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Abstract

Nowadays, raw data is rarely used directly. In real world applications, data is often processed, and the necessary knowledge
extracted, depending on the purpose of the user. Applying constraints in pattern mining is a major factor in reducing the resulting
patterns to help decision support systems work efficiently. In 2018, a constraint-based approach was developed to discover inter-
sequence patterns. However, this method only focused on the constraints with single items. The task of discovering constraint-
based inter-sequential patterns is our target in this work. We propose the DBV-ISPMIC algorithm, a DBV-PatternList based
structure, for mining inter-sequential patterns with itemset constraints. The proposed algorithm utilizes an organized search tree
structure stored as dynamic bit vectors to quickly compute the support of patterns. In addition, we also develop a property and,
based on it, an improved algorithm is proposed to reduce checking candidates. Finally, we develop the pDBV-ISPMIC algorithm
as a parallel method of the DBV-ISPMIC algorithm. Empirical evaluations show that DBV-ISPMIC has better performance than
the post-processing algorithms in experimental databases and pDBV-ISPMIC is better than DBV-ISPMIC with regard to the
runtime.

Keywords Data mining - Frequent sequence - Frequent inter-sequence - Constraints

1 Introduction generation to support decision-making, management, and
prediction.

Sequential pattern mining is used to reveal a set of frequent

patterns from a sequence database t [1-6] while mining inter-

sequence patterns will find the frequent patterns across multi- 1.1 Motivation

ple sequences in the sequence database [7-12].

Among the important tasks in the field of data mining,  In recent years, various methods of mining constraint-based
inter-sequence pattern mining is an especially practical one.  (inter)-sequential patterns or rules have been developed [8, 13,
Its purpose is to find the frequent sequences that are common  14]. However, most of these solved the problem of mining
to many sequences in the database, and to find the relation- sequential patterns and mining sequential rules with con-
ships between these sequence patterns over time. Therefore, it straints [13, 14]. The ISP-IC algorithm, suggested by Vo
brings very important and meaningful information for rule et al. in 2018 [8], focusing in discovering constraint-based
inter-sequence patterns. Inter-sequence pattern mining with
itemset constraints, however, is not addressed by any of the
4 Bay Vo mentioned approaches. We want to mine patterns such as: “If

vd.bay @hutech.edu.vn a customer visits URL1, URL2, URL3 today, then he/she will
visit URL2, URL3, URLS two days later. The constraint is
' Department of Applied Informatics, Wroclaw University of Science ~ that he/she must visit {URL2, URL3}”. We can solve this

and Technology, Wroctaw, Poland problem by applying the proposed algorithm from [7] to mine
2 Faculty of Information Technology, Nguyen Tat Thanh University, all mining inter-sequence patterns, after that, we check the
Ho Chi Minh City, Vietnam constraints for each mined pattern to get the result.
3 School of Computer Science and Engineering, International However, this work will take more time and memory to mine
University, Ho Chi Minh City, Viet Nam and store patterns.
4 Vietnam National University, Ho Chi Minh City, Viet Nam As far as we know, the complexity of the mining inter-
*>  Faculty of Information Technology, HUTECH University, Ho Chi sequence patterns task is much higher than that of mining
Minh City, Vietnam frequent sequences. This is because we must mine all
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sequences appearing across multiple sequences, and solving
the itemset constraints needs more complex processing to
check the patterns that satisfy them. Therefore, the major chal-
lenge of this study is to address the problem of inter-sequence
pattern mining in combination with itemset constraints.

1.2 Contributions

In this study, our goal is to solve the task of inter-sequence
pattern mining with itemset constraints. This mining task, un-
like that of using itemset constraints for mining sequence pat-
terns, requires more complex processing because many can-
didates are generated during the mining process. Our major
contributions are as follows.

1. Based on the EISP-Miner algorithm [7] and a using dy-
namic bit vector data structure [9], we state the problem of
inter-sequence pattern mining in combination with
itemset constraints.

2. We then suggest a proposition to help reduce candidate
checking during sequence expansion according to the
EISP-Miner algorithm, thus reducing the search space
for inter-sequence pattern mining with itemset constraints.

3. Next, an algorithm named DBV-ISPMIC is developed to
discover constraints-based inter-sequence patterns. A par-
allel version of the DBV-ISPMIC algorithm, named
pDBV-ISPMIC algorithm, was also presented to improve
the runtime.

4. Finally, we conduct experiments with various databases
to evaluate the proposed method.

The rest of this paper is organized as follows: The next
section carries out our literature review on sequence pattern
mining, sequence pattern mining with constraints, inter-
sequence patterns and inter-sequence patterns with con-
straints. The third section offers the basic concepts and prob-
lem statement. The proposed algorithms are presented in the
fourth section. In this section, we introduce a structure, name-
ly the DBV-PatternList, and propose the DBV-ISPMIC and
pDBV-ISPMIC algorithms, to solve the problem. A proposi-
tion is also developed to reduce checking candidates in DBV-
ISPMIC-IMPROVING. The experimental results are discuss-
ed in the fifth section. The last section then presents the con-
clusion and some directions for future studies.

2 Related work
2.1 Mining frequent (inter-)sequences
Mining frequent sequences has been explored by many re-

searchers, and many algorithms have thus been developed
for mining frequent sequences. AprioriAll was first proposed
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by Agrawal and Srikant [2] in 1995 for mining sequential
patterns from a sequence database. AprioriAll is based on
two basic principles for finding the frequent sequence, candi-
date generation and testing [2].

However, candidate generation and testing are time-consuming
and need many database scans, and thus Zaki et al. introduced the
SPADE algorithm in 2001 [3]. This algorithm is based on lattice
theory to divide the search space to reveal frequent sequences. It
utilizes the vertical database format and equivalence class to find
frequent sequences. Therefore, the SPADE algorithm outperforms
AprioriAll in most experiments. Han et al. suggested the FreeSpan
algorithm in 2000 [4]. This algorithm uses projected sequence
databases to confine the search and the growth of subsequence
fragments. Pei and Han proposed the PrefixSpan approach in
2001 [5]. The algorithm is based on a specific divide-and-
conquer method, which mines frequent sequential patterns based
on a prefix database projection (like the FP-Growth algorithm).
PrefixSpan can generate frequent sequences with candidate gen-
eration. Therefore, it has better execution time than either SPADE
or AprioriAll. Thanks to the divide-and-conquer technique,
PrefixSpan significantly reduces the size of the database as the
length of the common patterns increase, leading to savings in
memory and computation time. Gouda et al. used prism encoding
to compress sequence IDs to save memory storage and runtime
[15, 16].

In 2020, Huynh et al. [17] proposed the CUP algorithm to
mine clickstream patterns. In their study, the authors em-
ployed a structure called the pseudo-IDList. In addition, the
algorithm also adopts the DUB pruning technique to help
CUP run faster than state-of-the-art algorithms, by from 13
to 45%. Huynh et al. also proposed efficient parallel algo-
rithms using multi-core processors for mining clickstream pat-
terns [18], as well as a weight-based method for mining
clickstream patterns. The method is based on the average
weight measure and the authors proposed two algorithms,
named CM-WSPADE and Compact-SPADE, for efficient
mining of weighted clickstream patterns.

In 2009, a novel method for inter-sequence pattern mining
based on vertical database format was introduced by Wang and
Lee [7]. The authors developed an ISP-tree to generate candi-
dates that satisfy the minimum support threshold. With the meth-
od of inter-sequence pattern mining, the authors defined a new
method for the mining sequences which ensures that it can still
exploit the traditional sequences like the algorithms SPADE [3],
CM-SPADE [6], and PRISM [15, 16], but also mine patterns
through multiple sequences in the sequence database. This ap-
proach stores sequence IDs (SIDs) and uses them to compute the
support of patterns. Therefore, it needs a large amount of mem-
ory to store SIDs and time to compute the intersection of SIDs. In
2012, Vo et al. introduced a novel approach, which employed a
highly efficient structure call the dynamic bit vector (DBV-
PatternList) [9], to replace the pattern-list structure used by the
EISP-Miner approach. This method thus significantly reduces
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the search space and time in mining inter-sequence patterns, as
well as for mining closed inter-sequence patterns [10].

2.2 Mining frequent (inter-)sequences with
constraints

In 2018, Van et al. proposed the MSPIC-DBV algorithm to
mine sequential patterns with itemset constraints [14]. To ef-
ficiently discover sequential patterns, MSPIC-DBYV adopts the
dynamic bit vector and the prefix tree structure. A method for
early pruning the candidates to help reduce processing time is
also introduced. The authors then continued to improve their
work in mining sequential rules with itemset constraints
through two new algorithms, namely the MSRIC-R and
MSRIC-P, which were introduced in 2021 [13]. The con-
straints are combined into the rule generating phase for the
MSRIC-R algorithm, while the latter algorithm combined it
into the pattern mining phase. The authors suggested a tech-
nique to integrate the mining process with itemset constraints,
to help the algorithm only create constraint-satisfying patterns
and thus increase the speed. These methods solved the prob-
lem of itemset constraints but can only be applied on mining
sequential patterns or sequential rules, so the generated sub-
sequences do not satisfy the inter-sequence mining require-
ments. Therefore, these algorithms cannot be applied to the
problem examined in the current study.

An algorithm named ISP-IC was developed by Le et al. [8]
for constraints-based inter-sequence pattern mining, as well as
its improvements, i1ISP-IC and pilSP-IC. The authors also ap-
plied a parallel processing method to speed up the runtime. As
stated in the introduction, ISP-IC, iISP-IC, and piISP-IC focus
on the condition of items in the sequence, and we cannot apply
this approach to the itemset problem.

3 Basic concepts and problem statement
3.1 Inter-sequence pattern mining
Let tbe the set of items, ¢ = {uy, uy, u3,. .., u,,} Where u; is an item

(1 <i<m).Asequences = {t,b,b,...,t,) isan ordered list
of itemsets where #; € ¢ (1 < i < n) is an itemset. A sequential

database D = {s1, 52, $3,..., S, Where w = |D| is the number of
sequences in D and s; (1 < i < w) is a pair of values {Dat,
Sequence) , in which Dat is the property of s; used to describe
contextual information based on the time of the transaction.

What follows is an example with the sequence database in
Table 1. An example of creating a sequential database from a
customer dataset.

With DAT 1 (DAT is an attribute describing the time of the
transaction): First buy item C then buy itemset AB.

Assuming the sequences s, and s, have d, and d», respec-
tively, be their domain attributes (DAT). If we take d; as the
reference point, the span between s, and s; is defined as [d>-
d1]. The sequence s, at domain attribute d, with respect to d; is
called an extend sequence and denoted as s,[d>-d;]. Take the
database given in Table 1. An example of creating a sequential
database from a customer dataset.

For instance — if DAT from the 1st transaction is used as the
reference point, then the extended sequence from the 2nd transac-
tion equals to  {C(ABO)A) [1].

Lets[d] = {#, t, ts,..., t,) [d] be a sequence where ¢; is an
itemset (1 < i < n) and [d] is span of s.; associated with [d] was
defined as an extended itemset (e-itemset) denoted by (¢ [d]. If
t; = (uy, U, Us,..., u,,) where each u; (1 < i < m)is an item, then
u; associated with [d] is an extended item (e-item) denoted by
(u;)[d]. For example, {(C(ABC)A) [1] has 3 e-itemset

() [1], <{ABOC)) [1], A[1] and 3 e-item: (O)[1], (A)[1],
B[]

Definition 1 (Megasequence) [7] Given a list of k sequences
{dy, s1) , {d>, $5) ..., {dj, spy in the sequential data-
base. A megasequence with £ > 1 is denoted as ¥ = 5[0] u
Soldr — di] v...u sildy — di].
From the example database shown in Table 1. An example
of creating a sequential database from a customer dataset.
With maxspan = 1 and DAT = 1 as the reference point, we
have a list of megasequences shown in Table 2.

Definition 2 [8] Let a = (i,,)[x] and b = (i,,)[y] be 2 e-items.

(1) a=bifandonlyif (i, = i,) A (x = y) and
(2) a < b,ifand only ifx < yor (x = ) A (i, < ip)).

DAT Sequences
1 (C(AB))
|:> 2 (C(ABC)A)
3 (AD)
4 (AD)

Table 1T An example of creating a sequential database from a customer dataset
Date Time | Customerld | Transaction
12.12.1998 | 9:00 1 C
12.12.1998 | 10:00 2 AB
13.12.1998 | 9:00 3 C
13.12.1998 | 14:00 1 ABC
13.12.1998 |15:00 4 A
14.12.1998 | 10:00 6 A
14.12.1998 | 11:00 4 D
15.12.1998 | 15:00 5 A
15.12.1998 |16:00 4 D
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Table2 Converting a sequential database to megasequences
DAT Sequences
1 (C(4B))
2 (C(ABC)A) |:>
3 (4D)
4 (4D)

For example, (A)[0] = (A)[0], (A)[1] < (A)[2], and (B)[1] <
D)[1].

Definition 3 [8] Given a pattern p. A function sub;(p) is de-
fined as (j-i + 1) subset e-items of p from position / to j. For
example, sub; 3( {((BC)) [0] {(AD)B) [1]) =

CCBC)Y ) [0] CCA)) [1] and
suby 4( ((BC)) [0] <(AD)B) [1]) = (D)[1].
Definition 4 [8] Given two frequent 1-patterns & = (u) [0]

and § = <{(v) [0]. « is joinable to (3 in any instance and there
are three types of join operation: (1) itemset-join: o U; 3 =
{ L)) [01}{ <v)) [0]}; (2) sequence-join: o Ug 3 =
{ {@v)) [0]}; @B) inter-join: a U, B = { Cuy [0] <v) [x] |1
< x < maxspan}. For example, given maxspan = 2, {C) [0]
v (D) [0] = {CD)) [0]; (C) [0] us <Dy [0] =
{(CD) [0]; and <C) [0] v, (D) [0] =
{ (C) [0] <Dy [1], <C) [0] <D) [2]}.

Definition 5 [8] Given 2 frequent k-patterns «v and (3, k > 1,
then suby (o) = (w)[i], and suby () = (V)[J]. « is joinable to
0 if suby,p1(o) = suby1(0) and i < j, which yields three
types of join operation: (1) itemset-join: o u; 8 = {a + ;
MG =) A (u < v)}; (2) sequence-join: v Uy B = {a +
WG = )} 3) inter-foin: a v, § = {a + , W] G <}
For example, (BC) [0]vu; (BD) [0] = <{(B(CD)) [0],
(BC) [0]us; <{BD) [0] = {(BCD) [0],and {BC) [0]y,
(B) [0] <Dy [2]= (BC) [0] (D) [2]

Definition 6 (Prefix) [14] A pattern 5 = {(b;b ... b,,) 1is called
aprefix of pattern « = (a5 ... v,y if'and only if b; = «; for
all <i<m-—1,b, € o, m < n. For instance, the prefixes of
patten (D(BC)B) are: {D) , {(DB) and <{D(BC)) .
Thus, any sequence would be the prefix of its extended se-
quences based on this definition.

3.2 Problem statement

Given a sequence database D, the minimum support (minsup),
and a set of constraint itemsets /C = {cy, ¢, ¢3, ..., ¢} The

@ Springer

DAT Megasequences
1 (CUB)OCABO)A)[1]
2 | {CABCO)A)OKAD)[1]
3| 4D)OKAD)(1]
4 | (4D)[0]

task of inter-sequence pattern mining with an itemset con-
straint is to discover all frequent sequences o = «;[wy],
ao[ws],. .., am[wp] such that o [w;] € o, 3b; € IC: b; € ..
For instance, let IC = {(C), (E)}, the sequence
(C(AB)) [0] {(C(ABC)A) [1] satisfies the constraint
whereas the sequence (AD) [0] (A) [1] does not.

4 Proposed algorithm
4.1 DBV-PatternList structure

Instead of using the PatternList data structure according to the
EISP-Miner algorithm [7], we use the DBV-PatternList data
structure [9]. This structure uses dynamic bit vectors to store
the t-values and p-values of an e-item in the database. It is used
to minimize the space and time needed to extend the e-item
according to inter-sequence patterns. The DBV-PatternList
structure is presented as follows:

e The index of the first non-zero value in the bit vector.
* Bit vector: the array of values after trimming zeroes at the
start and end index.

Figure 1 Presents the use of PatternList and DBV-
PatternList structures.

e-item <A>[0]
t-value 1 2 3 4 5 7
v vl vl ly ]y
p-value | 2 | 23 1 1 1 1

(a) PatternList structure

e-item

start |1
bit-vector 15 10

t-value 1 2 3 4 5 7

y v [ ¥yl |y

p-value | 2 | 23 1 1 1 1
(b) DBV-PatternList structure

Fig. 1 Structures of (a) PatternList and (b) DBV-PatternList

<A>[0]
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Fig. 2 The DBV-ISPMIC

DBV-ISPMIC algorithm

algorithm

Input: A sequence database D, minimum support (minsup), and maximum span (maxspan),

IC={ci,c2 ... ca}

Output: A complete set of frequent inter-sequence patterns FP satisfying minsup and itemset

constraints.

1. Scan D to generate a set of all frequent 1- DBV-PatternList, T|NULL, as the extended

group of the root node of an ISP-tree 7
2. For each frequent 1-DBV-PatternList oy in T|/NULL do
Call ISP-Join1(T|NULL, FP, IC, aiis) to get T| cis;

End for
Output FP;

3
4. Call ISP-Joink(T|cuist, FP, IC);
5
6

As in structure Fig. 1a, if we store information for an e-item
using the PatternList data structure we need to use 26 bytes
(12 bytes for t-values and 14 bytes for p-values). But if we use
the DBV-PatternList (structure Fig. 1b) data structure we only
use 20 bytes (2 bytes for the start position of e-items, 4 bytes
for the t-values and 14 bytes for the p-values). Because we
have converted the t-values to bit vectors (Definition 6), stor-
age space is reduced.

4.2 DBV-ISPMIC algorithm

Our proposed method relies on the DBV-PatternList structure
and the DBV-PatternList joining methods. The model of the
DBV-ISPMIC algorithm is shown in Fig. 2.

In this algorithm, there are five functions — ISP-Join1, ISP-
Joink, ISP-Join1-Extension, ISP-Joink-Extension and Check
— as shown in Figs. 3, 4, 5, 6 and 7, respectively. The algo-
rithm computes on a given sequential database with minsup,
maxspan and a set of itemset constraints defined by the user.
The result is a set of frequent inter-sequence patterns that
satisfy the conditions of minsup and itemset constraints. The
DBV-ISPMIC algorithm has three main steps, as presented
below.

Step 1 The sequential database is scanned once to find all
frequent 1-patterns in which there is not less than the
user-specified minimum support threshold minsup (Fig.

2, line 1). Then, we will create a tree 7, with the root
being NULL and leaves including the found DBV-
PatternList. The algorithm goes over all frequent 1-
DBV-PatternList results to start expanding the nodes ac-
cording to the itemset, sequence and inter extension (Fig.
2, line 2).

Step 2 The algorithm calls the ISP-Join1 function (Fig. 3)
for extending an vy, node with the remaining children of
the TJNULL tree (Definition 4). In this function, we will
have a new DBV-PatternList in three ways that was ex-
tended from the itemset, sequence and inter (based on
maxspan value) extension. We check the DBV-
PatternList result with the minsup condition and itemset
constraints. The Check function in Fig. 7 is used to check
if a new DBV-PatternList satisfies the constraint. If sat-
isfied, we will add this DBV-PatternList as a child node
of T|ay;, (Fig. 5, lines 1-9).

Step 3 The algorithm calls the ISP-Joink function (Fig. 4)
for extending the child node of the oy, node with the
remaining children according to the k-pattern
(Definition 5). In this function, we have been given a
new DBV-PatternList in three ways that extend accord-
ing to itemset, sequence and inter and then we will check
whether the DBV-PatternList result satisfies the minsup
condition. The Check function is used to check if a new
DBV-PatternList satisfies the constraint. If it is satisfied,

Fig. 3 The ISP-Joinl function

Function 1: ISP-Join1(T, FP, IC, aisi)

1. For each frequent 1-DBV-PatternList ysy in T|/NULL, where o=(u)[0] and y=(v)[0], do

For x = 0 to maxspan do

ISP-Join1-Extension(T|ais:, FP, IC, cuist, Yiist, u, v, X);

2
3
4. End for
5. End for

@ Springer
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Fig. 4 The ISP-Joink function Function 2: ISP-Joink(7, FP, IC)

1. For each frequent k-DBV-PatternList Biis in 7| ctiss, where subyi(f)=(u)[i] do
2 For each frequent k-DBV-PatternList yis in 7|cuis;, where subgi(y)=(v)[j] do
3 ISP-Joink-Extension(7|Biis, FP, IC, Biist, Yiist, U, v, 1, J);

4.  End for

5 Call ISP-Joink(71Biist, FP, IC);

6. End for

7

Delete 7] cyis: from T;

Fig. 5 The ISP-Join1-Extension Function 3: ISP-Joinl-Extension(7, FP, IC, cist, Yisi, U, v, X)
functi
fetion If (=0) and (u<v) then

—_

Ohist = ctist Ui Yiss;
If support(6ist) > minsup and Check(8is,, [C) then add Gy to T|cuise and Oto FP;
If (x=0) then

Prist = Clist Us Yist;

If (x>0) then

2
3
4
5
6.  If support(pist) > minsup and Check(piis, IC) then add piis to T|cuis and p to FP;
7
8 otist = st Ur Yiist;

9

If support(ouis:) = minsup and Check(onis;, /C) then add onis: to T auis: and o to FP;

Fig. 6 The ISP-Joink-Extension Function 4: ISP-Joink-Extension(7, FP, IC, Biisi, Yist, Uy V, i, J)
function

1. If (i=j) and (u<v) then

Orist = Piist Ui yist;

If support(6ist) > minsup and Check(8is, IC) then add Gy to T|fuis: and Oto FP;
If (i=j) then

Prist = Pist Us Yist;

If support(piist) > minsup and Check(piis;, [C) then add piis: to T\Biis and pto FP;
If (i<j) then

Otist = Pist Ur Yiists

© ® N kN

If support(ouis;) > minsup and Check(anis;, /C) then add onis: to TSus and oto FP;

Fig. 7 The function Check Function 5: Check(a, IC)

1. Foreacha € ado
For each b € IC do

If b < a’ then // @’ is a after removing span

End for

2

3

4. Return true;
5

6. End for

7

Return false;

@ Springer
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we will add this DBV-PatternList as a child node of 7|ay;,,
(Fig. 6, lines 1-9).

4.3 Improved DBV-ISPMIC algorithm

We can see that if a pattern satisfies itemset constraints, then
the new pattern that is extended from this node with the
itemset, sequence, and inter extension will also satisfy the
itemset constraints. This helps to reduce the algorithm’s
DBV-PatternList node expansion time. We propose a propo-
sition to verify this, as follows.

Proposition 1 (Checking itemset constraints) Given an inter-
sequence o and a set of itemset constraints /C, if « satisfies IC,
then the sequence 3, generated from «, also satisfies constraint
IC.

Proof Let o = {ay[wi]aa[ws] .. au[w,]) . B = (Bi[wi]
Bo[ws] ... Bu[w,]) be an inter-sequence, whereas each «;, 5;
corresponds to an itemset. Because « satisfies /C, based on the
problem statement, this condition holds: Jo[w;] € o, 3b; € IC:
b ¢ .
Based on Definition 5, there are three cases to consider:
Itemset-join: In 3 always exists G,[w;] such that o;; € 3; =
b; € a; € fB;orb; € B;. It means 3 satisfies IC.
Sequence-join: Because itemset of «; does not change. It
means [3; = o; and therefore, we have b; C f3; or 3 satisfies IC.
Inter-join: Based on the inter-join, all itemsets from « al-
ways exist in 3, therefore, in § always exists G;[w;] such that
a; C Br=b; € oy € frorb; © fy It means 3 satisfies /C.
In the ISP-Joinl-improving function, we first check the
Qs pattern with the itemset constraints. If it is true, all
frequent DBV-PatternList which are extended from «y;;
also satisfy the itemset constraints (Fig. 8, lines 3-12).
This is the same with the ISP-Joink-improving function
(Fig. 9, lines 2—13).
Consider the example shown in Table 1. An example of
creating a sequential database from a customer dataset.
Where minsup = 2, maxspan = 1 and itemset constraints
IC = {(AB), CA, AD}. The frequent patterns generated in the
mining phase are presented in Fig. 10.

Step 1 the sequential database is scanned once by the algo-
rithm to enumerate all frequent 1-patterns, which is { (A) ,

(B) , {C) , (D) } with the support {4, 2, 2,2}, respec-
tively (Fig. 10, level 0). In this database scan, the 1-DBV-
PatternLists are also generated.

Step 2 The algorithm generates candidates { (A) [0] {A) [1],
{(AB)) [0], <AD) [0], <A) [0] <(D) [1]} that shares the 1-
prefix (A) byjoining (A) with (A) , (B) , {(C) and
(D) based on itemset, sequence and inter extension (Fig. 8).
Other generated candidates (B) [0] {A) [1], <(CA) [0],
{(C) [0] <A) [1] and <{CB) [0] that share 1-prefix (B) ,
{C) are also created at the same time during the combination
(Fig. 10, level 1).

Step 3 The algorithm traverses the children of each (k-1)-pat-
tern by depth first search to generate k-patterns. If a (k-1)-
pattern satisfies the constraints /C then all its super patterns
should not be checked. For instance, {(AB)) [0] satisfies the
itemset constraints, so we do not need to check the itemset
constraints for {(AB)) [0] {A) [1]. Due to this checking
case, we reduce the checking time of the algorithm.
Otherwise, (A) [0] (A) [1] do not satisfy the itemset con-
straints, so we check itemset constraints for its child nodes.
The algorithm backtracks to step 3 and complete the full can-
didates of (B) , (C) then (D) .Asno more candidates
can be found in branch (D) , the algorithm terminates. We
have FP = { (AA) [0] (AD) [1]: support = 2,

{(AB)) [0]: support = 2, {(AB)) [0] <A) [1]: support
= 2, <(AD) [0]: support = 2, {CA) [0]: support = 2,

(CA) [0] <A) [1]: support = 2, {C(AB)) [0]: support
=2, (C(AB)) [0] <A) [1]: support = 2}.

4.4 Parallel DBV-ISPMIC algorithm

As shown in Fig. 2, the DBV-ISPMIC algorithm is a sequen-
tial algorithm. The complexity time of the DBV-ISPMIC al-
gorithm is calculated by 040 1 + thode 2 + thoge 3+ ... + 1
node_n» Whereas the set {node_1I, node_2, node_3, ..., node_n}
contains child nodes of an ISP-tree 7, #,,4.; 1S the extension
time of a node extension of the ISP-tree 7' in 1-pattern and k-
pattern (in ISP-Joinl and ISP-Joink functions, respectively).
This is because the ISP-Joink extension function independent-
ly expands the sub-nodes of the ISP-tree 7. If each sub-branch
of'the ISP-tree T'is expanded for each task, the running time of
the algorithm improves. Therefore, the overall runtime of the
algorithm can be determined as Max{node 1, node_ 2,
node 3, ..., node_n}.

An example for the above proposal is given in Fig. 11.
Based on the database in Table 2 with minsup = 2, the fre-
quent patterns that were generated at the first level by 1-
pattern extension included <(A) , (B) , (C) and

(D) . For each frequent pattern, the k-pattern extension is
processed at each individual task. As stated, the time of the
algorithm is calculated in Max{t7,s1, trasi2 trasks/> SINCE ONe
task runs in parallel with the others. The allocation of the
number of tasks that can be executed simultanecously is
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Fig. 8 The function ISP-Joinl- Function 6: ISP-Join1-Improving(7, FP, IC, aiis;)

improving
1. For each frequent 1-DBV-PatternList yis in TINULL, where a=(u)[0] and y=(v)[0], do
2. For x =0 to maxspan do
3. If Check(aisi, IC) then
4. If (x=0) and (u<v) then
5. Orist = tise Ui st
6. If support(6Gist) > minsup then add s to T\ cuis: and Oto FP;
7. If (x=0) then
8. Prist = ist Us Yist;
9. If support(piis)) = minsup then add piis to Tl and p to FP;
10. If (x>0) then
11. Otist = Cliist Ut Yist;
12. If support(ouis)) > minsup then add o to T|ouiss and oto FP,
13. Else
14. ISP-Joinl-Extension(7cuisi, FP, IC, alist, iist, t, v, X);
15. End for
16. End for
Fig. 9 The function ISP-Joink- Function 7: ISP-Joink-Improving(7, FP, IC)
improving

1. For each frequent k-DBV-PatternList Sy in T|cisr, where subii(f)=(u)[i], do
2. If Check(Biist, IC) then

3 For each frequent ~-DBV-PatternList i in 7] cuisi, Where suby i(y)=(v)[j], do
4 If (i=) and (u<v) then

5. Brist = Piist Ui st

6 If support(Biis)) > minsup then add G to T1fuis: and Oto FP;

7 If (i=/) then

8 Piist = Prist Us Yise;

9 If support(piis)) > minsup then add pjis to T\fis and p to FP;

10. If (i<j) then

11. Olist = Prist Ur Yist;

12. If support(ciisi) > minsup then add o to 7\fiis and oto FP;

13. End for

14. Else

15. For each frequent k~-DBV-PatternList yiis in T]auisi, where subgi(y)=(v)[j], do
16. ISP-Joink-Extension(71Biisi, FP, IC, Piist, Yist, U, v, i, J);

17. End for

18.  Call ISP-Joink-Improving(7|Sis, FP, IC);

19. End for

20. Delete T|atis from T;
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Fig. 10 The extended tree of NULL Level
patterns corresponding to the // \\
example database
<A>[0] <B>[0] <C>[0] <D>[0] 0
<A>[0)A>[1]  <(AB)>[0] <AD>[0] <A>[O]<D>[1] <B>[0]<A>[1] <CAS[0]  <C>[0kAS[1]  <CB>[0] 1
/N <\
<AAS[0]AD>[1] |\ <(AB)>[0]<A>[1] <CA>[0)A>[1] <C(AB)>[0] <CB>[0)<A>[1] 2

i: itemset-extension
s: sequence-extension
t: inter-extension

/,

<C(AB)>[0KA>[1]

--- denotes patterns that do not satisfy the itemset constraints
— denotes patterns that satisfy the itemset constraints by checked parent node

determined by the computer processor’s cores. This can also
be extended to distributed systems, where each task is proc-
essed on a separate system and then final the result is gathered
and combined.

The pDBV-ISPMIC algorithm is based on the DBV-
ISPMIC with the algorithm parallelized. Figure 12 shows with
a flowchart the main steps of the sequential DBV-ISPMIC
algorithm and its parallel (pDBV-ISPMIC) counterpart. The
pDBV-ISPMIC algorithm has two main steps:

Step 1: Loading the database and finding the frequent 1-
pattern sets that satisfy the minsup.

Step 2: Allocating execution tasks, with each task han-
dling one k-pattern. The algorithm search space explora-
tion is DFS-based (depth-first search), which is recursive.
When no more candidates can be generated, the algo-
rithm terminates.

Fig. 11 Example of using parallel
processing for ISP-tree extension

5 Experimental results

In evaluating the performance of the DBV-ISPMIC algorithm
and its improvement in runtime, all the experiments were car-
ried out on a PC with an Intel® Core ™ 17 10th gen processor
(10,510 U) @ 1.8-4.9 GHz, and 20 GB RAM. The operating
system used is Windows 10 64-bit. The algorithms were im-
plemented in Visual Studio 2017 C#.

5.1 Experimental databases

We ran tests on five databases, namely C6T5S4I4N1kD1k,
C6TS5S414N1kD10k, Gazelle, BIKE and BMSWebView].
The synthetic databases used for comparison were generated
using the IBM synthetic data generator. These databases are
available at https://www.mediafire.com/folder/
1d3p3z6b9g8kj. Their characteristics are shown in Table 3.

NULL

/l\

<A>[0]

<B>[0]

|

<C>[0]

<A>[0]<A>[1] <(AB)>[0] <AD>[0] <A>[0]<D>[1]|<B>[0]<A>[1]i{<CA>[0]<C>[0]<A>[1]<CB>[0
s t t i ¢
<AA>[0]<AD>[1] <(AB)>[0]<A>[1] <CA>[0]<A>[1] <C(AB)>[0] <CB>[0]<A>[1]
t
<C(AB)>[0]<A>[1]
Task 1 Task 2 Task 3

i: itemset-extension
§: sequence-extension
t: inter-exetension

@ Springer


https://www.mediafire.com/folder/id3p3z6b9g8kj
https://www.mediafire.com/folder/id3p3z6b9g8kj

19836

A.Nguyen et al.

start

Read
transaction dataset

Find frequent 1-patternlist

Find frequent k-patternlist

J

Checking minsup condition

J

Checking itemset
constraints condition

J

Save frequent sequences

Sequential processing phase
(DBV-ISPMIC algorithm)

(a) Sequential algorithm

start

Read

transaction dataset

Find frequent 1-patternlist

Find frequent
k-patternlist

Find frequent
k-patternlist

Find frequent
k-patternlist

|

|

Checking
minsup condition

Checking
minsup condition

Checking
minsup condition

J

J

J

Checking itemset
constraints condition

Checking itemset
constraints condition

Checking itemset
constraints condition

|

|

|

Save frequent
sequences

Save frequent
sequences

Save frequent
sequences

Parallel processing phase
(pDBV-ISPMIC algorithm)

(b) Parallel algorithm

Fig. 12 The figure shows the difference between sequential and parallel flow chart. a The main steps of a sequential algorithm, and b the main steps of a

parallel processing algorithm

5.2 Runtime

For the C6T5S414N1kD1k database, we evaluated the algo-
rithms with minsup = 0.5% and maxspan = {1,2,3,4,5}, the
C6T5S414N1kD10k database with minsup = 5% and

Table 3  Test database characteristics

maxspan = {1, 2, 3,4, 5}, the Gazelle database with minsup =
1% and maxspan = {1,2,3,4,5}, the BIKE database with
minsup = 0.5% and maxspan = {1, 2, 3, 4, 5}, and the
BMSWebViewl database with minsup = 0.5% and
maxspan = {1, 2, 3,4, 5}. We use an EISP-Miner algorithm

Database #Sequence #ltem Type of data
C6T5S414N1kD1k 1000 1000 Synthetic databases
C6T5S414N1kD10k 10,000 1000 Synthetic databases

Gazelle 59,602 497 Clickstream data

BIKE 21,078 67 Bike Share data from LA Metro
BMSWebViewl 59,601 497 Clickstream data
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== ost-£ISPMiner =t DBV-ASPMIC DBV-SPMIC-IMPROVING ‘ ’ == ost-£ISPMiner =t DBV-ASPMIC DBV-SPMIC-IMPROVING
Gazelle C6T5S414N1kD10k
140 3500
120 3 000
100 2500
3 80 E
v o 2000
E 2
g S
g S
& 1500
40
1000
20
500
0
1 2 3 4 5 0 |
maxspan 1 2 3 4 5
Fig. 13 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV- maxspan

ISPMIC-IMPROVING for the Gazelle dataset

to evaluate all the proposed algorithms [7], and add a check
constraint to it, with this approach called the Post-EISPMiner
algorithm.

Based on the experimental results in Figs. 13, 14, 15, 16
and 17, we can see that the DBV-ISPMIC-IMPROVING al-
gorithm runs faster than the other two algorithms, Post-
EISPMiner and DBV-ISPMIC. In Fig. 13, we compare the
runtime of Post-EISPMiner, DBV-ISPMIC and DBV-

e POst-EISPMiner e DBV-SPIIC DBV-SPMIC-IMPROVING ‘
C6T5S414N1kD1k
250
200 | !
@ 150 |
@
E
=
<
3
& 100 f
p
50
o L
1 2 3 4 5
maxspan

Fig. 14 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the C6T5S414N1kD1k dataset

Fig. 15 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the C6T5S414N1kD10k dataset

ISPMIC-IMPROVING for the Gazelle dataset. When the val-
ue of maxspan is increasing, the running time of all three
algorithms increases relatively evenly.

Figures 14, 15, 16 and 17 show the results for the
C6T5S414N1kD1k, C6T5S414N1kD10k, BIKE and
BMSWebViewl datasets. It is clear that the runtimes for
DBV-ISPMIC-IMPROVING and DBV-ISPMIC are much
better than that of Post-EISPMiner.

’ e Post-EISPMiner

st DBV-ASPMIC DBVASPMIC-MPROVING
BIKE

2 500

2000

Runtime (s)
8

-
[=]
=]
[=]

500

1 2 3 4 5
maxspan

Fig. 16 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the BIKE dataset
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s=iFemm Dst-ESPMiner i DBV-ISPMIC DBV-ISPMIC-IMPROVING

BMSWebViewl

700

Runtime (s)

0 H H H
1 2 3 4 5
maxspan

Fig. 17 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the BMSWebView] dataset

==m==pPost-EISPMiner ==e==pDBV-ISPMIC pDBV-ISPMIC-IMPROVING

COTSS4I4N1KD1k

120

100

80

60

Runtime (s)

40

20

0 L s 1 !
1 2 3 4 5
maxspan

Fig. 18 Execution times in a parallel evaluation of pPost-EISPMiner,
pDBV-ISPMIC and pDBV-ISPMIC-IMPROVING for the
C6T5S4I14N1kD1k dataset
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==m==pPost-EISPMiner

==o==pDBV-ISPMIC pDBV-ISPMIC-IMPROVING

COTSS414N1kD10k

1400

1200

1000

Runtime (s)

1 2 3 4 5
maxspan

Fig. 19 Execution time in a parallel evaluation of pPost-EISPMiner,
pDBV-ISPMIC and pDBV-ISPMIC-IMPROVING for the
C6T5S414N1kD10k dataset

==m==pPost-EISPMiner ==@==pDBV-ISPMIC

BIKE

pDBV-ISPMIC-IMPROVING

900

Runtime (s)

0 1 L 1

1 2 3 4 5
maxspan

Fig. 20 Execution times in a parallel evaluation of pPost-EISPMiner,
pDBV-ISPMIC and pDBV-ISPMIC-IMPROVING for the BIKE dataset
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==m==pPost-EISPMiner ==e==pDBV-ISPMIC pDBV-ISPMIC-IMPROVING

BMSWebViewl

400

350

300

250

200 ¢

Runtime (s)

150

100

50 A

0 1 L L
1 2 3 4 5
maxspan

Fig. 21 Execution times in a parallel evaluation of pPost-EISPMiner,
pDBV-ISPMIC and pDBV-ISPMIC-IMPROVING for the
BMSWebView! dataset

=g Dst-EISPMiner e DBV-ISPMIC DBV-ISPMIC-IMPROVING ‘

Gazelle
100

90 |
80
70
60

sof :" ﬁ

a0 |

Memory (MB)

30

10

0 1 1 1
1 2 3 4 5

maxspan

Fig. 22 Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the Gazelle dataset

=i Post-EISPMiner === DBV-ISPMIC DBV-ISPMIC-IMPROVING

C6TSS414N1kD1k

500

450

400

350

300

250

Memory (MB)

200

150

100

1 2 3 4 5
maxspan

Fig. 23 Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the C6T5S414N1kD1k dataset

e DBV-ISPMIC DBV-ISPMIC-IMPROVING

C6TSS414N1kD10k

‘ s D0st-EISPMiner

3500

3000

2500

2000

Memory (MB)

1500
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Fig. 24 Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the C6T5S414N1kD10k dataset
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=i Post-EISPMiner st DBV-ISPMIC DBV-ISPMIC-IMPROVING ‘ ‘ =i Post-EISPMiner e DBV-ISPMIC DBV-ISPMIC-IMPROVING

BIKE Gazelle

1200

1000

800
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Memory (MB)

Runtime (s)
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maxspan

Fig. 27 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the Gazelle dataset, with maxspan from 2 to

maxspan

Fig. 25 Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-
ISPMIC-IMPROVING for the BIKE dataset

12
=8=Post ESPMiner ==DEVSPMIC DBVASPMICIMPROVING ‘ ‘ st EI5PMiner e DRVASPMIC DB-SPMIC-MPROVING
BMSWebViewl C6T55414N1kD1k
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1 2 3 4 5 maxspan
maxspan

Fig. 28 Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-
Fig. 26 Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV- ISPMIC-IMPROVING for the C6T5S414N1kD 1k dataset, with maxspan
ISPMIC-IMPROVING for the BMSWebView] dataset from 2 to 12
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5.3 Parallel method for efficient mining of inter-
sequence patterns with itemset constraints

Because DBV-ISPMIC-IMPROVING is the best algorithm
for mining inter-sequence patterns with itemset constraints,
we develop a parallel version of it, pDBV-ISPMIC-
IMPROVING, by using the C#.NET software library to im-
prove the performance. The performance of pDBV-ISPMIC-
IMPROVING algorithm is evaluated by comparing it with
that of the DBV-ISPMIC-IMPROVING algorithm. The re-
sults are shown in Figs. 18, 19, 20 and 21, and it can be seen
that when maxspan increases, the runtime of pDBV-ISPMIC-
IMPROVING is much less than the runtime of DBV-
ISPMIC-IMPROVING algorithm.

5.4 Memory usage

Figures 22, 23, 24, 25 and 26 show the peak memory
consumption of the three algorithms, Post-EISPMiner,
DBV-ISPMIC and DBV-ISPMIC-IMPROVING. The re-
sults show that the memory needed by DBV-ISPMIC and
DBV-ISPMIC-IMPROVING is less than that needed by
the Post-EISPMiner algorithm for almost all database pa-
rameter values. Because the two proposed algorithms re-
duce the time needed to check the child nodes generated,
they have less memory usage compared to the Post-
EISPMiner algorithm.

5.5 Impact of maxspan

For mining inter-sequence patterns, when we increase the
maxspan value, the number of candidates generated will also
increase. Therefore, if we use proposition 1 to reduce the
itemset constraints checking, the processing time will be bet-
ter. For instance, we use two databases, Gazelle and
C6T5S414N1kD1k, to evaluate this. The Gazelle database
(minsup = 3%) and C6T5S414N1kD1k database (minsup =
0.8%) were tested with the maxspan value increasing from 2
to 12. The results show that the proposed algorithms (DBV-
ISPMIC and DBV-ISPMIC-IMPROVING) always work well
(Fig. 27 and 28).

6 Conclusions and future work

With this study, we introduced an algorithm to solve the prob-
lem of mining inter-sequence patterns with itemset con-
straints. This algorithm, named DBV-ISPMIC, is based on
the EISP-Miner algorithm to mine inter-sequence patterns,
and uses a dynamic bit vector structure to store data, which
helps to increase the processing speed and reduce the storage
space when compared to EISP-Miner. Based on the DBV-

ISPMIC algorithm, we also propose its improvement to help
reduce processing time.

In the future, we will apply distributed computing to the
improved algorithm to help optimize the running time. We
will also study how to put the constraints into mining fre-
quent closed inter-sequences. Finally, algorithms for mining
high utility sequences have been proposed in recent years
[19-25], and we will study how to mine high utility inter-
sequences and high utility inter-sequences with constraints.
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