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Abstract
The use of virtual reality or augmented reality systems in billiards sports are useful tools for pure entertainment or improving
the player’s skills. Depending on the purpose of these systems, tracking algorithms based on computer vision must be used.
These algorithms are especially useful in systems aiming to reconstruct the trajectories followed by the balls after a strike.
However, depending on the billiard modality, the problem of tracking multiple small identical objects, such as balls, is a
complex task. In addition, when an amateur or nontop professional player uses low-frame-rate and low-resolution devices,
problems such as blurred balls, blurred contours, or fuzzy edges, among others, arise. These effects have a negative impact
on ball-tracking accuracy and reconstruction quality. Thus, this work proposes two contributions. The first contribution is
a new tracking algorithm called “multiobject local tracking (MOLT)”. This algorithm can track balls with high precision
and accuracy even with motion blur caused by low-resolution and low-frame-rate devices. Moreover, the proposed MOLT
algorithm is compared with nine tracking methods and four different metrics, outperforming the rest of the methods in
the majority of the cases and providing a robust solution. The second contribution is a whole system to track (using the
MOLT algorithm) and reconstruct the movements of the balls on a billiard table in a 3D virtual world using computer
vision. The proposed system covers all steps from image capture to 3D reconstruction. The 3D reconstruction results have
been qualitatively evaluated by different users through a series of questionnaires, obtaining an overall score of 7.6 (out of
10), which indicates that the system is a promising and useful tool for training. Finally, both the MOLT algorithm and the
reconstruction system are tested in three billiard modalities: blackball, carom billiards, and snooker.
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1 Introduction

Object tracking algorithms [1–3] have a very wide field
of applicability frequently being utilized in games and
sports [4–8]. Although these algorithms usually work rea-
sonably well, there are cases that make their task complex.
This especially happens in pool games, also known as bil-
liard games. Both terms refer to games played on a table
with a cue (white ball). However, the difference is that the
first term was originally proposed for tables with pockets
and the second without pockets, although currently the term
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billiards can be considered the most widespread to refer to
all types of games [9].

Nevertheless, billiards is not only a well-known game
played throughout the world but also a sport due to the
high degree of practice that is required in addition to the
effects that the physical effort exerts on the musculature of
the players’ bodies [10–12]. Such popularity is reached by
this sport which is found not only in bars and recreational
centers but also in professional players who compete in
world tournaments. In fact, unlike other sports, billiards is
a sport with a multitude of modalities [11, 13]. Examples
of modalities are carom billiards [14], snooker [15], and
blackball [16]. For this reason, given the importance of this
sport, there have also been proposals to include billiards in
the Olympic Games in Paris in 2024 [17].

Many billiard practitioners capture games in a video to
analyze the movements and techniques used in each shot.
These players require accuracy systems that provide precise
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ball positioning and tracking to accurately reproduce the
movements of each ball. With a proper 3D reconstruction
of each shot, the players can change the point of view from
the top view, which is the most usual capture angle from
cameras placed on top of the table, to any angle. Thus, the
player can recognize which shot is the most recommended
and how to perform that shot. The 3D reconstruction of
the shots requires tracking the trajectories of every ball on
the table. It is very common that many balls move in one
shot. These balls are very similar; in some modalities, the
color varies among balls, but in other modalities, there is
no change, even in the color. The similarity of the balls
implies that tracking these objects, without any specific
distinguishing elements, is a very demanding and complex
task. Moreover, the typical devices used by amateur and
nontop professional players cannot catch all the details in a
shot due to low-frame-rate and low-resolution limitations.

The aforementioned limitations mean that the track-
ing algorithms have to work under extremely unfavorable
conditions. Some of the conditions are ball motion blur-
ring due to their velocity, fuzzy ball edges, or very abrupt
displacements between two consecutive frames. All these
unfavorable conditions are further magnified when the
number of balls in play is high. Specifically, snooker [15]
and blackball [16] are examples with multiple small identi-
cal objects of the same color that increase the complexity of
tracking object movements. Therefore, accurately tracking
the different objects for reconstruction under these con-
ditions is a task where many existing tracking algorithms
cannot work properly.

In this context, this work proposes two contributions.
The first contribution is a new multiobject tracking algo-
rithm with local trackers (MOLT), which solves the tracking
of multiple identical targets (both shapes and colors) and
can work with devices with low computational capacity
and reduced image quality and refresh rate. The second
contribution is a complete system to reconstruct the billiard
shots in a 3D-generated virtual world that can be used in
training systems or for entertainment purposes. Conse-
quently, by combining both proposals, this work provides
a system that covers the necessary steps to be applied from
image capture, billiard table detection, ball tracking, and
the 3D reconstruction of three widely played modalities of
billiards: blackball, carom billiards, and snooker.

This paper is organized as follows. Section 2 summa-
rizes those proposals existing in the scientific literature
that are focused on one or several parts of the aim of this
work related to any modality of billiard games. Section 3
describes the proposed system, which includes preprocess-
ing methods, baize segmentation, ball detection and clas-
sification, the MOLT algorithm, and the 3D recreation of
the shots. The results and comparisons with other methods

are analyzed and discussed in Section 4. Finally, the main
conclusions and future works are presented in Section 5.

2 Related works

The problem of information extraction from billiard games
has been addressed by different authors in the scientific
literature with the aim of developing algorithms for object
segmentation, object tracking, and systems focused on
training.

In this context, Ling et al. [18] performed multiple object
detection in snooker games. The authors carried out snooker
table identification by color segmentation of images from
a video recording. Ball detection was performed in two
stages, as green balls showed detection problems due to
the similarity with the background color, as noted by the
authors. Nongreen balls were found using the watershed
algorithm [19] and color segmentation. Green balls were
detected by analyzing the illumination reflections.

A similar idea of locating the ball position through the
illumination reflection was used by Legg et al. [20]. In their
work, the authors performed a table detection technique by
transforming the images obtained by the camera into HSL
(Hue, Saturation, and Lightness) color space and obtaining
a binary mask to detect the playing area. Ball tracking
was carried out frame by frame, relying on the reflection
of light on the balls and on the minimum distance of a
ball detected in the previous frame to estimate its current
position. These procedures of table detection, identification,
and ball tracking were later used by Parry et al. [21] for a
study of hierarchical event selection, generating storyboards
representing moments of change or key events.

Vachaspati [22] proposed a system to identify the billiard
balls positioned on the baize. For this purpose, the author
used a billiard table detection technique by extracting the
predominant color [23–26] of the image in the HSL color
space. This color space further allows identification and
estimation of the position of each ball based on its color and
thus tracking the balls frame by frame.

Other solutions, such as those proposed by Baekdahl and
Have [23], Weatherford [24] and Hsu et al. [27], employed
the same idea of baize segmentation using the predominant
color of the image and proposed a system to identify solid
and striped balls used in other billiard game modalities. This
ball identification is achieved by subtracting the background
using the color of the baize area.

Other authors focused on detecting and tracking a spe-
cial type of ball, striped, red, and yellow balls, or only
identifying and tracking the cue ball. For example, in the
proposal of Larsen et al. [28], only yellow balls and the
cue ball are identified. In fact, other proposals, such as the
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work of Sousa et al. [29], detect and track only the cue ball
to analyze its collisions and interactions with other balls,
using a background subtraction approach to determine its
position. Another cue ball identification proposal was pre-
sented by Gao et al. [30], where the position of the ball after
a strike and collision is predicted using a neural network
(NN) method in conjunction with a fuzzy dynamic model.

Park and Park [31] proposed using the CAMshift algo-
rithm [32] for cue ball tracking (the other balls are not
considered), for which the authors carried out the billiard
table detection using the Harris method. A similar proposal
in which patterns on the billiard table are considered is
found in the work of Larsen et al. [28], where the baize is
identified using patterns that are usually present on many
billiard tables, such as diamonds on the rails (wooden edge)
of the table.

Gao et al. [33] proposed a system for the recognition
of different balls in 8-ball billiards. Their system incorpo-
rates the use of a CCD camera positioned above the table,
and through the use of computer vision algorithms and
artificial intelligence, they are able to identify the objects.
The authors perform a segmentation of the baize based on
frequency filtering in the RGB color space, taking into con-
sideration that the baize is the most common color (green).
For the localization of the balls, they use an improved
version of the Hough transform [34] together with the least
squares (LS) method. Once each ball position is detected,
the classification is performed by means of a convolutional
neural network (CNN) [35].

In the literature, we can find studies that are focused
on extracting information using physical models [12, 36].
An example is found in the work of Gabdulkhakova and
Kropatsch [37], where the authors proposed a model for
analyzing games played on a snooker table. The analysis
is based on generating a kinematic model to predict bil-
liard ball motion using physical features related to ball
movements.

Another work extracting parameters of billiard ball
dynamics and physical models is found in the proposals
of Mathavan et al. [38], where these models were used in
later works [39] by the authors to develop a robotic system
that mimics the behavior of professional billiard players.
Robotics systems have also been explored by Tung et
al [40], who used recorded videos of professional billiard
players to train a machine learning algorithm as the robot
brain. Another work focused on robotics systems was pro-
posed by Bhagat [41] to find the optimal shot trajectory to
pot a ball of a certain color verbally identified by the player
into a pocket using deep learning algorithms.

Other recent approaches proposed using control algo-
rithms based on closed-loop systems [42–44], in which the
billiard ball trajectories were mapped to an infinite surface
wherein impacts never occur, and then a position feedback

controller was designed for trajectories evolving on this
surface. However, these approaches are not based on com-
puter vision but on predicting trajectories in a simulated
environment.

In addition, in the billiards context, we also found
some interesting proposals aimed at extracting information
[45, 46] and helping beginners understand this sport [47].
Therefore, the works of Legg et al. [20] and Parry et al. [21]
mentioned above were taken as the basis for developing
of a test-based skill training system proposed by Chung et
al. [48]. This type of extracted information is not only use-
ful for teaching new players but can also be used to evaluate
the different rating systems for professional players, as seen
in the work of Collingwood et al. [49]. Another example
of the use of extracted information together with artificial
intelligence algorithms was presented in the work of Li et
al. [46] where the authors focused on using artificial neural
networks (ANNs) to predict the outcome of professional
snooker games.

Moreover, as an aid system for beginner players, Sun
et al. [47] proposed the GraspSnooker system, a tool, that
by using shot strategy predictors and text generators for
automatically creating snooker game comments, helps users
to understand the different events that occur in the games.

To achieve better billiard player training, techniques
such as shot prediction and augmented reality can be used.
In this context, Jebara et al. [50] presented a training
system to determine shot direction based on predicting ball
interactions. Their study, employed wearable devices to
endow the system with augmented reality. A modern study
with the same objective but with more current, devices such
as Microsoft HoloLens can be seen in Medved [51].

Shih [52] proposed a low-cost game training system for
billiards and shot prediction. Table detection was performed
using a chessboard calibration pattern. Ball detection was
performed by a background subtraction algorithm using the
baize color. This author conducted another study [53] in
which three different planning strategies were compared to
analyze the effect of the shot using an augmented reality
system.

Sousa et al. [29] developed another augmented reality
system to train inexperienced billiard players. The system
consists of making a shot prediction and the movement of
the balls to be struck so that the players have information
about what is going to happen before making the shot. To
do this, like many of the previous proposals, they perform
a method to subtract the baize of the image, detect the balls
and identify only the cue ball.

Paolis et al. [54] proposed a virtual reality application as
a prototype of a billiard training system. This application
generates a 3D virtual world space where the cue and cue
ball are reconstructed using markers placed on the tip of the
cue and on a flat surface.
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However, training systems are not only focused on the
shot direction or on the recreation of ball movements, but
we find proposals such as the work of Mishima and Sug-
anuma [55], where a support system for beginners starting
to play billiards was developed. The aim of the system was
to provide information to improve the player’s shooting
stance using RGB-D sensors (Red-Green-Blue-Depth).

Another example of this use of sensors applied to a bil-
liard training system can be found in the proposal by Pinzon
et al. [56], where they developed a system that predicts the
shot direction in augmented reality billiard applications.
Unlike other proposals that use this type of sensor, these
authors obtain the region of the baize by applying the
Hough transform to obtain the lines and corners of the table
based on the image generated by the depth sensor. The balls
are also obtained by making exclusive use of this sensor
using the relative ball height with the baize. In addition,
the billiard cue detection is used to estimate the possible
trajectory that the balls will follow once they are struck.

Finally, 3D computing vision techniques are also used
to help players in their training. Therefore, Wu and
Dellinger [57] proposed a mixed-reality system to simulate
the billiard game in a 3D world displayed on a large screen
placed next to the billiard table. Their work uses an RGB-
D sensor to detect the player and the cue. Additionally,
their work uses depth information together with color
information to detect the ball position through the Hough
transform method. Kato et al. [58] proposed the OpenPool
framework, an open platform composed of three different
libraries where the main aim is the generation of visual
effects of the collisions between the billiard balls to improve
the game with the use of augmented reality. This framework
also uses a depth sensor to segment the table and identifies
when a ball is pocketed through infrared emitters located
in each pocket using IoT communications protocols such as
ZigBee [59].

Once the proposals of the authors have been reviewed,
the following list highlights the contributions of this work
to design a system for entertainment and player training:

• A system capable of being used in different billiard
modalities, although not limited to blackball, carom
billiards, and snooker.

• A highly modular system with the following elements:

– A module for baize segmentation that is
invariant to its color and does not require table-
specific features such as diamonds, pockets,
or manufactured identifiers such as chessboard
patterns.

– A module for ball identification and classifica-
tion invariant to ball size.

– A new multiobject tracking module to
obtain the ball movements and positions at
low-resolution and low-frame-rate videos.
Additionally, the tracking algorithm for balls
is designed to be robust to occlusions and ball
blurring due to rapid ball movement.

– A module to generate a 3D world to
reconstruct the billiard shots.

In addition, Table 1 summarizes the main differences
between the detailed works of the previous authors and this
proposed work.

3 ProposedMOLT algorithm and system

The main objectives of this work are twofold. The first
objective is a new tracking algorithm called multiobject
local tracker (MOLT) that is proposed and described in
Section 3.2. Tracking every ball is a difficult task, especially
in environments with low frame rates and low-quality image
capture sensors. Therefore, to carry out this tracking, several
preprocessing steps are necessary, which are detailed in
Section 3.1. The second objective is a whole system to
reconstruct billiard shots, collisions and ball movements in
a 3D virtual world (Section 3.3). This objective is performed
using several preprocessing steps, the MOLT output and
postprocessing steps.

3.1 Preprocessingmethods

In this subsection, several steps are included to preprocess
the raw input images. These images may suffer from poor
quality due to the usage of low-resolution cameras. These
devices may produce objects in which the contours are
not accurate or even completely fuzzy. Therefore, all these
actions described in this section are used to provide the best
initial inputs to the MOLT algorithm.

3.1.1 Previous information

The proposal presented in this paper covers three billiard
modalities: blackball, carom billiards, and snooker. How-
ever, the system permits different game modalities because
the number, color, and size of the balls is not a restricting
factor. To achieve this versatility, it is necessary to provide
the system with the following information:

• Ball colors.
• Ball diameters.
• Baize dimensions.
• Pocket sizes if they exist.
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Table 1 Summary of comparison of objectives with other authors’ proposals

Work Shot Ball Ball Baize Augmented 3D Information Billiard

prediction tracking identification color/patterns reality Reconstruction extraction modalities

segmentation system

Ling et al. [18] N N Y Y N N N Snooker

Legg et al. [20] N Y Y Y N Y N Snooker

Parry et al. [21] N Y∗ Y∗ Y∗ N Y∗ Y Snooker

Chung et al. [48] N N N N N N Y Snooker

Vachaspati [22] N Y Y Y N N N 9-ball

Baekdahl and Have [23] Y N Y Y N N N 8-ball

Weatherford [24] Y N Y Y N N N 8-ball

Uchiyama and Saito [25] Y N Y Y Y N N 9-ball

Hsu et al. [27] N N Y Y Y N N Snooker

Larsen et al. [28] Y N Y Y Y N N -

Sousa et al. [29] Y N N N Y N N 8-ball

Park and Park [31] N Y∗∗ Y∗∗ Y N N N Carom billiards

Gao et al. [33] N N Y N N N N 8-ball

Jebara et al. [50] Y N Y Y Y N N 8-ball

Shih [52] Y N Y∗∗ Y N N N -

Shih [53] Y N Y∗∗ Y Y N N -

Paolis et al. [54] N N N N Y Y N Carom billiards

Mishima and Suganuma [55] N N N N N N Y -

Pinzon et al. [56] Y N N N Y N N Carom billiards

Kato et al. [58] - Y - Y Y N N -

Gabdulkhakova and Kropatsch [37] Y Y - - N N N Snooker

Mathavan et al. [38] Y N N Y N N Y Snooker

Mathavan et al. [39] Y N N N N N Y Snooker

Yu et al. [45] N N N Y N N Y Snooker

Li et al. [46] N N N N N N Y Snooker

Sun et al. [47] N - - - N N Y Snooker

Wu and Dellinger [57] Y Y∗∗ Y - N Y N -

Menini et al. [42] - Y - - N N Y -

Menini et al. [43] - Y - - N N Y -

Menini et al. [44] - Y - - N N Y -

Tung et al. [40] Y N Y∗∗ N N N Y 8-ball

Supriadi et al. [12] N N Y∗∗ N N N Y -

Cross [36] N N N N N N Y -

Gao et al. [30] Y N Y∗∗ N N N Y Snooker

Medved [51] Y N Y∗∗ Y Y N N 9-ball

Collingwood et al. [49] - - - - - - Y Snooker

Bhagat [41] Y N Y Y - N N Snooker

Blackball

Rodriguez-Lozano et al. (This work) N Y Y N N Y N Carom billiards

Snooker

Note: Yes and No are specified with {Y, N}, and when not enough information is provided by authors it is specified with {-}.
*Based on Legg et al. [20] work.
**Only the cue ball is identified or tracked.
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• Approximate height of the video camera located above
the baize.

This information is generically preset for each game
modality (blackball, carom billiards, and snooker) with the
standard table and ball measurements. Hence, this infor-
mation should be changed, for example, if the balls are of
a nonstandard size or the table dimensions are different.
During the image acquisition step, the proposed system
considers that the images have been calibrated to correct
possible distortions caused by the camera lenses. This can
easily be achieved using methods provided by computer
vision libraries such as OpenCV [60] or similar.

3.1.2 Baize segmentation

The first step is to delimit the playable area of the table.
However, the whole table is not a playable area, since the
balls can only move within the baize area. It is, therefore,
necessary to delimit that area of the image and discard
the unnecessary information. For detecting the baize, many
authors, as described in Section 2 and summarized in
Table 1, proposed mechanisms based on baize color or
even on pattern detection, such as the table diamonds or
pocket locations. However, since this work is designed for
different billiard modalities, a method that accounts for the
use of different table types is necessary. For this reason, the
method cannot be based on predominant baize color or on
patterns such as pockets or diamonds because they may not
exist. Therefore, this work proposes the mechanism shown
in Procedure 1 to solve this step:

Procedure 1 Steps to obtain the baize area.

Procedure 1 has two inputs: the “frame”, which corre-
sponds to an image taken by the camera, and “baize size”,
which is the dimension of the baize. These variables are
used within the procedure as follows:

1. Edge Detection: The Canny method [61] is applied to
obtain all the edges of the input image. After edge
detection, a binary dilation method is applied to obtain

more robust results in the next step. The result is a new
image that contains only all the detected edges.

2. Lines Detection: The Hough transform [62] is applied
to detect all the possible lines and their equations from
the edge image.

3. Compute Intersections: The intersection points are
computed using the calculated line equations. This step
generates a list of intersection points between all the
lines. Additionally, all the intersections that lie outside
the image size are discarded.

4. Find Vertices: All the points of the previous step are
checked to select groups of four points that create a
rectangle among them.

5. Get baize Area: To delimit the playable area, the next
step is to discard all found rectangles not corresponding
to the baize area using the “baize size”.

6. Generate ROI: The final step is to obtain a region of
interest from the original image containing only the
playable area (the baize).

Finally, a graphical representation of the results of the
proposed Procedure 1 can be seen on the left of Fig. 1.

3.1.3 Ball detection and identification

The next step of the proposed system is to obtain the
location of the different balls found on the baize. Addi-
tionally, to allow for different types of billiard modalities,
the number of balls is not restricted. Therefore, this stage
determines the position and color of the balls. To accom-
plish this, Procedure 2 is proposed, where the region of
interest of the baize (f rame roi), the color of the balls
(ball colors) and their size (ball size) are used as inputs:

Procedure 2 Steps to obtain initial ball positions.

1. Derivatives: The baize region of interest obtained in
Section 3.1.2 contains the balls. However, to facilitate
calculating their position, the Sobel method [63] is used
to simplify the image by obtaining a new image with
the gradient of the derivatives (derivFrame).
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Fig. 1 Baize segmentation and ball identification steps

2. Circle Detection: The next step is to apply the Hough
method [62, 64], but in this case, to obtain the possible
circles of the image. To do this, we calculate the radius
(in pixels) of the balls, which is obtained from the size
of the balls (ball size). Finally, a list of the positions of
each detected circle is obtained.

3. HSV Transformation: To simplify the color identifica-
tion process of each ball, we transform the image from
the RGB color space to the HSV color space [65], which
allows us to split the color values from the illumination
values more easily than with the RGB model. This step
extends the previous list by adding to the position of the
circles their HSV image (ball list).

4. Discard False Balls: In the previous steps, the position
of each detected circle was obtained, but it may be the
case that other circles are detected as balls (as in the
case of pockets if they exist). Therefore, this last step
has the objective of discarding all those circles that do
not in reality correspond to a ball. To do this, and since
the color of each ball in play is known (ball colors),
a voting process is performed to determine how much
color each of the detected circles has in comparison to
the defined colors. In this case, as the game modalities
in which the system will be tested are blackball, carom
billiards, and snooker, the possible colors are different,
and a color range must be defined to discard false
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positives. This work uses the HSV color space to
analyze the color of each ball candidate. Note that the
color range values for the HSV space used in this work
are [0, 180] for the H channel and [0, 255] for the S and
V channels:

• Blackball: For blackball, there are yellow, red,
black and white ball colors:

– H [120−179], S[180−255], V [100−200] for
red balls.

– H [15 − 30], V [160 − 255] for yellow balls.
– V [0 − 50] for the black ball.
– S[0 − 50] for the cue ball.

• Snooker: In this modality, the colors, in addition to
blackball, are pink, brown, blue, and green:

– H [130 − 179], V [190 − 255] for the pink ball.
– H [0−50], S[0−150], V [0−180] for the brown

ball.
– H [90 − 140], S[150 − 255], V [150 − 200] for

the blue ball.
– H [80 − 100], S[150 − 255] for the green ball.

• Carom billiards: In this modality, the colors are the
same as those used for blackball with no black.

Once the number of matching pixels within each
circle has been checked, it is possible to eliminate false
positives. An example of the blackball modality can be
seen on the right of Fig. 1. Note that this proposed step
permits the use of different color balls, and if the user
wants to use nonstandard colors, these can be defined
here.

At the end of Procedure 2, a data structure of the balls
differentiated by color is obtained. This structure is repre-
sented graphically in the bottom right of Fig. 1. Only the
blackball example is shown to limit the number of elements
in the figure. Additionally, these balls are the different
objects to be tracked by the MOLT algorithm proposed in
the next section.

3.2 Multiobject local trackers algorithm (MOLT)

The new proposed multiobject tracking algorithm uses local
trackers (MOLT). This algorithm works deterministically
to calculate the position of the objects being tracked. For
example, if we have an object at time instant tn, the
algorithm will determine the position of the tracked object
based on the information known at time tn−1. To achieve
this, the MOLT algorithm assigns to each tracked object a
population of trackers. The trackers can be considered small
regions or windows that search for similar information in a

delimited environment (exploration radius). Each tracker is
a structure composed of the following elements:

• Center point: Corresponds to the central position of
the tracker. In the case of the blackball and snooker
modalities, since balls can fall into a pocket, each
tracker has a component on each axis (x, y, z).

• Size: Determines the size of the tracker from the center
point. This value establishes the size of the tracked
object acting as a radius from the center point.

• Histogram weight corresponds to the degree of similar-
ity between the histogram of the object before tracking
and the histogram of the tracker. This degree of similar-
ity is in the range [0-1], where 0 is no similarity and 1
is the maximum similarity.

• Distance weight determines the distance ratio between
the object tracked at a previous time instant and the
tracker. This variable is also represented in the range [0-
1], where 0 represents a far distance between objects,
and 1 represents a close distance.

• Total weight: Weighted sum of the histogram weight
and distance weight variables. This variable is also
in the range [0-1] provided by total weight = α ∗
histogram weight + (1 − α) ∗ distance weight .

Each population of trackers generates a certain number
of local trackers within the exploration radius that specifies
the maximum scanning range of the trackers. These values
can be the same for all tracked objects or different for
each of them. In the top right of Fig. 2, an example of the
assignation of tracker populations by balls can be seen in the
data structure.

Therefore, as shown in Procedure 3, the MOLT algorithm
receives three parameters: a list of consecutive images to
track the objects (f rame list), the position in the initial
state of the balls (balls positions), and the size of each ball
(balls size). Note that the steps above the MOLT tracking
algorithm (Procedures 1 and 2) are performed only once for
the first frame captured by the camera, and these methods
are not employed again until another shot is taken.

The following subsections detail the methods used in
Procedure 3.

3.2.1 Initialization step (Init Structure)

The first step of the MOLT algorithm consists of initializing
the data structures of the objects to be tracked. In this step,
a population of trackers is assigned to each tracked object,
and this is only performed the first time the algorithm is
executed. The specific tasks to be performed in this step are
detailed in Procedure 4, which receives the first f rame and
the ball features (balls positions, balls size) as inputs:
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Fig. 2 MOLT algorithm visual steps

• The histogram of each detected ball is calculated and
stored in ball histograms to be used in the next
procedure. Additionally, a number n of trackers is

assigned. This parameter can be defined by the user and
can be different for each object to be tracked.

• For each tracker within the population of trackers,
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Procedure 3 Main steps of Multi-Object local trackers algorithm (MOLT).

Procedure 4 Structure initialization step.

assign the initial x and y positions of the ball. The z

coordinate is initialized to 0 since the balls above the
baize are at a height of 0, as shown in Fig. 3.

• Each tracker is initialized with the size of the object to
be tracked (the balls) and the best possible weight.

3.2.2 Update population information (Update Population)

This step of the algorithm is one of the most important since
it is where the tracker information is updated. To perform
this update, the current frame, the tracker population and

Fig. 3 Ball heights

the histogram of the tracked objects are used as inputs in
Procedure 5 as follows:

First, from each population, the best tracker from the
previous frame of the algorithm is copied for comparison
with the trackers of the current frame. For the first itera-
tion of the algorithm after initialization (Procedure 4), any
tracker in the population is the best. However, for subse-
quent iterations, the most accurate tracker is always the first
because the trackers are ordered from most to least precise
(Procedure 6).

After making the copy of the best tracker, this tracker
is checked to determine whether the z coordinate of the
tracker is greater than or equal to 0. This condition allows
us to determine if the ball is on the baize and if pockets
exist, over a pocket (in the process of being potted) or
potted. Therefore, two cases are distinguished:

• If the ball is on the baize (Line 4), it is necessary to
update the information of each tracker in the current
frame. To do this, the value of each of the tracker
weights must be updated:

– For the histogram-based weight, the difference
between histograms is calculated using the
Bhattacharyya distance metric [66]. This step
determines the histogram similarity between
the histogram of the tracker image at the initial
instant and the tracker at the current frame.

– For the distance-based weight, the Euclidean
distance between the (x, y) coordinates of
the center points of the best tracker and the
position of the current tracker is calculated. To
perform comparisons, the value of this distance
is in the range [0-1]. Therefore, its value is
normalized by setting the maximum possible
distance in two subsequent frames to be the
diagonal of the baize.
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Procedure 5 Update population information steps.

– The total weight determines the weighted
average of the histogram and the distance. This
accounts for the α variable that determines
the importance of the histogram weight. Thus,
if the α value is equal to 1, the distance
weight is considered to be irrelevant for object
tracking. The value of α estimated for the ball-
tracking problem is 0.5; in other words, both
the histogram and the distance are of equal
importance. This is because, in the case of
identical color and shape, tracked objects (the
balls) both provide relevant information about
the motion between the position in the previous
frame and the current frame.

• If the ball is not on the baize (Line 9), the z coordinate
of the tracker is checked for negative values greater
than the ball diameter. If this condition is satisfied, the
z coordinate of the tracker is decreased by one unit.
With this mechanism, the tracker that follows the ball
once it enters a pocket decreases its z coordinate to a
height below the baize (see Fig. 3). In addition, once
the negative value of the condition is reached, for each
potted ball, no new populations are generated. This
effect can be seen graphically in the evolution of the
data structure in Fig. 2. Note that this step is only
performed for those game modalities that require a table
with pockets.

3.2.3 Obtain best trackers (Get Best Tracker)

This step, as shown in Procedure 6, is responsible for sorting
the trackers of each population (tracker population)
using the QuickSort method [67]. In this way, the trackers
are sorted from highest to lowest based on their total weight.

Additionally, this procedure, as seen in Lines 3 and 4,
not only updates the order of the best trackers but also

Procedure 6 Steps to obtain the best trackers.

stores in each iteration the position of the best tracker
along with the frames, thus obtaining the positions of the
balls (best tracker position population). A representation
of these positions can be seen at the bottom of Fig. 2.

3.2.4 Generate new populations (Resample Population)

The last step of the MOLT algorithm is the generation
of new tracker positions. For this purpose, a “diversity-
oriented approach” is proposed. In this approach, the
position of the new trackers is not based solely on the
position of the best tracker currently found but incorporates
a percentage of the second-best tracker and the third-best
tracker. This approach avoids the elitism of the algorithm
and provides some diversity in the search. Specifically, as
seen in Procedure 7, the new generation of trackers is based
on the previous population (tracker population) received
as an input of the procedure. Thus, 50% of the new positions
of the trackers will be generated randomly within the limits
(exploration radius) based on the location of the best
tracker (bt1), 30% of the new positions based on the second-
best tracker (bt2), and 20% of the new positions based on
the third-best tracker (bt3). In addition, as in Procedure 5,
a check is made to see if any of the balls have entered or
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are over a pocket (Line 6) since in this case the object is no
longer tracked and it is not necessary to generate trackers.

Once this procedure is finished, the new generation of
trackers is ready to be analyzed in the next frame, and this
procedure is repeated as long as there are future frames, as
shown in the loop in Procedure 3.

3.3 3D reconstruction and generation of virtual
worlds

The last step of the proposed system is the 3D reconstruction
of the table ball and ball movements. To achieve this, the
output provided by the MOLT algorithm is used along
with the information provided in Section 3.1.1. However,
generating a 3D virtual world depends largely on the
mechanics and syntax of the selected 3D language. For
this reason, there are two main parts of the generation: the
objects (table and balls) and the animations of the objects
(ball movements). To achieve this goal, we selected the open
X3D standard [68], which defines a language to generate
3D objects and worlds that can be visualized and shared on
web pages. The steps to perform the 3D reconstruction are
detailed in Procedure 8, which receives the size of the table
(baize size, pocket size) and balls (ball size) as well as
ball colors and movements (ball colors, balls tracking):

1. Gen Table: Table generation has two different cases:
tables without pockets, as in the case of carom billiards,
and tables with pockets, as in the case of blackball

and snooker. In the first case (pocket size == 0),
the baize and table 3D object generation are quite
simple, with rectangular objects for the table rails and
a rectangular plane for the baize with the size specified
by baize size. However, in the second case (pocket size
> 0), table generation is a complex process because
the pockets need to be erased from the table rails and
the baize. Nevertheless, this problem can be simplified
using the pocket diameter (pocket size) and the object
“Extrusion” defined by the X3D standard. With the
“Extrusion”, the shape of the object can be created by
specifying a set of points in space. In the case of the
baize, the corner pockets can be generated accounting
for the radius of the pockets and from the vertices,
taking points from 0◦ to 90◦ and points from 0◦ to 180◦
for the side pockets. The holes in the rails of the table
are created following the same procedure.

2. Gen Balls: Ball generation is a simple task since it only
takes the radius value and the color of every ball. In fact,
it is only necessary to use the “Sphere” object defined
by the standard.

3. Gen Animation: The last step in this procedure is
animating ball movements. To achieve a simulation of
the movement of each ball, the use is made of the balls
and the table generated in the previous steps as well
as the information provided by the MOLT algorithm.
As the output of the MOLT algorithm (Procedure 3)
is the position of each ball over time, it is possible to
use the “PositionInterpolator” object defined by the

Procedure 7 Steps to generate a new population of trackers.
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standard to generate the animation of each ball. The
“PositionInterpolator” object has two main variables
that are obtained from the MOLT algorithm:

• Key: Represents each point in time.
• keyValue: Represents the position of the object in

each Key.

Finally, Fig. 4 shows an example of the reconstruction
provided by Procedure 8 at a given point in time for each
modality.

4 Results

This section shows the results of the MOLT algorithm per-
formance and the proposed 3D reconstruction system. The
evaluation of the MOLT algorithm is analyzed using differ-
ent metrics detailed in the following subsections. However,
3D reconstruction is difficult to evaluate quantitatively with
other methods. For this reason, the comparisons are per-
formed qualitatively by gathering the opinions of users for
the 3D reconstruction system.

Hence, this section is divided into six subsections:
material and dataset information used to carry out the
experiments, metrics for tracking performance evaluation,

analysis of the MOLT algorithm performance, comparison
with other tracking methods, comparison with author’s
proposals applied to billiards, and results of the 3D
reconstruction and generation of virtual worlds.

4.1 Material and dataset information

The results shown in the following subsections were
obtained using the following computational equipment:

• Embedded device “Nvidia jetson nano” [69] with an
ARM A57 @ 1.43 GHz and 4 GB LPDDR4.

• RGB sensor with the following specifications:

– Focal length (in pixels): 525.
– FOV (in degrees): 62.7.
– Resolution (in pixels): 640 × 480.
– Frame rate: 20 fps (frames per second).
– Pixel correspondence (in mm): 3.47 mm

(camera placed at 1853 mm over the table).

Additionally, since this work proposes a system able
to work with three billiard modalities (blackball, carom
billiards and snooker), the following billiard elements are
used to obtain the results:

Procedure 8 Steps to perform a reconstruction in a virtual world.

BlackBall Carom billiards     Snooker

Fig. 4 Real scene recorded by the camera and the 3D generated scene in a virtual world
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• Billiard table with pockets with the following measure-
ments:

– Table size: 211.5 × 120.5 × 78 cm.
– Baize and cushion area: 185.4 × 93.5 cm.

• Pocket covers to make the table compatible with the
carom billiards modality.

• Balls for blackball and carom billiard modalities of 57
mm diameter.

• Balls for snooker modality of 51 mm diameter.

Using the previously described elements, a dataset of
300 recorded billiard shots was generated, with 100 videos
for each modality. These recordings are composed of more
than 85,000 images. Additionally, a small sample was taken
from these recordings, and the trajectories of all the balls
were manually selected frame by frame, thus composing
“ground truth” trajectories for quantitative comparisons of
the errors. A total of 21, 16, and 16 manual ground truth
trajectories for blackball, carom billiards, and snooker were
generated, respectively. These trajectories stored as “.png”
images are available online [70] along with the results that
are described in the following subsections. This smaller
dataset will be used in the following sections to test the
performance of the proposed system and to compare the
results with other algorithms in the tracking task.

4.2 Metrics for tracking performance evaluation

The proposal of the MOLT algorithm is one of the objectives
of the work, and it is also one of the important tasks of
the whole system. Thus, the trajectories provided by the
method must be evaluated to check its performance. This
evaluation is carried out by applying several metrics that are
widely used in the scientific literature. Specifically, in this
work, the Jaccard index [71, 72], IDF1 [73], MOTA [74],
and MOTP [75] metrics are used:

• The Jaccard index [71, 72], also known as the
intersection over the union coefficient, measures the
similarity degree of two mathematical sets, in this case,
the trajectory obtained by the tracking algorithm and the
trajectory obtained manually (ground truth). This metric
ranges from 0 to 1, representing 1 as the most accurate
result.

• The IDF1 [73] metric computes a determination of
which trajectories provided by the algorithm under
evaluation are present in the ground truth trajectory in
terms of proper association of the predicted ball path to
the correct ball in the ground truth trajectory. IDF1 is
usually used as a second-level metric because it focuses
largely on association accuracy instead of detection
accuracy. The best result for IDF1 output is 1.

• MOTA [74], which stands for multibject tracking
accuracy, determines whether the paths are spatially
similar to the ground truth for each frame that
temporally composes the trajectory. It defines every
tracking point as true positive, false negative, or
false positive, according to the correct or incorrect
identification of every tracker. This metric ranges from
−∞ to 1, with 1 being the most accurate result.

• MOTP [75], which is the acronym for multiobject
tracking precision, provides the accuracy of the spatial
localization of the paths. It determines the intersection
of the similarity of the trajectories with the set of
true positive detections. It relies largely on the correct
selection of the threshold value, and thus, it is very
sensitive and inflexible. The MOTP output ranges from
0 to +∞, with 0 being the most precise result.

The MOTA and MOTP metrics should be considered in
combination, as MOTA measures the accuracy and MOTP
the precision. Therefore, good tracking should account for
both a good match of the obtained trajectory with the ground
truth trajectory and a precise match of each ball. If MOTA is
close to 1 and MOTP is high (not close to 0), the method can
provide a good overall similar path to the ground truth, but
the balls cannot be well detected individually. In contrast, if
MOTP is close to 0 and MOTA is negative, this represents
that the method can place precisely the ball in the exact
position, but in most frames of the path, balls have not been
located, and therefore, the trajectory is not accurate.

4.3 Analysis of MOLT algorithm performance

This subsection analyzes the accuracy of the proposed
MOLT algorithm varying one of the most important param-
eters, the number of trackers. The aim of this analysis is to
obtain the most efficient set of parameters for the MOLT
algorithm. Specifically, we are focused on the minimum
number of trackers that provide the best results. To analyze
the effect of this parameter, it has gradually increased from
10 to 2000 in increments of 10. Additionally, the explo-
ration radius assigned to each ball was fixed at 100 pixels
for the cue ball and 80 pixels for the remaining balls in all
experiments. The radius in the cue ball slightly increased
because this ball normally moves at a higher speed than the
other balls in all modalities.

The above process allows us to analyze the accuracy
when the number of trackers is increased. To test the
accuracy, among all the metrics described in the previous
section, the Jaccard index was used because of its clear
robustness and interpretability. This index compares the
similarity of each result of the algorithm with the manual
trajectories, as previously described. The results of these
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experiments are summarized graphically in Fig. 5. Addi-
tionally, in the same figure, a boxplot representing the mean
and the deviation with respect to the Jaccard index of all
experiments is shown.

As shown in Fig. 5, in all the analyzed modalities, as the
number of trackers increases, the Jaccard index increases,
returning fewer errors compared with the manually selected
trajectories. In fact, it can be observed that the limit is
close to 0.9 in the Jaccard index for our proposed MOLT
algorithm when the number of trackers per ball is close
to 2,000. However, it can be seen that to achieve accurate
tracking, such a large number of trackers is not necessary,
and with values closer to 800, the results are quite precise.
It should be noted that these results are obtained using the
previously described materials, the capturing sensor does
not have a high resolution or frame rate, and a difference of
only one pixel between the tracked and manual trajectories
decreases the Jaccard index. Additionally, the boxplot in
the same figure shows that the outliers are related to a
lower number of trackers per ball, and all the occurrences
correspond to fewer than 200 trackers. In these cases,
the balls cannot be tracked correctly because there are
not enough trackers to cover the exploration radius (100
for the cue ball and 80 for all the other balls). In these
experiments, it can be seen that the snooker modality is the
most complicated to track because the balls are of a smaller
diameter than those used in other modalities. Additionally,
the maximum number of balls on the baize is 22, which
is a high number of objects to track, and the deviations of
one or two pixels from the manual trajectories significantly
penalize the Jaccard index.

Another relevant issue is the occlusion problem. Due to
the use of the tracker populations and diversity-oriented
approach in generating these populations, the MOLT
algorithm can track objects partially occluded by the cue
or player’s body. Therefore, our proposal is robust to
occlusion, as shown in Fig. 7 in Appendix A for different
cases.

Once the effect of the number of trackers is analyzed,
the following subsections in this work will establish 2,000

trackers for the cue ball and 400 for all other balls. This
selection of parameters is based on the premise that the cue
ball is the fastest ball in the images and the other balls do
not need a large number of trackers to ensure Jaccard index
values higher than 0.7, as shown in Fig. 5.

4.4 Comparison with other trackingmethods

In this subsection, the MOLT algorithm is compared with
seven tracking methods that are designed for general object
tracking [76]. The selected algorithms to perform the
comparisons are listed below:

• Boosting [77].
• Multi-Instance Learning - MIL [78].
• Kernelized Correlation Filters - KCF [79].
• Tracking, Learning, and Detection - TLD [80].
• Median Flow [81].
• Minimum Output Sum of Squared Error - MOSSE [82].
• Discriminative Correlation Filter with Channel and

Spatial Reliability - CSRT [83].

The above tracking methods are compared in Table 2
with the MOLT algorithm. To ensure a fair comparison
between all the algorithms, the same images and the same
number of trackers in the MOLT algorithm were used. The
parameters of the MOLT algorithm for all the experiments
are fixed those detailed at the end of Section 4.3. Thus, in
all the following experiments, the executions were run using
the same set of parameters. Moreover, for each recording,
the tracked trajectories retrieved by each algorithm, as well
as rendered videos comparing the results with the results
provided by the proposed MOLT method, are available in
the dataset in a sub-folder titled TrackingResults.

As can be observed in Table 2, in general, all the
methods can identify the balls, as the IDF1 metric shows,
with the exception of the TLD algorithm, where all the
considered metrics exhibit poor performance. In contrast,
the proposed MOLT algorithm achieves the most accurate
and precise results in each metric for any billiard modality
in general. The only case in which the MOLT algorithm

Fig. 5 Jaccard index results for the increase of the number of trackers parameter
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Table 2 Comparison of different tracking methods and proposed MOLT algorithm

Modality Method Average Average Average Average

IDF1 Jaccard MOTA MOTP

BlackBall KCF 0.9377 0.2555 0.8813 1.8404

TLD 0.2763 0.1781 -0.4039 540.0368

MIL 0.9446 0.3915 0.8900 16.5180

BOOSTING 0.9372 0.3792 0.9353 4.0346

MOOSE 0.9377 0.2208 0.8813 1.8404

CSRT 1.0000 0.5004 1.0000 1.5353

MEDIAN FLOW 1.0000 0.7091 1.0000 0.9935

MOLT 1.0000 0.8771 1.0000 0.3466

Carom billiards KCF 0.7166 0.04650 0.4331 2.1709

TLD 0.5510 0.2701 0.1020 607.2757

MIL 0.4785 0.3145 -0.0431 146.2654

BOOSTING 0.7166 0.1196 0.4331 2.4304

MOOSE 0.5102 0.03875 0.0204 265.1689

CSRT 0.7166 0.3110 0.4331 2.6266

MEDIAN FLOW 0.9909 0.5849 0.9819 16.4874

MOLT 1.0000 0.8751 1.0000 3.0680

Snooker KCF 0.8431 0.2174 0.7587 15.6179

TLD 0.1060 0.1314 -0.7649 469.8335

MIL 0.7936 0.3564 0.6864 69.2982

BOOSTING 0.8778 0.3084 0.7725 17.3635

MOOSE 0.8429 0.4429 0.7391 4.4377

CSRT 0.8882 0.3884 0.8654 1.9956

MEDIAN FLOW 0.9360 0.6313 0.8721 4.1745

MOLT 1.0000 0.8578 1.0000 0.9537

In boldface, best results for each metric and method.

is not the best is in the carom billiards modality for the
average MOTP metric, in which the KCF, boosting, and
CSRT algorithms slightly outperform the MOLT method.
However, the MOLT method is both very accurate in
obtaining the trajectory most similar to the ground truth
trajectory, and very precise in locating the object along that
trajectory. For instance, in the carom billiards modality,
KCF detected precisely (MOTP: 2.1709) the balls but had
a very poor response in providing a trajectory that matched
the ground truth trajectory (MOTA: 0.4331).

In addition, according to the results of the Jaccard index,
as Table 2 shows, the values obtained for the different
modalities by the KCF, TLD, and MIL algorithms are, in
general, remarkably inaccurate. This poor performance may
be because these algorithms cannot track such small objects
in an image from which they cannot obtain features other
than their edge and color. For this reason, when there is
minimal ball movement, they cannot track them accurately.
Additionally, with these algorithms (especially in the case
of TLD), once a tracked object is lost, the algorithms cannot

track correctly in subsequent frames. Another issue is that
in the carom billiards modality, the results are even less
accurate. This behavior is directly related to the limited
number of balls to be tracked on the baize (three balls).
Although it may be thought that a larger number of balls
would result in greater errors, the opposite is actually true.
This is because, in these modalities, the majority of balls are
not in movement during a shot, and the algorithms consider
the stationary balls to be perfectly tracked, thus increasing
the accuracy. However, even if more balls are in motion
during blackball and snooker modalities, the algorithms
cannot accurately track the balls. For this reason, the Jaccard
results are stricter and lower, as a few pixels deviate from
the objects’ trajectory penalizes its value greatly in contrast
to the other metrics.

As a result of the values shown in Table 2, it can be seen
that in general, the most accurate algorithm considering
the Jaccard index is the proposed MOLT method, which
achieves high and similar values of approximately 0.86. In
fact, the correct functionality of the MOLT algorithm is
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verified because it achieves in general the best values for
each metric for all three modalities.

Finally, visual samples of the intersection over the union
of the tracker algorithm results and manual results are
available for each game modality in the dataset and a
reduced number of cases are shown in Figs. 8, 9, and 10 of
Appendix B.

4.5 Comparison with other authors’ proposals
applied to billiards

To date, several comparisons using different metrics have
been carried out with general object tracking algorithms.
However, as Section 2 describes, other authors have
proposed ideas for tracking balls in different billiard
modalities. Hence, this section compares the results
obtained by the MOLT algorithm using the same metrics
as in the previous section with the methods proposed by
Vachaspati and Legg et al. The reason for selecting these
works to compare with the proposed MOLT algorithm is
based on the following considerations:

• Their methods are employed in a real environment
with real billiard tables and not prototyping tables with
reduced scales.

• Their methods use RGB sensors without the need to use
depth information to track objects.

• Their methods identify and track the different balls and
are not limited to tracking just the cue ball or a small
number of balls.

To perform a fair comparison, the set of parameters of the
MOLT algorithm are the same as those selected in previous
subsections, so the results are the same, as shown in Table 2.
For the Vachaspati and Legg et al. methods, the parameters
have been selected according to the suggestions provided by

the respective authors for best performance. Additionally,
the experiments are carried out by applying the same subset
of prerecorded videos analyzed in the previous subsections.

Table 3 shows the comparison between Vachaspati, Legg
et al., and the MOLT proposals. It can be observed that
the methods proposed by Vachaspati and Legg et al. obtain
more precise results than the tracking algorithms analyzed
in the previous subsection. The method proposed by Legg et
al. outperforms the method proposed by Vachaspati for all
the modalities in the MOTP metric and in the Jaccard index
but not in the carom billiards modality in this last metric.
These results are due to the steps of the method followed
by Vachaspati, which is based on circle detection, and in the
carom billiards modality, the speed of the cue ball and the
strikes with the yellow and the red ball are slower than in
the other modalities. Hence, the accuracy of the Vachaspati
method for MOTA and the Jaccard index, when the ball
movements are slow and are not blurred, is increased. These
blurred movements are frequently obtained when the frame
rate of the capturing sensor is low. Examples of blurred balls
in movement are shown in Fig. 6.

Regarding the comparison of the proposed MOLT algo-
rithm, the results show that in cases of blurred movements,
the MOLT algorithm is robust, unlike the proposals of
Vachaspati and Legg et al. This is because the MOLT algo-
rithm, as explained in Section 3.2, tracks the balls based on
the similarity to the initial state of the balls, in contrast with
circle detection of the Vachaspati proposal and the specular
highlight brightness detection of the proposal of Legg et al.

Moreover, the values of the metrics shown in Table 3
are not only an effect of the frame rate of the capturing
sensor but also of low-resolution sensors. In fact, when a
ball is not moving, the exact center position of the ball is
not simple to obtain because the pixels and brightness of
the ball captured by low-resolution sensors change in every

Table 3 Comparison with different authors’ proposals

Modality Method Average Average Average Average

IDF1 Jaccard MOTA MOTP

BlackBall Vachaspati 1.0000 0.7157 1.0000 3.3439

Legg et al. 0.9738 0.7323 0.9475 3.2321

MOLT 1.0000 0.8771 1.0000 0.3466

Carom billiards Vachaspati 0.9705 0.7543 0.9410 16.0386

Legg et al. 0.9433 0.6736 0.8866 12.4471

MOLT 1.0000 0.8751 1.0000 3.0680

Snooker Vachaspati 0.9594 0.6723 0.9193 5.1988

Legg et al. 0.9194 0.7338 0.8389 3.3145

MOLT 1.0000 0.8578 1.0000 0.9537

In boldface, best results for each metric and method in each billiard modality.
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frame, generating errors. For this reason, the Vachaspati and
Legg et al. methods are more sensitive and cannot accurately
track static objects. This problem is mitigated in the MOLT
algorithm because the tracker population of each ball and
the diversity-oriented approach of the generation of new
populations helps to avoid these errors.

For these two main reasons, the proposed MOLT
algorithm provides the most accurate results according to all
the considered metrics. For instance, MOLT obtains Jaccard
index values that are 0.12 higher than those obtained by the
other methods in all modalities. A similar situation occurs
with the IDF1 and MOTA metrics, where it is shown that
the best possible results are obtained. Finally, in the case of
the MOTP metric, it is shown that the MOLT result is more
precise, and this fact is magnified in the billiard modality
with differences greater than 9 in the values obtained.

Therefore, it is proven that MOLT is the most precise
method with low-frame-rate and low-resolution sensors.
Also, in order to provide visual results of the comparisons,
the intersection over the union of Vachaspati, Legg et al. and
MOLT algorithms with the manual trajectories are available
for each modality in the dataset and a reduced number of
cases are shown in Figs. 11, 12, and 13 of Appendix C.

4.6 Results of the 3D reconstruction and generation
of virtual worlds

The previous sections analyzed the effect of using different
tracking algorithms. These algorithms are necessary to
perform the 3D reconstruction, so in this section, the degree
of acceptance of the developed system by various users is
analyzed. To achieve these qualitative results, the opinions
of expert users were obtained through the mean opinion

score (MOS) procedure [84]. The MOS procedure was
carried out with ten users who usually play billiards. This
number of users was selected according to ITU-T Rec.
P.911 [85], which standardizes the use of MOS and specifies
that the number of experts used in the assessment should
be above 6. The users reported their opinion regarding
fluency, quality of reconstruction, and possible usefulness
using questionnaires. Users provided a response for each
feature ranging from 0, the worst possible result, to 10, the
best possible result.

The procedure to gather the opinions of the different
users was as follows:

1. First stage: Users used the proposed system through a
developed interface (accompanied by a user manual)
to capture images and obtain the results of the
reconstructions in a virtual world. In this way, the
user had real-world experience at the gaming table to
compare with the result obtained in the virtual world.

2. Second stage: Each user was provided with a list
of different 3D reconstructed shots. The shots used
in the MOS procedure were the small subset used
in the previous section mixed with the remaining
reconstruction of the dataset. In this way, each user
was asked to express his or her opinion regarding the
abovementioned scale for each reconstruction subset.
In addition, users were informed that the reconstruction
could be repeated, but they would not be informed
which of them would be repeated nor would they be
numbered. This prevents a user from influencing his or
her opinion regarding the previous results, thus avoiding
favoring some results over others. In total, each case
was presented twice to the users. Once the two opinions

Fig. 6 Examples of blurred balls in movement
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of each case were collected, the average opinion of each
user was calculated.

The generated reconstruction, as well as rendered
videos, are available online for each recording of the
dataset in a subfolder titled animationResults. In this
sub-folder, not only the reconstruction of the proposed
system but also the reconstructions of the results
of the methods of Vachaspati and Legg et al. were
generated and compared in the previous section. Note
that the different users did not see the results of these
authors and only evaluated the results of our proposed
system. The results of the reconstructions are shown in
Figs. 14, 15, and 16 in Appendix D for each modality. In
these figures a given point in time of the reconstruction
and the real world image of that same moment are
shown in order to appreciate the degree of similarity.

The opinions of the users for each modality are
summarized in Table 4. As can be observed in the overall
mark of each modality, the opinion of the users is related
to the number of balls; the higher the number of balls,
the lower the overall mark. These results are caused by
a jittering effect of the 3D-generated balls. This effect is
due to the inaccuracy of the MOLT algorithm, despite it
being the most accurate of the analyzed tracking algorithms.
Any failure of one pixel in the tracking corresponds to 3.47
mm in the real world. For this reason, when the algorithm
returns only two pixels of difference with respect to the real
ball position, jittering can be seen in the animation. Thus,
a higher number of balls increases the visual perception
of balls suffering the jittering effect. Despite this fact, the
average result provided by the users is greater than 7 (out
of 10), for each modality. Both fluency and reconstruction
quality obtain average marks of 8 and 7.9 (out of 10)
respectively. Finally, learning utility presents lower values
than the other evaluated aspects, providing an average value
of 6.8 (out of 10) for the three modalities. This shows
that the proposed system has the potential to be used as a
learning system or for entertainment purposes.

5 Conclusions

Billiards considering the multiple modalities, is a sport
widely practiced around the world. There are several pro-

posals for the applicability of virtual reality or augmented
reality systems to improve the skills of novice or ama-
teur players. The reconstruction of shots in virtual scenarios
based on computer vision tracking algorithms is an example
of such a system. However, when using low-quality, low-
frame-rate devices, the tracking algorithms have flaws in
the tracking accuracy of objects that appear blurred in the
image or with poorly defined edges. Moreover, considering
billiard modalities such as blackball or snooker, the problem
becomes complex due to the multiple identically colored
objects to be tracked in such unfavorable conditions.

In this context, this paper presents two main contribu-
tions. The first main contribution is a new “multiobject
local tracking (MOLT) algorithm” to perform the task of
tracking ball movements. The MOLT algorithm is designed
to track multiple small objects robustly and operate in
unfavorable conditions for tracking where image-capturing
devices have low resolution and frame rates. The second
contribution is a whole system capable of performing a 3D
reconstruction in a virtual world of shots, collisions and
ball movements. To carry out this second aim, the MOLT
results are incorporated along with other preprocessing and
postprocessing steps including the following: segmentation
of the balls, identification and classification of the differ-
ent balls, 3D table generation, and reconstruction of the ball
motion.

The proposed MOLT algorithm and the whole system
were tested on three billiard modalities: blackball, carom
billiards and snooker. For each modality, 100 recordings
along with the reconstruction results and the outputs of the
MOLT algorithm are available online to facilitate future
comparisons. In particular, the MOLT algorithm is com-
pared with the results obtained by nine other methods:
seven general object tracking methods and two methods
proposed by other authors designed for billiard tracking.
From the experiments performed, it is observed that the
MOLT algorithm achieves in the majority of the cases the
most accurate and precise results for all the experiments
analyzed considering the IDF1, MOTA and MOTP metrics.
Moreover, considering the Jaccard index, which is one of
the most interpretable metrics, the MOLT algorithm outper-
forms the other methods, obtaining the highest scores with
values above 0.85 for each billiard modality.

With regard to the complete system, the 3D reconstruc-
tions of the ball movements were evaluated by collecting

Table 4 Mean opinion score results for each modality

Blackball Carom billiards Snooker Average

Fluency 7.7 8.4 8 8

Reconstruction quality 8.1 8 7.6 7.9

Learning utility 7 6.8 6.8 6.8

Overall mark 7.6 7.7 7.4 7.6
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the opinions of different users who regularly play billiards.
They rated the 3D reconstructions obtained with an average
score of 7.6 (out of 10) for all modalities. These results are
due to the accuracy and precision of the MOLT algorithm
incorporated into the system.

Enhancements to both the system as a whole and the
MOLT algorithm are proposed for future work. Concerning
the 3D reconstruction, animation of the cue can be incor-
porated into the reconstruction, as well as a virtual avatar
controlling the cue. In addition, since the lowest user rating
was on usefulness for learning, the incorporation of metrics
such as shot degrees, ball acceleration, ball speed, and
frame score is proposed. In terms of reconstruction quality,

a direct consequence of the output of the MOLT algorithm,
the incorporation of a new postprocessing module is pro-
posed to correct for the small effect of ball jittering. Finally,
given the accurate results of the MOLT algorithm, future
research can focus on the use of this algorithm in other
environments, such as tracking people [86] in a shopping
mall or on the street.

Appendix A: Examples of occlusions

This section shows the results of the MOLT algorithm when
partial occlusions occurs.
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Fig. 7 Examples of partial occlusion handled by the MOLT algorithm
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Appendix B: Visual results of the
comparison with other trackingmethods

This appendix contains visuals results of the comparison
with other tracking methods. The following subsections

show these results for each modality analyzed in this
work:

B.1 Blackball modality

Manual
trajectory

Boosting

CSRT

KCF

Median
Flow

MIL

MOSSE

TLD

MOLT

Fig. 8 Manual trajectories, and the intersection over the union of each algorithm with the manual trajectory for different cases of the blackball
modality. Note that less black color in images means more accurate tracking
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B.2 Carom billiardmodality

Fig. 9 Manual trajectories, and the intersection over the union of each algorithm with the manual trajectory for different cases of the carom billiard
modality. Note that less black color in images means more accurate tracking
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B.3 Snooker modality

Manual
trajectory

Boosting

CSRT

KCF

Median
Flow

MIL

MOSSE

TLD

MOLT

Fig. 10 Manual trajectories, and the intersection over the union of each algorithm with the manual trajectory for different cases of the snooker
modality. Note that less black color in images means more accurate tracking
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Appendix C: Visual results of the comparison with other authors’ proposals applied to
billiards

This appendix contains visuals results of the comparison with other other authors’ proposals. The following subsections
show these results for each modality analyzed in this work:

C.1 Blackball modality

Manual
 trajectory Vachaspati Legg et al. MOLT

Fig. 11 Manual trajectories, and the intersection over the union of each proposal with the manual trajectory for different cases of the blackball
modality. Note that less black color in images means more accurate tracking
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C.2 Carom billiardmodality

Manual
 trajectory Vachaspati Legg et al. MOLT

Fig. 12 Manual trajectories, and the intersection over the union of each proposal with the manual trajectory for different cases of the carom
billiard modality. Note that less black color in images means more accurate tracking
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C.3 Snooker modality

Manual
 trajectory Vachaspati Legg et al. MOLT

Fig. 13 Manual trajectories, and the intersection over the union of each proposal with the manual trajectory for different cases of the snooker
modality. Note that less black color in images means more accurate tracking
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Appendix D: Visual results of the 3D reconstruction

This appendix contains visuals results of the proposed system and the main aim of this work, the 3D reconstruction of
billiards shots. The following subsections show these results for each modality analyzed in this work:

D.1 Blackball modality

Fig. 14 Real world scene and the 3D reconstructed virtual world at a given point in time for different shots in the blackball modality
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D.2 Carom billiardmodality

Fig. 15 Real world scene and the 3D reconstructed virtual world at a given point in time for different shots in the carom billiard modality
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D.3 Snooker modality

Fig. 16 Real world scene and the 3D reconstructed virtual world at a given point in time for different shots in the snooker modality
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215753D reconstruction system and multiobject local tracking algorithm for billiards

http://orcid.org/0000-0003-3560-1407
mailto: jcgamez@uco.es
mailto: el2mapeh@uco.es
mailto: jmpalomares@uco.es
mailto: olivares@uco.es

	3D reconstruction system and multiobject local tracking algorithm for billiards
	Abstract
	Introduction
	Related works
	Proposed MOLT algorithm and system
	Preprocessing methods
	Previous information
	Baize segmentation
	Ball detection and identification

	Multiobject local trackers algorithm (MOLT)
	Initialization step (Init_Structure)
	Update population information (Update_Population)
	Obtain best trackers (Get_Best_Tracker)
	Generate new populations (Resample_Population)

	3D reconstruction and generation of virtual worlds

	Results
	Material and dataset information
	Metrics for tracking performance evaluation
	Analysis of MOLT algorithm performance
	Comparison with other tracking methods
	Comparison with other authors' proposals applied to billiards
	Results of the 3D reconstruction and generation of virtual worlds

	Conclusions
	Appendix A  Examples of occlusions
	  Visual results of the comparison with other tracking methods
	Appendix B  Visual results of the comparison with other tracking methods
	B.1 Blackball modality
	B.2 Carom billiard modality
	B.3 Snooker modality
	  Visual results of the comparison with other authors' proposals applied to billiards
	Appendix C  Visual results of the comparison with other authors' proposals applied to billiards
	C.1 Blackball modality
	C.2 Carom billiard modality
	C.3 Snooker modality
	  Visual results of the 3D reconstruction
	Appendix D  Visual results of the 3D reconstruction
	D.1 Blackball modality
	D.2 Carom billiard modality
	D.3 Snooker modality
	Declarations
	References
	Affiliations


