
i , KWK

i , V WV
i ), (5)

and W denotes all trainable parameter matrices. Multihead
attention is a module that uses scaled dot product attention,
an attention mechanism in which dot products are scaled in
the form

√
dk . Formally, we have a query Q, a key K, and a

valueV, and we compute the corresponding attention as (6):

Attention(Q,K,V) = sof tmax(
QKT

√
dk

)V. (6)

Figure 1 shows the graphical representations of scaled
dot product attention and multihead attention.

3 Related works

To our knowledge, there are several works that have
used single type (simple) architectures for the speech
enhancement process [16–18], however, these works have
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Fig. 1 Graphical representations
of scaled dot product attention
(left) and multihead attention
(right)

not used an attention mechanism to improve efficiency.
In [18], authors compare seven deep learning models
belonging to the three network types analyzed in our
paper. The authors evaluate overall output speech quality
performance using several metrics. The results are useful
for understanding how deep neural networks perform the
task of speech enhancement, and authors also highlight
the strengths and weaknesses of each architecture. In [17]
authors made a comparison between mapping and masking
approaches applied to four DNN models. The authors
conclude that according to the problem at hand, it is the
selection of the approach that should be applied to obtain
the best results.

To our knowledge, several works have used single-
type (simple) architectures for the speech enhancement
process [16–18]; however, these works have not used
an attention mechanism to achieve improved efficiency.
Nossier et al. [18] compared seven deep learning models
belonging to the three network types analyzed in our
paper. The authors evaluated the overall output speech
quality performance using several metrics. These results are
useful for understanding how deep neural networks (DNNs)
perform the task of speech enhancement, and the authors
also highlighted the strengths and weaknesses of each
architecture. Nossier et al. [17] conducted a comparison
between mapping and masking approaches when applied to
four DNN models. The authors concluded that according to
the problem at hand, approach selection should be applied
to obtain the best results.

Nossier et al. [16] presented a comparison of five DNNs
by first implementing them in the time domain and later
implementing the models in the frequency domain; their
goal was to show how different networks’ performances
are affected by the operating domain and to determine the
best-performing architecture in each domain.

Other works have included multihead attention in their
neural network models; however, these are deep and

complex network models [9, 10, 19, 22]. Pandey and
Wang [19] proposed a dense convolutional network (DCN)
with self-attention for speech enhancement in the time
domain using an encoder- and decoder-based architecture
with skip connections. In this architecture, each layer in
the encoder and decoder comprises a dense block and an
attention module.

Koizumi et al. [10] investigated a self-adaptation method
for speech enhancement. They adopted multitask learning
to achieve speech enhancement. In addition, the authors
used multihead self-attention for capturing long-term
dependencies in speech and noise. Kim et al. [9] proposed
a transformer with Gaussian-weighted self-attention (T-
GSA), whose attention weights are attenuated according to
the distances between the target and the context symbols.
The experimental results showed that the proposed T-
GSA achieved significantly improved speech enhancement
performance compared to the transformer and recurrent
neural networks (RNNs).

In the approach presented by [22], the researchers inves-
tigated a multihead attention network for linear prediction
coefficient (LPC) estimation. They aimed to produce clean
speech and noise LPC parameters with negligible bias. With
this, they attempted to produce higher-quality and more
intelligible enhanced speech than that provided the current
augmented Kalman filter-based speech enhancement algo-
rithm. To this end, they investigated multihead attention
networks within the DeepLPC framework.

4Methodology: deep learningmodels

In this work, we implemented four neural network models
belonging to three categories: an MLP, CNNs , and a
GRU neural network. We established the four models’
architectures in their basic forms to conduct an equitable
comparison among the models and show the effects of each
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specific network’s parameters and the effect of attention
on the overall performance. We kept the training setup
and other speech enhancement-related elements the same
for all models to implement an equitable evaluation and
comparison. Figure 2 shows the implemented MLP and
CNN models. Figure 3 shows the implemented GRU
model and the attention module. Table 1 describes their

hyperparameter configurations, and Table 2 shows the total
number of trainable parameters for each model.

4.1 MLPmodel

We implemented the model as in Fig. 2(A) for the MLP
category. The architecture has eight fully connected dense

Fig. 2 The speech enhancement
models: an MLP (A), a
one-dimensional CNN (B), and
a two-dimensional CNN (C)

Fig. 3 The GRU speech
enhancement model (A) and the
attention module (B)
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Table 1 Configurations of the four implemented models

Type Kernel Filters Units Activation Dropout Strides Padding

MLP

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 512 ReLU 0.05 – –

Dense – – 256 Linear – – –

CNN–1D

1D–Conv 16 64 – PReLU 0.1 1 same

1D–Conv 16 64 – PReLU – 1 same

1D–Conv 16 64 – PReLU 0.1 1 same

1D–Conv 16 64 – PReLU – 1 same

1D–Conv 16 64 – PReLU 0.1 1 same

1D–Conv 16 64 – PReLU – 1 same

1D–Conv 16 64 – PReLU 0.1 1 same

1D–Conv 16 1 – PReLU – 1 same

Dense – – 256 Linear – – –

CNN–2D

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 64 PReLU 0.1 1 same

2D–Conv 4x4 1 PReLU – 1 same

Dense – – 256 Linear – – –

GRU

GRU – – 256 ReLU – – –

GRU – – 256 ReLU – – –

GRU – – 256 ReLU – – –

GRU – – 256 ReLU – – –

Dense – – 256 Linear – – –

layers containing 512 units with rectified linear unit (ReLU)
activations. A dropout layer with a 5% rate follows each
of the first seven hidden layers to avoid overfitting and
stabilize the training process. The last layer is a dense layer
without an activation function (also known as a dense layer
with linear activation) with 256 units.

4.2 CNNmodels

We implemented two models for the convolution category.

The first architecture, shown in Fig. 2(B), has eight one-
dimensional convolutional layers with parametric ReLU
(PReLU) activations, which are followed by a dense layer
containing 256 units without an activation function. We set
the number of filters in the first seven convolution layers to
64, with one filter in the last convolution layer. Additionally,
we used kernels of size 16 and dropout layers with 10% rates
in layers one, three, five, and seven.

The second architecture, presented in Fig. 2(C), has two-
dimensional convolutional layers with PReLU activations

20566 N. Zacarias-Morales et al.



Table 2 Total number of trainable parameters for each of the four
models with and without the attention module

Model Parameters

MLP 1,904,640

MLP + Att 1,975,820

CNN–1D 576,449

CNN–1D + Att 647,629

CNN–2D 1,381,057

CNN–2D + Att 1,480,993

GRU 1,644,800

GRU + Att 1,715,980

and a final dense layer containing 256 units without an
activation function. We used the same filters as in the first
convolutional architecture but utilized kernels of size 4x4 in
all convolutional layers. Additionally, we employed dropout
with a 10% rate in the first seven convolutional layers.
Finally, we used stride lengths and padding values of 1 in
the two models.

4.3 GRUmodel

We implemented the GRUmodel as shown in Fig. 3(A). The
architecture has four fully connected layers containing 256
units with ReLU activations, and the last layer is a dense
layer without an activation function containing 256 units.
We did not use dropout layers in this model.

4.4 Attentionmodule

We assembled and incorporated an attention module to help
the models identify the most important features to improve
their performance. We based the attention module on the use
of multihead attention. First, the attention module consists
of a multihead attention layer with four heads and dropout
with a 10% rate; then, the input and output of the multihead
attention layer are summed and passed to a normalization
layer. Next, we add a dense layer with ReLU activation, and
then we sum the input and output of the dense layer and
pass the result to a second normalization layer. The attention
module is shown in Fig. 3(B).

We introduce the attention module before the last linear
dense layer to obtain the new performance of each of the
four models.

5 Experimental setup

We trained all models using an NVIDIA Tesla P100 graphic
card with 16GB memory. In addition, we performed all

the experiments using a conventional computational device
with 8GB memory and a 2 GHz AMD Ryzen 4-Core
Processor.

5.1 Dataset

We trained and evaluated the four proposed models by
utilizing audio mixtures with four datasets; we used TIMIT
[4] as a speech dataset, and we used NoiseX-92 [25],
DEMAND [23], and PNL-100 [6] as noise datasets.

TIMIT is a dataset containing recordings of utterances
from 630 speakers representing eight dialectal divisions
of American English, each speaking ten sentences with
different phonetics for male and female speakers. The
authors of TIMIT subdivided the material into balanced
portions for training and testing (they described the
subdivision criteria in [4]); we used the training and
testing portions as the authors divided them. NoiseX-92
is a dataset composed of recordings of several types
of acoustic noises, such as electric cutting and welding
equipment noises, white noise, military noises, and vehicle
noises. DEMAND contains recordings of various acoustic
noises in indoor environments (domestic, office, public, and
transportation noises) and outdoor environments (street and
nature noises). Finally, PNL-100 contains environmental
sounds such as machine noises, animal sounds, footsteps,
and door movements.

We selected the training portion of the TIMIT dataset
and the noise from the NoiseX-92 and DEMAND datasets
for the training and validation sets. Then, we created
five hours of audio mixes in one-minute clips with SNRs
uniformly sampled between -10 dB and 10 dB (whereby the
different noises corrupted the speech signal). We randomly
chose both speech and noise clips. Then, we sampled
the audio at 8 kHz to feed the model with the most
relevant frequency bands. Next, we calculated the power
spectrum of the signal magnitude using the STFT with
a size of 510-point fast Fourier transform (FFT) which
yields 256 frequency bins, a frame length window of 32
ms (256 samples), and an overlap of 50% (128 samples).
Finally, we normalized the training and validation data to
zero means and unit variances to facilitate the training
process.

To evaluate the models, we made two test sets. First, we
created new audio mixtures with uniformly sampled SNRs
of − 10 dB, − 5 dB, 0 dB, 5 dB, and 10 dB using the
testing portion of the TIMIT dataset and the noise from
the NoiseX-92 and DEMAND datasets. Furthermore, we
repeated the same process for the second test set but used
the testing portion of the TIMIT dataset and the noise from
PNL-100; we used this second group of audio mixtures
to evaluate the generalization capabilities of the trained
models.
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We retained the signal’s phase only during the model
prediction process and then added it to the estimated clean
signal, similar to the approach shown in [12] and [18].

5.2 Training setup

Our training strategy consisted of mapping the magnitude
spectrogram as the training target. We implemented the four
models using the Keras library with TensorFlow. The loss
function we used during the training process was the MSE
because our goal was to improve all evaluation metrics, not
a specific one. We employed Adam as an optimizer with
a learning rate of 0.0001, a b1 value of 0.9, a b2 value of
0.999, and an epsilon value of 1e-08. We employed a batch
size of 64 and used 10% of the training data for validation to
monitor and control the network’s performance and prevent
overfitting. In addition, we selected accuracy as the metric
to monitor during training.

We set the training duration to 60 epochs and imple-
mented two strategies during training. The first was an early
stopping strategy whereby the training process stopped if
the monitored metric stopped improving after six consecu-
tive epochs. Second, a learning rate reduction strategy, with
a factor of 0.8 and a minimum learning rate of 0.000001,
was applied to every epoch in which the monitored metric
stopped improving.

We kept the same training setup for all architectures to
conduct an equitable evaluation and comparison.

6 Results and discussion

This section presents the results and discussion. We
performed two experiments. The first experiment showed
the models’ performance on new sound mixes created with
the testing portion of the TIMIT dataset and noise from
NoiseX-92 and DEMAND (the same noises as those used
during training). In the second experiment, we tested the
generalization capabilities of the models on sound mixes
created with the testing portion of the TIMIT dataset and
noise from PNL-100.

To evaluate the performance of our models, we used
three evaluation metrics: the perceptual evaluation of speech
quality (PESQ) [20]; the short-term objective intelligibility
(STOI) [7]; and the scale-invariant signal-to-distortion ratio
(SI-SDR) [21], which are the standard metrics that are most
commonly used to evaluate the performance of proposals
for solving the speech enhancement problem.

PESQ values range from − 0.5 to 4.5; the higher the
value is, the better the speech quality. STOI values typically
range from 0 to 1, where a higher value indicates better
intelligibility (usually converted to a percentage). The SI-
SDR is used to calculate the amount of distortion introduced
by the speech separation process. The SDR is one of the
standard speech separation evaluation metrics that measures
the amount of distortion introduced by the separated signal;
the SDR is the ratio between the energy of the clean signal
and the distortion energy. Therefore, higher SDR values
indicate better speech separation performance.

6.1 MLP results

With the inclusion of the attention module in the MLP
neural network, we obtained worse results in terms of the
STOI and SI-SDR metrics at low SNR levels (− 10 dB to
0 dB), while PESQ showed that the improvements were
minimal. However, at higher SNR levels (5 dB to 10 dB),
the inclusion of the attention module yielded improvement
in all three metrics used, which indicates that MLP neural
networks can be improved by including an attention module
as long as the volume of noise in the audio signals remains
low. Table 3 shows the complete results obtained with SNR
levels of − 10 dB, − 5 dB, 0 dB, 5 dB, and 10 dB.

6.2 CNN results

When we incorporated the attention module into the one-
dimensional convolutional architecture, the STOI and SI-
SDRmetrics showed improvements as the SNR level ranged
from − 5 dB to 10 dB. In contrast, the PESQ metric
exhibited improvements only at SNR levels of − 10 dB, 0
dB, and 5 dB. However, at − 5 dB and 10 dB, the PESQ

Table 3 The STOI, PESQ, and SI-SDR results obtained by the MLP model on the test set in a context with seen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 68.25% 68.16% 2.42 2.43 6.08 6.07

− 5 79.79% 79.77% 2.70 2.71 10.68 10.61

0 87.94% 88.08% 3.03 3.04 14.05 13.94

5 92.21% 92.61% 3.37 3.39 19.67 19.95

10 94.88% 95.45% 3.63 3.65 18.27 18.48
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measure showed that the speech quality remained the same.
In the case with the lowest SNR level (− 10 dB), we found
no improvement in the STOI and SI-SDR metrics. Table 4
shows the complete results.

Next, when using two-dimensional convolutional net-
works with the attention module, we observed improve-
ments in the STOI metric with SNR levels from − 5 dB to
10 dB; PESQ showed improvements except at an SNR of
0 dB, and the SI-SDR only exhibited improvements from 0
dB to 10 dB. Table 5 shows the complete results.

6.3 GRU results

Finally, after adding the attention module to the GRU
model, Table 6 shows that improvements were achieved in
terms of most of the three metrics, except for STOI at − 10
dB or PESQ at 5 dB and 10 dB, where the results did not
change.

6.4 Generalization capability results

One of the problems with neural network-based speech
enhancement is having a network that performs well on
the training dataset but cannot generalize and maintain the
same performance on new data. This problem is known
as a variance or overfitting problem. Therefore, testing
the generalization capabilities of the models is crucial for
conducting an equitable comparison among them.

The model generalization capabilities were evaluated by
comparing the results of models with/without the attention
module in terms of the metrics obtained on the Noise-x
and DEMAND datasets (seen noise dataset) and with those
obtained on the noise from the NL-100 dataset (unseen
noise dataset).

We evaluated the generalization capabilities of the four
implemented models by testing the models’ performance
with new noises from the PNL-100 dataset. Tables 7, 8, 9,

Table 4 The STOI, PESQ, and SI-SDR results obtained by the one-dimensional CNN model on the test set in a context with seen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 69.36% 69.30% 2.44 2.45 6.28 6.27

− 5 81.55% 81.67% 2.79 2.79 11.48 11.49

0 89.79% 90.06% 3.15 3.16 15.97 16.13

5 94.24% 95.43% 3.48 3.55 20.44 24.28

10 97.17% 97.44% 3.79 3.79 22.77 23.38

Table 5 The STOI, PESQ, and SI-SDR results obtained by the two-dimensional CNN model on the test set in a context with seen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 68.80% 68.75% 2.45 2.46 6.38 6.23

− 5 80.88% 81.02% 2.79 2.80 11.36 11.34

0 89.29% 89.54% 3.16 3.15 15.52 15.69

5 93.51% 94.98% 3.47 3.56 18.17 23.24

10 96.28% 96.91% 3.77 3.78 21.23 22.01

Table 6 The STOI, PESQ, and SI-SDR results obtained by the GRU model on the test set in a context with seen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 69.45% 69.44% 2.42 2.43 6.16 6.19

− 5 81.37% 81.42% 2.76 2.77 11.38 11.44

0 89.81% 89.90% 3.10 3.12 15.92 16.03

5 95.30% 95.39% 3.52 3.52 24.27 24.47

10 97.17% 97.37% 3.75 3.75 22.88 23.03
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Table 7 The STOI, PESQ, and SI-SDR results obtained by the MLP model on the test set in a context with unseen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 73.05% 73.88% 2.49 2.50 2.75 2.78

− 5 86.55% 87.05% 3.10 3.11 10.28 10.22

0 88.19% 88.96% 3.14 3.17 12.32 12.38

5 92.32% 93.03% 3.43 3.46 16.14 16.34

10 94.51% 95.17% 3.67 3.70 18.64 18.99

Table 8 The STOI, PESQ, and SI-SDR results obtained by the one-dimensional CNN model on the test set in a context with unseen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 76.32% 76.28% 2.52 2.55 3.17 3.65

− 5 88.72% 89.60% 3.18 3.17 10.64 10.73

0 90.84% 91.63% 3.20 3.23 12.86 13.25

5 94.66% 95.55% 3.49 3.53 17.31 17.91

10 96.65% 97.60% 3.75 3.78 21.00 22.21

Table 9 The STOI, PESQ, and SI-SDR results obtained by the two-dimensional CNN model on the test set in a context with unseen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 74.70% 75.28% 2.46 2.48 2.79 2.93

− 5 87.65% 89.21% 3.18 3.17 10.23 10.55

0 89.94% 90.64% 3.16 3.18 12.46 12.77

5 93.79% 94.89% 3.47 3.49 16.64 17.40

10 95.72% 97.02% 3.72 3.76 19.71 21.37

and 10 show the complete generalization results obtained by
the four models with and without the attention module for
SNR levels of − 10 dB, − 5 dB, 0 dB, 5 dB, and 10 dB.

From a general perspective, the inclusion of an attention
module yielded improvements in the generalization capabil-
ities of the MLP and convolution-based models, with some
exceptions. However, the inclusion of the attention mod-
ule in the GRU model produced results contrary to those
expected in terms of most metrics.

6.5 Overall results

Figures 4, 5, and 6 provide the average SNR results for
PESQ, STOI, and the SI-SDR, respectively. The models
with the text “seen dataset” show the mixes of the testing
portion of the TIMIT dataset with noise from NoiseX-92
and DEMAND. The models with the text “unseen dataset”

show the mixes of the testing portion of the TIMIT dataset
with noise from PNL-100.

For the averaged results of the PESQ metric, the
models tested with seen noise in Fig. 4(A) showed that
the convolutional models obtained similar results in audio
mixtures with noises used during training. On the other
hand, the MLP model achieved the lowest performance.
However, all four models exhibited improvements when
including the attention module. Nevertheless, in the
experiments that showed the generalization capacities
capabilities of the models with unseen noise (Fig. 4(B)),
the one-dimensional convolutional model yielded the best
performance with and without the attention module. It is
also relevant to mention that the GRU-based model obtained
the second-best generalization capabilicity result without
the attention mechanism but obtained worse results when
incorporating the attention module.
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Table 10 The STOI, PESQ, and SI-SDR results obtained by the GRU model on the test set in a context with unseen noise

STOI (%) PESQ SI-SDR

SNR single attention single attention single attention

− 10 75.87% 75.62% 2.49 2.49 2.97 2.87

− 5 89.39% 89.35% 3.15 3.14 10.83 10.73

0 91.02% 90.84% 3.17 3.16 12.84 12.79

5 95.17% 95.13% 3.48 3.47 17.64 17.63

10 97.38% 97.43% 3.74 3.74 22.08 22.14

Fig. 4 Average PESQ results of
the four models (with and
without attention). Results
obtained on the testing portion
of the TIMIT dataset and noise
from NoiseX-92 and DEMAND
(A); results obtained on the
testing portion of the TIMIT
dataset and noise from PNL-100
(B)

Regarding the average STOI metric results obtained
with seen noise, Fig. 5(A) shows that the one-dimensional
CNN with the attention module reached the best result,
followed by the GRU-based model with the attention
module. Similar to the PESQ metric results, the MLP
model achieved the lowest performance. In the experiments
showing the generalization capabilities of the models
(Fig. 5(B)), the same one-dimensional convolutional model
with the attention module also obtained the highest values.
Finally, similar to the PESQ results, the GRU-based model
underperformed when including the attention module.

In terms of the average results of the SI-SDR metric,
Fig. 6(A) shows the same pattern as that of STOI with
seen noise, where the one-dimensional neural network with
the attention module achieved the best result, followed by
the GRU-based model with the attention module. On the
other hand, Fig. 6(B) shows that the average SI-SDR metric

results were lower with the unseen noise. Consequently,
we can interpret the result as the amount of distortion
introduced by the separation process of these data being
higher.

From the results of the experiments, we conclude that
the convolutional models with the attention mechanism
could extract the necessary features and learn much better
patterns that allowed them to reconstruct the magnitude
spectrograms of the enhanced speech signals on both
the seen and unseen datasets. Furthermore, the degree of
overfitting to the training data was meager. The MLP
models were also able to obtain the features and patterns
needed to reconstruct the spectrogram but to a lesser
degree than the convolutional models. Finally, we observed
that the GRU models did not benefit from including the
attention module in the generalization experiments. After
performing an analysis of the GRU architecture with the
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Fig. 5 Average STOI results of
the four models (with and
without attention). Results
obtained on the testing portion
of the TIMIT dataset and noise
from NoiseX-92 and DEMAND
(A); results obtained on the
testing portion of the TIMIT
dataset and noise from PNL-100
(B)

Fig. 6 Average SI-SDR results
of the four models (with and
without attention). Results
obtained on the testing portion
of the TIMIT dataset and noise
from NoiseX-92 and DEMAND
(A); results obtained on the
testing portion of the TIMIT
dataset and noise from PNL-100
(B)

attention module, we conclude that this behavior is the
result of overfitting the noise used during training. A further
analysis for improving the performance of the GRU models
by incorporating an attention module based on multihead
attention is beyond the scope of this research; however, we
will consider it in future research.

6.6 Training observations

Figure 7 shows the training and validation data loss curves
of the four models (eight when considering the models with
the attention module) to compare the stability of their model
training processes. The data loss curves show the complete
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Fig. 7 The training loss curves of the four models (with and without attention) for the training and validation data

training phase; however, we used an early stopping strategy,
so the models converged six epochs before the last epoch
shown on each curve. The one-dimensional convolutional
model converged in the least number of epochs with the
slightest degree of overfitting. On the other hand, the MLP
model training process took the most epochs, 57 in total,
converging at epoch 51.

6.7 Discussion

Different experiments showed that including an attention
module based on multihead attention in different neural net-
works improves models’ performance in speech enhance-
ment problems. Moreover, the achieved improvements were
more significant in one-dimensional convolutional networks
than in MLP or GRU models, even when we evaluated
the model with new data. In the GRU neural networks,
we observed model improvements when incorporating the

attention module based on multihead attention into the
experiments with the same noise we used during training.
However, we obtained worse results when testing the model
generalization capacity with the attention module on new
data. The MLP models exhibited improvement by includ-
ing the attention module; even so, their performance was
lower than that of the convolutional networks, which can
have between a third and a quarter of the number of trainable
parameters utilized by the MLP.

Some considerations used in our experiments could have
influenced the results.

First, although we corrupted the speech signals using
only one noise signal at a time, the noise of the DEMAND
dataset (used during training) contained recordings of
acoustic noises in indoor and outdoor environments
where different noise sources (of different natures) were
simultaneously present. The use of the DEMAND dataset
introduces complex noises from real natural environments,
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which are very challenging to process for neural network
models.

Second, we decided to implement only the STFT at
256 FFT and normalization as preprocessing steps for the
audio signals, without applying any additional frequency
filtering or other processing strategies; thus, we did not add
additional computational loads and test the true capabilities
of the different types of neural networks.

Third, we used SNRs from -10 dB to 10 dB, as this is a
range in which research studies are commonly conducted,
and tried to cover an important variety of noise scenarios.
However, scenarios with very high noise levels, such as
aircraft cabin noise conditions during takeoff, were not
considered. This represents a limitation of this study.

In the literature, some works have explored the applica-
tions of attention (based on multihead attention) to the prob-
lem of speech enhancement [14, 19, 22, 29]; these works
showed that the implementation of attention improves the
results of neural network models. However, it is necessary
to mention that these works proposed complex architec-
tures such as hybrid neural networks with many trainable
parameters, residual connections, or ramifications and used
different datasets with different processing techniques.

Table 11 shows the average results in terms of two
objective metrics that are commonly used in speech
enhancement. The table compares the values obtained by
our four neural network models against those in the works
of [14, 19, 22], and [29].

It is necessary to clarify that the values obtained by [19]
are the average SNRs from − 5 dB to 5 dB; the values
obtained by [14, 22] and [29] are the average SNRs from− 5
dB to 15 dB, and the values obtained by [9] are the average
SNRs from − 10 dB to 15 dB. Some of the works used
different speech and noise corpora. Our results in Table 11
are the average SNRs from − 5 dB to 10 dB obtained by the
models on the test set in a context with seen noise.

The results of our experiments reflect that the inclusion
of an attention module allows neural network model
architectures to be less complex without sacrificing

Table 11 Average PESQ and STOI comparisons among different
models

Model PESQ average STOI average

MLP + Att 3.20 88.98%

CNN–1D + Att 3.32 91.15%

CNN–2D + Att 3.32 90.61%

GRU + Att 3.29 91.02%

DCN–SM [19] 2.83 90.40%

DeepLPC–MHANet [22] 2.59 88.41%

MHANet [14] 2.88 93.60%

SE–T [29] 2.62 93.00%

efficiency. Furthermore, our results intend to help other
researchers reduce the time and resources commonly
invested during the iterative trial-and-error process of
training new MLP, CNN, or GRU neural network models
that incorporate attention-based mechanisms.

We considered it essential that the evaluated models
were neural network models with simple architectures. By
doing so, we conclude that it is possible to create models
with simple architectures (and relatively few trainable
parameters) that obtain competitive results and consume
few computational resources in their implementations,
which is appropriate when we have computational devices
with conventional or limited resources.

Finally, since this research did not use predefined
architectures, but we built all of them from scratch under the
considerations of simplicity, it was not necessary to perform
an ablation study, which is typical of transfer learning and
style transfer.

7 Conclusion

In this work, we proposed three types of simple neural
networks (MLP, CNN and GRU models) with attention
mechanisms (based on multihead attention) to solve the
speech enhancement problem. Thus, we evaluated four
models belonging to the above three types of neural
networks with respect to speech quality using the objective
PESQ, STOI, and SI-SDR, evaluation metrics as well as
their generalization capabilities when integrating attention
modules.

Regarding the evaluation and comparison of the different
models, the one-dimensional convolutional model produced
the best results when integrating the attention module for
speech enhancement (according to the utilized metrics). Our
finding is consistent with that of [30], where the authors
reported that a CNN could efficiently learn information
from speech signals.

In contrast, the GRU-based model yielded worse values
when integrating the attention module and when evaluated
with audio signals that were not part of the signals
used for training (generalization capability). Furthermore,
challenging noisy environments, such as audio signals with
SNRs of − 10 dB and − 5 dB, negatively affected the
performance of the evaluated models. However, the overall
performance remained acceptable.

Since it is possible to divide the training targets in speech
enhancement into two types, mapping and masking targets
[27], in future works, we will design a comparison using
mapping and masking strategies. This task can be defined as
a regression problem if the target is to map a time-frequency
representation of clean speech directly or as a classification
problem if the target is to produce a matrix (known as a
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mask) that classifies each portion of the signal (as speech or
noise) to filter the noisy speech with this mask to generate
an enhanced clean speech signal. We will also experiment
using more simultaneously present noise at different SNRs
to generate an environment that is more similar to a natural
environment in which different noise sources with different
natures are simultaneously present.
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