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Abstract
Resource Description Framework (RDF) graphs have become an important data source for many knowledge discovery
algorithms and data mining tasks. However, most complex analyses that use knowledge discovery algorithms require data in
a vector representation format. As a result, several RDF entity embedding techniques have emerged in which entities in the
RDF graph are represented as low-dimensional vectors. These techniques generate sequences of entities using graph walk
and use language modeling techniques to extract the feature from the sequences used to learn the embedding. However,
sequences produced by graph walks only capture structural context; they are unable to capture latent context, such as
semantically related information, which is an important property of RDF data. In this paper, we present a novel method that
consists of a series of steps that generate sequences. These sequences not only capture structural context but also semantic
property. The method for structural context includes (1) a new concept of similar entities in which tradeoffs are made between
similar outgoing edges and outgoing nodes and (2) a new structural similarity, which calculates the similarity between two
entities in each sequence. We can generate sequences based on structural similarity so that similar entities contain sequences
with similar structures. The method for the semantic property combines sequences with the same semantic to generate latent
sequences that cannot be generated by traversing the graph. This paper presents experimental results and a case study using
real graphs to show that the proposed method outperforms existing methods in terms of quality and efficiency.

Keywords RDF graph · Graph embeddings

1 Introduction

Graphs are useful for depicting and modeling real-
world entities and the relationships between these entities.
Graphs are used in a variety of domains, including social
networks, biological networks, the semantic web, and
citation networks [1]. For example, graph modeling of
resource description framework (RDF) datasets is used in
the semantic web domain, with nodes representing subjects
or objects and edges representing predicates between
subjects and objects. However, due to the increasing size
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and complex structure of these graphs, users may find
it difficult to explore and understand large graph data.
Graph embedding approaches occur to reduce the cost
of analytics by representing graph nodes as vectors in
a vector space such that the relevant network properties
are preserved. These vectors can be conveniently used to
address various downstream graph analytic tasks [2–4], such
as node classification, link prediction, community detection,
or visualization.

To learn vector representations for the graph, several
embedding techniques adopted the neural language model
(NLM) [5, 6] by generating the graph data into sequences
of nodes, which can be considered as sentences. NLMs then
take those sentences as the input and represent each node
in the graph as a vector. Different techniques used different
strategies to generate sequences. DeepWalk [7] uses a
truncated random walk, while node2vec [8] uses a biased
second-order random walk to generate sequences. Although
these methods work efficiently for node embedding, they
are only applicable for normal graphs, which are undirected
or have no edge label. To embed the entities of an RDF
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graph, additional work is proposed [9–12]. RDF2Vec [9] is
an extension of DeepWalk [7] which produces sequences
of entities in RDF graphs. It uses BFS random walk and
subtree graph kernel extracted from the target entity to
generate the sequences. A biased approach [10] compared
twelve different methods for weighting edges that result in
different sequences of entities. Like many techniques on
the normal graph, these use word2vec [5] as the modeling
technique with input sequences following the pattern of
subject → predicate → object → predicate →
object .

Although the above existing techniques provide several
strategies to generate sequences, they do not mention
the feature of similar nodes which is an important point
when converting the node to a vector. Xu et al. [13]
suggested that selecting a proper node similarity measure is
particularly important for finding effective node context (or
neighbors). For one node, its context is all sequences that
contain that node. Similar to NLMs, we aim to output very
close vectors for similar nodes. Therefore, the sequence
generation process should generate very similar contexts to
very similar nodes. The basic idea behind graph embedding
is to optimize low-dimensional embeddings to approximate
node similarities in the original graph generated. As a result,
the goal of this paper is to generate a set of sequences
with similar structures for similar nodes. First, we propose a
novel concept where similar entities trade-offs between the
number of similar outgoing edges and outgoing nodes. By
using entity similarity, we developed a structural similarity
metric that calculates the similarity between two nodes
in a sequence at the current time. This definition helps
our method to generate similar structural sequences for
similar entities.

Moreover, the graph embedding process will learn
statistics based on the number of times each neighborhood
pair appears. Each node has a huge diversity in the
neighborhood definitions. However, recent works like [7,
9, 14] only use outgoing neighbors to generate sequences
of a node. Therefore, they are unable to capture latent
context, such as semantically related information, which
is an important property of RDF data. On the expressive
side, the meaning of latent dependencies among nodes
should be captured. Our paper provides a method for
combining sequences with the same semantics to generate
latent sequences that cannot be generated by traversing
the graph.

Furthermore, because RDF graphs contain literal values,
applying graph embeddings to them is more difficult. Literal
types in an RDF dataset include string, number, and date.
These literal types have many different values, thus making
it a difficult task to identify them all. As a result, previous
work often ignored the literals in the dataset before building
an RDF graph from the RDF dataset [9]. Some datasets,

however, contain important literals [15, 16]. In this paper,
we add an additional step to reprocess the data before
generating the sequences. This step will process literal
values to nodes in a graph by assigning the same identity to
textual literal values with similar meanings.

We summarize the main contributions of this paper as
follows:

1. We propose an approach to assigning a new identity
to important literal values such that nodes with similar
meanings are assigned the same identity.

2. A similar structure walk (simStructWalk) method
generates the sequences for the nodes in the graph
followed by the structural similarity.

3. Latent sequences generation. We propose a method
called latent walk (LW) to generate latent sequences
which are unable to be generated using graph walk, by
combining two sequences based on given features.

4. Experiments with several benchmark datasets to eval-
uate our methods. We generate a corpus of sentences
for each dataset using different techniques, and trained
the embedding using two different types of language
modeling: Skip-gram and bag-of-word. Classification
and regression tasks are used to evaluate the qual-
ity of our embeddings to other methods. The first
method is the random method (RW), which uses a
random walk to create sequences. The second method
is Rdf2vec which creates sequences using Weisfeiler–
Lehman Subtree RDFgraph kernels. The results demon-
strate that our methods improve the quality of the
generated sequences.

The rest of this paper is organized as follows: Section 2
discusses related work. Background information is provided
in Section 3. Section 4 presents the proposed method and
implementation. Section 5 demonstrates the experimental
results. Finally, Section 6 presents the paper’s conclusions.

2 Related work

Currently, a large quantity of structured and unstructured
data is being generated. Knowledge generation using these
data needs a good representation of each word. Many
methods have been developed to represent a word as
a continuous vector such as word2vec [17], Glove [6],
and Bert [18]. By adopting those language models for
graph embeddings, many approaches take advantage of
the word order in text documents, explicitly modeling the
assumption that closer words in a sequence are statistically
more dependent.

Neural language models Because of advances in machine
learning, neural network approaches such as word2vec
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[17] and Glove [6], have gained popularity. In [19], a
popular feed-forward neural network-based architecture is
proposed for estimating the neural network language model
(NNLM). In this network, the learning for representing a
word vector is done through the use of a linear projection
and a non-linear hidden layer. In [20] and [21], a fast NNLM
architecture is proposed which uses a single neural network
hidden layer, providing faster learning of the word vector by
the model.

The neural network-based approach The neural network-
based approach provides better performance than the Latent
Semantic Analysis and, for large data, is less computation-
ally expensive than the Latent Dirichlet Allocation (LDA).
In [5], a neural network-based approach for distributed word
representation is proposed. The author proposed the use
of two unsupervised word2vec models, a CBOW and a
continuous-Skip-gram model. Subsequently, several neural
network approaches have been proposed for graph embed-
ding [7, 8]. DeepWalk [7] is one of the first approaches
to learn embeddings by implementing methods designed
to work on text [22]. DeepWalk uses Skip-gram as a tool
to learn a model from a network. In particular, DeepWalk
generates a context of nodes (sequences) through the use
of a truncated random walk. Node2vec [8] is an exten-
sion of DeepWalk since it generates sequences through the
use of a biased second-order random walk. Subgraph2vec
[14] is another approach for learning embeddings for rooted
subgraphs. Unlike previous techniques, Subgraph2vec does
not use random walks to generate context. Instead, in Sub-
graph2vec, the context of a node is simply defined by its
neighbors. Subgraph2vec also recognizes structural equiva-
lence by embedding nodes with the same local structure at
the same point in space.

Translation-basedmodels TransE [23] (Translation Embed-
dings) is one of the most successful of these methods.
TransE constructs entity and relation embeddings accord-
ing to the translation from the head entity to the tail entity.
This method assumes that the relations of some words
in the embedding space can be calculated by the differ-
ence between their vectors. However, this approach has the
limitation of not being able to deal with one-to-many, many-
to-many, many-to-one, and reflexive situations. The TransH
model solved these issues by including a hyperplane with
the translation operation [24]. TransH is divided into two
vectors, namely, the norm vector of the hyperplane, and
the translation vector in a hyperplane. The TransR model
takes both TransE as well as TransH models to embed
the relations among the entities in the equivalent semantic
space [25]. This method combines the entity and relation
embedding into a multiple relation space as well as into a

separate entity space that allows the modeling of entities
from numerous aspects.

Literal-based models Ristoski and Paulheim [9], Cappuzzo
et al. [26] approaches removed literals in embeddings, thus
leading to poor predictions. In [15], the author discusses
how literals can improve learning by creating learning
embeddings for entities, which have no link with any entity
in the KG, and by enhancing the entity representation
for structure-based embedding models. In [16], the author
introduces LiteralE, a generalized method where numeric
literal information is included to support any latent feature
method. This method enriches embeddings with literal
information that improves the prediction rate. MADLINK
[27] outperformed in link prediction task by adapting the
seq2seq [28] encoder-decoder architecture with attention
layer to obtain a cumulative representation of the paths
extracted for each entity from the KG. This work also
showed that the textual description of the entities in the KGs
contains rich semantic information and the graph structure
provides the contextual information of the entity from the
neighboring nodes. Therefore, this paper uses SBERT [29]
to extract the latent representations from entity descriptions.
In this paper, we process literal values to be vertices in a
graph by assigning the same identity to the textual literal
values which have similar meanings by adapting doc2vec
and KNN.

Language modeling based RDF graph embedding A lan-
guage modeling approach has been adopted to represent
the RDF graph entities in [9, 10], and [26]. RDF2vec [9]
is an extension of DeepWalk [7] for embedding the RDF
subgraph using a BFS random walk. Using graph walks
and Weisfeiler-Lehman Subtree RDF graph kernels, a set
of sequences is generated from the local information in a
graph. Next, a neural language is used to train the gener-
ated sequences, which are used to estimate the likelihood
entities. Finally, a graph entity is represented as a vector
of the latent numerical feature. The vector generated from
each entity shows that they are closely related to each other.
Cochez et al. [10] is a biased version of RDF2vec [9],
which uses predicate and object frequency to calculate the
probability of the following edges. Guan et al. [12] pro-
posed an embedding model with concepts that jointly into a
semantic space.

However, rdf2vec [9] or its extension does not claim that
similar entities will have similar sequences. In this paper,
first, we provide the set of sequences that demonstrate
similar entities with similar structure sequences. Moreover,
recent works like [9] or [26] use random walks that use
outgoing neighbors to generate sequences of a node. Our
paper provides a method for combining sequences with the
same semantics to generate latent sequences that cannot
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be generated by traversing the graph. Second, to generate
latent sequences, we combine sequences with the same
semantics that cannot be generated by graph walk. Third,
we do not remove literal values from the RDF dataset. We
use an additional step to preprocess the dataset, which turns
the literal values into valuable values. The paths provided
by the second and third steps are not included in the
rdf2vec method.

Riccardo et al. [30] proposed an approach to obtain
vector embedding for entities in a relational database. From
a very high point of view, similar to our method as well
as other existing graph embedding techniques, they first
generate a corpus of sentences from the original structured
data, and then apply a neural language model to the text
corpus to obtain a vector embedding model. To generate
the sequences, they first represent the relational data into
a graph form, based on a tripartite Heterogeneous Graph
data structure. They then use random walks to travel the
constructed graph representation of the relational data and
represent the walks as sentences. The basic difference
between this and our method is the type of data that
each method applies to. While Riccardo et al.’s method is
applicable to relational databases, our method is applicable
to RDF data.

3 Preliminaries and problem statement

Given an RDF graph, we first convert it into a set of entity
sequences, which we then use to train a neural language
model so that similar entities have vectors that are close in
the vector space.

3.1 Graph-based RDF datamodel

Definition 1 RDF Graph. An RDF graph G = (V , E) is a
simple directed graph where V and E are the set of vertices
and edges, respectively. A directed edge from u to v is
denoted as (u, v, p), where u and v are the vertex IDs of
that edge and p is the label ID of the edge. The vertex IDs
are the identifications of the Subject, Object, and Predicate.

In an RDF graph, vertex ids are the identification of
URIs. An object, however, can also be a blank or literal
value. Because literal values are not URIs, they are difficult
to identify. Literals in an RDF dataset can be of string
or number types. Almost all existing methods ignore the
literal values. However, some kinds of literal values contain
important information [15, 16]. In computer science, for
example, a DBLP dataset consists of bibliography data.
Each paper may cite or be cited by other papers, resulting

in the formation of a citation network. Each paper in
this dataset has its title as a literal string representation.
Attention to the title of the paper is important when
searching for specific words or grouping papers by content
because the title is a summary of the content. Hence,
significant literal values should be employed. We present
a preprocessing step in this paper to assign an identity to
literal values. The details of this step are in Section 4.1.

3.2 Sequences generating problem

Definition 2 Sequence depth d of node v. Given an RDF
graph G = (V , E) and a depth d, sequences Sv of each
node v ∈ V are the paths of several connected edges starting
from node v, where each edge (v, u, p) creates a sequence
depth 3.

Definition 3 Random Walk on an RDF graph Given an
RDF graph G = (V , E), the random walk provides a walk
that starts from a node v ∈ V and walks to any node that is
outgoing of node v.

The graph walk can produce all of the possible
sequences. For each node v ∈ V , the graph walk will
generate a set of sequences S such that the first word
is v and the following word is an outgoing edge and a
corresponding neighbor of v. However, using a graph walk
will yield a large number of sequences. Using all of these
sequences for model training is impractical. In reality, we
only use their bias in all possible sequences. A random
walk is one possible solution to the above-mentioned
problem. However, good sequences can be missed. For
finding good sequences we should select a proper node
similarity measure that is particularly important in graph
[13]. Based on the node similarity measures, we generate
similar contexts for similar nodes.

Therefore, we adapt the random walk by including
conditions such that the more similar nodes, the more
similar the set of sequences generated. We propose the
structural similarity metric, which can direct the walk to
travel along the priority path. The details of this step will be
provided in Section 4.2.

Graph walk techniques use outgoing neighbours to
generate sequences, which capture only structural context
[7, 9, 14]. They are unable to capture latent context, such
as semantically related information, which is an important
property of RDF data. Therefore, we add one more step
after structural context generation. This is the step in which
latent sequences are generated to provide a new set context
that connects related semantic sequences. Section 4.3 shows
how this is done.
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3.3 Neural languagemodels

3.3.1 Word2vec

Word2vec is a neural network approach that converts
each word in a text corpus to a corresponding vector
such that similar words are close to each other in the
vector space. It can capture the context of a word in a
document with a semantic and syntactic similarity, and its
relation to other words. It uses two models (both involving
Neural Networks): Skip-Gram and Continuous Bag Of
Words (CBOW).

CBOW [5] is a well-known unsupervised word2vec
model among researchers. The CBOW model is used to
predict a target word by utilizing context words. Let us use
the sentence, “birds are flying over the sea” to demonstrate
this method. The sentence can be thought of as a pair of
(context, target). Here context window size can be variable.
If the size is 2, we can make CBOW as ([flying, sea], birds),
([the, sea], birds), ([over, flying], sea). Based on context,
CBOW predicts the target. Figure 1 depicts the CBOW
architecture. The complexity of training is calculated as
Q = NXD +DXlog2(V ), where N is the dimension of the
input layer, D is the dimension of the project layer, and V
is the size of the vocabulary. Given the size of the context
window b, the objective of the CBOWmodel is to maximize
the average log probability:

1

T

T∑

t=1

logp (wt | wt−b...wt+b) (1)

Another popular unsupervised model is Skip-Gram [5]
which predicts the most relevant words (i.e., context) based
on a target word. This model is a reverse approach to
the CBOW model. In Skip-gram, words are statistically
more related and also statistically dependent on each other.
The architecture of Skip-gram is depicted in Fig. 1. The
CBOW model predicts a single target word according

to multiple inputs that maximizes the log-likelihood
probability distribution. However, in the Skip-gram model,
a target word predicts the context word. For instance, (birds,
flying), (Birds, sea), (flying, sea). Skip-gram provides
a more accurate output than CBOW. However, due to
increased computational needs, Skip-gram is slower than
CBOW. The objective function of Skip-gram is represented
by (2):

η =
T∑

t=1

logP (wt−b : wt+b | wt) (2)

In (2), b is the window size (context width), and the
sequence of words is represented by wt−b : wt+b, where
the word wt itself is eliminated from this sequence. The
probability P (wt−b : wt+b | wt) is calculated using (3)

∏

−b≤j≤b,j �=0

P
(
wt+j | wj

)
(3)

where the given word wt is independent of the contextual
words wt+j : wj . The computation for P

(
wt+j | wj

)
is as

follows

P
(
wt+j | wt

) = exp
(
vT
wt

)
(v′

t+j )∑W
w=1 exp(vT

wt )(v
′
w)

(4)

where the input and output vectors are vw and v′
w of w,

respectively.
Figure 1 shows the architecture of CBOW and

Skip-gram.

3.3.2 Doc2vec

Doc2vec [31] is an unsupervised NLP algorithm that
generates vectors from sentences or paragraphs. This idea
originated from word2vec where a vector is generated from
a word. Based on word2vec, the Distributer Memory version
of Paragraph Vector (PV-DM) is a doc2vec method that
works like a memory to remember the missing context

Fig. 1 CBOW and Skip-gram
architecture
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Fig. 2 An example of the DBLP dataset. Figure a) is an RDF graph G1, b) the RDF graph that ignores literals G2, and c) an RDF graph that
identifies the titles of paper, G3

or topic from a paragraph. Another popular method is
the Skip-gram-based Distributed Bag-of-Word Version of
Paragraph Vector (PV-DBOW). PV-DBOW is faster than
PV-DM and requires less memory. Doc2vec is particularly
effective in binary classification (e.g., positive and negative
sentiments) [32].

4 Our proposedmethod

Our proposed method involves a network that is represented
by an RDF graph G = (V , E). The goal of this method is
to extract node embeddings in such a way that similar nodes
are mapped to points close to each other in the vector space.
To get the node embedding of the graph, the first step is to
generate sequences of entities from a graph, which captures
the surrounding knowledge of each entity. Next, a neural
language modeling technique is used to embed entities into
a vector space. As discussed previously, the effectiveness
of vector representation depends on the sequences in
use and the objective. Therefore, in this section, we
introduce three methods in turn to improve the quality of
generated sequences.

4.1 Assigning a new identity to a literal

We already discussed the significance of literal values in
the RDF dataset, particularly the textual literal that shows
a subject’s description, in Section 3. The most important
question is how to use them effectively. The issue is that
the RDF dataset contains many textual literals. If we treat
each distinct textual literal as a separate node in the graph,
a large number of nodes will be added, and each subject
will be connected to a different literal. As a result, it shows
no relationship between subjects that have similar literal
values. Our work aims to use literal value similarity to
connect different subjects through similar literal values.
Instead of removing all literal values from the dataset before
building the RDF graph or representing each textual literal
by a single node, we assign the same identity to the textual
literal values which have a similar meaning.

An example is shown in Figs. 2 and 3 which illustrate
the difference between using and ignoring literals in an
embedding problem. We begin with the small example
shown in Fig. 2 and which generates the results shown in
Fig. 3. In this example, the title of papers are literals of
type String, the original RDF graph is shown in Fig. 2a),

Fig. 3 a), b), and c) are embeddings of data from Fig. 2a, b, and c, respectively
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and the graph after ignoring the literal is shown in Fig. 2b).
The graph in Fig. 2a) provides more information than the
graph in Fig. 2b). This is especially true when the title is
the relevant node that decides when two papers are similar.
If we remove the title value because it is textual literal, we
also remove the predicate corresponding to them (Fig. 2b)).
Clearly, every paper contains the node “hastitle” that makes
every paper the same when we calculate the probability of
Paper and “hastitle”.

Therefore, in this paper, we add an additional step
to process the data before generating the sequences. For
literal values that are textual, we try to understand their
meaning by converting them to vectors. Similar literals
will be assigned the same identity. Clearly, the number
of identities is less than the number of literals. Therefore,
important literal values are selected and retained to train
the model. The example shown in Fig. 2c) illustrates our
proposed method. We group similar titles into the same
group. Figure 3 shows the visualization of paper 1 (P1),
paper 2 (P2), and paper 3 (P3) in vector spaces of graphs
a, b, and c respectively. The graphs in Fig. 3a) and b) do
not have differences to identify which papers are highly
similar to the others. However, Fig. 3c) shows that paper 2
is more similar to paper 3 than to paper 1. According to the
semantics of the dataset, the embeddings shown in Fig. 3c)
show the most suitable results.

4.2 Sequence generation by similar structure
walk (simStructWalk)

Random walk techniques can either generate all possible
sequences or miss some sequences. In some cases, missing
sequences are significant for the training model. The
significant sequences contain a set of ordered words
that more frequently appear in the context. Consider the
illustration in Fig. 4, where node A1 is similar to node A2
because their neighborhoods are similar. The two red paths
provide useful sequences for training the model because
they have similar structures. Nevertheless, not all sequences
are always generated. In this example, we assume that the

Fig. 4 An example RDF graph

path A1 → 1 → B1 → 3 → D1 → 8 → H1 is generated
instead of red path A1 → 1 → B1 → 3 → D1 → 6 →
F1. Consider structure of two red paths A1 → 1 → B1 →
3 → D1 → 6 → F1 and A2 → 1 → B2 → 3 →
D2 → 6 → F1 they have same structure AnyNode →
1 → AnyNode → 3 → AnyNode → 6 → F1. The
frequency of this structure is larger than the structure of the
blue path A1 → 1 → B1 → 3 → D1 → 8 → H1, which
means two red paths show more similar structure than the
blue one. Thus, in a case where we cannot generate all of the
sequences, we prioritize generating the red paths first. To
do that, first, we define entity similarity, which will guide
the walk to follow other similar entities. Second, a similar
structural walk to priority walk to the same structural paths
of similar nodes to generate as many significant sequences
as possible.

To generate sequences that have similar structure paths,
we define similar nodes and the structural similarity of two
nodes. We utilize the property of nodes in the RDF graph
that are subjects or objects and connected by the predicate.
Two nodes having a similar set of predicates mean they have
the same schema. Additionally, if they have a similar set of
neighborhoods, they are similar to each other.

Definition 4 Entity similarity. The similarity of two
vertices u and v is calculated by the sum of the ratio of
similar connections (predicates) to total connections and the
ratio of similar neighborhoods to total neighborhoods. Let
s(u, v) denote the entity similarity of two vertices u and v.
The formula is displayed in (5).

s (u, v) = w
| predicate(u, v) |

| totalP redicate(u, v) |
+(1 − w)

| neighbor(u, v) |
| totalNeighbor(u, v | (5)

where | predicate(u, v) | presents the number of the
intersect of the set of edge label ids(predicate ids) of u

and v. | neighbor(u, v) | is the number of the intersect
of neighbors of u and v. | totalP redicate(u, v) | is the
number of the union of edge label ids of the edges of u

and v. | totalNeighbor(u, v) | is the number the union of
edges of u and v. Finally, w is a weight to adjust the priority
where w ∈ (0, 1). Our method considers all incoming and
outgoing edges of the node.

Definition 5 Structural similarity. The structural similarity
of two nodes u and v, given a previous node a, is an average
of the similarity of a and the incoming of node v.

Let f (u, v){a} denote the structural similarity distance
between u and v, where a is a previous vertex of u. The
formula for calculating f (u, v){a} is shown in (6).

f (u, v){a} =
∑n

i s(a, bi)

n
+ s(u, v) (6)
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where bi is the incoming node of v.
Let sc(u, a) represent the set of nodes that are similar to

u, given previous node a. sc(u, a) contains the nodes that
have an f value greater than or equal to a threshold δ (i.e.,
f ≥ δ).

Definition 6 Weight of next node. The weight of the next
node q of the node p in the current path is defined as a
fraction of the number of possible walks from p to q and
the total possible walks from p.

w (p, q) = M (p | q)

| totalNeighbor(p) | + | totalP redicate(p) | (7)

M (p | q) = | edge (sc(p, a), predicate(p, q), any) |
+ | edge (sc(p, a), any, q) | (8)

where M(p | q) represents the total cases where q can
be walked from p or from the nodes which are similar
to p. | edge(sc(p, a), predicate(p, q), any) | means
that any node in sc(p, a), the label of an edge must
be predicate(p, q), and go to any other nodes. On the
contrary, | edge(sc(p, a), any, q) | means any edge that
comes from a node in sc(p, a) to node q passes through any
predicate. Although we select the following node at random
from the list of candidates, we give higher priority to those
nodes with higher weight. As a result, nodes with higher
weight will have a greater chance of being walked through.

The overall idea of generating sequences (paths) is that
choosing the next node is based on the previous nodes of the
current sequence. To decide the next node in a sequence, we
calculate the weight that represents the number of similar
paths using that node. Figure 5 depicts the overview of our
similar structural walk. For each node u in graph G, we do
the following steps to generate one sequence:

• The first step (step 1 in Fig. 5) is to obtain sc(u, a), the
set of similar nodes of node u based on the current path.

Fig. 6 A graph example for latent sequences

• The second step (step 2. in Fig. 5) is to collect the next
node candidates and their corresponding weights. We
use (7) to calculate the weight of each candidate.

• The third step (step 3. in Fig. 5) is to select the next
node q from the list of candidates such that the node
with a higher weight has a higher chance of being
selected. The selected node q becomes node u for the
next iteration.

• Steps 1, 2, and 3 are repeated until the path contains
enough d nodes.

4.3 Latent sequences generation

Unlike normal graph problems, RDF nodes are called
similar when they have the same semantics. We consider the
example shown in Fig. 6. Given depth 4, we can generate
two sequences that are A → takes → P 1 → type →
Beach and B → takes → P2 → type → Beach .
The semantics of the two sequences indicates that A and
B take the same type of photo. Thus, the sequences should
indicate that A → and → B → took → photo →
type → beach or Beach → is → taken → by → A →
and → B. For a window size of three, these two sequences
estimate a higher probability that A will occurs with B than
other sequences. Both Continuous Bag of Words (CBOW)
and Skip-gram methods use the joint probability of A
and B occurring so that the latent sequences are good
sequences for training purposes. These are called latent
sequences because they cannot be generated by traveling
the graph.

Fig. 5 Our similar structural
walk architecture
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Fig. 7 A matrix of sequences

Definition 7 (Latent Sequences) Given two sequences
s and s′ having the same depth d, and a feature F

where s = v1 → p2 → v3 → ... → pd−1 → vd , and
s′ = v′

1 → p′
2 → v′

3 → ... → p′
d−1 → v′

d , latent sequence
created by s and s′ is a sequence that is merged by s and s′
if s and s′ contain any similar nodes in F .

There are many sets of new triples that can be created
by using an RDF schema. However, checking and querying
the data through the RDF schema will take a lot of time.
Moreover, many datasets lack their schema. Therefore,
we aim to generate new sequences without requiring the
schema. Instead of using schema, we provide the method
to create new sequences based on the properties/features.
Given one or more features F = {f1, f2, ..., fn}, that are
used as a feature selection. In other words, given a list of
priority properties of entities, we generate sequences that
use feature selection to connect the nodes.

We create a matrix M(m, n) (ex, Fig. 7), where m is the
number of sequences and n is the number of entities that
belong to feature F . In this matrix, value 1 indicates that the
sequence at this row contains corresponding entities. If two
rows have value 1 in the same column, they can be merged
into a single sequence.

5 Experiment

We evaluate our approach on two different tasks that are
classification and regression. Our experiment is divided
into three steps: The first step is to convert the RDF
graphs into a set of sequences. In the second step, we
use the set of sequences generated in the first step to
build embedding models. The last step is to evaluate the
accuracy of classification and regression tasks through a

well-known set of machine learning tasks. To show the
efficiency of our proposed methods, we compared the
accuracy of classification and regression tasks to other
methods. The first method is known as the random method
(RW) and it uses a random walk to create sequences.
The second method is known as rdf2vec and it creates
sequences using Weisfeiler–Lehman Subtree RDFgraph
kernels (we used the rdf2vec experimental results from
publication [9]). In the second step, to get the embeddings,
we also follow the rdf2vec’s setup to use the same CBOW
and Skip-Gram models. For the classification task, we
used Naive Bayes, k-Nearest Neighbors (k = 3), C4.5
decision tree, and Support Vector Machines. We used k-
Nearest Neighbors, linear regression, and regression tree for
regression. For comparison to rdf2vec results, we set up the
SVM classifier to optimize the parameter C in the range
10−3, 10−2, 0.1, 1, 10, 102, 103 similar to rdf2vec’s setting.

• RW designates the method that only uses a random
walk.

• simStructWalk designates the method that only uses a
similar structural walk.

• LW designates the method that uses Latent walk
• RW + LW designates a random walk combined with a

latent walk.
• simStructWalk + LW designates a similar structural

walk combined with a latent walk.
• Rdf2vec uses Weisfeiler-Lehman Subtree RDFgraph

kernels for the sequence generation process.
• Rdf2vec + LW designates rdf2vec combined with a

latent walk for the sequence generation process.

We implemented a sequence generation program in
Scala using GraphX [33]. The training model is developed
in python. Experiments are conducted on an Intel(R)
Core(TM) i5-10400 CPU running Windows 10 with
16.00GB of RAM. For evaluating the performance of our
RDF embeddings in machine learning tasks, we evaluate
on a set of benchmark datasets. We used the following five
real datasets: AIFB, MUTAG, DBLP,1 CiteSeer-M10,2 and
DBpedia [34]. The summary of these datasets is shown in
Table 1 with the total number of nodes, the total number
of triples, the total number of target nodes that show the
number of entities used for learning, the number of classes
for the classification task, and the last column is rating, that
shows the dataset’s ground truth contains rating value or not.
Details of these datasets are included in the section in which
they are used. The source code of this implementation is
available at https://github.com/vandtt/RDFEntity2Vec. This
source code was modified from the source code Trip Walk.3

1http://arnetminer.org/citation (V4 version is used)
2http://citeseerx.ist.psu.edu
3https://github.com/chrisPiemonte/TripWalk
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Table 1 Dataset properties

Dataset #Nodes #Triples #Target Nodes #Classes Rating

AIFB 8,291 29,226 176 4 No

MUTAG 22,549 2,247931 340 2 No

DBpedia- City >3 M in total >400M in total 212 3 Yes

DBpedia- Movie 2,000 2 Yes

DBpedia- Album 1,600 2 Yes

DBpedia-AU UUniversity 960 3 Yes

DBLP 60,744 52,890 60,744 3 No

CiteSeer-M10 10,310 77,218 10,310 9 No

5.1 Evaluation on different kinds of walks

In this section, we will show the efficiency of our similar
structural walk and latent walk compared to a random walk
and rdf2vec walk on two tasks that are classification and
regression tasks.

5.1.1 Datasets

We will use three out of five real-world datasets that we
mentioned in the previous section [35] in this section.

The first is the AIFB dataset that describes staff, research
groups, and publications from the AIFB research institute.
AIFB contains 8,291 triples and 29,226 nodes in total. The
ground truth file for the classification task consists of 178
members of a research group which is divided into 4 classes.

The second is the MUTAG dataset which is distributed
as an example dataset for the DL-Learner toolkit (http://
dl-learner.org). It contains information about complex
molecules that are potentially carcinogenic and mutagenic
(about 340 substances). The third is the cross-domain
RDF dataset which the DBpedia [34] project builds. This
is a large-scale, multilingual knowledge base created by
extracting structured data from Wikipedia. The DBpedia
project extracts knowledge from 111 different language
editions of Wikipedia. DBpedia can be used as Linked Data
on the Web since it covers a wide variety of topics and sets
RDF links pointing toward various external data sources.
Thus, DBpedia has developed into a central interlinking hub
in the Web of Linked Data and is a key factor for the success
of the Linked Open Data initiative. In this experiment, we
used the English version of the 2015-10 DBpedia dataset.
We evaluated this dataset based on four main features
such as city, movie, album, and university. This dataset
also contains the ground truth files for each feature, rating
values for the regression tasks, and class labels for the
classification tasks. The rating value is the ratio between the
positive and the total number of feedback provided by users.
Based on the rating value, the subject is assigned to the
corresponding class label to show the summary of feedback.

The Mercer [36] dataset was used for evaluating
the classification. This dataset contains quality of living
measures for a list of cities. This dataset contains 212 cities
and is divided into three classes of quality. A movie dataset
is retrieved fromMetacritic.com, which provides an average
rating from reviews for a list of movies [37]. We used 2000
out of the 10,000 movies in this dataset for our classification
task, which is divided into two classes “good” and “bad”.
Similar to the movies dataset, the Metacritic Albums dataset
was retrieved from Metacritic.com. This dataset contains
an average rating of reviews for a list of albums [38].
We chose 1,600 albums from this dataset for inclusion in
this experiment. The American Association of University
Professors (AAUP) dataset contains a list of universities
and average salaries which were both set as target variables
for classification. This dataset contains 960 entries and is
divided into three classes.

5.1.2 Experimental results

For both the AIFB and MUTAG datasets, we generated a
sequence depth of 5 with 4 walks per node. Our definition
of depth differs from the definition of depth in rdf2vec. In
rdf2vec, each path v1 → p → v2 is counted as 1, while
our definition count this as 3. Therefore, a depth of 5 in our
method is the same to a depth of 2 in the rdf2vec method.
Tables 2 and 3 show classification results from the AIFB
and MUTAG datasets, respectively. Especially, for AIFB
and MUTAG dataset, we used sentences generated from the
rdf2vec method as input to the latent walk. Then we mea-
sured the accuracy of the classification task. This improved
results versus only using rdf2vec. For the AIFB dataset,
the feature was set to F = Type, Publication. For the
MUTAG dataset, the feature to generate latent sequences
was set to F = Type, carcinogenesis. We apply both the
CBOW and Skip-Gram models to the generated sequences
with the same parameters as used in rdf2vec method. These
include setting the window size to 5, the number of itera-
tions to 10, using negative sampling for optimization, and
setting negative samples to 25. In this experiment, we only
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Table 2 Classification results on the AIFB dataset

NB KNN SVN C4.5

CBOW 500 RW 0.57 0.61 0.58 0.6

Rdf2Vec 0.69 0.69 0.83 0.73

simStructWalk 0.71 0.72 0.76 0.75

RW + LW 0.83 0.84 0.88 0.82

RDF2vec + LW 0.83 0.82 0.85 0.82

simStructWalk + LW 0.85 0.83 0.88 0.83

SG 500 RW 0.70 0.72 0.61 0.71

Rdf2vec 0.89 0.89 0.93 0.70

simStructWalk 0.71 0.72 0.76 0.75

RW + LW 0.83 0.84 0.88 0.82

RDF2vec + LW 0.91 0.9 0.94 0.85

simStructWalk + LW 0.88 0.93 0.97 0.87

Bold entries represent the best accuracy for each model

compare results for 500 dimension embeddings since 200
of the dimensions showed lower accuracy than the other
500 dimensions. Because AIFB and MUTAG datasets do
not show the ground truth for the regression task, we can
not show the experimental results for these datasets on
regression.

These same settings were used for the AIFB andMUTAG
datasets as well as for four specific features of the DBpedia
dataset. For these three datasets, we generate sequences
with depth 9 (depth of 4 for rdf2vec) with only 100 walks
per node (note: RW and rdf2vec must use 500 walks per
node). Our similar structural walk claims that with a smaller
number of walks, the generated sequences are good enough
for training. In this work, we focus to show the efficiency
of using similar structural Walk and latent walk together.
Thus, on average, using the latent walks achieves 30% more

Table 3 Classification results on the MUTAG dataset.

NB KNN SVN C4.5

CBOW 500 RW 0.75 0.68 0.8 0.69

Rdf2Vec 0.86 0.71 0.91 0.67

simStructWalk 0.78 0.76 0.89 0.65

RW + LW 0.88 0.85 0.90 0.74

RDF2vec + LW 0.87 0.80 0.93 0.85

simStructWalk + LW 0.89 0.88 0.93 0.75

SG 500 RW 0.73 0.71 0.76 0.72

Rdf2vec 0.82 0.73 0.96 0.70

simStructWalk 0.73 0.68 0.76 0.65

RW + LW 0.85 0.82 0.87 0.77

RDF2vec + LW 0.85 0.84 0.87 0.85

simStructWalk + LW 0.83 0.85 0.92 0.79

Bold entries represent the best accuracy for each model

accuracy than the methods that do not use the latent walk
method. For the regression task, we use root mean squared
error (RMSE) to show the evaluation and the results are
calculated using stratified 10-fold cross-validation. Tables 4,
5, 6, and 7 also show the RMSE of regression tasks. In most
cases, the sequences generated by both similar structural
walk and latent walk provide the best performance.

5.2 Benefit of assigning a new identity
to literal nodes

In this part of the experiment, we demonstrate the efficiency
of assigning a new identity to literals in the classification
task. In this case, we combine the assignment of a new
identity step with several different ways of generating
sequences. We used two real datasets DBLP and CiteSeer-
M10 which contain textual literal. We adopt a neural
network Skip-gram to learn the vector representation of
the document, particularly, Doc2vec. After representing
literals by vectors, we use KNN to group the list of
similar literals.

• Let NL+ RW denote the algorithm that is produced by
combining the step assigning a new identity to literals
with a random walk to generate sequences.

• Let NL + simStructWalk denotes the algorithm that is
produced by combining the step which assigns a new
identity to literals with our similar structural walk to
generate sequences.

• let NL + simStructWalk + LS denote an algorithm that
is produced by assigning a new identity to literals and
then using both our similar structural walk and latent
walk to generate sequences.

5.2.1 Dataset

We used two real datasets: 1) DBLP dataset which contains
bibliography data for computer science. Each paper may
cite or be cited by other papers, which naturally forms
a citation network. Moreover, each paper is assigned to
one class which was used for ground truthing for our
experiment. The DBLP network consists of 60,744 papers
(nodes) and 52,890 edges in total. The ground truth contains
all papers and is divided into three classes.

2) CiteSeer-M10 is a subset of CiteSeerX data 2. This
dataset contains information about scientific publications
for 10 distinct research areas. This dataset consists of 9
multidisciplinary classes, 10,310 publications, and 77,218
total edges. Each paper belongs to one class and has
one document to describe the paper. The edges in this
dataset represent citation links between two papers. In this
dataset, we used the class property for ground truth in our
experiment. A total of 10,310 papers and nine classes are
included in this ground truth file.
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Table 4 Classification and Regression results on the DBpedia-City dataset

Model Method Classification Regression

NB KNN SVN C4.5 KNN LR M5

CBOW 500 RW 0.65 0.67 0.81 0.64 18.22 40.30 18.78

Rdf2Vec 0.59 0.71 0.76 0.66 12.46 14.99 14.66

simStructWalk 0.71 0.73 0.85 0.65 12.67 17.21 14.23

RW + LW 0.77 0.76 0.86 0.72 13.80 30.07 17.79

simStructWalk + LW 0.77 0.79 0.89 0.74 11.08 14.79 11.02

SG 500 RW 0.53 0.50 0.61 0.57 22.34 27.17 13.46

Rdf2vec 0.58 0.72 0.76 0.67 13.25 14.73 16.80

simStructWalk 0.70 0.69 0.73 0.62 13.68 16.90 15.60

RW + LW 0.74 0.76 0.80 0.73 16.40 20.42 12.30

simStructWalk + LW 0.81 0.84 0.77 0.74 10.50 13.50 11.57

Bold entries represent the best accuracy for each model

Table 5 Classification and Regression results on the DBpedia-Movie dataset

Model Method Classification Regression

NB KNN SVN C4.5 KNN LR M5

CBOW 500 RW 0.51 0.52 0.51 0.49 25.35 23.30 27.80

Rdf2Vec 0.65 0.79 0.82 0.73 17.45 15.90 15.73

simStructWalk 0.61 0.68 0.75 0.68 16.80 18.33 16.83

RW + LW 0.72 0.77 0.88 0.78 20.50 18.20 17.35

simStructWalk + LW 0.70 0.78 0.91 0.84 15.60 15.58 13.40

SG 500 RW 0.71 0.68 0.76 0.67 23.17 25.70 20.33

Rdf2vec 0.65 0.80 0.83 0.72 17.14 15.66 15.67

simStructWalk 0.73 0.74 0.79 0.76 15.20 24.40 13.50

RW + LW 0.76 0.75 0.86 0.80 17.22 15.45 15.70

simStructWalk + LW 0.83 0.84 0.89 0.87 15.15 17.60 13.05

Bold entries represent the best accuracy for each model

Table 6 Classification and Regression results on the DBpedia-Album dataset

Model Method Classification Regression

NB KNN SVN C4.5 KNN LR M5

CBOW 500 RW 0.54 0.51 0.52 0.53 23.15 13.20 13.75

Rdf2Vec 0.69 0.71 0.75 0.65 12.60 11.49 11.48

simStructWalk 0.62 0.63 0.71 0.69 14.70 11.35 11.90

RW + LW 0.67 0.65 0.73 0.69 12.45 11.70 11.60

simStructWalk + LW 0.73 0.75 0.80 0.78 12.90 10.75 10.85

SG 500 RW 0.58 0.57 0.63 0.56 22.40 13.58 11.40

Rdf2vec 0.70 0.74 0.78 0.67 12.11 11.20 11.28

simStructWalk 0.68 0.65 0.72 0.64 13.15 12.50 12.60

RW + LW 0.68 0.64 0.74 0.65 18.65 11.35 11.67

simStructWalk + LW 0.76 0.76 0.81 0.74 12.58 11.60 10.50

Bold entries represent the best accuracy for each model
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Table 7 Classification and Regression results on the DBpedia-AU University dataset

Model Method Classification Regression

NB KNN SVN C4.5 KNN LR M5

CBOW 500 RW 0.48 0.90 0.89 0.88 54.25 12.70 12.56

Rdf2Vec 0.72 0.89 0.29 0.92 45.67 12.44 12.30

simStructWalk 0.69 0.74 0.75 0.72 38.57 18.65 6.28

RW + LW 0.63 0.93 0.95 0.93 52.85 12.05 9.57

simStructWalk + LW 0.78 0.82 0.93 0.86 38.36 17.06 6.08

SG 500 RW 0.55 0.83 0.87 0.87 55.59 12.54 11.37

Rdf2vec 0.71 0.89 0.29 0.92 45.76 12.09 11.93

simStructWalk 0.72 0.77 0.79 0.81 47.22 14.50 08.05

RW + LW 0.67 0.91 0.93 0.89 53.68 11.55 6.50

simStructWalk + LW 0.78 0.91 0.92 0.86 35.68 12.75 7.20

Bold entries represent the best accuracy for each model

5.2.2 Experimental results

As discussed in Section 4.1, for the publications dataset,
the title, and abstract were used as informative data to
summarize the paper. Thus, we assigned a new identity
to the abstract of the paper, as in Section 4.1. We set the
number of walks as 4 and depth as 7 on both datasets.
Figures 8 and 9 show the accuracy of the KNN classification
task for the DBLP and CiteSeerX datasets, respectively. To
train sequences to the vectors, we used Skip-gram with five
hundred dimensions and a window size of five. For the only
RW, rdf2vec, and only simStructWalk cases, the sequences
were only generated by neighborhoods but aggregated to the
NL. Thus, any two papers having similar abstracts can be
connected. For each case, the algorithm that combined with
the NL had more accuracy than without the NL.

5.3 Experimental results summary

In summary, we conducted tests using eight datasets of
various sizes and types. We created sets of sequences for

Fig. 8 Accuracy results of the experiment on the DBLP dataset

each dataset using various techniques, and we trained the
embedding using two different types of language modeling:
Skip-gram and bag-of-word. We first discuss the accuracy
of a group of RW, simStructWalk, and rdf2vec. Results
from classification and regression tasks indicated that sim-
StructWalk is generally much more accurate than RW. In
contrast to rdf2vec, which in some cases provided higher
accuracy, simStructWalk consistently produced fewer
sequences than other methods. RW and rdf2vec must use
500 walks per node, and our simStructWalk only provides
100 walks per node. Our goal is to generate meaningful
sequences. Therefore, if the accuracy of simtructWalk is
not bad, we accept that result and employ these sequences
to generate latent walks. Second, we combined those three
methods to latent walk. The results demonstrate that using
latent walk results in an average 30% improvement in accu-
racy over the non-latent walk method. The effectiveness of
keeping textual literals as nodes in the classification task
was then assessed. As a result, a set of sequences contain-
ing textual literals gives the mode a well-trained set. The
classification’s precision has greatly increased.

Fig. 9 Accuracy results of the experiment on the CiteSeerX dataset
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6 Conclusion

In this study, we proposed three techniques to enhance
the quality of graph walk-generated sequences. To generate
the set of similar sequences for the similar nodes we
first proposed (1) a new concept of similar entities in
which trade-offs are made between similar outgoing edges
and outgoing nodes, and (2) a new structural similarity
that calculates the similarity between two entities in each
sequence. By following these similarities, we provided
the generated sequences such that similar entities have
similar sequences. Second, the proposed method combines
sequences with the same semantics to create latent
sequences for the RDF node’s semantic property that cannot
be produced by traversing the graph. Finally, unlike some
related works, we used the meaning of literal values to make
them valuable nodes for training embedding rather than
removing them. Our experimental evaluations demonstrate
that our methods provide efficient sequences with good
accuracy for both classification and clustering tasks.

In future work, we intend to propose more rules on the
RDF graphs in subsequent work to diversify the types of
latent sequences. To unitize all the valuable data in the RDF
dataset, we retain not only textual literals but also other
types such as number and time.
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