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Abstract
Segmentation is an essential task in modern medical imaging analysis. Since the scarcity of labeled pixel-level annotations
often limits its wide applications, recent studies have proposed Semi-supervised Learning (SSL) frameworks to tackle this
issue. Among them, the paradigm of pseudo-labeling, derived from SSL of natural images, has been popularly transferred
on various medical datasets. Despite its promising results, we observe that many medical images’ regions are ambiguous,
where pixels are challenging to be categorized as a specific class compared to natural images. Constructing hard pseudo-
labels for these regions is consequently unintuitive and prone to be of low quality. To this end, we develop a novel SSL
framework with the proposed Soft Pseudo-label Fusion strategy (called ”SPFSeg”). It can produce refined soft pseudo-labels,
harboring the association knowledge between regions of interest (ROIs) and backgrounds while preserving the ”low-
density” assumption of vanilla pseudo-labeling. These soft pseudo-labels can further establish potent supervision signals
for unlabeled images, helping the segmentation model learn better feature representations. Through extensive experiments
conducted on various datasets to evaluate the effectiveness of SPFSeg, our results manifest that its performance can surpass
previous state-of-the-art semi-supervised frameworks on CXR-2014, ISIC-2017, and BUL-2020.
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1 Introduction

Medical imaging has widely been applied to modern med-
ical analysis. Thereinto, segmentation is one of the most
fundamental analysis tasks, assisting clinicians in focusing
on pathological regions. Recently, with advances in Deep
Learning, many researchers have attempted to apply Con-
volutional Neural Networks (CNNs) to realize automatic
computer-aided segmentation tasks. Although they have
demonstrated encouraging results on various datasets (e.g.,
skin lesion segmentation [1], lung segmentation [2], and car-
diac MR image segmentation [3]), an inevitable challenge is
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that Deep Learning models require annotation-rich medical
imaging datasets to guarantee their robustness and general-
izability. In real scenarios, annotating medical images is par-
ticularly expensive and time-consuming because it needs to
be conducted by experienced experts, and some images are
hard to annotate due to their imaging qualities or scanning
characteristics. This challenge is not beneficial to introduc-
ing these Deep Learning models into practical applications.

To this end, many studies have introduced Semi-
supervised Learning (SSL) paradigms previously used in
natural images to put forward some semi-supervised med-
ical segmentation frameworks, seeking the possibility of
leveraging unlabeled images when the number of labeled
images is limited. Among them, Pseudo-labeling [4] has
been extensively studied in medical imaging segmentation.
Its main idea is to generate pixel-level pseudo-labels of
unlabeled images and then use them to retrain the seg-
mentation model in the same way as the labeled images.
However, this paradigm often leads to low-quality pseudo-
labels due to a lack of supervision from labeled images.
Therefore, many studies [5–7] tend to refine them based
on the properties of medical images. Although these frame-
works significantly enhance the segmentation performance
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compared to the vanilla Pseudo-labeling strategy, an image
property gap between natural and medical images may hin-
der the further improvement of segmentation performance.
Specifically, as depicted in Fig. 1, many pixels in medical
images’ regions, especially in the boundaries, are usually
ambiguous and hard to be identified as specific categories
compared to natural images. Therefore, it is unintuitive
to produce hard (one-hot) pseudo-labels, as conducted in
many existing pseudo-labeling-based studies.

In knowledge distillation (see review in [8]), many
response-based studies utilize the output soft targets from
the large-scale teacher model (called ”soft target”) to impart
knowledge to the lightweight student model. Due to the
associations between different classes harboring in soft
targets, the student model can learn the knowledge from
the teacher model better than using one-hot labels [9].
Inspired by the related works in the above field, we propose
a novel semi-supervised segmentation framework with Soft
Pseudo-label Fusion, called ”SPFSeg”. The core of SPFSeg
is establishing the effective soft pseudo-labels with the
association knowledge of ROIs and backgrounds to nar-
row the image property gap between natural and medical
images when conducting the pseudo-labeling paradigm,
helping the segmentation model learn better object pattern
understanding of ROIs and backgrounds. Our contributions
are summarized as follows:

• Inspired by ”soft target” in knowledge distillation, we
design a new pseudo-labeling strategy called ”Soft
Pseudo-label Fusion”. It integrates the ideas of ensem-
ble learning and entropy minimization to generate the
refine soft pseudo-labels, harboring the association
knowledge of ROIs and backgrounds while maintaining
the ”low-density” assumption.

• Based on Soft Pseudo-label Fusion, we further develop
a semi-supervised medical imaging segmentation
framework called SPFSeg, to help the segmentation
model learn a better pattern understanding in med-
ical images. The teacher-student architecture with

strong and weak augmentation effectively couples the
proposed Soft Pseudo-label Fusion strategy, making
SPFSeg exhibit remarkable performance on medical
images with different modalities.

• Extensive experiments have been conducted to evaluate
SPFSeg on CXR-2014 [2], ISIC-2017 [10], and BUL-
2020 [11] under different experimental settings. The
results and qualitative analyses show that its perfor-
mance can surpass that of existing SSL segmentation
frameworks. In the case of using exceedingly limited
labeled images, its segmentation performance outper-
forms other compared frameworks by a large margin.

The rest of this paper is organized as follows. We
review the related works in knowledge distillation, pseudo-
labeling, and entropy minimization in Sec. 2. The method-
ology of SPFSeg, including the overview, Soft Pseudo-label
Fusion, and training objective, are presented in Sec. 3. The
experiments and discussions are detailed in Sec. 4. Finally,
our paper is concluded in Sec. 5.

2 Related works

2.1 Soft targets in knowledge distillation

Since large-scale models can excavate more information
from the training dataset while lightweight models are more
efficient and suitable for deployment, Knowledge distilla-
tion (KD) is proposed to transfer the abundant information
learned from a large-scale model (the teacher model) to a
lightweight model (the student model), achieving the goal
of obtaining a lightweight model with comparable per-
formance as a large-scale model [8]. One of the prevalent
paradigms of KD is known as soft targets [9], which con-
strains the soft logits predicted by the last output layer of
the student model to be as consistent as possible with those
of the teacher model. This paradigm effectively exploits the
informative dark knowledge contained in soft logits, which

Fig. 1 The data samples of
ISIC-2017, BUL-2020, and
PASCAL VOC 2012. The “blue”
shaded areas in medical images
(ISIC-2017 and BUL-2020) are
the ROIs annotated by human
experts. The “yellow” boxes in
medical images are the
ambiguous boundary regions
where the pixels are hard to be
identified as a specific category.
Conversely, the ROIs and
backgrounds of natural images
are relatively distinguishable

ISIC-2017

BUL-2020 PASCAL VOC 2012
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reveals the association between each class. Motivated by
soft targets in KD, we introduce the soft targets into SSL of
medical imaging segmentation, aiming at better represent-
ing the ambiguous regions commonly in medical images.
Note that the teacher and student models in SPFSeg differ
from those in KD. In our framework, the teacher model
shares the same network architecture as the student, and
it is momentum-updated by the weights of the student.
It has been proved that the teacher model can output a
robust supervision signal for the student model and make it
perform well [12].

2.2 Pseudo-labeling inmedical imaging
segmentation

Although Deep Learning techniques have helped computer-
aided medical imaging segmentation achieve significant
strides, its data-hungry property still hinders its widespread
applications in practical scenarios. Therefore, SSL has been
gradually introduced into this field to make the segmenta-
tion model generalize well on unseen medical images [6,
13, 14]. Pseudo-labeling [4], derived from SSL of natural
images, is a popular direction in SSL of medical segmen-
tation. Specifically, it assigns fake pixel-level labels for
each unlabeled image, and then combines them with anno-
tated images to iteratively train the model. Many studies
generated one-hot pseudo-labels using a fixed confidence-
based threshold (similar to the operation in FixMatch [15])
or an adaptive threshold based on the learning ability or
performance [16–18] to generate one-hot pseudo-labels.
However, compared with natural images, many medical
images’ pixels are difficult to be identified as a specific cat-
egory in many cases. Using one-hot pseudo-labels is hard
to represent them and thus limits the quality of the supervi-
sion for unlabeled images. In contrast to these frameworks,
SPFSeg constructs soft pseudo-labels without threshold
partition, aiming at guiding the segmentation model to
learn the underlying association knowledge (i.e., ROIs and
background). Moreover, we integrate the teacher-student
architecture and differentiated perturbation (strong and
weak augmentation) widely applied in consistency learn-
ing, encouraging the model to learn more essences of ROIs
and backgrounds’ representations.

2.3 Entropyminimization in pseudo-labeling

In SSL, a popular assumption is that the classifier’s deci-
sion boundary should not pass-through high-density regions
in the feature space, called the ”low-density” assumption
[19]. Pseudo-labeling implicitly achieves this assump-
tion via entropy minimization. It produces hard (one-hot)
pseudo-labels from confident predictions and uses them
as training targets via Cross Entropy loss, encouraging

the model to output more low-entropy (confident) predic-
tions on unlabeled data. In SPFSeg, we modify the vanilla
pseudo-labeling to the soft pseudo-label. Although using
soft labels can guide the model to learn underlying asso-
ciations with ROIs and backgrounds, it may undermine
the ”low-density” assumption and cause the degradation of
segmentation performance. Thus, we couple the sharpening
operation into Soft Pseudo-label Fusion to reconcile the
target distribution for unlabeled data and reduce the entropy
of soft pseudo-label. This operation has been proven to be
essential in improving the performance of SPFSeg.

3Methodology

3.1 Overview of SPFSeg

Figure 2 presents the overview of SPFSeg, which adopts
multi-branch teacher-student architecture with Soft Pseudo-
label Fusion strategy. The student model θ is updated by the
supervision signal, and the teacher model θ ′ is momentum
updated by the weights of the student through Exponential
Moving Average (EMA). The goal of SPFSeg is to train
a semantic segmentation model by utilizing a tiny set of
labeled images and a large number of unlabeled images.
In every training step, a batch of N labeled images and
corresponding labels

{
xn
l , yn

l

}N

n=1, and N unlabeled images
{xn

u}Nn=1 are randomly sampled from the training dataset.
For N labeled images and their corresponding labels{

xn
l , yn

l

}N

n=1, they are first perturbed using strong augmen-
tation strategy (detailed in Sec. 4.2): x̃n

l = �
(
xn
l

)
and

ỹn
l = �

(
yn
l

)
. Then, {x̃n

l }Nn=1 are sent to the student model
to get their predictions: Y

(
x̃n
l

) = f
(
x̃n
l , θ

)
, n ∈ [1, N ].

Finally, the labeled supervision loss is calculated between
ỹn
l and Y

(
x̃n
l

)
using masked Cross Entropy, which will be

formulated in Sec. 3.3.
For N unlabeled images {xn

u}Nn=1, we use the proposed
Soft Pseudo-label Fusion to generate their supervision,
bridging the image property gap between natural and
medical images when using Pseudo-labeling. Specifically,
each image is randomly perturbed K times using strong
and weak augmentation strategy (detailed in Sec. 4.2),
respectively. In terms of each image xn

u ,K weakly perturbed
versions are randomly generated using weak augmentation:(
x̂n
u

)i = �
(
xn
u

)
, i ∈ [1, K], and its K strongly perturbed

versions are randomly generated using strong augmentation:(
x̃n
u

)i = �
(
xn
u

)
, i ∈ [1, K]. Then, the weakly perturbed

versions are sent to the teacher model to get their
predictions: Ŷ

(
x̂n
u

)i = f (
(
x̂n
u

)i
, θ ′), and the strongly

perturbed versions are sent to the student model to get their
predictions: Ỹ

(
x̃n
u

)i = f (
(
x̃n
u

)i
, θ). Further, Ŷ

(
x̂n
u

)i are
applied Soft Pseudo-label Fusion to generate the final soft
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Fig. 2 The overview of the proposed SPFSeg framework. SPFSeg contains a student model and a teacher model, where the teacher is
momentum-updated with the student. Labeled images are directly fed into the student model for supervised training

pseudo-label Ỹ
(
x̂n
u

)i for each Ỹ
(
x̃n
u

)i . This strategy will be
described in Sec. 3.2. Finally, the unlabeled supervision loss
is calculated between Ỹ

(
x̂n
u

)i and Ỹ
(
x̃n
u

)i using masked
Mean Square Error, which will be formulated in Sec. 3.3.

In the training process of the student model, the teacher
will also evolve to be more robust and generalized, serving
as a better teacher for the student. When leveraging the
unlabeled images, it will output diversified predictions to
generate refined soft pseudo-labels through Soft Pseudo-
label Fusion, which further provides potent supervision for
unlabeled images.

3.2 Soft pseudo-label fusion

3.2.1 Inverse transformation

For the unlabeled images, Soft Pseudo-label Fusion
utilizes the teacher’s multiple predictions under various
perturbations to generate refined pseudo-labels for the
student. Since these images are randomly perturbed by
the weak augmentation strategy composed of various
affine transformations (e.g., flipping, rotation, and scaling),
their predictions are in different coordinate systems.
Therefore, we first apply inverse transformations to
eliminate the differences of weak augmentation, making
the teacher predictions share the same coordinate system
for subsequent soft pseudo-label fusion. In each process of
weak augmentation, we calculate its inverse matrix to apply
inverse transformations to its perturbed version’s prediction.
For the prediction Ŷ

(
x̂n
u

)i
, i ∈ [1, K], its inverse

transformation version Y
(
x̂n
u

)i is calculated as follows:

Y
(
x̂n
u

)i = R−1
w

(
x̂n
u

)i · Ŷ
(
x̂n
u

)i (1)

where R−1
(
x̂n
u

)i is the corresponding inverse transforma-
tion matrix applied in the i-th weak perturbation of x̂n

u .

3.2.2 Fusion and refinement

As depicted in Fig. 3, for each unlabeled image, its
Y

(
x̂n
u

)i
, i ∈ [1, K] are first mapped into a categorial distri-

bution P
(
x̂n
u

)i using channel-wise Softmax function, and
then taken the average of them as follows:

P̄
(
x̂n
u

) = 1

K

K∑

i=1

P
(
x̂n
u

)i (2)

Then, sharpening operation [20] is applied to reconcile
P̄

(
x̂n
u

)
. Suppose pj is one of the pixel-wise softmax prob-

ability values of P̄
(
x̂n
u

)
at the j -th channel, its sharpened

probability value p′
j is calculated as follows:

p′
j = p

1
T

j /

C∑

c=1

p
1
T
c , pj ∈ P̄

(
x̂n
u

)
(3)

where C is the total number of channels (i.e., number of
classes), and T is the sharpening temperature that controls
the probability distribution of each class. Next, the sharp-
ened P̄

(
x̂n
u

)
is converted from categorial probabilities to the
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Fig. 3 The process of fusion and
refinement in Soft Pseudo-label
Fusion. We use a case of K = 2
for a clear demonstration Sharpen

(Eq. 3)
Revert
(Eq. 4)

OUTPUT

Softmax + Average (Eq. 2)

Normalization
(Eq. 5)

channel-wise pixel-wise channel-wise

activation value Ȳ
(
x̂n
u

)
. Suppose yj is the j -th converted

activation value of p′
j , it is calculated as follows:

yj = log
(
p′

j + eps
)

(4)

where eps is set to 1e−7 to ensure the numerical stability.
Finally, Ȳ

(
x̂n
u

)
is applied channel-wise normalization to

rescale different values to a common scale. For the j -th
converted activation value yj , its normalized value y′

j is
calculated as follows:

y′
j = yj − 1

C

C∑

c=1

yc (5)

3.2.3 Soft pseudo-labeling

After getting each unlabeled image’s sharpened activation
map Ȳ

(
x̂n
u

)
, we use them to generate the soft pseudo-

labels for the predictions of its strongly perturbed versions
from the student model. We apply transformations to Ȳ

(
x̂n
u

)

based on respective transformation matrices applied in
strong augmentations:

Ỹ
(
x̂n
u

)i = Rs

(
x̃n
u

)i · Ȳ
(
x̂n
u

)i (6)

where Rs

(
x̃n
u

)i is the transformation matrix of x̃n
u in the i-th

strong perturbation. The whole process of constructing the
supervision for unlabeled images is shown in Algorithm 1.

3.3 Training objective

The training objective of SPFSeg is to minimize the total
supervision loss, which is composed of two parts: the
supervision loss of the labeled images Ls and the supervi-
sion loss of the unlabeled images Lu. Note that both strong
and weak augmentations involve affine transformations,
where some operations (e.g., scaling, rotation, and shear-
ing) may generate undefined regions on images. In early
experiments, we found that the segmentation model is sen-
sitive to these undefined regions and tends to classify them

Algorithm 1 The pseudo-code of Soft Pseudo-label Fusion.

as ROIs, which will impair the supervision of unlabeled
images. Therefore, when calculating Ls and Lu, we set
binary masks (the pixels in the valid region are marked as
1 and the pixels in the undefined region are marked as 0) to
control where gradients should be passed through and thus
neglect the supervision in the undefined region. The super-
vision loss of labeled images Ls is calculated by masked
Cross Entropy, which is defined as follows:

Ls =
N∑

n=1

�ce

(
Y

(
x̃n
l

) · M
(
x̃n
l

)
, ỹn

l

)
(7)

where �ce is the standard cross-entropy function and
M

(
x̃n
l

)
is the binary mask. If one value in M

(
x̃n
l

)
is 0, its
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corresponding position in Y
(
x̃n
l

)
will not be involved in the

calculation of Ls . For the supervision of unlabeled images
Lu, we adopt Mean Square Error (MSE) as it is a relatively
stronger constraint compared to Cross Entropy loss [21].
The masked MSE is defined as follows:

Lu =
N∑

n=1

K∑

i=1

�mse

(
Ỹ

(
x̃n
u

)i · M
(
x̃n
u

)i
, Ỹ

(
x̂n
u

)i · M
(
x̃n
u

)i
)

(8)

where �mse is the standardMSE function, andM
(
x̃n
l

)i is the
binary mask for the i-th strongly perturbed version of xn

l .
Finally, the total supervision loss is calculated as follows:

L = Ls + λ ∗ Lu (9)

where λ is a time-dependent weight used to rescale Lu.
Since the student and teacher models are not reliable and
robust at the beginning of model training, the supervision
of Lu is of low quality. Hence, we set a warm-up stage to
gradually increase λ based on Gaussian ramp-up function
[12] at the early training stage:

λ =
{

λmax ∗ exp
[
−5 ∗

(
1 − t

tmax

)]
, t ≤ tmax

λmax, else
(10)

where λmax is the maximum of λ, t is the number of current
training steps, and tmax is the maximum of ramp-up length.

4 Experiments and discussions

4.1 Evaluation datasets

We evaluated the proposed framework on various medical
image datasets, including Chest X-Ray of Tuberculosis
dataset (CXR-2014) [2], International Skin Images Col-
laboration 2017 (ISIC-2017) [22], and Breast Ultrasound
dataset (BUL-2020) [11]. The samples of the above datasets
are shown in Fig. 4. The division protocols of these datasets
are presented in Table 1.

1) CXR-2014. The Chest X-Ray of Tuberculosis dataset
is provided by the National Library of Medicine, Mary-
land, USA, in collaboration with Shenzhen No.3 People’s
Hospital, Guangdong Medical College, Shenzhen, China.

Table 1 The division protocols of the experimental datasets

Dataset Total Train Validate Test

CXR-2014 704 494 70 140

ISIC-2017 2750 2000 150 600

BUL-2020 647 457 60 130

This dataset contains raw 800 chest frontal x-rays images,
where 704 images are annotated by Rajaraman et al. [23]
and Computer Engineering Department, Igor Sikorsky
Kyiv Polytechnic Institute, National Technical University
of Ukraine. In this paper, we split the 704 annotated images
to train and validate the segmentation performance.

2) ISIC-2017. The dataset of International Skin Images
Collaboration - 2017 skin lesion challenge is to help par-
ticipants develop image analysis tools that enable the auto-
mated diagnosis of melanoma from dermoscopic images.
The lesion data includes the original image, paired with
the expert manual tracing of the lesion boundaries in the
form of a binary mask. This dataset contains 2000 training
images, 150 validation images, and 600 testing images.

3) BUL-2020. The Breast Ultrasound Dataset (BUL)
was created by Baheya Hospital for Early Detection &
Treatment of Women’s Cancer, Cairo, Egypt, which is open-
sourced in Kaggle Community (https://www.kaggle.com/
datasets/aryashah2k/breast-ultrasound-images-dataset).
These images are categorized into three classes, which are
normal, benign, and malignant. It contains 780 images with
an average image size of 500*500 pixels. In this dataset,
multiple lesion annotations from the same subject are
saved in independent files. Therefore, we merge all lesion
annotations of each subject into one file in our experiment.

4.2 Implementation details

In all experiments, we adopt the Adam optimizer with step
learning rate decay schedule (gamma = 0.8 for every 80
steps). The initial learning rate is 5e−4, and the weight decay
is 1e−5 on ISIC-2017, 3e−5 on CXR-2014 and BUL-2020.
Every training batch consists of 24 annotated images and
24 unannotated images. All images are resized to 224*224.
According to the segmentation difficulty of datasets, we

Fig. 4 The original sample
images (first row) and their
corresponding binary
annotations (second row)

BUL 2020ISIC 2017CXR 2014
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select 1%, 3%, and 5% labeled data on CXR-2014, 1%, 5%,
and 10% on ISIC-2017, and 5%, 10%, 20% on BUL-2020.
All the experiments are trained with 800 iterations (except
for 400 iterations when using 1% labeled data on CXR-
2014 and ISIC-2017, and 5% on BUL-2020) and evaluated
on one NVIDIA RTX 3090 GPU (24GB). The backbone
segmentation network is adopted DeepLab v3+ [24] with
ResNet-101 pretrained model.

For SPFSeg, the warm-up length tmax is set to 200 steps,
and the maximum of λ′ is set to 1.0. Sharpening tempera-
ture T is set to 0.5 on CXR-2014, 0.2 on BUL-2020, and 0.2
on ISIC-2017. In the perturbation process, strong and weak
augmentation follows the strategy used in RandAugment
[25]. The weak augmentation includes random flipping (not
applied on CXR-2014), scaling, rotation (0◦, 90◦, 180◦,
and 270◦), and shearing. Based on weak augmentation
operations, strong augmentation additionally includes ran-
dom color distortions implemented on brightness, contrast,
saturation, hue, and Gaussian blur. The maximum color
distortion degree is 1.0 on CXR-2014, 0.7 on ISIC-2017
and BUL-2020. The EMA decay is 0.97 on ISIC-2017, and
0.99 on CXR-2014 and BUL-2020. Note that the annota-
tions of images are not applied random color distortions in
strong augmentation.

4.3 Comparison with existing alternatives

We compared SPFSeg’s segmentation performance with
other state-of-the-art semi-supervised frameworks (includ-
ing Mean Teacher [12] (MT), FixMatch [15] (FM), and
Cross Pseudo Supervision [26] (CPS)) in terms of Dice
score and Jaccard Index. Considering the small number of
datasets and the limited labeled images in experimental set-
tings, the performance is prone to be unstable due to the
sample distribution of the training set and labeled data.
Therefore, all frameworks were trained in five rounds with
the same random division protocol and took the average
of metrics as the final results. The results are presented in
Table 2, 3 and 4. A corresponding paired t-test (Table 5) was
conducted to investigate the statistical significance between
the results of SPFSeg and other compared SSL frameworks.
The significance threshold was set to 0.05, where a p-value
less than 0.05 indicates the statistical significance of the
results. In our experiments, many cases were less than 0.01,
implying that the results from SPFSeg were distinct from
those of other frameworks.

Specifically, we can find that SPFSeg achieves the
most significant performance improvement over the model
trained with only limited labeled images, compared with

Table 2 Performance comparison with other SSL frameworks on CXR-2014

Method Dice Score (%) ↑ Jaccard Index (%) ↑

1%(4) 3%(12) 5%(24) 1%(4) 3%(12) 5%(24)

SupOnly 85.68±3.38 92.94±1.29 93.92±0.65 82.22±4.53 91.14±1.55 92.42±0.82

MT 87.17±2.42 93.96±0.95 95.08±0.63 84.05±2.74 92.21±1.19 93.62±0.79

FM 87.31±2.90 95.02±0.90 95.19±0.62 85.45±2.97 93.55±1.15 94.40±0.83

CPS 87.91±3.02 95.23±0.50 95.68±0.34 85.39±3.02 93.84±0.63 94.39±0.43

SPFSeg 90.39±2.17 95.94±0.56 96.27±0.58 87.76±2.59 94.50±0.80 94.92±0.69

“SupOnly” means fully supervised training without using any unlabeled data. The number in brackets represents the number of labeled images

Table 3 Performance comparison with other SSL frameworks on ISIC-2017

Method Dice Score (%) ↑ Jaccard Index (%) ↑

1%(20) 5%(100) 10%(200) 1%(20) 5%(100) 10%(200)

SupOnly 72.17±3.38 77.98±1.43 80.13±1.70 71.08±3.88 76.29±1.18 78.38±1.97

MT 74.77±1.75 79.20±1.41 81.25±0.82 73.22±1.97 77.61±1.17 80.21±1.98

FM 75.09±2.64 81.83±1.62 83.07±1.44 74.38±2.94 79.94±1.32 81.15±1.29

CPS 73.69±1.36 81.34±1.64 82.76±1.49 73.13±1.07 79.57±0.51 80.89±1.36

SPFSeg 77.44±1.70 83.99±1.02 84.19±0.30 76.01±1.18 81.78±0.73 82.18±0.28

“SupOnly” means fully supervised training without using any unlabeled data. The number in brackets represents the number of labeled images
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Table 4 Performance comparison with other SSL frameworks on BUL-2020

Method Dice Score (%) ↑ Jaccard Index (%) ↑

5%(24) 10%(48) 20%(96) 5%(24) 10%(48) 20%(96)

SupOnly 62.94±4.41 69.34±2.99 71.78±1.95 68.34±3.66 73.41±2.22 75.26±1.33

MT 63.27±4.78 70.55±1.85 73.87±1.76 69.87±2.92 74.46±1.23 76.76±1.41

FM 62.69±5.56 70.86±3.92 73.79±2.40 70.00±3.27 74.92±2.51 76.88±1.63

CPS 62.16±4.51 71.32±3.81 75.52±2.12 69.74±2.53 75.23±2.48 78.07±1.58

SPFSeg 65.43±3.02 72.41±2.48 74.99±1.94 71.43±1.82 75.80±1.78 79.36±1.37

“SupOnly” means fully supervised training without using any unlabeled data. The number in brackets represents the number of labeled images

other prior arts of SSL. On CXR-2014, all frameworks
perform relatively well when using 3% and 5% labeled
images because of simple object patterns (i.e., lungs). How-
ever, in the case of using 1% labeled images, SPFSeg has
a 2.48% and 2.31% improvement in terms of Dice Score
and Jaccard Index compared to the prior arts. Similarly,
SPFSeg surpasses prior arts by a substantial margin, rang-
ing from 1.12% to 2.35% in Dice Score and from 1.03%
to 1.63% in Jaccard Index. Furthermore, on BUL-2020,
the SPFSeg model continues to manifest its superiority,
with an improvement of 1.09% to 2.16% in Dice Score and
0.57% to 1.43% in Jaccard Index when trained with 5% and
10% labeled images. Despite a slightly lower Dice Score
compared to CPS when trained with 20% labeled images,

Table 5 Results of paired t-test for segmentation results of SPFSeg
against compared SSL frameworks

Dataset Methods p

Dice Score Jaccard Index

CXR-2014 SupOnly-Ours <0.001 <0.001

MT-Ours 0.004 0.004

FM-Ours 0.005 0.011

CPS-Ours 0.005 0.006

ISIC-2017 SupOnly-Ours <0.001 <0.001

MT-Ours <0.001 <0.001

FM-Ours 0.007 0.010

CPS-Ours <0.001 <0.001

BUL-2020 SupOnly-Ours <0.001 <0.001

MT-Ours 0.026 0.015

FM-Ours 0.016 0.036

CPS-Ours 0.042 0.195

The underlined number indicates no significant difference in perfor-
mance between the two frameworks in terms of the corresponding
metrics

SPFSeg still outperforms most of the prior arts in terms of
overall performance.

Interestingly, compared to prior arts of SSL, SPFSeg
has more significant performance gain when exceedingly
limited labeled data are provided (i.e., 1% on CXR-2014
and ISIC-2017, and 5% on BUL-2020). We reckon that
other frameworks’ outputs of the perturbed images are
prone to have high variances when using exceedingly lim-
ited labeled data. This case will make the supervision of
unlabeled images unstable, thus deteriorating the final seg-
mentation performance. For SPFSeg, it generates multiple
soft pseudo-labels and further integrates them to lower the
variance of the strongly perturbed images’ pseudo-labels,
which can act as a better supervision signal for unlabeled
images. Moreover, we compare the performance of existing
fully supervised segmentation methods. Table 6 shows that
SPFSeg’s performance can even approach or outperform
these methods with few labeled data on these datasets,
showing an encouraging prospect for practical applications.

From the qualitative results shown in Fig. 5, we can
observe that the ROIs segmented by SPFSeg are generally
closer to their ground truths than those of the prior arts in the
case of using 1% labeled data (except 5% on BUL-2020) as
well as the same backbone network. On ISIC-2017, it main-
tains good segmentation performance under various cases,
while other frameworks output some wrong regions due to
the background noises (e.g., Row #1 and Row #2). In the
challenging case of Row #4 where the ROI and background
are visually similar, the proposed framework still outputs
the most complete prediction, showing its robust segmen-
tation performance in diverse subjects. On CXR-2014, the
performances of prior arts are generally acceptable, except
for some flaws in the upper and lower margins of the
lungs. In contrast, SPFSeg segments the ROIs with greater
precision and fineness on the margins. On BUL-2020, the
presence of noise and artifacts in CT scans results in a rela-
tively poor performance of all semi-supervised frameworks.
Despite this, SPFSeg still performs better in terms of
coverage area and the fineness of segmented regions.
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Table 6 Performance comparison with fully supervised learning
methods

DataSet Method Dice (%) Jaccard (%)

CXR-2014 ET-Net [27] - 94.20

MFFRU-Net [28] - 96.56

CFCM [29] 96.90 -
†A-LugSeg [30] 97.20 95.60

Ours (5% labeled) 96.27 94.92

ISIC-2017 Auto-ED [31] 80.82 -

DAGAN [32] 84.25 -

FAT-Net [33] 85.00 -

Ours (10% labeled) 84.19 82.18

BUL-2020 DAF [34] - 68.40

GC-Net [35] - 73.80

AWSNet [36] 74.70 -

Ours (20% labeled) 74.99 79.36

“†” means this work introduced extra datasets to train the
segmentation framework

4.4 Ablation studies

We conducted the ablation study to investigate the influ-
ence of Soft pseudo-label (SP), Soft pseudo-label fusion
(SPF), teacher-student architecture (T&S), and strong and
weak augmentation (SWA) in SPFSeg. The details of these
sub-models with ablated parts are as follows: 1) the ablated
variant of SP uses hard pseudo-labels to produce supervi-
sion for the unlabeled images; 2) the ablated variant of SPF
is removed Eq. (2) ∼ Eq. (6); 3) the teacher model of the
ablated variant of T&S shares the weights of the student
(gradients are only back-propagated on the student model);
and 4) the ablated variant of SWA is only applied a simple
augmentation strategy (only random flipping) to support
SPF. The results of our ablation experiments are shown in

Table 7 The results of the ablation experiment of SPFSeg on ISIC-
2017 (using 10% labeled images)

SP SPF T&S SWA Dice score

� � � 82.14% (-2.25%)

� � � 80.77% (-3.62%)

� � � 83.47% (-0.92%)

� � � 81.07% (-3.32%)

� � � � 84.39%

The metric values are the mean value computed from three rounds

Table 7. All results are obtained by training three rounds
with 5% labeled data on ISIC-2017.

Soft Pseudo-label Fusion can better leverage the unlabeled
images to build unlabeled supervision. SPFSeg adopts the
proposed Soft Pseudo-label fusion (SPF) to build the super-
vision of unlabeled images. It incorporates the association
knowledge of ROIs and backgrounds into pseudo-labels
and meanwhile guarantees the ”low-density” assumption.
After replacing hard pseudo-labels in the ablated variant
of SP, it has a 2.25% performance decline, demonstrating
the effectiveness of imparting the underlying association
knowledge to the segmentation model. Moreover, after
removing complete SPF strategy, the ablated variant of SPF
experiences a severe performance degradation of 3.62%.
This indicates that SPF can generate better soft pseudo-
labels for the segmentation model by fusing diversified
predictions under different perturbations.

The momentum-updated teacher improves the quality of
the supervision of unlabeled images. In SPFSeg, we use
EMA to momentum-update the teacher in each training
step based on previous student models’ weights. After
removing the teacher in SPFSeg, we can find the ablated
version of T&S has a performance drop of 0.92%. This
shows that momentum-updated teacher can output more

SupOnly MT FM CPS Ours

ISIC 2017 CXR 2014 BUL 2020

SupOnly MT FM CPS Ours SupOnly MT FM CPS Ours

Fig. 5 Qualitative comparisons on CXR-2014, ISIC-2017, and BUL-
2020 when trained with 1% labeled data (5% labeled data on BUL-
2020). The “red” area is the ground truth that the framework does not

predict, the “green” area is the wrong region predicted by the frame-
work, and the “yellow” area is the overlapping area of the prediction
result and the corresponding ground truth
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robust predictions of weakly perturbed images. These
images subsequently generate better soft pseudo-labels for
the supervision of unlabeled images.

Strong and weak augmentation helps the model learn bet-
ter representations of medical images. In SPFSeg, strong
and weak augmentation strategy is applied to the training
images for the teacher and student. The removal of SWA
results in a significant drop in performance of 3.32 %,
highlighting its crucial role in helping SPFSeg learn better
feature representations. On the one hand, the use of weak
augmentation allows for the generation of diversified yet
high-quality predictions from the teacher model (as shown
in Fig. 6), which are necessary for producing better soft
pseudo-labels. On the other, the supervision of unlabeled
images will encourage the student model to output more
consistent predictions with soft pseudo-labels under strong
perturbations. Further, we also explore the performance
influence of random augmentation operations (see Table 8).
We can find that these operations are beneficial to improve
the Dice score and Jaccard index of SPFSeg. Among them,
color distortion is the most effective operation for CXR-
2014 and ISIC-2017, and random scaling and shearing is
the most effective operation for BUL-2020.

4.5 Hyperparameter analysis

In SPFSeg, two hyperparameters are crucial to SPFSeg. One
is the branch numberK . In the teacher and student branches,
we perturbed each image K times using strong and weak
augmentation, respectively. A suitable setting of K guides
the model to generate a certain number of predictions under
various transformations, contributing to obtaining a high-
quality soft pseudo-label through Soft Pseudo-label Fusion.
However, an excessively large K is prone to bring more
noise in Soft Pseudo-label Fusion, producing the adverse
effects of pseudo-labels for unlabeled images. The other
one is the sharpening temperature T , which reconciles the

Table 8 Performance comparison under different settings of strong
and weak augmentation

Dataset Metric Only
Flip

Only
Scale

Only
Rotation

Only Color
Distortion

Ours

CXR Dice - 94.49 94.58 95.30 95.94

Jaccard - 92.91 93.02 93.93 94.50

ISIC Dice 81.03 80.78 80.58 82.80 83.99

Jaccard 79.09 79.89 78.73 80.66 81.78

BUL Dice 69.55 70.82 70.11 68.24 72.41

Jaccard 73.88 74.57 74.18 72.92 75.80

The values are the mean value computed from three rounds. We used
3% labeled images on CXR-2014, 5% on ISIC-2017, and 10% on
BUL-2020

categorial distribution of the pseudo-labels. A larger T can
impose a stronger constraint to maintain the ”low-density”
assumption, while a smaller T can preserve more associ-
ation knowledge. Therefore, in this section, we discuss to
choose an appropriate branch number to get exquisite soft
pseudo-labels and balance the low-entropy degree and the
informativeness of the association knowledge.

As shown in Fig. 7, we evaluate the above two hyper-
parameters under different experimental settings on
ISIC-2017 (10% labeled data). The results indicate that
SPFSeg achieves the best segmentation performance when
K = 2. With the increase of K , its performance experi-
ences a degradation. We reckon that overmuch predictions
of the teacher model bring too many noises, which is
not contributing to producing ideal soft pseudo-labels for
the student. In terms of the sharpening temperature T ,
SPFSeg yields the best segmentation performance when
T = 0.2. It is a relatively low temperature, which can
make pseudo-labels to be very low-entropy. This suggests
that the premise of introducing association knowledge of

Fig. 6 Visualization of the
weakly perturbed images’
predictions on ISIC-2017. The
predictions are undergone
inverse transformations (see
Sec. 3.2.1) to share the same
coordinate space as the original
image Original

Image

Label

Weakly augmented images

Predictions (soft logits)

Predictions after inverse transformation (Sec. 3.2.1)
share same 
coordinate
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Fig. 7 The evaluation results of different hyperparameters settings
on ISIC-2017 (10% labeled data). “SupOnly” means fully supervised
training without using any unlabeled data

ROIs and backgrounds is to ensure that the predictions are
low-entropy. Introducing too much association knowledge
while neglecting the ”low-density” assumption will cause
the degradation of segmentation performance.

5 Conclusion

In this paper, we propose a novel semi-supervised medical
imaging segmentation framework through soft pseudo-label
fusion, SPFSeg. Its core idea is utilizing the dark knowl-
edge, i.e., the association knowledge between ROIs and
backgrounds, to bridge the image property gap between nat-
ural and medical images, making pseudo-labeling fit for
medical imaging segmentation better. SPFSeg is integrated
strong and weak augmentation with the teacher-student
architecture to output multiple predictions under various
transformations simultaneously. These outputs from the
teacher are then integrated to generate refined soft pseudo-
labels with low entropy for the student, helping SPFSeg
establish potent supervision for unlabeled images. Exten-
sive experiments show significant improvement in semi-
supervised medical imaging segmentation performance on
CXR-2014, ISIC-2017, and BUL-2020. One demerit of
SPFSeg is that it has high computation and memory costs
due to multiple inferences in the Soft Label Fusion stage. In
the future, we would like to investigate possible alternatives
to overcome the above problem and transfer this framework
to 3D medical imaging to validate its applicability.
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Thoma G. (2014) Two public chest x-ray datasets for computer-
aided screening of pulmonary diseases. Quantitative imaging in
medicine and surgery 4(6):475

3. Bernard O., Lalande A., Zotti C., Cervenansky F., Yang X., Heng
P.-A., Cetin I., Lekadir K., Camara O., Ballester M. A. G., et al.
(2018) Deep learning techniques for automatic mri cardiac multi-
structures segmentation and diagnosis: is the problem solved?
IEEE transactions on medical imaging 37(11):2514–2525

4. Lee D.-H. (2013) Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In:
Workshop on Challenges in Representation Learning, ICML, vol.
3, p. 2

5. Kamraoui R. A., Ta V.-T., Papadakis N., Compaire F., Manjon
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